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SOM and texture estimation from VIS-NIR-SWIR spectra using CCR 

Abstract 

Land use changes due to natural and human-related factors, which include wildfires and 

crop abandonment, are among the most important drivers of soil degradation and demand 

regular monitoring. Proximal soil sensing in VIS-NIR-SWIR spectral regions could offer a 

solution. However, to become operational optimal combination of data and technique have to 

be defined. Thus, the purpose of this study was (i) to predict the soil organic matter (SOM) 

content and soil texture in areas of wildfire burns and crop abandonment in Aragón province, 

northern Spain, from their laboratory reflectance spectra using novel correlated components 

regression with a step-down variable selection algorithm (CCR-SD) and (ii) to compare the 

CCR-SD and the PLSR methods. The results obtained by the tested methods were similar. 

CCR-SD models showed high predictive capacity with coefficients of determination (R2) in the 

range of 0.80–0.86 and 0.70–0.87 for calibration and validation datasets, respectively, and the 

highest R2 value was attained in the SOM estimation. Moreover, the CCR-SD models stand out 

for the superior accuracy-parsimony relationship: the number of predictors varied from 16 (silt 

models) to 49 (SOM models).On average, the CCR-SD calibrations needed less than a half of 

the predictors employed in PLSR models. This research confirmed that CCR-SD can be used 

for monitoring SOM content and texture of soils from VIS-NIR-SWIR spectra in the study 

area and, probably, in other areas of land use/land cover change and that CCR-SD can create 

highly parsimonious models that achieve results comparable with the commonly used PLSR 

method. 

 

Keywords: soil organic matter, soil texture, land cover change, VIS-NIR-SWIR 

spectroscopy, Correlated Components Regression 
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1. INTRODUCTION 

Deterioration of soil conditions closely related to land use and land cover (LULC) changes 

is a threat to human well-being (Lal & Stewart, 2010; Pimentel, 2006). The scope and 

environmental effects of LULC changes caused by natural and human factors vary in space 

and time (García-Ruiz, 2010; Lu, Li, Valladares, & Batistella, 2004). In Mediterranean 

ecosystems, regular wildfires, which can trigger soil erosion (Cerdà & Robichaud, 2009), 

have contributed to landscape formation for several centuries (Pausas, Llovet, Rodrigo, & 

Vallejo, 2009), while the spread of cropland abandonment in the region is an example of a 

more recent LULC phenomenon linked to the soil conditions (Nadal-Romero, Cammeraat, 

Pérez-Cardiel, & Lasanta, 2016). 

The urgent need for action to reduce soil degradation is recognized in several sustainable 

development goals (SDGs) formulated in the United Nations 2030 Agenda for Sustainable 

Development (United Nations, 2015). SDG 15.3 is specifically dedicated to land degradation 

and mentions the restoration of degraded land and soil and the achievement of a land 

degradation-neutral world. To evaluate the movement towards SDGs it is necessary to 

establish, register and compare relevant soil characteristics (Montanarella & Panagos, 2018). 

Moreover, in spite of the seriousness of the problem, our knowledge on soil degradation and 

the scope and effects of mitigation strategies are incomplete (Assessment, 2005). Thus, 

monitoring the soil status on a regular basis is imperative (Tóth, Hermann, da Silva, & 

Montanarella, 2018), especially in areas of natural and anthropogenic disturbances, such as 

Mediterranean (Merino, Moreno, Navarro, & Gallardo, 2016). Examples of successful 

systems for monitoring soil variables (including SOC and texture) at a regional level exist in 
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Europe (soil monitoring network in Slovakia) (Kobza, 2015) and Australia (New South 

Wales Monitoring, Evaluation and Reporting (MER) Program) (Chapman et al., 2011). 

The soil status can be evaluated through a set of soil attributes/indicators. According to a 

published review (Bünemann et al., 2018), a minimum set of soil attributes/indicators should 

include chemical, physical and biological indicators. A large number of studies reviewed by 

Bünemann et al. (2018) include soil organic matter (SOM) and texture among the most 

important indicators of soil quality. SOM, which is one of the main sources of soil carbon and 

plant nutrients, determines soil fertility and plays an important role in both water cycle 

(infiltration and runoff) and quality (Tóth et al., 2018). On the other hand, land productivity is 

directly impacted by soil erosion (Troeh & Thompson, 2005), with texture being one of the 

basic indicators of soil erodibility (Goldman, Bursztynsky, & Jackson, 1986) and other 

hydraulic properties (Tóth et al., 2018). 

Conventional methods for the estimation of soil properties require important investments 

of time and effort, which motivate the search for alternatives. Spectral sensing methods, such 

as VIS-NIR-SWIR spectroscopy, may be one of the time and cost-effective solutions 

(Demattê et al., 2016). Based on results of previous research, which demonstrated that soil 

characteristics correlate with their spectral signatures (Demattê & da Silva Terra, 2014; 

Stevens, Nocita, Tóth, Montanarella, & van Wesemael, 2013), this technique uses 

electromagnetic spectra in visible (VIS), near infrared (NIR) and shortwave infrared (SWIR) 

spectral regions to estimate soil properties. Because soil spectra are obtained by sensors 

located near (< 2 m) the soil surface, this method is sometimes referred to as proximal 

sensing.  
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Spectroradiometers produce more accurate results than satellite and airborne instruments 

because of the high-resolution spectra (contain > 2000 of narrow (up to 1 nm) bands) 

obtained in controlled environmental conditions (Ben-Dor & Demattê, 2016). Soil VIS-NIR-

SWIR spectra have been successfully applied to estimate soil carbon, SOM and texture 

(Conforti, Matteucci, & Buttafuoco, 2018; Lugassi, Ben-Dor, & Eshel, 2014; Mouazen, 

Karoui, De Baerdemaeker, & Ramon, 2005). High-resolution spectra of soil surface samples 

obtained under laboratory conditions serve as a standard in spectral unmixing of remote 

sensing images acquired by sensors on airborne and satellite platforms and are used for 

digital mapping of soils and other environmental variables (Demattê et al., 2016; Ben-Dor & 

Demattê, 2016). 

Since soils are mixtures of organic and inorganic particles with highly variable proportions 

of each substance and particle size, their spectra present overlaps of spectral features 

corresponding to specific soil constituents (Ben-Dor & Demattê, 2016). Soil variables are not 

directly calculated from the spectra; instead, they are related to a set of known reference 

samples representative of the soil variation in the study area through the development of 

multivariate statistical models. Models calibrated for a certain area are not usually 

transferable to another area (Grunwald, Thompson, & Boettinger, 2011). 

Extracting information from a large number of highly correlated spectral bands is a 

challenging task. There is a wide range of statistical tools available for multivariate modelling 

of soil properties. Ongoing research is continuously evaluating new tools at the same time 

striving to clarify the viability of application of VIS-NIR-SWIR soil spectroscopy in specific 

scenarios (e.g., Gholizadeh, Saberioon, Carmon, Boruvka, & Ben-Dor, 2018; Ogen, 

Neumann, Chabrillat, Goldshleger, & Ben-Dor, 2018; Ostovari et al., 2018; Terra, Demattê, 

& Viscarra Rossel, 2018; Viscarra Rossel & Brus, 2018).  
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Methods based on linear models, especially partial least squares regression (PLSR), are 

among the most popular (Mouazen, Kuang, De Baerdemaeker, & Ramon, 2010; Vasques, 

Demattê, Viscarra Rossel, Ramírez-López, & Terra, 2014; Viscarra Rossel, McGlynn, & 

McBratney, 2006), although latest comparative studies report on successful applications of 

data mining techniques and tools, such as artificial neural networks (ANN) (Mouazen et al., 

2010), support vector machines (SVM) (Viscarra Rossel & Behrens, 2010) and memory-

based learning (MBL) (Gholizadeh, Borůvka, Saberioon, & Vašát, 2016).   

The frequent choice of PLSR is explained by its capacity to produce well-fit models from 

datasets containing a small number of observations characterized by a great number of 

correlated predictors. Robustness of the models is mainly achieved through reduction of data 

dimensionality using a set of orthogonal vectors (components) (Wold, Sjöström, & Eriksson, 

2001). Still, PLSR models sometimes demonstrate unrealistically high fit due to inclusion of 

noise variables relevant only for calibration dataset, which is known as overfitting (Babyak, 

2004; Esbensen, Guyot, Westa, & Houmoller, 2002). 

A recently introduced method of Correlated Components Regression (CCR) is trying to 

avoid overfitting problem in a different way. It prevents model overfit through application of 

the regularization process, which involves identification of suppressors and elimination of 

less relevant predictors (Magidson, 2013). Since development, CCR has been successfully 

applied to very diverse research areas, such as socio-demography (Alkerwi, Vernier, 

Sauvageot, Crichton, & Elias, 2015), medicine (Ruiz-Rodado et al., 2014) and logistics 

research (Garver & Williams, 2018). However, CCR was not used in soil spectroscopic 

modelling until now, even though the characteristics of CCR are very attractive.   
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In this context, the study seeks to contribute to the search and assessment of the methods 

more adequate for modelling soil properties from spectral data in specific scenarios and 

answer the following research questions (i) is it possible to predict SOM content and texture 

fractions of soils from wildfire burns and cropland abandonment in Mediterranean 

environment from VIS-NIR-SWIR spectra using correlated components regression (CCR)? 

and (ii) what are the advantages of using CCR in simultaneous modelling SOM and soil 

texture compared to two versions of PLSR? This allows formulating the corresponding 

research hypotheses: (i) CCR is an adequate tool for monitoring SOM and texture of soils in 

areas of LULC changes, and (ii) CCR offers several advantages in simultaneous modelling 

soil texture and SOM compared to PLSR. 

2. METHODOLOGY 

2.1. Study area and soil sampling 

The study area of approximately 310 km2 (Figure 1) is located in the Aragón region, 

northern Spain (42°10’-42°37’N, 0°16’-1°17’W), and contains sites affected by (i) wildfire 

burns and (ii) cropland abandonment. The area of uneven topography (elevations between 

450 m and 1300 m) is characterized by a Mediterranean climate with a mean annual 

temperature of approximately 10°C and a precipitation range of 600-800 mm (Cuadrat & 

Martín-Vide, 2007). 

The mosaic of vegetation covers in the study area is composed of plant communities 

dominated by Quercus gr. Cerrioides (Willk and Costa) and Quercus ilex L. and pine forests 

of Pinus sylvestris L., Pinus nigra (Arnold), Pinus halepensis L., and Pinus pinaster (Aiton) 

interspersed with shrublands dominated by Buxus sempervirens L. and Genista scorpius L. 

(Ruiz de la Torre, 1990). In areas affected by wildfires, typical soils that formed on calcaric 

materials have coarse and medium textures and are classified as Cambisols, and there are 

some patches of Regosols and Leptosols (Badía-Villas & del Moral, 2016). On the other 
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hand, in areas previously used for agriculture, thin soils with silt loam texture are classified as 

Leptic Calcaric Regosols (FAO, 2014). 

A total of 113 soil samples were collected from the surface soil layer (0-10 cm) during the 

2013 and 2014 field campaigns. Approximately two-thirds of the samples (82) were from 

wildfire burns that occurred during 1975-2009. The sample site locations were determined by 

the spatial pattern of the burned areas throughout that period. Wildfire perimeters were 

identified using databases of the Aragón Government (Service for Management of Wildfires 

and Coordination, Head Office for Forest Management), as well as mapping products 

produced in the context of the research project “Forest fires and predictive models of ecologic 

vulnerability to fire: restoration management activities and application of climate change 

scenarios” GA-LC-042/2011 (Caixa-DGA). Within the wildfire boundaries, the precise 

location of the samples is a function of accessibility factors, plant-community variability in 

the context of Aragón and wildfire size. In the absence of pre-fire soil data, a paired-samples 

approach (Novara, La Mantia, Barbera, & Gristina, 2012) was applied: at each of the 41 

selected sites, a pair of samples was obtained–one sample of the burned soil and a reference 

sample of the same/similar unburned soil. The unburned soils are located in areas near the 

outer perimeter of the burned lands that have not been affected by fire, which are 

representative of large areas with similar physical conditions. The SOM content in these 

samples was estimated with UV-visible spectrophotometry. The soil texture, i.e., the relative 

proportion of sand, silt and clay (%) in the dry and sieved (< 2 mm) samples, was determined 

using the standard particle size-distribution analysis (USDA, 1996). 

Samples of soils affected by cropland abandonment (31) were collected in the Araguás 

catchment, where cultivation of terraced fields stopped in the 1950s. Subsequent afforestation 

with Pinus nigra (PN) and Pinus sylvestris (PS) occurred a decade later, although some areas 

underwent a process of natural secondary succession with Genista scorpius and Buxus 
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sempervirens. Sampling was carried out at sites with five different landcovers typical for the 

area (bare soil, permanent pasturelands, secondary succession, afforestation with PS and PN) 

selected based on the analysis of aerial photography, topographic maps and field survey 

information. The samples were obtained from five 5 m x 5 m plots with a similar topography 

established at each site. After collecting five surface (0-10 cm) samples from locations at 

each of the plot diagonals, they were combined into one sample. For these samples, the loss 

on ignition method was used to determine SOM; soil texture fractions were determined using 

a particle analyser (Micromeritics, SediGraph 5100, Nocross, USA). Descriptive statistics 

characterizing the collected samples are presented in Table 1.  

Additional details on the study area, as well as the sampling procedure, are available in 

(Rosero-Vlasova, Pérez-Cabello, Montorio Llovería, & Vlassova, 2016) (wildfire burns) and 

(Nadal-Romero et al., 2016) (abandoned croplands). 

2.2. Soil spectra 

For spectral measurements, the fine soil fraction (particle size < 2 mm) of each sample 

was placed in a Petri dish (90 mm in diameter) and dried in an oven at 105°C for 24 hours. 

Soil spectral curves were obtained using an analytical spectral device (ASD) 

FieldSpec®4spectroradiometer (Analytical Spectral Devices Inc., Boulder, CO, USA) under 

controlled laboratory conditions, with a setup that included an ASD Illuminator lamp 

(Analytical Spectral Devices Inc., Boulder, CO, USA) and a pistol grip (Rosero-Vlasova et 

al., 2016). Figure 2 shows the general view and details of observations geometry. The soil 

sample area detected by the optic fibre cable (sensor) is determined by the following 

geometry: an illuminator lamp (field of view (FOV):        is attached to the tripod in a 

cenital position at a height of H = 42 cm generating a lighted spot 8.82 cm in diameter (D). 

The setup also includes a pistol grip attached to another tripod at a height of h = 7.5 cm 
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(FOVBare Fibre      , diameter SPOT d = 6.99 cm) and an angle       relative to the 

vertical axis (Figure 2a). The spectral response of the white reference (WR) panel was 

obtained with the same viewing geometry (Figure 2b). 

Radiances measured in the VIS-NIR (350-1000 nm) and two SWIR regions (1001-1800 

nm and 1801-2500 nm) (Castro-Esau, Sanchez-Azofeifa, & Rivard, 2006) were corrected for 

the baseline electrical signal (dark current) and converted into reflectance values using a 

calibrated white Spectralon® panel as a reference. The ASD Illuminator halogen lamp was 

employed as a light source. Previous research (Rosero-Vlasova et al., 2016) has demonstrated 

that this experimental setup ensures an optimal observation environment resulting in low-

noise spectra. 

Radiometric jumps, evident at the wavelengths situated at the joins between the detectors 

(at 1000 nm and 1800 nm), were corrected using a procedure suggested in (Danner, Locherer, 

Hank, & Richter, 2015), which compensates the difference between the reflectance using the 

values of the first detector (VIS range) as a baseline. The following formulas were applied: 

                                                                                              (1) 

                                                                                             (2) 

where    is the reflectance at λ wavelength and              and              are 

correction values at the spectral splitting points, which are added to the original values and, 

depending on their algebraic sign, either increase or decrease reflectances in all further 

wavelengths.  

Moreover, the noisy bands at the extremes of the spectra (< 400 nm and > 2470 nm) were 

removed, leaving 2071 bands for statistical modelling.  
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2.3. Statistical modelling 

Modelling of SOM content and texture fractions is based on seventy pre-selected spectral 

bands (11 bands in VIS, 18 bands in NIR and 48 bands in SWIR spectral regions). The 

importance of this set of wavelengths for soil property detection was previously reported in 

multiple studies (Ben-Dor, Heller, & Chudnovsky, 2008; Demattê & da Silva Terra, 2014; 

Demattê et al., 2016; Melendez-Pastor, Navarro-Pedreño, Gómez, & Koch, 2008; Rosero-

Vlasova, Borini Alves, Vlassova, Perez-Cabello, & Montorio Lloveria et al., 2017). 

The presence of outliers in scaled and centred datasets was assessed with Principal 

Components Analysis (PCA). Three data points lying outside the 95% confidence level 

Hotelling’s T2 ellipse in the score plot representing the loadings of the two first principal 

components (Figure 3) were excluded as outliers, leaving 110 soil spectra for analysis. These 

were randomly divided into calibration (~65%) and validation (~35%) sets, containing 80 and 

30 samples, respectively. To ensure robust results, this procedure was repeated three times to 

obtain three sample sets of calibration and validation data (S1, S2 and S3). Descriptive 

statistics of the data used in model building are presented in Table 2 and Figure 4. Since each 

dataset contains more than thirty samples, the Kolmogorov-Smirnov test with Lilliefors 

significance correction was applied to test the SOM, silt, clay and sand distributions for 

normality; one-way ANOVA was run to detect significant differences between the 

distributions of the tested variables in S1, S2 and S3. All the tests were performed using 

IBM® SPSS® Statistics version 20.0.0 (2011) software (https://www.ibm.com/products/spss-

statistics). 
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Statistical models were developed using (i) a routinely applied (Demattê et al, 2016) full-

spectrum partial least squares regression (PLSR-full) (Wold et al., 2001) implemented in The 

Unscrambler X® software (2016) (CAMO Software AS, Norway, 2016), version 10.4 

(https://www.camo.com/unscrambler); (ii) PLSR with predictors selected by Martens 

Uncertainty Test (Martens & Martens, 2000) available in The Unscrambler X® software 

(2016) version 10.4 (PLSR-MUT), and (iii) a novel technique of correlated components 

regression with a step-down variable selection algorithm (CCR-SD) (Magidson, 2010; 

Magidson, 2013) implemented as an XLSTAT Pearson Edition (2014) (Addinsoft S.A., New 

York, NY, USA, 2014), version 2014.5.03 (http://www.xlstat.com) complement for the 

Microsoft Office Excel (2010) software. For each sample, all the soil properties of interest in 

our study (SOM, clay, silt and sand) were predicted simultaneously.  

Both CCR and PLSR are capable of dealing with a large number of highly correlated 

predictors (in this study, the correlation coefficients R are in the range of 0.639-0.999). 

Multicollinearity of spectral data is approached by means of regularisation (the enforcement 

of model sparsity), consisting in dimension reduction. 

PLSR proceeds by calculating a set of orthogonal components (latent variables) which 

explain most of the variance in predictors and responses (Wold, 2001). Determination of the 

optimum number of components and selection of the final model is performed through the 

leave-one-out cross-validation: the model is developed leaving out one of the samples, which 

is later substituted into the model to evaluate the adjustment; the process is repeated for each 

sample and the final model is that showing the best fit. 

Since exclusion of the less important (noisy) predictors may improve model accuracy, in 

the second tested method PLSR models used only most important variables selected by the 

Martens uncertainty test (PLSR-MUT), which estimates uncertainty of regression coefficients 

obtained in leave-one-out cross validation (Martens & Martens, 2000). 

http://www.xlstat.com/
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On the other hand, in CCR-SD data dimension is reduced through (i) calculation of 

correlated components and (ii) elimination of less relevant predictors from the model with 

step-down variable selection algorithm, resulting in sparser models (Magidson, 2013).   

CCR utilizes K < P correlated components, with each   component being an exact linear 

combination of   predictors (        ). Predictions for Y in the first (primary) 

component (  ) directly affect the outcome and are obtained from the simple ordinary least 

squares (OLS) regression of Y on   . Similarly, the second component    is calculated by the 

simple OLS regression of Y on    and   . The calculation of the remaining components 

follows the same process. Once the models for all the components are obtained, the final 

model (eq. 3) is computed using the expression: 

                                                      
 
                                                        (3) 

where   and   are regression coefficients.  

Thus, the components are not orthogonal; the second and subsequent components are 

correlated to the first component and represent the influence of “suppressor” variables 

(Magidson & Wassmann, 2010). The inclusion of suppressor variables removes the noise of 

some irrelevant variables included in the first component, improving the model quality. 

At the same time, the method controls overfitting through a reduction in the number of 

predictors, leaving out the less important predictors. Thus, CCR was combined with a step-

down variable selection algorithm, which excludes the least important predictors (Bennett, 

2013; Magidson, 2010). This is achieved through M-fold cross-validation. Each round (10 

rounds in this study) consists of a series of operations. First, the data are randomly divided 

into M groups (folds) of equal size (5 groups of 80/5 = 16 samples each in our study). Next, 

samples from four groups are used to build the model, while the samples from the fifth group 

are used for model validation. The process is run for each group (M times). In the next round, 
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the process is repeated with newly randomized M groups. Thus, the quality of the final model 

is assessed on the out-of-sample fit, ensuring replication of the calibration results on real-life 

data, which has been a long-time concern related to published models (Nuzzo, 2014). Model 

assessment based on new out-of-sample cases means that modelling with CCR does not pose 

requirements to satisfy sampling assumptions, which are the basis of traditional hypothesis 

testing (Curl, Thompson, & Aspinall, 2015). 

2.4. Model performance assessment 

Model performance was evaluated using the coefficient of determination R2 (eq. 4), which 

measures how successful the calibration fit is in explaining the variation in the data, root-

mean-square error of calibration (RMSEC) (eq. 5) and root-mean-square error of cross-

validation (RMSECV) (eq. 6), which assess the model accuracy.  

                                        
         

  
   

          
   

                                            (4) 

                                           
             

   
   

        
                                       (5) 

                                            
             

   
   

    
                                           (6) 

where n is the number of samples, subscript c and p refer to calibration and validation 

datasets;    is the measured value for sample i,     is the predicted value for sample i,    is the 

mean value, and f is the number of variables used in the regression equation. The predictive 

ability of the models was also evaluated with the root-mean-square error of prediction 

(RMSEP) (eq. 7), with bias of validation (biasval) and standard error of prediction (SEPc) 

being independent components of RMSEP (Stevens et al., 2013, Rosero-Vlasova et al., 

2016); and the ratio of performance to interquartile (RPIQ) range (Bellon-Maurel & 

McBratney, 2011), which was calculated according to eq. 8. 
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                                       (7) 

                                                       
     

     
                                    (8) 

RPIQ is based on inter-quartile distances (IQ = Q3-Q1), where Q1 represents the lowest 

25% of the samples and Q3 is the value below which 75% of the samples can be found. RPIQ 

is the ratio of IQ to the RMSE of prediction (RMSEP) and adequately represents populations 

with skewed distributions and a large number of low values, such as the soil sample sets in 

this study. Finally, the Akaike information criterion (AIC), computed following eq. 9, was 

applied to determine the model with the best accuracy-parsimony relationship (Akaike, 1973; 

Viscarra Rossel & Behrens, 2010).   

                                                                                                                (9) 

where n is the number of samples and f is the number of predictors. The smaller the AIC 

criterion is, the better the model. 

3. RESULTS AND DISCUSSION 

3.1. SOM content and texture fractions 

Table 2 and Figure 4 present descriptive statistics for the SOM and soil texture fractions 

(clay, silt and sand) of the used datasets. ANOVA detected no statistically significant 

differences among S1, S2 and S3 (p < 0.05). 

The SOM content ranges between ~1 g 100 g-1 and ~20 g 100 g-1, and the mean is ~6 g 

100 g-1, demonstrating levels characteristic of the study area (Pérez-Cabello, Echeverría, 

Ibarra, & Riva, 2009). These values are higher than the average values registered in global 

(Brown, Shepherd, Walsh, Mays, & Reinsch, 2006) and European (Stevens et al., 2013) soil 
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databases, which is rather surprising given that approximately one-third of the samples is 

from the burned areas. However, the unusually high SOM content in samples of burned soils 

may be due to vigorous vegetation development in the burned areas, which may have 

contributed to accelerated recovery of organic material destroyed by the fire (Jiménez-

González et al., 2016; Vlassova & Pérez-Cabello, 2016). 

The soil texture fraction values are highly variable, especially for sand (Table 2 and Figure 

5): the values change from approximately 5% to close to 65%, which is not strange 

considering the landscape heterogeneity in the study area. However, samples from different 

land covers in the cropland abandonment areas show similar textures dominated by silt, 

confirming the findings by Laudicina et al. (2012), who observed that land use change did not 

affect soil texture. Thus, the variability in the soil texture of the analysed set is caused by the 

contribution of soils from wildfire burns. In general, the clay content in sampled soils is 

higher (mean 27%) and the sand proportion is lower (mean 33%) than the average for 

European soils in the LUCAS database (Stevens et al., 2013). 

3.2. Soil spectra 

Spectral curves of the analysed soils are presented in Figure 6 (a, b) (wildfire burns) and 

Figure 6 (c, d) (abandoned croplands). Their form is typical for soil reflectance spectra: a 

gradual increase through the visible wave range, an almost flat segment in NIR, and slightly 

lower reflectance values in SWIR (Ben-Dor, Irons, & Epema, 1999). The small number of 

absorbance features can be ascribed to the presence of water (1400 nm and 1900 nm) and 

clay minerals (2200 nm) (Brown, 2007; Brunet, Barthès, Chotte, & Feller, 2007). 

The soil spectra differ mainly in reflectance intensity, confirming the results of previous 

research (Bellon-Maurel, Fernandez-Ahumada, Palagos, Roger, & McBratney, 2010; 

Chabrillat, Ben-Dor, Viscarra-Rossel, & Demattê, 2013; Demattê, Campos, Alves, Fiorio, & 

Nanni, 2004; Stenberg, Viscarra Rossel, Mouazen, & Wetterlind, 2010). Thus, the maximum 
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reflectance values of soils from wildfire burns range from 0.25 to 0.65, while the maximum 

reflectance values of soil samples from cropland abandonment areas are considerably smaller 

(0.38-0.55). This finding can be explained by differences in organic matter and texture: high 

SOM contents and smaller particle size result in spectral curves with lower reflectance (Ben-

Dor et al., 2009; Conforti, Froio, Matteucci, & Buttafuoco, 2015; Viscarra Rossel, Walvoort, 

McBratney, Janik, & Skjemstad, 2006). The high variability in the soil spectra from wildfire 

burns is caused by the inclusion of undisturbed forest soil samples with organic matter 

content higher than that of any of the soils from crop abandonment, as well as burned soils, 

whose organic matter was completely destroyed by fire (Figure 6b). 

Shape is another key for the differentiation of soils through visual inspection. Thus, the 

shape of the bare soil spectrum in Figure 6d is quite different from the rest of the spectra: 

convex in the 500-600 nm waverange and almost horizontal in the NIR and part of the SWIR 

spectral regions, which is typical for weathered soils (Demattê, 2002). 

3.3. Statistical modelling 

The results of simultaneous statistical modelling of SOM, clay, silt and sand from 

reflectance spectra using the two versions of PLSR (PLSR-full and PLSR-MUT) and CCR-

SD methods are presented in Table 3 (model calibration) and Table 4 (model validation).  

The values correspond to three datasets (S1, S2 and S3), resulting from different random 

partitions of available samples in the calibration (80 samples) and validation (30 samples) 

groups. In each case, the final model was obtained after 100 iterations/rounds.  

The optimal number of components is similar for all the models: 9-10 for PLSR-full and 

8-10 for other methods (PLSR-MUT and CCR-SD); fewer components used in PLSR-MUT 

and CCR-SD models for SOM. The number of predictors is more variable. Since standard 

PLS regression (PLSR-full) does not discard any predictor, these models include the full 
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range of available bands (2071). In case of PLSR-MUT and CCR-SD models resulting from 

procedures eliminating less relevant predictors, the number of predictors varies a lot 

depending on the predicted property and sample dataset. In PLSR-MUT models the number 

of predictors varies from one dataset to another, but it is the same for all the modelled 

properties (171, 39 and 197 for S1, S2 and S3, respectively), while in CCR-SD the number of 

predictors depends not only on the dataset, but also on the modelled property (e.g., there are 

49, 28, 19 and 22 predictors in S1 models for SOM, clay, silt and sand, respectively). It is 

worth to note, that variable selection in PLSR is realized after running the full spectrum 

model necessary to estimate importance of the variables, while in CCR-SD method 

estimation of variable relevance and development of the final model are performed 

simultaneously.  

In general, the number of predictors in CCR-SD models is greater for SOM (49, 61, 58 for 

S1, S2 and S3, respectively), because organic compounds exhibit spectral activity along the 

whole spectrum, while proportion of specific organic constituents in SOM varies a lot 

depending, among other factors, on overall SOM concentration and geological heterogeneity 

of the area (Stenberg et al., 2010).The number of predictors is decreasing in CCR-SD models 

for silt and sand, although in these models it varies more from one analysed subset to another. 

The number of variables in clay models developed using the same method varies the least 

(21, 28 and 29 predictors for S1, S2 and S3, respectively), which is not strange, since it is the 

only texture fraction directly associated with minerals having detectable spectral features in 

VIS-NIR-SWIR (Escribano, Schmid, Chabrillat, Rodríguez-Caballero, & García, 2017), often 

referred to as clay minerals (for example, kaolinite and illite). 

Examples of the scatter plots for S2 (modelled versus predicted values) are presented in 

Figure 7. Among modelled properties, SOM calibrations showed the highest predictive 

capability accounting on average for 86% (CCR-SD) and 82% (PLSR-full and PLSR-MUT) 
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of the variance in the calibration, and 87% (PLSR-full and CCR-SD) and 79% (PLSR-MUT) 

in the validation datasets. The CCR-SD and PLSR-full models for SOM developed in this 

study are more accurate (R2 0.05-0.07 higher and the average RPIQ above 3) than the SOM 

models we built previously for soil samples from wildfire burns from the same area using 

PLSR with the step-down variable selection algorithm (Rosero-Vlasova, Vlassova, Pérez-

Cabello, Montorio, & Nadal-Romero, 2018), which is probably due to the different modelling 

algorithm and larger calibration dataset used in this study. The superior RPIQ of the SOM 

models (~3 or above) developed with CCR-SD and PLSR-full is another indicator of their 

high quality. Similar results were previously reported by researchers working on applications 

of VIS-NIR-SWIR spectroscopy for soil characterization in other areas of LULC change (Ge, 

Thomasson, & Sui, 2011; Knadel, Stenberg, Deng, Thomsen, & Greve, 2013).  

The CCR-SD models estimating texture fractions also showed good fit, with coefficients 

of determination in the ranges of 0.84-0.86 (calibration) and 0.68-0.72 (validation) for the silt 

models and 0.80 (calibration) and 0.70 (validation) for the clay and sand predictions. The 

coefficients of determination of PLSR silt models were lower and varied considerably among 

datasets (0.62-0.80). Sand was the only property where CCR-SD models (R²C = 0.79; R²V = 

0.70) were outperformed by those developed with PLSR-full (R²C = 0.83; R²V = 0.75). The 

most important difference between methods was observed in clay models, where good fit of 

CCR-SD models contrasted with considerably lower performance of PLSR calibrations (R²C 

= 0.69; R²V = 0.56 for PLSR-full and R²C = 0.64; R²V = 0.47 for PLSR-MUT versus R²C = 

0.82; R²V = 0.66 for CCR-SD). A better fit of SOM models was previously observed by other 

researchers (Demattê et al., 2016; Viscarra Rossel et al., 2006). However, it was rather 

unexpected that CCR-SD models for clay, silt and sand showed similar performance, albeit 

not as good as that of the SOM models. Usually clay is another successfully modelled 
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property, but satisfactory fit for silt calibrations is rarely obtained (Pinheiro, Ceddia, 

Clingensmith, Grunwald, & Vasques, 2017; Stenberg et al., 2010).  

On the whole, validation results were similar for all the methods. They compare well to 

the best achievements in modelling of the same soil characteristics reported in previous 

research (Conforti et al., 2018; Demattê et al., 2016; Mouazen et al., 2010; Rosero-Vlasova et 

al., 2017). However, the important difference lies in the structure of the models created by 

different algorithms evident in the number of predictors in models developed using the three 

compared methods. The same high-quality of PLSR-full models using as predictors 2071 

bands present in the measured reflectance spectra was achieved by CCR-SD using a greatly 

reduced number of bands/predictors (49, 21, 16, and 22 for SOM, clay, silt and sand, 

respectively). Compared to the PLSR-MUT models, which also implements variable 

selection mechanism, the CCR-SD produced better results for all the modelled properties and 

datasets, except slightly better fit at validation of PLSR sand models for of S2 and S3 datasets 

(Table 4). The accuracy-parsimony relationship estimated by the AIC shows considerable 

superiority of all the CCR-SD models in this aspect (average AIC = 122.80, Table 4); the 

lowest (best) AIC values correspond to the CCR-SD models for clay (AIC = 100.35). 

Average AIC values for PLSR-full and PLSR-MUT models are 4186.93 and 327.19, 

respectively.  

Figure 8 presents the coefficients for the CCR-SD model predictors and shows the relative 

importance of specific bands the studied soil properties. Thus, for analysed soil samples 

spectral regions closely related to SOM in these models (Figure 8a) include the 500-550 nm, 

1000-1050 nm, 1500-1550 nm, 1800-1910 nm, 2200-2250 nm and 2310-2350 nm wave 

ranges and can be attributed to the presence of water and organic molecules with C-O, C=O 

and N-H bonds (Bellon-Maurel et al., 2010). Although the absorption features characteristic 

of clay minerals in these soils are masked by the high content of organic matter, the highest 
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coefficients in the clay model (Figure 8b) correspond to bands related to clay minerals, such 

as kaolinite (1395 nm, 1414 nm and 2208 nm) and illite (2206 nm, 2300-2340 nm) (Bellon-

Maurel et al., 2010; Ben-Dor & Banin, 1995; Brunet et al., 2007). The presence of a 

considerable quantity of illite in soils from the studied areas of cropland abandonment 

(Nadal‐Romero, Regüés, Martí‐Bono, & Serrano‐Muela, 2007) supports these findings. In 

most cases bands from these intervals are also selected as important predictors in PLSR 

models. 

4. CONCLUSIONS 

The study confirmed the viability of using CCR-SD algorithm in modelling of organic 

matter content and texture fractions of soils from VIS-NIR-SWIR spectra for monitoring soil 

quality in areas recovering from natural (wildfires) and anthropic (agricultural cultivation) 

disturbances. A novel CCR-SD algorithm created models with good predictive capacities that 

simultaneously estimated SOM, clay, silt and sand (R2 in the range of 0.80–0.86 for the 

calibration dataset and 0.70–0.87 for the validation dataset), with the highest coefficient of 

determination being achieved by the SOM predictions.  

The reliability of the CCR-SD models resulted similar to the PLSR models with full 

(PLSR-full) and reduced (PLSR-MUT) number of predictors. However, the CCR-SD models 

achieved good fit using a smaller number of available predictors. One of the advantages of 

CCR-SD application is the possibility of running calibrations in a familiar interface of 

EXCEL (Microsoft) software package. Further research is planned to test the methodology on 

a wider database of soils from erosion-risk environments, such as areas of slash-and-burn 

agriculture. 

Up-to-date information supporting activities protecting soil from degradation will allow 

the control of short- and long-term consequences of management decisions. The 

methodological results obtained in this work may provide an interesting operational tool to 
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analyse soil properties and support sustainable management programmes in forest areas with 

degradation risks, thematic area explicitly mentioned in SDG 15: “Sustainably manage 

forests, combat desertification, halt and reverse land degradation, halt biodiversity loss” 

(2030 Agenda for Sustainable Development). 

Acknowledgements 

Authors appreciate the financial support provided to the first author of this article by 

Secretariat for Higher Education, Science, Technology and Innovation (SENESCYT), 

Ecuador, grant no. 211-2012 in the initial stage of the research, following the funding 

received in the framework of the “Mobility Program for Latin Americans 2017/2018” of 

Bank Santander and University of Zaragoza. Soil samples from abandoned croplands were 

collected during the Marie Curie Intra-European Fellowship project “MED-AFFOREST” 

(PIEF-GA-2013-624974) and Estela Nadal-Romero was the recipient of a “Ramón y Cajal” 

postdoctoral contract (RYC-2013-14371, Spanish Ministry of Economy and 

Competitiveness).  

References 

 Akaike, H. (1973). Maximum likelihood identification of Gaussian autoregressive 
moving average models. Biometrika 60(2), 255-265. https://doi.org/10.2307/2334537 

 Alkerwi, A., Vernier, C., Sauvageot, N., Crichton, G. E., & Elias, M. F. (2015). 
Demographic and socioeconomic disparity in nutrition: application of a novel Correlated 
Component Regression approach. BMJ Open, 5(5), e006814. 
http://dx.doi.org/10.1136/bmjopen-2014-006814 

 Assessment, M. E. (2005). Ecosystems and Human Well-Being: Biodiversity: Synthesis. 
In J. Sarukhán, & A. Whyte (Eds.), A Report of the Millennium Ecosystem Assessment 
Washington, DC, USA: Island Press. Retrieved from 
https://www.millenniumassessment.org/documents/document.356.aspx.pdf 

 Babyak, M. A. (2004). What you see may not be what you get: a brief, nontechnical 
introduction to overfitting in regression-type models. Psychosomatic Medicine, 66(3), 
411-421. Retrieved from 
https://journals.lww.com/psychosomaticmedicine/Fulltext/2004/05000/What_You_See_
May_Not_Be_What_You_Get__A_Brief,.21.aspx 

 Badía-Villas, D., & del Moral, F. (2016). Soils of the Arid Areas The Soils of Spain (pp. 
145-161): Cham, Switzerland: Springer International Publishing. 
https://doi.org/10.1007/978-3-319-20541-0_4 



 
This article is protected by copyright. All rights reserved. 

 Bellon-Maurel, V., Fernandez-Ahumada, E., Palagos, B., Roger, J. M., & McBratney, A. 
(2010). Critical review of chemometric indicators commonly used for assessing the 
quality of the prediction of soil attributes by NIR spectroscopy. TrAC Trends in 
Analytical Chemistry 29, 1073-1081. https://doi.org/10.1016/j.trac.2010.05.006 

 Bellon-Maurel, V., & McBratney, A. (2011). Near-infrared (NIR) and mid-infrared 
(MIR) spectroscopic techniques for assessing the amount of carbon stock in soils–
Critical review and research perspectives. Soil Biology and Biochemistry, 43(7), 1398-
1410. http://dx.doi.org/10.1016/j.soilbio.2011.02.019 

 Ben-Dor, E., & Banin, A. (1995). Near-Infrared Analysis as a Rapid Method to 
Simultaneously Evaluate Several Soil Properties. Soil Science Society of America 
Journal, 59(2), 364-372. https://doi.org/10.2136/sssaj1995.03615995005900020014x 

 Ben-Dor, E., Chabrillat, S., Demattê, J. A. M., Taylor, G. R., Hill, J., Whiting, M. L., & 
Sommer, S. (2009). Using Imaging Spectroscopy to study soil properties. Remote 
Sensing of Environment, 113, Supplement 1(0), S38-S55. 
https://doi.org/10.1016/j.rse.2008.09.019 

 Ben-Dor, E., & Demattê, J. (2016). Chapter 25-Remote sensing of soil in the optical 
domains. In P. S. Thenkabail (Ed.), Remote Sensing Handbook Vol. II: Land Resources 
Monitoring, Modeling, and Mapping with Remote Sensing (pp. 733-787). Boca Raton, 
FL, USA: CRC Press (Taylor & Francis Group). 

 Ben-Dor, E., Heller, D., & Chudnovsky, A. (2008). A novel method of classifying soil 
profiles in the field using optical means. Soil Science Society of America Journal, 72(4), 
1113-1123. https://doi.org/10.2136/sssaj2006.0059 

 Ben-Dor, E., Irons, J. R., & Epema, G. F. (1999). Chapter 3-Soil reflectance. In A. N. 
Rencz, & R. A. Ryerson (Eds.),  Manual of remote sensing, Remote Sensing for the 
Earth Sciences (3rd ed., Vol. 3) (pp. 111-188). New York, NY, USA: John Wiley & 
Sons. 

 Bennett, G. (2013). Regression modelling with many correlated predictors and few cases. 
Presentation in ASSESS Event. York, United Kingdom. Retrieved from 
http://www.spssusers.co.uk/Events/2013/Bennett2013.pdf 

 Brown, D. J. (2007). Using a global VNIR soil-spectral library for local soil 
characterization and landscape modeling in a 2nd-order Uganda watershed. Geoderma, 
140(4), 444-453. https://doi.org/10.1016/j.geoderma.2007.04.021 

 Brown, D. J., Shepherd, K. D., Walsh, M. G., Mays, M. D., & Reinsch, T. G. (2006). 
Global soil characterization with VNIR diffuse reflectance spectroscopy. Geoderma, 
132(3), 273-290. https://doi.org/10.1016/j.geoderma.2005.04.025 

 Brunet, D., Barthès, B. G., Chotte, J.-L., & Feller, C. (2007). Determination of carbon 
and nitrogen contents in Alfisols, Oxisols and Ultisols from Africa and Brazil using 
NIRS analysis: Effects of sample grinding and set heterogeneity. Geoderma, 139(1–2), 
106-117. https://doi.org/10.1016/j.geoderma.2007.01.007 

 Bünemann, E. K., Bongiorno, G., Bai, Z., Creamer, R. E., De Deyn, G., de Goede, R., . . 
. Mäder, P. (2018). Soil quality–A critical review. Soil Biology and Biochemistry, 120, 
105-125. https://doi.org/10.1016/j.soilbio.2018.01.030 

 Castro-Esau, K., Sanchez-Azofeifa, G., & Rivard, B. (2006). Comparison of spectral 
indices obtained using multiple spectroradiometers. Remote Sensing of Environment, 
103(3), 276-288. https://doi.org/10.1016/j.rse.2005.01.019 

 Cerdà, A. (Ed.), & Robichaud, P. (Ed.).  (2009). Fire effects on soil infiltration. Fire 
Effects on Soils and Restoration Strategies (pp. 81-103). Boca Raton, FL, USA: CRC 
Press (Taylor & Francis Group). https://doi.org/10.1201/9781439843338  

https://doi.org/10.1016/j.trac.2010.05.006


 
This article is protected by copyright. All rights reserved. 

 Chabrillat, S., Ben-Dor, E., Viscarra-Rossel, R. A. V., & Demattê, J. A. M. (2013). 
Quantitative soil spectroscopy. Applied and Environmental Soil Science. 2013(ID 
616578), 1-3.  http://dx.doi.org/10.1155/2013/616578 

 Chapman, G., Gray, J., Murphy, B., Atkinson, G., Leys, J., Muller, R., . . . McInnes-
Clarke, S. (2011). Assessing the condition of soils in NSW. State of the Catchments 
2010: Soil Condition–Technical Report Series. Office of Environment and Heritage, 
Sydney. Retrieved from https://www.environment.nsw.gov.au/-/media/OEH/Corporate-
Site/Documents/Land-and-soil/assessing-condition-soils-nsw.pdf 

 Conforti, M., Froio, R., Matteucci, G., & Buttafuoco, G. (2015). Visible and near 
infrared spectroscopy for predicting texture in forest soil: an application in southern 
Italy. [Visible and near infrared spectroscopy for predicting texture in forest soil: an 
application in southern Italy]. iForest - Biogeosciences and Forestry, 8(3), 339-347. 
https://doi.org/10.3832/ifor1221-007 

 Conforti, M., Matteucci, G., & Buttafuoco, G. (2018). Using laboratory Vis-NIR 
spectroscopy for monitoring some forest soil properties. Journal of Soils and Sediments, 
18(3), 1009-1019. https://doi.org/10.1007/s11368-017-1766-5 

 Cuadrat, J. M. (Ed.), & Martín-Vide, J. M. (Ed.). (2007). Spanish Climatology: Past, 
Present and Future. Zaragoza, Ar, Spain: University of Zaragoza Press.  

 Curl, A., Thompson, C. W., & Aspinall, P. (2015). The effectiveness of ‘shared 
space’residential street interventions on self-reported activity levels and quality of life 
for older people. Landscape and Urban Planning, 139, 117-125. 
https://doi.org/10.1016/j.landurbplan.2015.02.019 

 Danner, M., Locherer, M., Hank, T., & Richter, K. (2015). Spectral Sampling with the 
ASD FIELDSPEC 4. In EnMap (Ed.), EnMAP Field Guides Technical Report (pp. 20). 
Potsdam. http://doi.org/10.2312/enmap.2015.008 

 Demattê, J. A., Morgan, C. L.S., Chabrillat, S., Rizzo, R., Franceschini, M., Terra, F. D., 
. . . Wetterlind, J. (2016). Chapter 24-Spectral sensing from ground to space in soil 
science: State of the art, applications, potential and perspectives. In P. S. Thenkabail 
(Ed.), Remote Sensing Handbook Vol. II: Land Resources Monitoring, Modeling, and 
Mapping with Remote Sensing (pp. 661-732). Boca Raton, FL, USA: CRC press (Taylor 
& Francis Group).  

 Demattê, J. A. M. (2002). Characterization and discrimination of soils by their reflected 
electromagnetic energy. Pesquisa Agropecuária Brasileira, 37(10), 1445-1458. 
http://dx.doi.org/10.1590/S0100-204X2002001000013 

 Demattê, J. A. M., Campos, R. C., Alves, M. C., Fiorio, P. R., & Nanni, M. R. (2004). 
Visible–NIR reflectance: a new approach on soil evaluation. Geoderma, 121(1–2), 95-
112. https://doi.org/10.1016/j.geoderma.2003.09.012 

 Demattê, J. A. M., & da Silva Terra, F. (2014). Spectral pedology: A new perspective on 
evaluation of soils along pedogenetic alterations. Geoderma, 217–218(0), 190-200. 
https://doi.org/10.1016/j.geoderma.2013.11.012 

 Esbensen, K. H. (Ed.), Guyot, D. (Ed.), Westad, F. (Ed.), & Houmoller, L. P. (Ed.). 
(2002). Multivariate data analysis-in practice: An introduction to multivariate data 
analysis and experimental design. Multivariate Data Analysis, (5th ed.) (pp 600). Oslo, 
Norway: CAMO Process AS. 

 Escribano, P., Schmid, T., Chabrillat, S., Rodríguez-Caballero, E., & García, M. (2017). 
Optical remote sensing for soil mapping and monitoring. In P. Pereira, E. Brevik, M. 
Muñoz-Rojas, & B.A. Miller (Eds.), Soil Mapping and Process Modeling for Sustainable 
Land Use Management (pp. 87-125): Elsevier. https://doi.org/10.1016/B978-0-12-
805200-6.00004-9 

https://doi.org/10.1016/j.geoderma.2013.11.012


 
This article is protected by copyright. All rights reserved. 

 FAO. (2015). World Reference Base for soil resources. Retrieved from Rome, Italy: 
http://www.fao.org/3/i3794en/I3794en.pdf  

 García-Ruiz, J. M. (2010). The effects of land uses on soil erosion in Spain: a review. 
Catena, 81(1), 1-11. http://dx.doi.org/10.1016/j.catena.2010.01.001 

 Garver, M. S., & Williams, Z. (2018). Improving the validity of theory testing in 
logistics research using correlated components regression. International Journal of 
Logistics Research and Applications, 21(4), 363-377. 
https://doi.org/10.1080/13675567.2017.1401054 

 Ge, Y., Thomasson, J. A., & Sui, R. (2011). Remote sensing of soil properties in 
precision agriculture: A review. Frontiers of Earth Science, 5(3), 229-238. 
https://doi.org/10.1007/s11707-011-0175-0 

 Gholizadeh, A., Borůvka, L., Saberioon, M., & Vašát, R. (2016). A Memory-Based 
Learning Approach as Compared to Other Data Mining Algorithms for the Prediction of 
Soil Texture Using Diffuse Reflectance Spectra. Remote Sensing, 8(4), 341. 
https://doi.org/10.3390/rs8040341 

 Gholizadeh, A., Saberioon, M., Carmon, N., Boruvka, L., & Ben-Dor, E. (2018). 
Examining the Performance of PARACUDA-II Data-Mining Engine versus Selected 
Techniques to Model Soil Carbon from Reflectance Spectra. Remote Sensing, 10(8), 
1172. https://doi.org/10.3390/rs10081172 

 Goldman, S. J., Bursztynsky, T. A., & Jackson, K. (1986). Erosion and Sediment Control 
Handbook. New York [etc.]: McGraw-Hill. 

 Grunwald, S., Thompson, J., & Boettinger, J. (2011). Digital soil mapping and modeling 
at continental scales: Finding solutions for global issues. Soil Science Society of America 
Journal, 75(4), 1201-1213. https://doi.org/10.2136/sssaj2011.0025 

 Jiménez-González, M. A., De la Rosa, J. M., Jiménez-Morillo, N. T., Almendros, G., 
González-Pérez, J. A., & Knicker, H. (2016). Post-fire recovery of soil organic matter in 
a Cambisol from typical Mediterranean forest in Southwestern Spain. Science of The 
Total Environment, 572, 1414-1421. https://doi.org/10.1016/j.scitotenv.2016.02.134 

 Knadel, M., Stenberg, B., Deng, F., Thomsen, A., & Greve, M. H. (2013). Comparing 
predictive abilities of three visible-near infrared spectrophotometers for soil organic 
carbon and clay determination. Journal of Near Infrared Spectroscopy, 21(1), 67-80. 
https://doi.org/10.1255/jnirs.1035 

 Kobza, J. (2015). Permanent soil monitoring system as a basic tool for protection of soils 
and sustainable land use in Slovakia. IOP Conference Series: Earth and Environmental 
Science, 25(1), 1-10. https://doi.org/10.1088/1755-1315/25/1/012011 

 Lal, R. (Ed.), & Stewart, B. A. (Ed.). (2010). Food Security and Soil Quality. Boca 
Raton, FL, USA: CRC Press (Taylor & Francis Group).  

 Laudicina, V. A., De Pasquale, C., Conte, P., Badalucco, L., Alonzo, G., & Palazzolo, E. 
(2012). Effects of afforestation with four unmixed plant species on the soil–water 
interactions in a semiarid Mediterranean region (Sicily, Italy). Journal of Soils and 
Sediments, 12(8), 1222-1230. https://doi.org/10.1007/s11368-012-0522-0 

 Lu, D., Li, G., Valladares, G. S., & Batistella, M. (2004). Mapping soil erosion risk in 
Rondônia, Brazilian Amazonia: using RUSLE, remote sensing and GIS. Land 
Degradation & Development, 15(5), 499-512. https://doi.org/10.1002/ldr.634 

 Lugassi, R., Ben-Dor, E., & Eshel, G. (2014). Reflectance spectroscopy of soils post-
heating—Assessing thermal alterations in soil minerals. Geoderma, 213(0), 268-279. 
https://doi.org/10.1016/j.geoderma.2013.08.014 



 
This article is protected by copyright. All rights reserved. 

 Magidson, J. (2010). Correlated component regression: a prediction/classification 
methodology for possibly many features. Proceedings of the American Statistical 
Association. pp.4372-4386. 

 Magidson, J. (2013). Correlated component regression: Re-thinking regression in the 
presence of near collinearity. In H. Abdi, W. W. Chin, V. E. Vinzi, G. Russolillo, & L. 
Trinchera (Eds.), New Perspectives in Partial Least Squares and Related Methods (pp. 
65-78): New York, NY, USA: Springer International Publishing. 
https://doi.org/10.1007/978-1-4614-8283-3_3 

 Magidson, J., & Wassmann, K. (2010). The role of proxy genes in predictive models: an 
application to early detection of prostate cancer. Proceedings of the American Statistical 
Association, Biometrics section. pp.2739-2753. 

 Martens, H., & Martens, M. (2000). Modified Jack-knife estimation of parameter 
uncertainty in bilinear modelling by partial least squares regression (PLSR). Food 
Quality and Preference, 11(1-2), 5-16. https://doi.org/10.1016/S0950-3293(99)00039-7 

 Melendez-Pastor, I., Navarro-Pedreño, J., Gómez, I., & Koch, M. (2008). Identifying 
optimal spectral bands to assess soil properties with VNIR radiometry in semi-arid soils. 
Geoderma, 147(3), 126-132. https://doi.org/10.1016/j.geoderma.2008.08.004 

 Merino, A., Moreno, G., Navarro, F. B., & Gallardo, J. F. (2016). Future issues. In J. F. 
Gallardo (Ed.), The Soils of Spain (pp. 189-195). Cham, Switzerland: Springer 
International Publishing. https://doi.org/10.1007/978-3-319-20541-0_6 

 Montanarella, L., & Panagos, P. (2018). Soil Data Needs for Sustainable Agriculture. In: 
H. Ginzky, E. Dooley , I. Heuser, E. Kasimbazi, T. Markus, & T. Qin (Eds). 
International Yearbook of Soil Law and Policy 2017. (IYSLP, Vol 2017). (pp. 151-166). 
Cham, Switzerland: Springer International Publishing. https://doi.org/10.1007/978-3-
319-68885-5_9 

 Mouazen, A. M., Karoui, R., De Baerdemaeker, J., & Ramon, H. (2005). Classification 
of Soil Texture Classes by Using Soil Visual near Infrared Spectroscopy and Factorial 
Discriminant Analysis Techniques. Journal of Near Infrared Spectroscopy, 13(4), 231-
240. https://doi.org/10.1255/jnirs.541 

 Mouazen, A. M., Kuang, B., De Baerdemaeker, J., & Ramon, H. (2010). Comparison 
among principal component, partial least squares and back propagation neural network 
analyses for accuracy of measurement of selected soil properties with visible and near 
infrared spectroscopy. Geoderma, 158(1), 23-31. 
https://doi.org/10.1016/j.geoderma.2010.03.001 

 Nadal-Romero, E., Cammeraat, E., Pérez-Cardiel, E., & Lasanta, T. (2016). Effects of 
secondary succession and afforestation practices on soil properties after cropland 
abandonment in humid Mediterranean mountain areas. Agriculture, Ecosystems & 
Environment, 228, 91-100. https://doi.org/10.1016/j.agee.2016.05.003 

 Nadal‐Romero, E., Regüés, D., Martí‐Bono, C., & Serrano‐Muela, P. (2007). Badland 
dynamics in the Central Pyrenees: temporal and spatial patterns of weathering processes. 
Earth Surface Processes and Landforms, 32(6), 888-904. 
https://doi.org/10.1002/esp.1458 

 Novara, A., La Mantia, T., Barbera, V., & Gristina, L. (2012). Paired-site approach for 
studying soil organic carbon dynamics in a Mediterranean semiarid environment. 
Catena, 89(1), 1-7. https://doi.org/10.1016/j.catena.2011.09.008 

 Nuzzo, R. (2014). Scientific method: statistical errors. Nature, 506(7487), 150. 
https://doi.org/10.1038/506150a 



 
This article is protected by copyright. All rights reserved. 

 Ogen, Y., Neumann, C., Chabrillat, S., Goldshleger, N., & Ben-Dor, E. (2018). 
Evaluating the detection limit of organic matter using point and imaging spectroscopy. 
Geoderma, 321, 100-109. https://doi.org/10.1016/j.geoderma.2018.02.011 

 Ostovari, Y., Ghorbani-Dashtaki, S., Bahrami, H.-A., Abbasi, M., Demattê, J. A. M., 
Arthur, E., & Panagos, P. (2018). Towards prediction of soil erodibility, SOM and 
CaCO3 using laboratory Vis-NIR spectra: A case study in a semi-arid region of Iran. 
Geoderma, 314, 102-112. https://doi.org/10.1016/j.geoderma.2017.11.014 

 Pausas, J. G., Llovet, J., Rodrigo, A., & Vallejo, R. (2009). Are wildfires a disaster in the 
Mediterranean basin?–A review. International Journal of Wildland Fire, 17(6), 713-723. 
https://doi.org/10.1071/WF07151 

 Pérez-Cabello, F., Echeverría, M., Ibarra, P., & Riva, J. (2009). Effects of Fire on 
Vegetation, Soil and Hydrogeomorphological Behavior in Mediterranean Ecosystems. In 
E. Chuvieco (Ed.), Earth Observation of Wildland Fires in Mediterranean Ecosystems 
(pp. 111-128). Berlin, Heidelberg: Springer International Publishing. 
https://doi.org/10.1007/978-3-642-01754-4_9 

 Pimentel, D. (2006). Soil erosion: a food and environmental threat. Environment, 
Development and Sustainability, 8(1), 119-137. https://doi.org/10.1007/s10668-005-
1262-8 

 Pinheiro, É. F., Ceddia, M. B., Clingensmith, C. M., Grunwald, S., & Vasques, G. M. 
(2017). Prediction of Soil Physical and Chemical Properties by Visible and Near-Infrared 
Diffuse Reflectance Spectroscopy in the Central Amazon. Remote Sensing, 9(4), 293. 
https://doi.org/10.3390/rs9040293 

 Rosero-Vlasova, O., Borini Alves, D., Vlassova, L., Perez-Cabello, F., & Montorio 
Lloveria, R. (2017). Modeling soil organic matter (SOM) from satellite data using 
VISNIR-SWIR spectroscopy and PLS regression with step-down variable selection 
algorithm: case study of Campos Amazonicos National Park savanna enclave, Brazil. 
Paper presented at the SPIE Remote Sensing Conference. USA: The International 
Society for Optics and Photonics. https://doi.org/10.1117/12.2278701 

 Rosero-Vlasova, O., Pérez-Cabello, F., Montorio Llovería, R., & Vlassova, L. (2016). 
Assessment of laboratory VIS-NIR-SWIR setups with different spectroscopy accessories 
for characterisation of soils from wildfire burns. Biosystems Engineering, 152, 51-67. 
https://doi.org/10.1016/j.biosystemseng.2016.06.011 

 Rosero-Vlasova, O. A., Vlassova, L., Pérez-Cabello, F., Montorio, R., & Nadal-Romero, 
E. (2018). Modeling soil organic matter and texture from satellite data in areas affected 
by wildfires and cropland abandonment in Aragón, Northern Spain. Journal of Applied 
Remote Sensing, 12(4), 042803. https://doi.org/10.1117/1.JRS.12.042803 

 Ruiz-Rodado, V., Marcos Luque-Baena, R., te Vruchte, D., Probert, F., H. Lachmann, 
R., J. Hendriksz, C., . . . Grootveld, M. (2014). 1H NMR-Linked Urinary Metabolic 
Profiling of Niemann-Pick Class C1 (NPC1) Disease: Identification of Potential New 
Biomarkers using Correlated Component Regression (CCR) and Genetic Algorithm 
(GA) Analysis Strategies. Current Metabolomics, 2(2), 88-121. 
https://doi.org/10.2174/2213235X02666141112215616 

 Ruiz de la Torre, J. (1990). Distribución y características de las masas forestales 
españolas. Ecología (Nº. 1), (pp. 11-13). Retrieved from https://dialnet.unirioja.es 

 Stenberg, B., Viscarra Rossel, R. A., Mouazen, A. M., & Wetterlind, J. (2010). Chapter 
five-visible and near infrared spectroscopy in soil science. Advances in Agronomy, 107, 
163-215. https://doi.org/10.1016/S0065-2113(10)07005-7 

 Stevens, A., Nocita, M., Tóth, G., Montanarella, L., & van Wesemael, B. (2013). 
Prediction of soil organic carbon at the European scale by visible and near infrared 



 
This article is protected by copyright. All rights reserved. 

reflectance spectroscopy. PloS One, 8(6), e66409. 
https://doi.org/10.1371/journal.pone.0066409 

 Terra, F. S., Demattê, J. A. M., & Viscarra Rossel, R. A. (2018). Proximal spectral 
sensing in pedological assessments: vis–NIR spectra for soil classification based on 
weathering and pedogenesis. Geoderma, 318, 123-136. 
https://doi.org/10.1016/j.geoderma.2017.10.053 

 Tóth, G., Hermann, T., da Silva, M. R., & Montanarella, L. (2018). Monitoring soil for 
sustainable development and land degradation neutrality. Environmental Monitoring and 
Assessment, 190(2), 57. https://doi.org/10.1007/s10661-017-6415-3 

 Troeh, F. R., & Thompson, L. M. (2005). Chapter 20-Soil Erosion and Its Control. Soils 
and Soil Fertility, (6th ed.). Ames, Iowa, USA: Blackwell (John Wiley & Sons). 

 United Nations. (2015). Transforming our world: the 2030 Agenda for Sustainable 
Development. Resolution Adopted by the General Assembly, (A/RES/70/1). United 
Nations Headquarters, New York, NY, USA: Press release. Retrieved from 
https://sustainabledevelopment.un.org/content/documents/21252030%20Agenda%20for
%20Sustainable%20Development%20web.pdf 

 USDA. (1996). Soil Survey Manual. Retieved from Washington, USA: 
https://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/nrcseprd1335011.pdf 

 Vasques, G. M., Demattê, J. A. M., Viscarra Rossel, R. A., Ramírez-López, L., & Terra, 
F. S. (2014). Soil classification using visible/near-infrared diffuse reflectance spectra 
from multiple depths. Geoderma, 223–225(0), 73-78. 
https://doi.org/10.1016/j.geoderma.2014.01.019 

 Viscarra Rossel, R., & Behrens, T. (2010). Using data mining to model and interpret soil 
diffuse reflectance spectra. Geoderma, 158(1), 46-54. 
https://doi.org/10.1016/j.geoderma.2009.12.025 

 Viscarra Rossel, R., & Brus, D. J. (2018). The cost-efficiency and reliability of two 
methods for soil organic C accounting. Land Degradation & Development, 29(3), 506-
52. https://doi.org/10.1002/ldr.2887 

 Viscarra Rossel, R., Walvoort, D., McBratney, A., Janik, L. J., & Skjemstad, J. (2006). 
Visible, near infrared, mid infrared or combined diffuse reflectance spectroscopy for 
simultaneous assessment of various soil properties. Geoderma, 131(1-2), 59-75. 
https://doi.org/10.1016/j.geoderma.2005.03.007 

 Viscarra Rossel, R. A., McGlynn, R. N., & McBratney, A. B. (2006). Determining the 
composition of mineral-organic mixes using UV–vis–NIR diffuse reflectance 
spectroscopy. Geoderma, 137(1–2), 70-82. 
https://doi.org/10.1016/j.geoderma.2006.07.004 

 Vlassova, L., & Pérez-Cabello, F. (2016). Effects of post-fire wood management 
strategies on vegetation recovery and land surface temperature (LST) estimated from 
Landsat images. International Journal of Applied Earth Observation and 
Geoinformation, 44, 171-183. https://doi.org/10.1016/j.jag.2015.08.011 

 Wold, S., Sjöström, M., & Eriksson, L. (2001). PLS-regression: a basic tool of 
chemometrics. Chemometrics and Intelligent Laboratory Systems, 58(2), 109-130. 
https://doi.org/10.1016/S0169-7439(01)00155-1 

 
 
 
 
 
 

http://www.wiley.com/
https://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/nrcseprd1335011.pdf
https://doi.org/10.1016/S0169-7439(01)00155-1


 
This article is protected by copyright. All rights reserved. 

 
 

Figure 1. Location of the study area and sampling sites. 
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Figure 2. Experimental setup: (a) general view and (b) view during spectral measurements 

(optimization process).  
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Figure 3. Score plot from principal components analysis (PCA) showing PC1 vs. PC2: 

Hotelling’s T2 ellipse (95% confidence level) for outlier detection.   
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Figure 4. Box-whisker plots showing the SOM, clay, silt and sand distribution in S2 for the 

(a) calibration set and (b) validation set. The bottom and top of the box represent the 25th and 

75th percentiles. The cross inside the box indicates the mean value. The band near the middle 

of the box is the median. The whiskers represent the 5th and 95th percentiles. The solid dots 

correspond to maximum and minimum values. 
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Figure 5. A soil texture triangle (USDA, 2010) showing the soil textures as determined by 

the proportion of sand, silt and clay. The red points represent soil samples from areas affected 

by wildfires and the blue points represent soil samples from areas of crop abandonment. 
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Figure 6. Spectra of soils from wildfire burns: (a) all the spectra and (b) spectra of the burned 

(dotted line) and unburned (dashed line) soil samples. Spectra of soils from agricultural 

abandonment areas: (c) all the spectra and (d) average spectra of soils from areas with 

different land use types after crop abandonment. 
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Figure 7. Scatter plot examples of predicted versus observed values of SOM (a), clay (b), silt 

(c) and sand (d) for S2 for CCR-SD, PLSR-full and PLSR-MUT models. In each plot, the 

data points corresponding to calibration are shown as circles, and the data points 

corresponding to validation are shown as triangles. 
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Figure 8. Band coefficients in the predictive models for S1, S2 and S3 for (a) SOM and (b) 

clay (c) silt and (d) sand. 
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Table 1. Descriptive statistics for soil organic matter (SOM) content (g 100g-1) and clay, silt 

and sand (%) in collected soil samples. 

 

Soil properties n Min Max Median Mean SD 

SOM (g 100 g-1) 113 1.04 23.40 5.80 6.59 3.68 

Clay (%) 113 9.21 48.04 27.28 27.14 8.09 

Silt (%) 113 22.18 66.19 41.48 40.23 10.26 

Sand (%) 113 5.41 66.37 32.16 32.64 14.57 

NOTE. n: number of samples; Min: minimum; Max: maximum; SD: standard deviation. 
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Table 2. Descriptive statistics for soil organic matter (SOM) content (g 100g-1), clay, silt and sand (%) in three calibration and prediction sample 
sets (S1, S2 and S3). 

Soil 
properties 

Sample 
set 

CALIBRATION VALIDATION 

n Min Max Mean SD Q25 Q75 
 Skewness  
(Pearson) 

n Min Max Mean SD Q25 Q75 
Skewness 
(Pearson) 

       SOM           
(g 100 g-1) 

S1 80 1.04 20.74 6.28 3.45 4.08 6.69 1.79 30 2.59 23.40 7.46 4.30 4.86 9.72 1.78 

S2 80 1.04 20.74 6.53 3.49 4.34 8.00 1.55 30 2.46 23.40 6.81 4.33 4.20 7.99 2.17 

S3 80 1.04 23.40 6.35 3.52 4.25 7.73 2.35 30 1.77 19.02 7.27 4.19 4.52 10.32 0.93 

Clay (%) 

S1 80 9.82 48.04 27.33 8.32 29.63 42.28 0.22 30 9.21 43.77 26.72 7.86 32.45 47.57 -0.08 

S2 80 9.21 48.04 26.59 8.38 31.70 47.77 0.21 30 11.18 46.78 28.69 7.49 35.15 46.27 -0.12 

S3 80 9.21 48.04 27.34 8.39 32.36 47.21 0.15 30 11.18 43.00 26.70 7.66 32.45 47.47 0.10 

Silt (%) 

S1 80 22.46 66.19 40.44 10.30 19.86 29.77 0.40 30 23.66 55.89 40.21 10.30 22.90 30.53 -0.16 

S2 80 22.46 66.19 40.15 10.70 21.25 30.48 0.31 30 24.68 57.91 40.99 9.08 23.80 31.83 0.34 

S3 80 23.28 66.19 40.36 10.20 21.75 31.74 0.31 30 22.46 61.39 40.43 10.57 22.87 30.71 0.10 

Sand (%) 

S1 80 5.41 64.22 32.23 14.66 31.43 45.37 0.20 30 10.80 66.37 33.11 14.85 20.75 44.25 0.34 

S2 80 5.41 66.37 33.27 15.25 20.64 44.58 0.14 30 8.80 62.58 30.33 12.92 19.68 39.08 0.46 

S3 80 8.69 66.37 32.32 14.68 20.45 42.11 0.30 30 5.41 62.58 32.87 14.81 20.12 44.25 0.07 

NOTE. S1: sample set 1; S2: sample set 2; S3: sample set 3; n: number of samples; Min: minimum; Max: maximum; SD: standard deviation; Q25: lower 
quartile; Q75: upper quartile. 
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Table 3. Calibration and cross-validation results of soil organic matter (SOM), clay, silt and 
sand modelling (80 samples) obtained with CCR-SD, PLSR-full and PLSR-MUT.  
 

Soil Properties 
Sample 

set  
Statistic Factors f R²C 

RMSEC       
(g 100 g-1) 

R²CV 
RMSECV    

(g 100 g-1) 

SOM 

S1 

CCR-SD 8 49 0.86 2.11 0.77 1.30 

PLSR-full 10 2071 0.81 1.49 0.73 1.82 

PLSR-MUT  9 171 0.82 1.46 0.76 1.70 

S2 

CCR-SD 8 61 0.86 2.75 0.78 1.31 

PLSR-full 9 2071 0.81 1.51 0.72 1.86 

PLSR-MUT  8 39 0.79 1.60 0.73 1.82 

S3 

CCR-SD 8 58 0.85 2.62 0.77 1.35 

PLSR-full 10 2071 0.85 1.37 0.78 1.65 

PLSR-MUT  9 197 0.82 1.46 0.75 1.77 

  

S1 

CCR-SD 10 28 0.80 4.68 0.67 3.76 

  PLSR-full 10 2071 0.73 4.32 0.58 5.41 

  PLSR-MUT  9 171 0.64 4.96 0.51 5.86 

CLAY 

S2 

CCR-SD 10 21 0.83 4.02 0.60 3.45 

  PLSR-full 9 2071 0.64 5.01 0.46 6.22 

  PLSR-MUT  8 39 0.61 5.18 0.49 6.04 

  

S3 

CCR-SD 10 29 0.83 4.32 0.67 3.44 

  PLSR-full 10 2071 0.69 4.63 0.54 5.76 

  PLSR-MUT  9 197 0.67 4.81 0.53 5.79 

  

S1 

CCR-SD 10 19 0.86 4.39 0.75 3.83 

  PLSR-full 10 2071 0.83 4.23 0.73 5.42 

  PLSR-MUT  9 171 0.80 4.52 0.73 5.36 

SILT 

S2 

CCR-SD 10 16 0.84 4.78 0.70 4.27 

  PLSR-full 9 2071 0.81 4.67 0.64 6.43 

  PLSR-MUT  8 39 0.62 6.58 0.40 8.32 

  

S3 

CCR-SD 10 58 0.86 7.40 0.72 3.82 

  PLSR-full 10 2071 0.78 4.66 0.62 6.32 

  PLSR-MUT  9 197 0.75 5.10 0.52 6.32 

SAND 

S1 

CCR-SD 10 22 0.84 6.90 0.71 5.86 

PLSR-full 10 2071 0.86 5.46 0.76 7.23 

PLSR-MUT  9 171 0.78 6.87 0.70 8.11 

S2 

CCR-SD 8 32 0.75 9.89 0.61 7.63 

PLSR-full 9 2071 0.81 6.68 0.63 9.32 

PLSR-MUT  8 39 0.65 9.00 0.47 11.20 

S3 

CCR-SD 10 70 0.79 19.81 0.61 6.69 

PLSR-full 10 2071 0.81 6.40 0.65 8.78 

PLSR-MUT  9 197 0.79 6.64 0.67 8.52 
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NOTE. S1: sample set 1; S2: sample set 2; S3: sample set 3; f: number of variables used in the regression equation; R²C: 
coefficient of determination for calibration; R²CV: coefficient of determination for cross-validation; RMSEC: root mean 
square error of calibration; RMSECV: root mean square error of cross-validation. The presented values are averages for 
100 rounds. 
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Table 4. Validation results for soil organic matter (SOM), clay, silt and sand modelling (30 
samples) obtained with CCR-SD, PLSR-full and PLSR-MUT.  

Soil 
Properties 

Sample 
set 

Statistic R²V 
 RMSEP   

(g 100 g-1) 
     SEPc            

(g 100 g-1) 
       biasval     
(g 100 g-1) 

RPIQ AIC 

SOM 

S1 

CCR-SD 0.87 1.55 1.53 0.36 3.14 111.13 

PLSR-full 0.88 1.59 1.58 -0.33 3.06 4155.91 

PLSR-MUT  0.77 2.04 2.07 0.08 2.38 363.39 

S2 

CCR-SD 0.86 1.61 1.64 0.07 2.36 136.30 

PLSR-full 0.82 1.81 1.83 -0.10 2.10 4159.80 

PLSR-MUT  0.76 2.08 2.11 0.03 1.82 99.97 

S3 

CCR-SD 0.89 1.89 1.52 1.14 3.08 135.03 

PLSR-full 0.89 1.96 1.55 -1.24 2.96 4162.19 

PLSR-MUT  0.86 2.05 1.75 -1.12 2.93 415.54 

CLAY  

S1 

CCR-SD 0.54 5.98 6.01 -0.95 1.28 109.66 

PLSR-full 0.53 6.91 6.68 2.14 1.10 4199.99 

PLSR-MUT  0.28 7.05 7.15 0.44 1.08 400.59 

S2 

CCR-SD 0.71 4.71 4.76 0.52 1.71 88.47 

PLSR-full 0.59 5.18 5.21 -0.75 1.55 4191.34 

PLSR-MUT  0.56 5.34 5.21 -1.49 1.50 128.26 

S3 

CCR-SD 0.73 4.47 4.47 0.83 1.75 102.94 

PLSR-full 0.55 5.80 5.69 -1.54 1.35 4194.74 

PLSR-MUT  0.57 6.14 5.82 -2.21 1.28 448.44 

SILT  

S1 

CCR-SD 0.70 7.08 6.68 2.65 2.14 96.73 

PLSR-full 0.74 6.30 5.63 -3.02 2.40 4197.22 

PLSR-MUT  0.65 8.48 7.81 -3.60 1.78 406.13 

S2 

CCR-SD 0.72 5.23 5.10 -1.48 2.13 81.63 

PLSR-full 0.80 4.29 4.09 1.51 2.59 4185.69 

PLSR-MUT  0.58 5.87 5.93 0.65 1.90 131.10 

S3 

CCR-SD 0.68 6.80 6.60 2.01 2.21 173.49 

PLSR-full 0.80 5.12 5.21 0.09 2.93 4190.99 

PLSR-MUT  0.64 7.09 7.02 -1.62 2.12 452.76 

SAND 

S1 

CCR-SD 0.69 8.76 8.61 -2.25 2.68 109.10 

PLSR-full 0.66 9.37 9.49 0.84 2.51 4209.13 

PLSR-MUT  0.59 11.62 11.38 3.12 2.02 415.58 

S2 

CCR-SD 0.71 7.04 7.13 0.66 2.75 122.55 

PLSR-full 0.80 5.92 5.97 -0.75 3.28 4195.35 

PLSR-MUT  0.74 6.59 6.65 0.85 2.94 134.57 

S3 

CCR-SD 0.69 9.18 8.75 -3.20 2.63 206.50 

PLSR-full 0.79 7.09 7.06 1.45 3.40 4200.76 

PLSR-MUT  0.71 9.31 8.62 3.84 2.59 460.93 
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NOTE. S1: sample set 1; S2: sample set 2; S3: sample set 3; R²V: coefficient of determination for validation; RMSEP: 
root mean square error of prediction; SEPC: standard error of prediction;  biasval: bias of validation; RPIQ: ratio of 
performance to interquartile range; AIC: Akaike information criterio. 

 

 


