000086450 001__ 86450 000086450 005__ 20200716101516.0 000086450 0247_ $$2doi$$a10.1007/s10543-018-00743-2 000086450 0248_ $$2sideral$$a110413 000086450 037__ $$aART-2019-110413 000086450 041__ $$aeng 000086450 100__ $$0(orcid)0000-0003-4359-1499$$aCarnicer, J.M.$$uUniversidad de Zaragoza 000086450 245__ $$aCentral orderings for the Newton interpolation formula 000086450 260__ $$c2019 000086450 5060_ $$aAccess copy available to the general public$$fUnrestricted 000086450 5203_ $$aThe stability properties of the Newton interpolation formula depend on the order of the nodes and can be measured through a condition number. Increasing and Leja orderings have been previously considered (Carnicer et al. in J Approx Theory, 2017. https://doi.org/10.1016/j.jat.2017.07.005; Reichel in BIT 30:332–346, 1990). We analyze central orderings for equidistant nodes on a bounded real interval. A bound for conditioning is given. We demonstrate in particular that this ordering provides a more stable Newton formula than the natural increasing order. We also analyze of a central ordering with respect to the evaluation point, which provides low bounds for the conditioning. Numerical examples are included. 000086450 536__ $$9info:eu-repo/grantAgreement/ES/DGA/FSE$$9info:eu-repo/grantAgreement/ES/MINECO/BES-2013-065398B$$9info:eu-repo/grantAgreement/ES/MINECO-FEDER/MTM2015-65433-P 000086450 540__ $$9info:eu-repo/semantics/openAccess$$aAll rights reserved$$uhttp://www.europeana.eu/rights/rr-f/ 000086450 590__ $$a1.33$$b2019 000086450 591__ $$aMATHEMATICS, APPLIED$$b106 / 260 = 0.408$$c2019$$dQ2$$eT2 000086450 591__ $$aCOMPUTER SCIENCE, SOFTWARE ENGINEERING$$b67 / 108 = 0.62$$c2019$$dQ3$$eT2 000086450 592__ $$a0.868$$b2019 000086450 593__ $$aComputer Networks and Communications$$c2019$$dQ1 000086450 593__ $$aSoftware$$c2019$$dQ1 000086450 593__ $$aApplied Mathematics$$c2019$$dQ2 000086450 593__ $$aComputational Mathematics$$c2019$$dQ2 000086450 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/acceptedVersion 000086450 700__ $$0(orcid)0000-0002-6497-7158$$aKhiar, Y.$$uUniversidad de Zaragoza 000086450 700__ $$0(orcid)0000-0002-1340-0666$$aPeña, J.M.$$uUniversidad de Zaragoza 000086450 7102_ $$12005$$2595$$aUniversidad de Zaragoza$$bDpto. Matemática Aplicada$$cÁrea Matemática Aplicada 000086450 773__ $$g59 (2019), 371–386$$pBIT$$tBIT Numerical Mathematics$$x0006-3835 000086450 8564_ $$s335415$$uhttps://zaguan.unizar.es/record/86450/files/texto_completo.pdf$$yPostprint 000086450 8564_ $$s13769$$uhttps://zaguan.unizar.es/record/86450/files/texto_completo.jpg?subformat=icon$$xicon$$yPostprint 000086450 909CO $$ooai:zaguan.unizar.es:86450$$particulos$$pdriver 000086450 951__ $$a2020-07-16-09:23:37 000086450 980__ $$aARTICLE