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Respiratory rate is an important parameter for many health, home care, work, or sport applications. In this paper, a new wearable
sensing system based on a piezoresistive FlexiForce sensor has been developed. The sensor can be attached to any common chest
strap. A compact 3D casing has been designed and printed with a 3D printer. This casing integrates the sensor and all auxiliary
elements of the system: microcontroller, battery, Bluetooth module, connections, battery charger, and acquisition circuit. To the
best of our knowledge, this is the first study presenting a FlexiForce respiration sensor that includes all system elements in a
single compact casing. The source files with the design of the casing have been published as supplementary material to be reused
by any interested researcher. The sensing system was tested with twenty-one subjects for different breathing rates. Two different
algorithms were developed to obtain the respiratory rate from the voltage signals recorded by the sensor. Statistical tests were
performed to determine the optimal computation time window and algorithm. This approach is also novel in this field. Low
error values were obtained for a time window of 27 s with an algorithm based on the calculation of time between zero-crossings
(4.02%) and with an algorithm based on counting them (3.40%). To promote research transparency and reusability, the dataset
with the recorded data and the source code of the algorithms and statistical tests have also been published. Therefore, an open,
replicable, low-error, wearable, wireless, and compact sensing system to measure respiratory rate was developed and tested.

1. Introduction

Monitoring of physiological vital signs in humans, such as
heart rate, respiratory rate (RR), blood oxygen concentration,
body temperature, or blood pressure, is a field of growing
interest with many applications. Specifically, respiratory rate
is widely used in health applications such as detection of
abnormal breathing patterns [1] or pulmonary disorders
[2]; diagnosis of obstructive sleep apnea [3], chronic obstruc-
tive pulmonary disease [4], or asthma [5]; monitoring 7 of
anaesthetized patients [6]; monitoring during magnetic reso-
nance imaging (MRI) [7]; indication for cardiac arrest [8],
imbalance or failure in the nervous, cardiovascular, or excre-
tory 9 systems [8]; prevention of sudden infant death syn-
drome [9]; or admission to intensive care unit, among
others. Respiratory rate monitoring has also be applied to
occupational health [10]. Respiratory rate provides informa-
tion on the psychophysiological condition of workers, which

is especially interesting for pilots, drivers, or operators of crit-
ical machines. It can be used to detect alarming symptoms of
fatigue or fainting. It is also useful in other fields like home
care [11] or sports [12].

There are several wearable approaches to properly mea-
sure respiratory rate [13]. One possible way is to detect var-
iations in the velocity or volume of the respiratory airflow.
For example, Liao et al. [14] presented a capacitive flow
sensor. Pressure changes caused by airflow induced capaci-
tance changes in the sensing plates. Other sensors that
detect airflow variations to monitor breathing are described
in [15, 16].

There are studies that presented sensors based on the
recording of the sound associated with the air flowing
through the airways of subjects. In this regard, Nam et al.
[17] used built-in microphones of smartphones or simple
headset microphones placed under the nose. The built-in
microphone was manually held in a fixed position by
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subjects, assuming no displacement during experiments. The
amplitude of the envelope of the respiratory sounds was in
the range 0.45-0.9 (amplitude units). For reliable estimates
of RR, background noise was kept to a minimum. Respiratory
rates could be estimated accurately even if microphones were
30 cm away from the nose.

Another set of studies recorded the temperature of
inhaled or exhaled air during breathing. Cao et al. [5] pre-
sented a Bluetooth-based hot-film flow sensor. It was based
on convective heat transfer. Changes in the fluidic flow con-
dition led to variations in the resistance of the film. The sen-
sor consisted of a micro/nanothin film inserted into a tube.
Flow rates covering 0.1-100 L/min were considered in sensor
design. Motion was incorporated in the validation tests, and
three-axis accelerations were also recorded to assess motion
intensity. Similar sensors based on this principle were devel-
oped by Huang and Huang [18] and Milici et al. [19].

Several authors registered changes in air humidity to
obtain RR. Pang et al. [20] designed a porous graphene net-
work to monitor breathing. It can be used to monitor mouth
and nose respiration, including breathing patterns such as
normal and deep respiration. The system described is an ini-
tial prototype that needs to be improved for commercializa-
tion. Other approaches to detect humidity variations were
described in the reviews by Farahani et al. [21] and Ascorbe
et al. [22].

Chemical sensors have also been used in this field to ana-
lyze breathing air components and obtain the RR from the
results of analyses. Katagiri et al. [23] presented a sensor to
measure carbon dioxide (CO2) based on optical absorption
spectroscopy. Other chemical approaches were discussed in
the surveys by Imani et al. [24] and Güntner et al. [25].

Images taken with mobile phone cameras were also used
to determine RR. The work of Karlen et al. [26] was based on
placing a finger on the lens of a mobile phone’s camera and
extracting imaging photoplethysmogram from the region of
interest to estimate the RR. Motion artifacts were detected
and labeled. Then, two algorithms were used to obtain the
RR. The system presented a root mean square error of 6
breaths/min, being much higher for respiratory rates greater
than 20 breaths/min. Recordings with incorrect counts due
to artifacts in the reference device were excluded. The same
was done with RR recordings of less than 6 breaths/min or
greater than 40 breaths/min. Scully et al. [27] presented a
similar approach using intensity changes in the green band
of the video signal.

A set of studies measured the changes in electrical
bioimpedance that occur during breathing. The work of
Metshein [28] presented an electrode shirt to measure elec-
trical bioimpedance using large surface plate electrodes.
They were made of aluminium foil and covered with contact
gel. Electrical bioimpedance measurements were in the
range of 175-300 Ω, approximately. The validation experi-
ments included movements to show the influence of motions
of human body on the measured signal. Motions and dis-
placement of the electrodes affected the results. Displacement
of the shirt was specially important in long experiments. The
best electrode placement configurations were identified,
matching the locations of the heart, lungs, and large blood

vessels. Similarly, Ansari et al. [29] determined RR from elec-
trical impedance. In this case, it was measured in the arms
using only four electrodes.

There are also studies that use radar for the measurement
of RR. Kukkapalli et al. [30] presented a micro radar-based
system designed as a wearable neck pendant. The system
used the relative motion between the radar and the chest wall
to estimate the RR. The radar was operated at 24GHz; a cus-
tom active analog amplifier circuit was designed to improve
sensitivity. A module with WiFi data transfer was used for
data collection. Ten subjects participated in the validation
experiments performed in static position. Radar technology
has been widely used for RR detection, but mainly in non-
wearable systems [31].

Several sensing systems were also proposed to detect
chest movements associated with breathing. Dan et al. [4]
described an inertial sensor platform to obtain angular veloc-
ity waveforms to calculate RR. Sensors were place in the
suprasternal notch, which is located on the upper border of
the sternum. This position caused noises in signals, which
had to be filtered. The sensing system was wired, ensuring
stability of signal transmission. Inertial sensors were also
used in the works of Hernandez et al. [32] and Estrada
et al. [33].

Finally, a set of sensors registered deformations in the
chest due to breathing. The sensor developed in this work is
based on this principle. Several previous works in this cate-
gory already exist. Table 1 shows a comparison of the sensing
system proposed in this paper with several related works
found in the state of the art. Some of the most relevant fea-
tures of respiratory sensing systems are compared. All studies
included in Table 1 detect thoracic movements. They have in
common the use a chest strap to attach the sensor to the
body, which is the approach adopted in the sensor presented
in this study. However, there are large differences in sensing
principles, hardware processing units, data processing tech-
niques, or data transfer technologies, among other factors.

Hesse et al. [12] designed a respiration sensor using a
force-sensing resistor. Thoracic movements were recorded,
and the RR was calculated using a peak detection algorithm.
A simple mechanical housing mechanism consisting of two
quadratic plates integrated the force-sensing resistor exclu-
sively. The housing mechanism was attached to a chest strap,
which included the rest of the elements of the system. There-
fore, the mechanical housing mechanism did not contain the
microcontroller, memory, battery, or any other auxiliary ele-
ments since they were attached to the strap separately. The
sensor evaluation was performed with five subjects, obtaining
good results for normal and deep breathing. Data were proc-
essed locally on the same strap.

A sensor to be worn on the chest was also designed by
Mahbub et al. [1]. In this case, the sensing element was a pie-
zoelectric transducer composed of a ferroelectric polymer,
polyvinylidene fluoride (PVDF). PVDF had fast response
time to vibration due to chest dilation. The sensor was mod-
eled by a first-order equivalent circuit composed of a thermal
capacitance shunted by a thermal resistance. The sensor
generated charge (peak-to-peak amplitude of 400 pA) in
response to vibrations due to breathing. A charge amplifier
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produces an output voltage proportional to the integrated
charge. This voltage ranges from 0.7 to 1Vpp. A custom inte-
grated circuit was responsible for processing and sending the
data wirelessly. The sensor was validated with only one sub-
ject, showing respiration detection. Similarly, the works of
Ciobotariu et al. [34] and Rotariu et al. [35] presented piezo-
electric thoracic belts to measure respiratory activity. The
first work is wireless using GSM/GPRS transmission, while
the second prototype communicates with a central computer
through a USB cable. None of the studies included a struc-
tured evaluation of the sensors.

Hoffman et al. [2] estimated respiration volume using a
textile integrated force sensor based on the principle of plate
capacitors. The sensors were composed of different layers of
textiles. A compressible 3D textile was the core of the sensor.
On the top and bottom of the 3D textile, conductive fabrics
formed the electrodes of the plate capacitor. Expansion of
the thorax during breathing caused a change in fabric thick-
ness, which was measured as a change in the value of capac-
itance. The tightness of the belt that supported the sensor was
set at 10N. The pressure range to be measured was 0.3 to
0.7N/cm. Position of the belt and the sensor changed fre-
quently during measurements due to body movement. This
led to larger errors. The authors stressed that one possible
solution could be frequent recalibration of the system. How-
ever, this would affect usability and comfort. Eighteen sub-
jects participated in the validation tests and results showed
a high correlation of the measurements with respect to a ref-
erence device, although the estimation of the respiratory vol-
ume was not accurate enough (37.9% error). Tests included
activities with movements. Similarly, Grlica et al. [36] pre-
sented a capacitive sensor that detected changes in capaci-
tance in the range from 0.1 to 0.5 pF for normal breathing.
The sensor consisted of a fixed triangular electrode and a
rectangular moveable electrode. Total electrode displacement
was approximately 40mm for deep breathing. The sensor of
Yang et al. [37] included a low-energy Bluetooth wireless
communication module to transmit capacitance values to a
smartphone. This same transmission technology was used
in the work of Yang et al. [38] with the sensor integrated in
a shirt. Min et al. [39] also presented a capacitive sensor made
of conductive fabric and polyester. The sensor designed was
linear with sufficient resolution to measure a wide range of
breathing from different subjects. Force was increased from
0 to 3N, producing a capacitance change of 445-510 pF.
The authors stressed that the position during tests may
affect performance.

Witt et al. [6] designed a system to measure thoracic
motion continuously based on optical fiber sensors. Specifi-
cally, the sensor was based on fiber Bragg gratings (FBG),
macrobending effect, and optical time-domain reflectometry.
The sensor was specifically for patients under MRI. It was
tested in simulators and in climate chambers. FBG sensor
can be stretched up to 3% elongation with a sensitivity
0.32 nm. Results showed that the sensor retained its stability
for different elongations. The same principle (FBG) was also
used in the sensor of Presti et al. [40]. In that case, an array of
12 FBG was designed. The placement of the 12 FBG in sub-
ject’s torso was optimized. Five subjects participated in the

validation of the sensor and measurements were analyzed
offline, obtaining a minimum error. FBG were also used by
Massaroni et al. [41] to monitor compartmental and global
volumetric parameters. Six subjects participated in the exper-
iments, obtaining an error in the tidal volume of 14%. Simi-
larly, Yang et al. [42] developed a fiber optic respiratory
sensor based, this time, on the microbend effect. That study
verified the RR by counting the number of breaths manually.
The sensing belt was stretched 20mm and 40mm, which
corresponded to elongations of 2.14% and 4.28%.

Padasdao et al. [9] presented a respiratory chest sensor
based on human energy harvesting. An off-the-shelf dc
brushed motor was used to detect thoracic movements as a
function of average harvested power. The expansion of the
chest due to respiration turned the armature, which trans-
mitted the movement to the gears and the rotor of the
machine. The motor was integrated into a plastic casing
and mounted on a piece of felt to stabilize the device against
the body. Displacements of 1 cm and 3 cm were considered in
the experiments. Average output power harvested by the
motor was in the range 6-72μW. To eliminate motion arti-
facts, voltage outputs were filtered with a low-pass finite
impulse response (FIR) filter. The sensor was validated with
twenty subjects, obtaining that RR was measured with a low
error value.

The proposal of Teichmann et al. [43] is also innovative,
since they presented a sensor based on magnetic induction to
obtain RR. A coil was the core element of the sensor. The sen-
sor detected variations in the distribution of human imped-
ance due to thoracic movements associated with breathing
through electromagnetic coupling. The sensing system was
completed with a microcontroller and a Bluetooth module.
The sensor was placed on a flexible PCB. All other electronic
components (except for the power management) were also
mounted on there. The impact of coil deformation was also
investigated since the sensor was designed to be carried in
the shirt pocket. Four subjects participated in the evaluation.
The authors stressed that the spatial fusion of different
sensors could allow the cancellation of motion artifacts.
However, this was not tested in the study.

This paper presents a compact wireless sensing system
based on a piezoresistive sensor (A201 FlexiForce sensor,
Tekscan [44]) to monitor respiratory rate. As can be seen in
Table 1, the proposal of Hesse et al. [12] is the most related
work to the sensing system presented in this paper. A system-
atic search was conducted in the literature, and no other
works were found that use a piezoresistive FlexiForce sensor,
to the best of our knowledge. This paper contributes with
several novelties to the state of the art:

(i) One key aspect of the piezoresistive FlexiForce sen-
sor is the casing, since it determines the sensor
detection capabilities. In the work of Hesse et al.
[12], a casing was designed only for the sensor, while
the rest of the elements (microcontroller, transmis-
sion unit, flash memory, etc.) were considered sepa-
rately. Therefore, the casing did not include them in
a compact way. In this paper, we present a wireless
FlexiForce sensor integrated in a single casing to

4 Journal of Sensors



measure RR. All system components (FlexiForce
sensor, microcontroller, Bluetooth module, battery,
etc.) are integrated in the wearable casing. A 3D cas-
ing was designed and printed on a regular 3D printer.
The files with the 3D design of the casing have been
published as supplementary material (available here)
to be reused by any interested researcher

(ii) The system has been tested with several subjects
using a metronome. Two popular algorithms have
been used for the calculation of respiratory rate.
Additionally, both algorithms have been compared
to determine which one measures RR more accu-
rately. Statistical tests have been used for that pur-
pose. The optimal time window of the algorithms
has also been determined using statistical tests. This
is a novel approach in this field

(iii) Another novelty of this work is that a public dataset
has been created with all the data recorded in the
tests. It is publicly available for use by any interested
researcher [45]. In addition, the files with all data
processing (algorithms and statistical tests) have
been published as supplementary material to this
paper. We have not found any other study on respi-
ratory monitoring that makes public all study data
and resources

2. Prototype Design

2.1. Physical Prototype. A sensor has been developed to mea-
sure respiratory rate by detecting variations in chest move-
ment. The sensing system was designed to be placed around
the chest with a strap. The system uses a force-sensitive resis-
tor (FSR) based on the piezoresistive effect (FlexiForce A201
sensor, Tekscan). The characteristic curve of this sensor is
not linear, but logarithmic, as shown in Figure 1 (curve pro-
vided by the manufacturer). The resistance provided by the
sensor drops as the exerted force increases. This sensor is suit-
able for applications in which force variations must be
detected. This is the case of RR measurement. The condition-
ing circuit for this sensor is a simple voltage divider as shown
in Figure 2. An analysis of the typical operating region of the

FSR has been performed for the application presented in this
paper. For this analysis, the data collected according to the
experiments described in Experimental Setup have been used.
First, the histogram associated with the voltage recorded by
the sensor has been represented in Figure 3(a). For this
application, it is important that the voltage varies over a
wide range. The typical operating region ranges from 0.2V
to 1.7V. Second, the histogram of resistance variation is rep-
resented in Figure 3(b). Third, Figure 3(c) shows the histo-
gram of the forces related to those resistance values. The
typical operating region corresponds to force values in the
range of 50-500 g. These force values have been calculated
after fitting the equation of the resistance-force curve pro-
vided by the manufacturer.

Force gð Þ =
ffiffiffiffiffiffiffiffiffiffiffiffiffi

399:88
R kΩð Þ

0:827

s

: ð1Þ

In the typical region of operation ð2kΩ − 10kΩÞ, the
force can be considered to vary linearly with the conduc-
tance, according to the datasheet provided by the manu-
facturer [46].

The sensing system takes samples from the piezoresistive
sensor through an Arduino Pro Mini that operates at a sam-
pling frequency of 50Hz, and sends the data using an HC-05
Bluetooth module. Data are received by a processing unit
with Bluetooth technology (i.e., computer, Android, or iOS
device), as shown in Figure 4. Then, they are downloaded
to be processed offline in MATLAB or any other numerical
computing software. The range of the Bluetooth module is
around 10m with a data transfer rate of up to 3Mbps
[47, 48]. The reliability of the Bluetooth module as part of
the sensing system was also measured. For that, four experi-
ments were performed. They consisted of transmitting a
known value to the receiving unit at different distances: 1m,
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Figure 1: Force-resistance curve of FlexiForce A201 sensor
provided by the manufacturer [46].
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Output to ADC
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Figure 2: Conditioning circuit of the piezoresistive FlexiForce
sensor.
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3m, 5m, and 10m. The transmission frequency was 50Hz.
The sensing system was in motion during the experiments
and there were obstacles between the transmitter and the
receiver. Each experiment was performed for 30min. As a
result, no corrupted value was received. The average percent-
age of lost packets was 0.03% (standard deviation of 0.01%).

The sensing unit was powered by a 3.7V, 150mAh
lithium battery, although the casing was also designed to
accommodate batteries of 300mAh, 400mAh, and 500mAh
capacity. These batteries were selected since they can be

integrated into the casing in a compact way. The current
consumption of the different components of the prototype
wasmeasured. The average values are shown inTable 2. These
values are in line with those provided in the datasheets by the
manufacturers [46–49]. The battery life of the prototype
was also measured, obtaining average values of 3.83 h,
7.88 h, and 13.01 h for batteries of 150mAh, 300mAh,
and 500mAh capacity, respectively. A battery was considered
discharged when the voltage was below 3.6V, following the
recommendation of Lee et al. [50]. Regarding their safety,
lithium-ion batteries are used massively. Statistically, they
are very reliable since failure rates for rechargeable units are
on the order of one in 10 million cells [51].

A TP4056 board is used to manage battery recharge. It
ensures that both current and voltage remain constant during
battery charging. The board consists of a processor and a
battery protection circuit. It regulates the charging current
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Figure 3: Histograms with the distribution of voltage (a), resistance (b), and force (c) for the signals captured in the experiments performed in
this study.

Prototype

Bluetooth connection

Monitoring device
(PC/Android)

Store received
data

Wait for 
next

 reading

Get sample
Send sample
via Bluetooth

Destination 
device with 
Bluetooth

Figure 4: Block diagram of data acquisition and communication of
the proposed system.

Table 2: Current consumption of the main components of the
sensing system.

Component Current consumption

Arduino Pro Mini 9.65mA

Bluetooth 30.5mA

FSR sensor 0.2-360 uA

Total 40.15-40.51mA

Figure 5: Elements of the sensing system mounted: front of the
prototype with the Arduino Pro Mini, battery charger, and FSR
(a) and back of the prototype with the Bluetooth module and
battery (b).
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under conditions of high power operation or high ambient
temperature. The board also ends the charging cycle when
the current drops 10% of the programmed value. It also has
an internal MOSFET battery disconnect switch to avoid neg-
ative charging currents [52].

With respect to the operating temperatures supported by
the prototype, the values for the different components were
extracted from their datasheets: Bluetooth (-20 to 55°C),
Arduino Pro Mini (-40 to 85°C), battery charger (-40 to
85°C), and battery (-20 to 60°C). The sensing system is not
designed to be submerged in water. However, it is not differ-
ent from any other object printed with polylactic acid mate-

rial, which means that the casing can withstand weak levels
of rainwater. Figure 5 shows a photograph of the mounted
components of the sensing system outside the casing.

A casing to contain all the elements of the sensing unit
was designed in the Autodesk software. This casing has two
main parts:

(i) An element printed with standard polylactic acid
(PLA) containing the piezoresistive sensor, the
conditioning circuit, the microprocessor, the Blue-
tooth module, the battery, and the battery charger
(Figure 6(a), Figure 7, and pink case of Figure 8)

(a) (b)

Figure 6: 3D design of the casing. PLA-printed part (a) and flexible PLA-printed part (b).

Figure 7: Internal design of the prototype (details in the Supplementary Materials).
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(ii) An element printed with flexible PLA that allows
transmitting chest movements to the sensing element
(Figure 6(b) and black cover of Figure 8)

The sensing system is attached to the belt through two
rings coupled to the flexible part. Figure 9 shows a pho-
tograph of the back of the casing. The sensing unit was
designed to be worn on a garment, although direct con-
tact with the skin would also be possible. The total size
of this prototype is 73mmwide × 45mmhigh × 37mm
deep (Figure 8). The internal volume of the pink case is
30.42 cm3, while the weight of the entire prototype is 103 g
(21 g for circuitry, 23 g for the 3D printed casing, and 59 g
for the belt and the rings). The 3D design of the casing has
been published as supplementary material and is available
to be reused or reprinted by any interested researcher.

2.2. Data Processing. To measure the respiratory rate of the
signals received on the remote unit via Bluetooth, different
processing operations are performed. Firstly, data are filtered
with a 0.5Hz-low-pass digital filter, which “smooths” the sig-
nals by removing high-frequency noise. A minimum-order
FIR or infinite impulse response (IIR) filter with a stop band
attenuation of 60 dB and compensation for the delay was
used [53]. This frequency has been selected because breath-
ing rates above 30 BPM are rare in daily life activities of
humans [54, 55]. An analysis of the system error was also
performed considering cut-off frequencies in the range
0.5-4.5Hz, obtaining the lowest error values for 0.5Hz.
In addition, to prevent that a trend in the signals (systematic
increase or decrease) due to sensor or subject movement dur-
ing the tests affects system performance, a linear fit was made

to each signal and was subtracted from the original signal
(Figure 10). In this way, systematic shifts were removed.
These shifts are not relevant if signals are analyzed in short
time windows. However, they affect system accuracy in large
windows. Therefore, this preprocessing helps to prevent the
algorithm from malfunctioning in large windows due to
sensor movements other than breathing.

Then, the maximum and minimum points are obtained
in a given analysis time window ðwÞ. For that, a subset of data
which includes only the values in the time window is seg-
mented. It has the form of a vector (x). This vector is used
to calculate the level corresponding to the “zero 280 axis”
(ZA), according to the following equation:

ZA = min xð Þ +max xð Þ
2

, ð2Þ

where x is a vector with the filtered data sequence. The length
of x depends on the time window, which is a parameter
whose optimal value has to be selected (see Validation Exper-
iments). The time window w slides through the entire signal.
To avoid that outliers due to isolated deep breaths may raise
the ZA value, peaks with prominence of at least 0.03V 285
are detected and max ðxÞ is set to the amplitude of the
median of all the detected peaks. The prominence threshold
value was selected after performing simulations in the range
of 0.013-0.13V, since it led to the lowest error values.

ZA will be the reference value used to detect zero-
crossings in the data. To detect these crossing points, the
segmented data set x will be assessed by taking pairs of two
consecutive samples ðxk, xk+1Þ. If inequalities 3 are fulfilled,
a new zero-crossing will be detected and the time kð1/f sÞ
will be added to a vector containing the zero-crossings in
the time window (z). f s is the sampling frequency of the sens-
ing system, in this case, 50Hz.

xk ≤ ZA < xk+1,

xk ≥ ZA > xk+1:
ð3Þ

Figure 8: Prototype designed with all the circuitry embedded inside.

Figure 9: Back of the casing showing the fixation of the flexible part
to the solid part. The belt is attached to both sides of the flexible part
by two rings.
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Figure 10: Comparison between original signal, its trend line, and
the systematic shift correction.
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Begin

Segment samples for time-window
of w seconds (x)

Find maximum and minium values

Calculate ZA (Eq.1)

Select two consecutive samples
(X

k
, X

k+1)

Inequality 2 fulfilled?

Inequality 3 fulfilled?

No

No

Yes

Yes

Yes

No

Zero-crossing k 
detected No zero-crossing

Add k to z

More segmented
samples

unproccesed?

Obtain no.
zero-crossings (N)

Algorithm 1 Algorithm 2

Calculate MTD (Eq.4) Calculate RR (Eq.6)

Calculate RR (Eq.5)

Show estimated RR in 
breaths per minute (BPM)

Repeat

Figure 11: Block diagram of the data processing algorithms used to estimate the RR.
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To avoid detecting two close zero-crossings due to noise,
the zero-crossing at position jðzjÞ will be removed from z if
zj does not differ, at least, a set threshold ðTHÞ from the rest
of the elements of z, that is, if inequality 4 is satisfied.

zj − zi
�
�

�
� < TH, ∀i ∈ 1,N½ � i ≠ jj , ð4Þ

where N is the length of vector z, j is the index of the zero-
crossing under analysis, and i is the index for the rest of
zero-crossings in z. The value of TH has been empirically set
to 500ms.

Then, two different algorithms are used to measure the
RR. Figure 11 shows a block diagram of both algorithms.
The operation of the algorithms is as follows:

Algorithm 1. This algorithm is based on the time difference
between consecutive zero-crossings [4, 39]. Firstly, the mean
time difference (MTD) between consecutive pairs of zero-
crossings is obtained as follows:

MTD =
∑N−1

i=1 zi − zi+1j j
N − 1

: ð5Þ

Then, with that average value of all times, the respiratory
rate RR (in breaths per minute, 305BPM) is calculated
according to the following equation:

RR = 30
MTD

: ð6Þ

To obtain that equation, it was taken into consideration
that two zero-crossings occur in a breathing cycle (2 MTDs,
is a breathing period) and that the RR is given in breaths per
minute (if one breath occurs in 2 MTDs, in 60 seconds, there
should be 60/2 MTD breaths).

Algorithm 2. This algorithm is based on counting the number
of crosses by zero [56]. For that, the length of the vector z is
obtained, which is directly the number of zero-crossings (N).
Then, the RR is obtained according to the following equation.

RR =
30N
w

, ð7Þ

where w is the duration of the time window (in seconds).
Equation (7) is obtained by scaling the number of zero-
crossings to 60 seconds ð60N/wÞ, so that the number of
zero-crossings in 1 minute is obtained. As each breath is
composed of 2 zero-crossings, by dividing this value by 2,
the RR is obtained.

The sliding time window ðwÞ used in the algorithms is a
parameter that can take any desired value. Once a time win-
dow has been selected, the RR is updated every w seconds.
The methods of counting peaks or zero-crossings or measur-
ing distances between them have been widely used in previ-
ous studies to obtain RR [10, 40, 57–59].

3. Materials and Methods

3.1. Experimental Setup. An experimental setup was designed
to validate the sensor developed. Experiments involved
twenty-one subjects. Fifteen were male and six were female.
Ages ranged from 19 to 55 years with an average of 35.95
and a standard deviation of 10.5. Subjects’ weights were
between 42 and 95 kg (average of 70.76 kg and standard devi-
ation of 14.83 kg). As for heights, they were in the range of
1.52-1.83m with an average of 1.72m and a standard devia-
tion of 7.51 cm.

The diameter of the thoracic region was also measured,
obtaining values from 68 to 103 cm (average of 87.90 cm
and standard deviation of 12.36 cm). The health status of
the participants was also noted. Sixteen subjects declared no
respiratory problems, while five suffered from breathing
allergies and two of them also from asthma. Subjects were
asked to wear the breathing sensor placed just below the
chest, at the level of the diaphragm, as shown in Figure 12.
The sensor was connected via Bluetooth to a computer run-
ning a program that was developed specifically for this study.
The computer program was written in Processing.

Regarding the validation protocol, each subject was asked
to breathe during one minute at the rhythm of a metronome.
The metronome was set so that subjects followed a rhythm of
10, 12.5, 15, 17.5, 20, and 22.5 BPM. There are studies in the
literature that use this method (metronome as a reference) to
validate their sensing systems in a controlled breathing sce-
nario [4, 17, 27, 57, 60, 61]. The reference values of BPM con-
sidered are in accordance with the typical respiratory rates in
humans [62]. Subjects were asked to repeat the experiment in
different positions: sitting without moving, sitting with
movement, standing without moving, standing with move-
ment, and walking. A one-minute resting time was given
between two consecutive experiments. All participants
received written and oral information about the study, and
informed consent was obtained from them to publish their
data anonymously in a public repository.

Each set of breathing data was recorded in a different text
file (two example signals are shown in Figure 13). Thirty files
were recorded for each subject (six BPM times five activities).

Figure 12: Two subjects involved in the validation experiments
wearing the prototype around the chest.
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Therefore, a total of 630 files were collected as a result of the
experiments. The files were processed offline to obtain the RR
according to the algorithms described in Data Processing.
MATLAB was used to perform the processing. The
MATLAB code is given as supplementary material to this
paper.

Figure 13 shows two example of breathing graphs. The
upper signal contains nine breathing cycles. A typical breath-
ing signal has an approximate sinusoidal shape with a nega-
tive slope for inspiration and a positive slope for expiration.
It also has an upper peak corresponding to the situation in
which all the air has been exhaled and a lower peak associated
with the moment when all the air is inside the lungs. Typical
absolute slope values are 0.1-0.2V/s for low intensity activi-
ties, 0.2-0.28V/s for moderate intensity activities, and 0.28-
0.35V/s for higher intensity activities. These values were esti-
mated theoretically and from the signals recorded in the
experiments. Slope values are low since they were measured
in the time-voltage graphs and breathing signals are low
frequency.

3.2. Validation Experiments. The validation experiments
allow in determining the accuracy of the sensor and the opti-
mal processing algorithm and its parameters.

For that, the collected data were processed with the two
algorithms described in Data Processing. For each algorithm,
a different RR was obtained for each participant and dataset
(in total 1260 values, 630 per algorithm). In addition, the
algorithms are influenced by the width of the time window
used to perform the RR calculation. Therefore, twenty-five
different time windows have been considered: from 6 s to
30 s. Windows below 6 s were not considered since the refer-
ence BPM value with the lowest frequency had a period of 6 s.
At least one period is required to obtain the RR. Windows
above 30 s were not considered, since an update time greater
than this value may be excessive for many applications
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Figure 13: Two raw breathing signals captured by the FlexiForce sensor. The upper graph corresponds to an experiment performed at a rate
of 10 BPM in a sitting position without movement. The lower signal was captured at 17.5 BPM during the walking activity.
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Figure 14: Scheme of the validation experiments performed.
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Table 3: Maximum structural relative errors for Algorithm 1 (extreme cases).

10 BPM 12.5 BPM 15 BPM 17.5 BPM 20 BPM 22.5 BPM

Error (%) 0.67 0.83 1.00 1.17 1.33 1.50

Table 4: Maximum structural relative errors (%) for Algorithm 2 (down and up), considering the time window error and the quantization
error for extreme cases. If a single value is provided, it is because the up and down errors are the same.

Window (s) 10 BPM 12.5 BPM 15BPM 17.5 BPM 20BPM 22.5 BPM

6 -50, 50 20.0 0.0 -14.3 -25, 25 11.1

7 28.6 2.9 -14.3 22.4 7.1 -4.8

8 12.5 -10.0 -25, 25 7.1 -6.3 -16.7, 16.7

9 0.0 -20.0 11.1 -4.8 -16.7, 16.7 3.7

10 -10.0 20.0 0.0 -14.3 5.0 -6.7

11 -18.2 9.1 -9.1 9.1 -4.5 9.1

12 -25, 25 0.0 -16.7, 16.7 0.0 -12.5, 12.5 0.0

13 15.4 -7.7 7.7 -7.7 3.8 -7.7

14 7.1 -14.3 0.0 10.2 -3.6 4.8

15 0.0 12.0 -6.7 2.9 -10, 10 -2.2

16 -6.3 5.0 -12.5, 12.5 -3.6 3.1 -8.3, 8.3

17 -11.8 -1.2 5.9 -9.2 -2.9 2.0

18 -16.7, 16.7 -6.7 0.0 4.8 -8.3, 8.3 -3.7

19 10.5 -11.6 -5.3 -0.8 2.6 5.3

20 5.0 8.0 -10, 10 -5.7 -2.5 0.0

21 0.0 2.9 4.8 6.1 -7.1, 7.1 -4.8

22 -4.5 -1.8 0.0 1.3 2.3 3.0

23 -8.7 -6.1 -4.3 -3.1 -2.2 -1.4

24 -12.5, 12.5 -10, 10 -8.3, 8.3 -7.1, 7.1 -6.3, 6.3 -5.6, 5.6

25 8.0 5.6 4.0 2.9 2.0 1.3

26 3.8 1.5 0.0 -1.1 -1.9 -2.6

27 0.0 -2.2 -3.7 -4.8 -5.6, 5.6 3.7

28 -3.6 -5.7 -7.1, 7.1 4.1 1.8 0.0

29 -6.9 7.6 3.4 0.5 -1.7 -3.4

30 -10, 10 4.0 0.0 -2.9 -5, 5 2.2

ts

(b)(a)

3 s 3 s

T = 3 s -> 20 BPM
30⁎5

7 = 21.4 BPM

7 s

Figure 15: Example of possible structural errors associated with Algorithm 1 (a) and Algorithm 2 (a, b).
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[26, 63, 64]. For each time window, the entire analysis was
repeated (in total 31,500 RR values; 15,750 per algorithm).
The elimination of trends due to movements in the sensor
was only applied to large windows (above 21 s for Algorithm 1
and above 19 s for Algorithm 2) since no decrease in error
was perceived in shorter windows. Figure 14 shows the struc-
ture of the experiments graphically.

To obtain the optimal time window, the one sample t-test
was used. This test is suitable to compare the mean of one
sample with a known reference value. The null hypothesis
ðH0Þ is as follows:

H0 : m = μ, ð8Þ

where m is the mean of RR and μ is the reference value of
BPM set by the metronome, which was considered the
gold standard.

Specifically, this test was performed for each time win-
dow and repeated for all reference values of BPM tested. In
total, 150 tests were conducted.

As a result of this test, the p values greater than the signif-
icance level (0.05) were identified. For the time windows and
reference values associated with those p values, the null
hypothesis could not be rejected. In other words, sample
means cannot be assumed to be significantly different from

reference values. Therefore, we can assume that the sensor
is measuring RR accurately for those BPM and time win-
dows. The time windows that have the largest number of
p values greater than 0.05 could be considered candidates
for optimal windows. For those reference values of the candi-
date windows having p values below 0.05 (the mean is signif-
icantly different from the reference value), the Cohen’s d test
can be performed to quantify the effect size [65]. It can be
obtained as the ratio of the difference between two mean
values (one of them can be the reference value) divided by
their pooled standard deviations. Small effect sizes are desir-
able. This would indicate that the difference between the
means of RR and the reference values is small. A quantifica-
tion of the effect size magnitude (“rule of thumb”) can be
made using the thresholds defined in [66]: d < 0:2 (negligible
effect), d < 0:5 (small effect), and d < 0:8 395 (medium effect).
Otherwise, the effect can be categorized as large. Therefore,
the time window with the smallest effect sizes can be consid-
ered optimal.

In parallel, the relative error ðδÞ was calculated according
to the following equation:

δ = 100 × 1 −
μ0
μ

�
�
�
�

�
�
�
�
, ð9Þ
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where μ0 is a measured RR and μ is the reference value of
BPM set by the metronome. In total, 1,500 error values were
calculated (2 algorithms times 6 reference values times 5
activities times 25 time windows). The means of the errors
were made for all activities and reference values, obtaining
50 mean errors (25 per algorithm, 2 per time window).

To determine the optimal algorithm for the optimal time
window, the paired sample t-test was performed since it is
appropriate to compare the means between two groups of
related samples. This test was performed on the means of
the relative errors ðδÞ. The null hypothesis ðH0Þ is as follows:

H0 : m = 0, ð10Þ

where m is the mean of differences. If the p value is less than
or equal to the significance level (0.05), it can be assumed that
the two paired samples (algorithm errors) are significantly
different. In that case, the algorithm with the lowest error
could be considered the best. Figure 14 presents an overview
of the validation experiments. All statistical tests have been
performed in the R software. The R code is given as supple-
mentary material to this paper.

In relation to the errors, it is important to highlight that
some structural errors are already introduced by the sam-
pling frequency or the time window selected, depending on
the algorithm. For Algorithm 1 (based on time measure-
ments), there is a quantization error set by the sampling fre-
quency of up to 1/50 s at each zero-crossing. As one cycle has
two zero-crossings, the maximum structural error in one
cycle can be expressed in relative terms for each reference
BPM value (Table 3). For Algorithm 2 (based on counting
zero-crossings), the time window already introduces some
error. All time windows that are not divisible by integer mul-
tiples of half the breathing period under analysis suffer this
error. For this algorithm, the quantization error can also
affect in some extreme cases in which the appearance or
not of a zero-crossing depends on the sampling frequency
(zero-crossings that appear exactly at the beginning or end
of a window). Taken into consideration both effects (time
window and sampling frequency), their associated maximum
relative errors (up and down) are estimated in Table 4. It
should be noted that the limits of structural errors calculated
in Tables 3 and 4 are maximum values for extreme cases.
Figure 15 graphically shows an example of two structural
errors.

4. Results

Figures 16 and 17 represent the mean error for the twenty-
five time windows under analysis and for the two algorithms
used to obtain the RR. The standard deviations of these mean
values are shown in Table 5. The values of the RR measured
and the source code with the calculation of their mean errors
and standard deviations have been attached to this paper as
supplementary material.

Table 6 shows the p values of the one-sample t-test for
each time window. In view of this table, it is clear that the
27 second window has more p values greater than 0.05: four
in this case. This means that RR average values and reference

values can be assumed to be equal for this time window and
BPM. Therefore, this is the optimal window in the terms
defined in this experiment.

Cohen’s d was calculated for those BPM of the 27 s win-
dow that present statistically significant differences. Table 7
presents the results obtained.

For this window, the error values in the calculation of the
RR provided by the two algorithms were compared. Table 8
shows the results. It can be seen that the p value of the
t-test for paired samples is above the significance level
(0.05). This means that the difference between the two paired
means of error values is not significant. Therefore, it is not
clear the algorithm that presents the lowest error. Both algo-
rithms seem to behave equally well.

The executable source code associated with all statistical
tests has been attached to this paper as supplementary
material.

5. Discussion

The accuracy of the sensor designed presents less average
error value for Algorithm 2 than for Algorithm 1. However,
this difference is not statistically significant. Both algorithms

Table 5: Standard deviations (%) of the mean relative errors ðδÞ for
each algorithm and time window.

Window (s) Algorithm 1 Algorithm 2

6 23.87 5.67

7 17.16 4.76

8 15.32 5.10

9 12.71 4.46

10 11.96 4.49

11 8.78 4.32

12 9.41 4.53

13 8.20 4.63

14 8.00 3.78

15 7.04 3.63

16 6.89 4.06

17 7.09 4.12

18 6.70 4.12

19 5.84 5.13

20 5.04 4.51

21 5.54 4.21

22 5.81 4.61

23 6.35 5.04

24 5.84 4.27

25 5.34 4.06

26 4.99 3.95

27 5.09 4.28

28 5.05 3.96

29 5.42 4.09

30 4.94 3.64
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are influenced, at the same time, by the time window consid-
ered. The validation results presented have allowed deter-
mining the optimal time window.

A time window of 27 s seems optimal to obtain the high-
est sensing accuracy. This has been verified by different
means. Firstly, the mean error values ðδÞ calculated for each
time window have the lowest value for 27 s for Algorithm 2
and the second lowest value for Algorithm 1. Their associated

standard deviations also show low values for the 27 s window
(Table 5). This is an indicator that these low error values also
have a low level of dispersion. In other words, the individual
errors used in the calculation of the average do not differ
much from the average errors obtained. Secondly, the calcu-
lated p values of the one sample t-test provide statistical evi-
dence that the 27 s time window is optimal. This time
window has the highest number of BPM tested that cannot
be considered different from the reference values. The
Cohen’s d results showed a moderate effect size for the
12.5 BPM reference value and large for the 10BPM. Slow
breathing seems to have higher error values for all time
windows. This is an expected result since the number of
cycles used to obtain the RR is less than in rapid breathing.
If the optimal time window was adopted, it could provide a
fairly accurate measurement of RR every twenty-seven sec-
onds. This time step is suitable for many applications. If
shorter time windows were desired (e.g., 16-20 s also have
acceptable error rates), they can be adopted at the expense
of lower accuracy.

Some time windows had large errors for Algorithm 1.
This is the case of short time windows (6 s to 10 s). This is a
logical result since the number of cycles used to make the cal-
culation of time difference is very limited. These time win-
dows are specially affected by the movements of the subject

Table 6: p values greater (>) or less (<) than the significance level (0.05) for the RR calculated for each time window and reference value.

Window (s) 10 BPM 12.5 BPM 15BPM 17.5 BPM 20BPM 22.5 BPM

6 < < < < < >0.05

7 < < < < < >0.05

8 < < < < >0.05 >0.05

9 < < < < >0.05 <

10 < < < < >0.05 <

11 < < < < >0.05 >0.05

12 < < < < >0.05 <

13 < < < < >0.05 <

14 < < < >0.05 >0.05 <

15 < < < >0.05 >0.05 <

16 < < < >0.05 < <

17 < < >0.05 >0.05 < <

18 < < >0.05 >0.05 >0.05 <

19 < < < >0.05 >0.05 <

20 < < < >0.05 >0.05 <

21 < < < >0.05 >0.05 <

22 < < < >0.05 >0.05 <

23 < < < >0.05 >0.05 <

24 < < < >0.05 < <

25 < < < >0.05 < <

26 < < < >0.05 >0.05 <

27 < < >0.05 >0.05 >0.05 >0.05

28 < < < >0.05 >0.05 >0.05

29 < < < >0.05 >0.05 <

30 < < >0.05 >0.05 >0.05 <

Table 7: Effect size quantified with Cohen’s d test.

27 s window

10 BPM 1.06

12.5 BPM 0.53

Table 8: Comparison of the two algorithms. p values of the t-test for
paired samples and Cohen’s d for errors calculated with a 27 s
window.

t-test Cohen’s d

p value 0.0884 0.1320
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or the sensor. It is important to note that the use of time win-
dows greater than 20 s and less than 30 s has quite similar
error values. It is also a fact that error values for those win-
dows were not far from the optimal case, so time windows
above or around 20 s might also be acceptable.

Regarding the processing algorithm, Algorithm 2 seems
more robust to time window variations than Algorithm 1
since its associated error values are small even for short win-
dows. The statistical tests for the optimal window (27 s) did
not identify significant differences. According to the typical
interpretations of Cohen’s d value, the difference between
both algorithms was negligible (0.132).

Results show that the designed sensor can determine the
RR with an error of 3.40%. If the error value obtained with
the proposed sensor is compared with other error values pre-
sented in the literature, it is possible to conclude that this
value is in line with other studies in this field (Table 9). How-
ever, performances among studies cannot be compared
fairly, since each study makes personalized tests. There are
strong differences among validation experiments, datasets,
and performance metrics. The inclusion of movements in
the experiments can also compromise system performance.
It is also important to highlight that the novelty of this paper
with respect to existing studies is that we have presented a
compact piezoresistive sensor with a 3D printed casing inte-
grating all required modules into it, which is an advance in
terms of wearability.

6. Conclusion

A respiration sensing system based on a piezoresistive
FlexiForce sensor to be worn with a chest strap has been
developed. This work is novel since it is the first time that this
sensor is integrated in a compact casing including all the nec-
essary elements (microcontroller, Bluetooth module, battery,
etc.). The casing design has a direct influence on the sensor’s
detection capabilities. As part of this work, a compact casing
has been designed and printed using a 3D printer. The files
with the design have been published as supplementary
material to be reused by any interested researcher.

A validation experiment was performed with 21 subjects.
Two processing algorithms have been developed to deter-
mine the RR. Several statistical tests were conducted to iden-
tify both the optimal time window of the algorithms and the
best algorithm. A time window of 27 s provides optimal
results. This has been verified from the p values of the one
sample t-test and the relative errors. This time window allows
updating the RR every twenty-seven seconds, which is a suit-
able time for many applications. No statistically significant
differences were identified between both algorithms for this
time window. If shorter time windows were required, they
could be used with a slightly larger error. This is a feasible
scenario since error values remain fairly constant for a wide
set of time windows (from 10 s for Algorithm 2 and from
20 s for Algorithm 1). This process of statistical verification
is novel in this field.

Regarding the possible use of the information provided
by this sensing system, it could be applied to several fields
such as ambulatory health monitoring, home treatment of
respiratory diseases, detection of alarming symptoms of
faintness or fatigue in machine operators or drivers, health
condition assessment, prediction and prevention of danger-
ous health states, monitoring of physical activity, and analy-
sis of human emotions like anger and stress, among others.
Customized data processing should be performed depending
on the specific application.

Several commercial products that measure physiological
parameters exist. However, it is not possible to know their
working principle, electronic design, or results of validation
experiments, since these data are generally not published.
Additionally, most commercial products require data to be
analyzed on their proprietary platforms. This contrasts with
the sensing system presented in this paper. Data can be
received online by any device with Bluetooth communica-
tion. They can then be processed offline in any numerical
computing software. In addition, we have designed a 3D
compact casing and uploaded the source files to a public
repository to be rebuilt by any interested researcher. Another
important aspect is the price of the system. Adding the cost
associated with all elements of the system, it is below $50.
Different commercial chest breathing sensors can be pur-
chased for several hundreds of dollars. However, system
design is not available to be reproduced by researchers. In
this paper, the breathing dataset with the measurements from
the experiments, the files with the error calculations, the
source code of the RR computation with the two algorithms,
and the source code of the statistical tests have been

Table 9: Performances provided by other studies in this field. If a
percentage is given without any other indication, that value
corresponds to a relative error. If a value in breaths/min is given
without any other indication, that value corresponds to an
absolute error.

Study Performance

System proposed 3.40%

Chen et al. [60] 98.65% (mean accuracy)

Patwari et al. [61] 0.1-0.4 breaths/min

Liu et al. [8] 1.8-5.7%

Massaroni et al. [57] 2%

Dziuda et al. [10] 12% (maximum)

Nam et al. [17] <1% (median)

Heldt and Ward [68] 1.2 breaths/min

Dan et al. [4]
0.01-0.02 breaths/min
(mean differences)

Taheri and Sant’Anna [31] 0.93-1.77 breaths/min

Min et al. [39]
0.0015 breaths/min
(mean differences)

Massaroni et al. [41] 1.59% (RR) 14% (tidal volume)

Presti et al. [40] 0.38%

Hoffman et al. [2] 37.9% (volume)

Hesse et al. [12] 0.32 breaths/min

Lau et al. [7] 2 breaths/min

Kukkapalli et al. [30] >95% (accuracy)

Padasdao et al. [9]
0.23-0.48 breaths/min
(mean differences)
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published as supplementary material to be reviewed or
reused by researchers in this field. This increases transpar-
ency in research and promotes reusability. It is the first time
that we see this approach in a study in this field, to the best of
our knowledge.

This work also has some limitations. Although sensor
validation using a metronome is a well-known and accepted
method, it would be desirable to validate this sensor against a
reference breathing sensor taken as a gold standard. More
subjects could have been included in the study, and other
3D casing designs could have been investigated. In addition,
programming a smartphone app that receives sensor data via
Bluetooth is a necessary step for the real-world implementa-
tion of the sensing system.

Nevertheless, this paper has shown that the compact
FlexiForce sensor with the 3D casing designed together with
the algorithm based on measuring times between zero-
crossings or counting zero-crossings allows determining the
RR with a low error and an acceptable refresh rate.

Data Availability

The dataset with the breathing data recorded in the valida-
tion experiments is deposited in a public repository [45].
The files corresponding to the 3D design of the casing, the
calculation of errors and standard deviations, the algorithms
to obtain the RR from raw data, and the statistical tests are
provided as supplementary materials.
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