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Abstract The stability properties of the Newton interpolation formula de-
pend on the order of the nodes and can be measured through a condition
number. Increasing and Leja orderings have been previously considered [4],
[1]. We analyze central orderings for equidistant nodes on a bounded real in-
terval. A bound for conditioning is given. We demonstrate in particular that
this ordering provides a more stable Newton formula than the natural increas-
ing order. We also analyze a central ordering with respect to the evaluation
point, which provides low bounds for the conditioning. Numerical examples
are included.
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1 Introduction

The Newton interpolation formula is a common representation of Hermite in-
terpolating polynomials at a sequence of nodes. Whereas the Lagrange formula
provides an explicit representation of the solution of the Lagrange interpola-
tion problem in terms of the function values, the Newton formula gives rise
to solutions of Hermite problems when the nodes coallesce. Nice properties of
the stability of the Lagrange basis were described in [2]. In [1], a conditioning
associated to a representation of the interpolating polynomial was introduced
and the optimal stability of the Lagrange representation with respect to this
conditioning was proved for an arbitrary sequence of nodes. As for Newton
representations, it is known that a Leja ordering of the nodes has a better
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global behaviour with respect to the roundoff error properties than the natu-
ral increasing order. However, tight bounds for the conditioning of the Newton
representation are difficult to obtain. Since the stability of the Newton repre-
sentation depends on the ordering of the nodes, it can be much more unstable
than the Lagrange representation. This motivates to explore simple alterna-
tive criteria for the ordering of the nodes providing good stability results. This
paper presents central orderings and analyzes the corresponding conditionings
of the Newton representations.

In Section 2, we introduce basic concepts related to the Newton formula.
We recall how the ordering of the nodes for the Newton formula is of utmost
importance and describe Leja orderings. We recall that for the polynomial
Newton formula with n + 1 equidistant nodes in increasing order, the best
uniform bound of its conditioning is 3n and it is attained at the last node (see
Corollary 12 of [1]). In Section 3, we present the central order with respect
to a center for any set of nodes. We analyze the relevant case of equidistant
nodes. In Theorem 3.1, we provide an upper bound for its conditioning. Nu-
merical examples comparing this order with increasing order and Leja order
are included.

More stability is gained using central ordering around the evaluation point,
which is analyzed in Section 4. Numerical experiments confirm the better
conditioning of this ordering, which in turn implies a higher computational
cost. We illustrate this low conditioning for equidistant nodes and also for the
relevant case of Chebyshev nodes. Recall that Chebyshev nodes present almost
optimal stability properties (see Section 1.3 of [5]). In Theorem 4.1, we show
that 2nn−1 + 1

2 is the corresponding upper bound for the conditioning of the
Newton representation with equidistant nodes. The upper bound obtained in
Theorem 4.1 is also used to improve some classical bounds of the Lebesgue
constant for equidistant nodes.

2 The conditioning of Newton formulae

Let us recall the Lagrange interpolation problem by polynomials.
Lagrange interpolation problem Given a function f ∈ C[a, b] and distinct

nodes x0, . . . , xn in [a, b], find a polynomial p in Pn, the space of polynomi-
als of degree not greater than n, such that p(xi) = f(xi), for i = 0, . . . , n.

The Lagrange interpolation problem has a unique solution p given by the
Lagrange formula

p =
n∑

i=0

λifli,

where
λif := f(xi), i = 0, . . . , n,

are the evaluation functionals and

li(x) :=
∏

j∈{0,...,n}\{i}

x− xj

xi − xj
, i = 0, . . . , n,



Central orderings for the Newton interpolation formula 3

are the Lagrange fundamental polynomials.
The Newton interpolation formula

p =
n∑

i=0

difωi (2.1)

represents the interpolating polynomial in terms of the Newton monic poly-
nomials

ω0 := 1, ωi(x) = (x− x0) · · · (x− xi−1), i = 1, . . . , n+ 1, (2.2)

and the divided differences functionals

dif := [x0, . . . , xi]f, i = 0, . . . , n.

Since the nodes are distinct, we have

[x0, . . . , xi]f =
i∑

k=0

f(xk)

ω′
i+1(xk)

, (2.3)

where
ω′
i+1(xk) =

∏
j∈{0,...,i}\{k}

(xk − xj). (2.4)

Let Ln be the Lagrange interpolation operator

Ln : f ∈ C[a, b] → Ln[f ] ∈ Pn,

which associates to each function f its Lagrange interpolation polynomial
Ln[f ]. For a given basis v0, . . . , vn of Pn, the Lagrange interpolation operator
can be represented in the form

Ln[f ] =
n∑

i=0

βifvi, (2.5)

where βi :=
∑n

j=0 cijλj , i = 0, . . . , n, are suitable functionals belonging to the
space generated by λ0, . . . , λn. The Lagrange representation Ln[f ] =

∑n
i=0 λifli

and the Newton representation Ln[f ] =
∑n

i=0 difωi are particular cases of
(2.5).

For the purpose of analyzing the stability properties of a representation
(2.5), we introduced in [1] a conditioning given by

cond(x;β) :=

n∑
i=0

||βi||∞|vi(x)|,

where
||βi||∞ := sup

f∈C[a,b]\{0}

|βi[f ] |
||f ||∞

.
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Letting f in the previous definition bounded by −1 and 1 and equal to sign
of cij at xi, we deduce that

||βi||∞ =
n∑

j=0

|cij |, (2.6)

(cf. Proposition 2 of [1]). The conditioning of the Lagrange representation
coincides with the Lebesgue function λ(x)

λ(x) :=
n∑

i=0

|li(x)| =
n∑

i=0

||λi||∞|li(x)| = cond(x;λ)

because ||λi||∞ = 1, for i = 0, . . . , n. Observe that λ(x) = Ln[f ](x) for a
function f bounded by −1 and 1 and equal to sign of li(x) at xi. Using the
triangular inequality

λ(x) = |Ln[f ](x)| ≤
n∑

i=0

|βif | |vi(x)| ≤
n∑

i=0

||βi||∞ |vi(x)| = cond(x;β)

So, the conditioning of any other representation is greater than or equal to the
conditioning of the Lagrange representation (cf. Theorem 4 of [1]), that is

cond(x;λ) ≤ cond(x;β). (2.7)

Let us remark that the Newton representation depends on the order of the
nodes. A different ordering of the nodes leads to different divided difference
functionals d0, . . . , dn and different Newton monic polynomials ω0, . . . , ωn. So,
depending on the order of the nodes, the conditioning of the Newton formula

cond(x; d) =

n∑
i=0

||di||∞|ωi(x)| (2.8)

may change.
The increasing or decreasing ordering of the nodes seems natural. How-

ever, it is well-known that the rounding error propagation grows quickly in
a neighborhood of the last node. A successful alternative giving rise to good
global results is provided by the Leja ordering (see [3], [4]).

Definition 2.1 (Leja order) A sequence of nodes x0, . . . , xn follows a Leja
order if the nodes satisfy

k−1∏
j=0

|xk − xj | ≥
k−1∏
j=0

|xi − xj |, i ≥ k.
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By (2.2), the Leja order chooses xk such that |ωk(xk)| ≥ |ωk(xi)|, for i ≥ k. In
this paper we explore other orderings. One motivation to consider alternative
orderings is providing a simplified criterion, comparing distances rather than
products of distances. Moreover, tight bounds of cond(x; d) for nodes following
the Leja ordering are difficult to obtain.

The Lebesgue constant Λn := maxx∈[a,b] λ(x) = maxx∈[a,b] cond(x;λ) is the
maximum value of the Lebesgue function. The particular case of equidistant
nodes in increasing order in an interval [a, b]

xi = a+
i

h
, h =

b− a

n
, i = 0, . . . , n, (2.9)

leads to the following asymptotic formula by Schönhage [6] for the Lebesgue
constant

Λn ∼ 2n+1

e n log(n+ γ)
, (2.10)

where γ ≈ 0.5772156649 is the Euler–Mascheroni constant. In Corollary 12 of
[1], the corresponding tight bound of the conditioning of the Newton repre-
sentation

max
x∈[a,b]

cond(x; d) = cond(xn; d) = 3n, (2.11)

was obtained. We observe that the asymptotic growth of the conditioning
of the Newton representation is much greater than the conditioning of the
Lagrange representation, in agreement with the optimality of the Lagrange
representation shown in (2.7).

The following result will be used throughout this paper.

Lemma 2.1 Let x0, . . . , xn equidistant nodes satisfying (2.9) in [a, b]. Then

|| [xσ(0), . . . , xσ(n)] ||∞ =
1

n!

(
2

h

)n

,

for any permutation σ : {0, . . . , n} → {0, . . . , n}.

Proof Formula (2.3) implies that the divided difference functional [xσ(0), . . . , xσ(n)]
coincides with [x0, . . . , xn] for any permutation σ. So, let us compute || [x0, . . . , xn] ||∞
for equidistant nodes. Using formulas (2.3) and (2.6), we have

|| [x0, . . . , xn] ||∞ =
n∑

k=0

1

|ω′
n+1(xk)|

.

Taking into account (2.4), we derive

|| [x0, . . . , xn] ||∞ =
n∑

k=0

1∏
j∈{0,...,n}\{k} |xk − xj |

=
1

hn

n∑
k=0

1∏
j∈{0,...,n}\{k} |k − j|

=
1

n!hn

n∑
k=0

(
n

k

)
=

1

n!

(
2

h

)n

.

ut
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3 Central order

Let us introduce an ordering of the nodes called central order.

Definition 3.1 (Central order) A sequence of nodes x0, . . . , xn follows a
central order with respect to a center c if the nodes satisfy

|x0 − c| ≤ |x1 − c| ≤ · · · ≤ |xn − c|.

Central order may not be unique. Non-uniqueness can occur if there are nodes
at the same distance of the center c.

If x0, . . . , xn ∈ [a, b], then the central order with respect to a (respectively,
b) is unique and coincides with the increasing (respectively, decreasing) order.

Remark 3.1 If the nodes are ordered following a central order, the convex hull
of the sequence x0, . . . , xk is an interval not containing any node xj with j > k.

For the sake of simplicity, we consider the important case c = 0 on symmetric
intervals of the form [−a, a]. At the end of this section we will illustrate the
influence of the choice of different centers.

In the following result, we bound a generalized binomial coefficient.

Proposition 3.1 Let k be an integer and
(
x
k

)
:= x(x − 1) · · · (x − k + 1)/k!.

Then ∣∣∣∣(xk
)∣∣∣∣ ≤ (

m

k

)
, k − 1−m ≤ x ≤ m,

for any m ≥ k.

Proof Let us use induction on k. For k = 0, 1, it is trivial. Let us assume that
the inequality holds for k − 1 and let us show it for k. If x ∈ [0, k − 1],∣∣∣∣(xk

)∣∣∣∣ = ∣∣∣x− k + 1

k

∣∣∣ ∣∣∣∣( x

k − 1

)∣∣∣∣ ≤ k − 1

k

(
m− 1

k − 1

)
≤

(
m

k

)
.

Let us observe that
(
x
k

)
is an increasing function on [k − 1,+∞) and then

0 ≤
(
x

k

)
≤

(
m

k

)
, x ∈ [k − 1,m].

If x ≤ 0, then
∣∣(x

k

)∣∣ = (
k−1−x

k

)
is a decreasing function of x. So∣∣∣∣(xk

)∣∣∣∣ ≤ (
m

k

)
, x ∈ [k − 1−m, 0].

ut

We present an upper bound for cond(x; d) at equidistant nodes following
a central order.
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Theorem 3.1 Let x0, . . . , xn ∈ {−a + 2ai/n, i = 0, . . . , n} be a sequence
following a central order with respect to c = 0. Then, we have

cond(x; d) ≤
(
1 +

√
2
)n+1

+
(
1−

√
2
)n+1

2

Proof We denote by h := 2a/n. By Remark 3.1, a central order always gives
rise to subsets of equidistant nodes {x0, . . . , xk}, for any k ≤ n. So, by
Lemma 2.1

||dk||∞ =
1

k!

(
2

h

)k

, k = 0, . . . , n.

Recall that ωk(x) =
∏k−1

i=0 (x − xi), k = 1, . . . , n + 1 and ω0(x) = 1. Let n be
even. If k is odd, k < n, the first k nodes are jh, j = −(k−1)/2, . . . , (k−1)/2.
In order to bound ωk, we apply Proposition 3.1

|ωk(x)| =
(k−1)/2∏

j=−(k−1)/2

|x− jh| = hkk!

∣∣∣∣(x
h + k−1

2

k

)∣∣∣∣ ≤ hkk!

(n+k−1
2

k

)
,

for x ∈ [−a, a]. If k is even, using the previous bound, we derive

|ωk(x)| = |ωk−1(x)|
∣∣∣x± kh

2

∣∣∣ ≤ hkk!

(n+k
2

k

)
for x ∈ [−a, a].

Using (2.8) and the above formulae, we have

cond(x; d) =

n∑
k=0

||dk||∞|ωk(x)| ≤
n∑

k=0

(
n/2 +

⌊
k
2

⌋
k

)
2k = sn + 2tn,

where

sn :=
n∑

k=0
k even

(
n/2 + k

2

k

)
2k =

n/2∑
k=0

(
n/2 + k

2k

)
22k

and

tn :=
1

2

n−1∑
k=1
k odd

(
n/2 + k−1

2

k

)
2k =

n/2−1∑
k=0

(
n/2 + k

2k + 1

)
22k.

Then, we have

sn + tn =

n/2∑
k=0

(
n/2 + k

2k

)
22k +

n/2−1∑
k=0

(
n/2 + k

2k + 1

)
22k =

n/2∑
k=0

(
n/2 + k + 1

2k + 1

)
22k = tn+2,
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and

sn + 4tn+2 =

n/2∑
k=0

(
n/2 + k

2k

)
22k + 4

n/2∑
k=0

(
n/2 + k + 1

2k + 1

)
22k =

n/2∑
k=0

(
n/2 + k

2k

)
22k +

n/2+1∑
k=1

(
n/2 + k

2k − 1

)
22k =

n/2+1∑
k=0

(
n/2 + k + 1

2k

)
22k = sn+2.

Therefore, sn+2 = 5sn + 4tn. Thus, we have the following difference equation(
sn+2

tn+2

)
=

(
5 4
1 1

)(
sn
tn

)
,

(
s0
t0

)
=

(
1
0

)
,

whose solution is(
sn
tn

)
=

1

4
√
2

[(
1 +

√
2
)n

(
2(1 +

√
2)

1

)
−
(
1−

√
2
)n

(
2(1−

√
2)

1

)]
.

(3.1)
Consequently, cond(x; d) for even n can be bounded with the following value

sn + 2tn =
(1 +

√
2)n+1

2
√
2

− (1−
√
2)n+1

2
√
2

+
(1 +

√
2)n

2
√
2

− (1−
√
2)n

2
√
2

=
1

2

(
1 +

√
2
)n+1

+
1

2

(
1−

√
2
)n+1

.

For n odd, we proceed in the same way. If k is even, k < n, the first k
nodes are (j − 1/2)h, j = −k/2 + 1, . . . , k/2. Using Proposition 3.1, we have

|ωk(x)| =
k/2∏

j=−k/2+1

∣∣∣x−
(
j − 1

2

)
h
∣∣∣ = hkk!

∣∣∣∣(x
h + k−1

2

k

)∣∣∣∣ ≤ hkk!

(n+k−1
2

k

)
,

for all x ∈ [−a, a]. For odd k

|ωk(x)| = |ωk−1(x)|
∣∣x± kh

2

∣∣ ≤ hkk!

(n+k
2

k

)
for all x ∈ [−a, a].

Using (2.8) and the above formulae, we have

cond(x; d) =
n∑

k=0

||dk||∞ |ωk(x)| ≤
n∑

k=0

(n−1
2 +

⌊
k+1
2

⌋
k

)
2k

=

(n−1)/2∑
k=0

(
(n− 1)/2 + k

2k

)
22k +

(n−1)/2∑
k=0

(
(n+ 1)/2 + k

2k + 1

)
22k+1.

Therefore, the conditioning for odd n can be bounded as

cond(x; d) ≤ sn−1 + 2tn+1.
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Using (3.1), we have

sn−1 + 2tn+1 =

(
1 +

√
2
)n

2
√
2

−
(
1−

√
2
)n

2
√
2

+

(
1 +

√
2
)n+1

2
√
2

−
(
1−

√
2
)n+1

2
√
2

=
1

2

(
1 +

√
2
)n+1

+
1

2

(
1−

√
2
)n+1

.

ut

Remark 3.2 Let us recall that in a central order we can choose between two
nodes at the same distance to the center. If we first choose the least node
between both nodes, then the bound of Theorem 3.1 is attained at x = a.
Analogously, the bound is attained at x = −a if we choose the greatest node.

Taking into account the equality (2.11), the previous theorem shows that
Cn := maxx∈[a,b] cond(x; d) is lower for equidistant nodes following any cen-
tral order than in increasing order. In both cases Cn presents an exponential
growth which can be measured by r := lim supn→∞ C

1/n
n . For increasing or-

der, r = 3, and for a central order, r ≤ 1 +
√
2. By (2.7), the Lagrange repre-

sentation has optimal conditioning and, by (2.10), the corresponding ratio is
r = limn→∞ Λ

1/n
n = 2.

We have tested numerically the bound in Theorem 3.1 in the case of equidis-
tant nodes following a central order with respect to the center c = 0 in the
interval [−a, a]. Inspired by Remark 3.2, we propose the following criterion in
order to achieve lower values of maxx∈[−a,a] cond(x; d). If we have two nodes
with the same distance to zero, we choose as next node the one which is on
the same side of the origin as the previous node. We distinguish two cases. For
even n, i = 0, . . . , n, we take

xi =

{
−(−1)i/2 ih

2 , if i even,
−(−1)(i−1)/2 (i+1)h

2 , if i odd,
(3.2)

and for odd n, i = 0, . . . , n,

xi =

{
−(−1)i/2 (i+1)h

2 , if i even,
(−1)(i−1)/2 ih

2 , if i odd.

Figure 3.1 shows log3(λL(x)) at equidistant nodes and log3(cond(x; d)) at
equidistant nodes in [−1, 1] for n = 10 with different orderings: the increasing
order, a Leja order and the central order given by (3.2). The increasing order
gives the highest values for cond(x; d) close to the right end of the interval. By
Theorem 3.1, the upper bound for the central order is lower than the upper
bound for the increasing order, as shown in the figure. Besides, the central
order has the best behaviour in a neighborhood of the center. Finally, a Leja
ordering has a better global behaviour.

Figure 3.2 compares log3(λL(x)) and log3(cond(x; d)) at equidistant nodes
following a central order on [−1, 1] for n = 19 with centers c = 2/3 and
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Fig. 3.1 log3(λL(x)), log3(cond(x; d)) for equidistant nodes in increasing order, in a Leja
order and in a central order respect to c = 0 in [−1, 1] for n = 10.

c = −2/3, respectively. We observe that, in both cases, in a neighborhood of
the center cond(x; d) is similar to the Lebesgue constant and it grows quickly
when we move away from c.

4 Central order with respect to the evaluation point

In the central order, the center c is fixed. Now, we propose to order the nodes
according to the distance to the evaluation point x, that is,

|x− x0| ≤ |x− x1| ≤ · · · ≤ |x− xn|. (4.1)

Remark 4.1 We observe that if x0, . . . , xn are nodes following central order
with respect to the evaluation point (4.1), then we have

|ωk(x)| = |(x−x0) · · · (x−xk−1)| ≤ |(x−xσ(0)) · · · (x−xσ(k−1))|, k = 0, . . . , n,

for any permutation σ : {0, . . . , n} → {0, . . . , n}. Indeed, by ordering each
factor |x− xσ(i)|, i = 0, . . . , k − 1, from the lowest to the highest, we see that
each of these factors is greater than or equal to the corresponding one |x−xi|,
i = 0, . . . , k − 1.

Remark 4.1 suggests that this order is well conditioned. In fact, the condi-
tioning of the Newton representation with nodes following central order with
respect to the evaluation point is closer to the Lebesgue function than with
other orderings, such as Leja ordering. Figure 4.1 shows that the Leja order is
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Fig. 3.2 log3(λL(x)) and log3(cond(x; d)) for equidistant nodes in central order with respect
to c = 2/3 (up) and with respect to c = −2/3 (down) for n = 19.

worse conditioned than the central order with respect to the evaluation point
for Chebyshev nodes of degree n = 10.

Let us show an auxiliary inequality to bound cond(x; d).

Lemma 4.1 Let 1 ≤ i ≤ n− 1. Then

n∑
k=i+1

2k

k
≤ 2n+2

n
− 3

2i+1

i+ 1
.
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Fig. 4.1 log3(λL(x)) and log3(cond(x; d)) for Chebyshev nodes with Leja order and central
order with respect to the evaluation point for n = 10.

Proof
n∑

k=i+1

2k

k
= 2

n∑
k=i+1

2k+1

k
− 3

n−1∑
k=i

2k+1

k + 1

=
2n+2

n
− 3

2i+1

i+ 1
+

n−1∑
k=i+1

(2
k
− 3

k + 1

)
2k+1.

For k ≥ 2, 2
k − 3

k+1 ≤ 0 and then we obtain the result. ut

Let us observe that if we arrange the nodes in increasing order, we can
compute a table of divided differences containing all divided differences corre-
sponding to consecutive nodes. By Remark 3.1, the divided differences in this
table can be used to compute any Newton formula for nodes following any
central order and also for a central order with respect to the evaluation point.
If we change the evaluation point, we might change some terms in the Newton
formula (2.1). However, divided differences need not be recomputed and can
be searched in the table.

A disadvantage of central ordering with respect to the evaluation point is
the higher computation cost because the nodes might be reordered for each
evaluation point. However, for certain nodes sets (for example, equidistant
nodes) strategies can be designed to reduce this cost.

Remark 4.2 The number of the central orderings with respect to the evaluation
point is bounded above by n(n+1)/2+1. Assume that x0 ≤ x1 ≤ · · · ≤ xn, that
is, the nodes follow an increasing order. If x < (x0+x1)/2 then the central order
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with respect to x coincides with the increasing order. Let xij = (xi + xj)/2
be the bisection point of the nodes xi and xj . If the evaluation point moves
from left to right, it is convenient to sort all the bisection points. Each time
that x surpasses a bisection point xij it is necessary to update the order by
exchanging xi and xj . If several bisection points coincide then we have to
exchange the corresponding pairs of nodes. At the end, if x is greater than the
last bisection point, then the central order coincides with the decreasing order.
In the particular case the nodes are equidistant, there are only 2n orderings
and 2n− 1 bisection points: the mid points of each pair of consecutive nodes
and x1, . . . , xn−1.

In the following result we provide an upper bound for cond(x; d) when
equidistant nodes follow the central order with respect to the evaluation point.

Theorem 4.1 Let x0, . . . , xn be equidistant nodes satisfying (4.1) with respect
to x in [a, b]. Then, we have

cond(x; d) ≤ 2n

n
+

1

2
.

Proof By Remark 3.1, the ordering (4.1) always gives rise to subsets {x0, . . . , xk}
consisting in equidistant nodes, for k ≤ n. So, by Lemma 2.1

||dk||∞ =
1

k!

(
2

h

)k

, k = 0, . . . , n.

From (4.1), we deduce that x is between x0 and x1, with |x1 − x0| = h. We
have

|x− x0| ≤
h

2
, |x− x1| ≤ h

and
|ω2(x)| = |x− x0| |x− x1| ≤

h2

4
.

Besides, minj=0,...,i |xi+1 − xj | = h. Let j ≤ i such that |xi+1 − xj | = h. Since
x0, . . . , xn follow a central order, we have

|x− xi+1| ≤ |x− xj |+ |xi+1 − xj | ≤ |x− xi|+ h.

By induction on i, we deduce that

|x− xi| ≤ ih, i ≥ 1.

Thus,

|ωk(x)| = |(x− x0)(x− x1) · · · (x− xk−1)| ≤
h2

4
· 2h · 3h · · · (k − 1)h

=
hk

4
(k − 1)!, k = 2, . . . , n.
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By (2.8), the above formulae and Lemma 4.1

cond(x; d) =
n∑

k=0

||dk||∞|ωk(x)| = 2 +
n∑

k=2

||dk||∞|ωk(x)|

≤ 2 +
n∑

k=2

(
2

h

)k
1

k!

hk

4
(k − 1)!

= 2 +
1

4

n∑
k=2

2k

k
≤ 2 +

1

4

(2n+2

n
− 3

22

2

)
=

2n

n
+

1

2
.

ut

Applying Theorem 4.1, we obtain in a simple way a bound of the Lebesgue
constant close to formula (2.10).

Corollary 4.1 The Lebesgue function at equidistant nodes in [a, b] satisfies

λL(x) ≤
2n

n
+

1

2
, x ∈ [a, b].

Proof For each x ∈ [a, b], we order the nodes according to (4.1). Using formula
(2.7) and Theorem 4.1, we have

λL(x) ≤ cond(x; d) ≤ 2n

n
+

1

2
.

ut

Let us recall the bound of the Lebesgue constant

Λn ≤ 2n,

based on a private communication by Jia Rong-Qing to Carl de Boor (see 1.3.22
of [5]). In Theorem 2 of [7], Trefethen and Weideman deduced the following
improved upper bound

Λn ≤ 2n+3

n
.

Note that Corollary 4.1 improves the previous bound because

2n

n
+

1

2
≤ 2n+3

n
, n ≥ 1.

Figure 4.2 shows that cond(x; d) at equidistant nodes following the central
order with respect to x is close to the Lebesgue function in a neighborhood of
each node, while the difference is greater in a neighborhood of the center of
each subinterval. Besides, central order with respect to the evaluation point
presents a better behaviour than a Leja ordering.
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Fig. 4.2 log3(λL(x)) and log3(cond(x; d)) for equidistant nodes in Leja order and central
order with respect to the evaluation point for n = 10.
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