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Abstract

Antibody therapeutics are usually developed in animals, commonly in mouse, and then they are
humanized by Complementary-Determining Regions (CDR) grafting. Several times, this key step fails
because of the lack of stability and/or functionality of the new antibody and the immunogenicity.
Different efforts have been made to improve the humanization, many of them rely on the
qguantification of the humanness of the variable region. Previous researches have reported a
statistical approach based on a Multivariate Gaussian (MG) model which successfully distinguishes
between human and murine sequences.

However, the strength and weaknesses of this model have not be properly studied yet, and a full
understanding of where its efficacy comes from, and how the model could be refined to improve it, is
still lacking.

Here, some tests and attempts of refinement of the MG model are performed to understand if the
resulting interaction map is related to the protein's structure, to see if the predictions can be
improved by introducing some score corrections and to find out which are the most relevant columns
and how the number of sequences in the learning dataset affects the classification capabilities.

The results that we obtain are somewhat surprising: We show that no strong correlation between
the contact map and the emerging interactions between pairs of residues from the model was found,
the classification is still good when a much smaller learning dataset is included and gap corrections
do not affect the predictions power. We also present different indicators to identify key positions
and infer the Kullback-Leibler divergence as the best one.
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Introduction

Monoclonal antibodies (mAbs) are one of the most important classes of therapeutics with a fast-
growing market due to the potential application in a large number of diseases. However, there still
are some limitations in the process of antibody humanization, which includes the lack of efficient
humanization methods and the high incidence of unwanted immune responses. Over the past
decades, antibody-based drugs have repeatedly proven their efficacy and increasing importance in a
wide range of conditions, including viral and bacterial infections, auto-immunity and inflammation, as
well as the induction of anti-tumor responses. As antibody technologies have evolved, the number of
patent applications relating to antibodies has increased dramatically over the past 20 years [5].

It is estimated that world-wide sales of this type of drugs will be nearly $125 billion by 2020 and
there are currently hundreds of antibody-based products in clinical development [1]. However, such
development is a long and difficult process, prone to fail at different stages. This seriously limits the
widespread and repeated application to treat many diseases. Due to this concern, there is an
increasing demand for more predictive preclinical models to minimize failures in following clinical
phase.

One of the key steps in the preclinical stage is antibody humanization. New antibodies are generally
developed in animal models (most commonly in mouse), but they are limited by both the high
incidence of unwanted immune responses and the lack of adequate effectors function. Thus, it is
fundamental to introduce mutations on the murine antibody to produce a more human-like
sequence in order to decrease the immunogenicity [10].

Antibodies are globular plasma proteins and produced by cells of the immune system known as B-
lymphocytes. They consist of four polypeptide chains: two heavy chains and two light chains joined
by disulfide bonds to form a "Y" shaped molecule (see Fig. 1). There are two types of light chain;
kappa (k) chain and the lambda (A) chain. The part of the antibody known as antigen-biding fragment
(Fab) is the one that recognizes the antigen; while the rest of the structure, called fragment
crystallizable region (Fc region) interacts with other proteins, such as phagocytes, to activate the
immune system.

The Fab region is is composed of one constant and one variable domain from each heavy and light
chain of the antibody. The variable regions of antibodies consist of 4 framework regions (FRs), which
are very conserved and 3 CDRs (also known as hypervariable regions) (see Fig. 2). In total, there are
six loops CDR: H1, H2, H3 of the heavy chain variable domain (VH) and L1, L2, L3 of the light chain
variable domain (VL).

Thanks to the somatic recombination or V(D)) recombination of the immunoglobulins, a huge
number of antibodies with unique variables regions can be generated. This variable region is encoded
in three pools of gene segments (or subgenes) and exons: one encodes k light chains, one A light
chains and one heavy chains. These subgenes are called variable (V), diversity (D) and joining (J)
segments. By randomly combining gene segments that code for VL and VH regions, hundreds of
different light chains and thousands of different heavy chains can be made and then pair to form
antibodies with millions of different antigen-binding sites [16].
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Figure 1. Antibody structure
Left figure retrieved from Topin, I. (2018, November 13). Monoclonal antibodies — all you need to know about

antibody generation (https://www.tebu-bio.com/blog/2018/11/13/monoclonal-antibodies-all-you-need-to-know-
about-antibody-generation/). Right figure retrieved from Darling, D. Immunoglobulin.
(https://www.daviddarling.info/encyclopedia/l/immunoglobulin.html)
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Figure 2. CDR grafting procedure
Figure retrieved from Georgiev, I. S., Rudicell, R. S., Saunders, K. O., Shi, W., Kirys, T., McKee, K., ... Kwong, P. D.
(2014, February 1). Antibodies VRCO1 and 10E8 Neutralize HIV-1 with High Breadth and Potency Even with Ig-
Framework Regions Substantially Reverted to Germline (https://www.jimmunol.org/content/192/3/1100)
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CDR1 and CDR2 are found in the V segment and CDR3 includes some of V, all of D and J regions. The
CDRs are in direct contact with the antigen, whereas the FR regions support the binding of the CDR to
the antigen and help to stabilize the overall structure of the variable domains. To improve its
stability, the FR regions have less variability compared to the CDR [17].

Nowadays, one of the initial and well-known methods for humanization involves Complementary-
Determining Regions (CDR) grafting (see Fig. 2), where a functional antigen-binding site from a non-
human “donor” antibody is grafted onto a human “acceptor” antibody, meaning CDRs are combined
with human Framework Regions (FR) sequences [5]. In this approach, the hope is that the
combination of human FRs with the original murine CDRs will result in an antibody (Ab) that still
maintains its stability and activity, but it is tolerated by the human immune system. Most of the
times, it is not entirely successful and researches must try further mutations, until an antibody with
the desired properties is identified. In conclusion, available methods are time demanding and their
predictions are hard to assess [6].

These humanization techniques also can lead to a loss in antibody affinity and/or specificity because
of inaccurate definition of the CDR sequences, incorrect choice of the human framework scaffold
used for loop grafting or wrong identification of residues from different species.

Different attempts have previously been made to determine a humanness score of the variable
region sequences of antibodies such as H-score, germinality index, G-score and T20 score [11-14];
which can be a helpful tool during the antibody drug development process. For a rational design of a
humanized sequence, some reliable quantity indicating how much a given sequence is human-like is
mandatory.

In general, such scores are based on "one-site" properties, as for instance, the similarity of the given
sequence to sequences from a human dataset, where the "similarity" is defined in terms of the
number of mutations (i.e., the "Hamming distance") between sequences. However, the necessity of
"backmutations" in the humanization pipeline, from a more human-like sequence backwards
towards the original sequence, to cope with stability/aggregation/immunogenicity problems,
suggests that correlations between pairs of residues at different positions should be taken into
account, and correlated mutations at pair of sites, instead of independent ones dictated just by the
similarity, should be performed in order to improve the humanization process.

This prompts for the study of the probability distribution of the human sequences, a task that
recently has been addressed in the field of structural biology, when trying to infer a protein contact-
map from the multiple sequence alignment of a family of similar proteins. Indeed, several global
statistical inference approaches have emerged in the last years to predict residue contacts from
sequence data: direct-coupling analysis, sparse inverse covariance estimation (PSICOV) and
algorithms based on pseudo-likelihood maximization [7,8,9,15].

In every case, exact inference approaches are time demanding; an alternative way was proposed
based on a Multivariate Gaussian Modeling, in which and practically out of reach; the discrete amino
acid variables are replaced by continuous Gaussian variables [3,4]. The statistical model is a
multivariate Gaussian distribution whose parameters are the mean and the covariance N(y, ).



The input is a multiple sequence alignment (MSA) consisting of M homologous sequences of length L
and is converted into a M x (QxL) matrix, being Q the 20 possible different amino acids. The residues
are defined by a binary alphabet {0, 1}, 1 if the amino acid is present and 0 if not (thus gaps are
represented as all 0) (Figure 3). In that way, each position of the MSA is defined by small real-valued

vectors.

FASTA=(A[C|- [D[A] alphabet={A,C,D,-}

Q=3 L=5

A=(1]2]4]3]1]

=(1]o]o|ol1|ofofo]ofofo]1]1]0]0)

Figure 3. Binary representation of a sequence
Example of the encoding of a sequence is fasta format to it binary representation. For simplicity, only an alphabet
with Q=3 is considered. In this research, Q=20 and L=298. Figure retrieved from Baldassi, C., Zamparo, M., Feinauer,
C., Procaccini, A., Zecchina, R., Weigt, M., & Pagnani, A. (2014). Fast and Accurate Multivariate Gaussian Modeling
of Protein Families: Predicting Residue Contacts and Protein-Interaction Partners. PLoS ONE, 9(3).

Being M the total number of sequences, each sequence denoted as x, the empirical average and
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covariance are:

where w,=1/n,, represents the weight of each sequence.

M
T = ) 0 —L0)
=1

Nm is the number of sequences whose similarity 9;,, with sequence m is above the threshold Lf2. The
threshold parameter Q is determined by the value that maximizes the Frobenius norm of Cj;.

However, Cj; is typically not invertible due to the low number of sequences. To estimate proper
parameters, a Bayesian inference method is used, which needs the introduction of a prior
distribution over g and . It is assumed that each of the M sequences in the databases is drawn from
a normal distribution and a Normal Inverse Wishart prior distribution for the parameters y,, so a

final posterior parameter are derived as:



(p->post = Arl + (1 - A)f
(Z)post =AW+ (1- /1)6 + A1 -DHE - n(x - Il)T

where 1 and U are the mean and covariance estimates of a priori uniformly distributed sample and
the parameter A determines the contribution of the prior.

Based on this model, a new method using a multivariate Student distribution was developed to
define a “humanness score” (called MG score) that is able to distinguish between human and murine
variable regions [18].

M 1- 4
p(YIX) =ty 1-1 + 2, (P—)post: 1+ M <Z>post
being y any given sequence and X the database of sequences. The MG score is defined as the
logarithm of this probability density.

The results obtained were very promising, since the method outperformed the others in
classification, and provided reasonable results in the humanization task. However, at present it is not
clear if the "interaction" (i.e. the precision matrix £*) found have a structural meaning, which are the
most important columns or the most important interactions or how the number of sequences in the
learning dataset affects the results. The main objective of the project is to analyze in more detail the
above issues.

Hypothesis and objectives

Correlation between the contact map and model covariance

One of the most important issues in antibody humanization is to produce a peptide with a solid and
stable structure. The prediction of the future humanized antibody’s structure and the knowledge of
which residues are in contact are very valuable to be successful in the process.

On the other hand, assuming that the human antibody sequences are extracted from a Multivariate
Gaussian Distribution implies that the inverse covariance matrix £ plays the role of a kind of
interaction between pairs of residues of different type at different positions. In the MG approach,
such interactions are inferred from the correlations observed between pairs of residues, and the
latter might be due to very different causes: physical (i.e. structural) proximity, interaction with the
antigen (epitope), phylogenic rules (involving the way the antibodies sequences are generated at the
gene level), etc.

So, it is not clear how much structural information is contained in the inferred X matrix and if the
latter can be understood in terms of the protein contact map. Thus, the first specific objective is to
study the correlations between the covariance or interaction matrix, with the average antibody
contact maps, i.e. the matrix of contacts between residues in known antibody structures, to see if
and how much the inferred interaction matrix reproduces the physical interactions.



Identification of key positions

The second aim consists of discovering which positions from the MSA are more relevant. It is
reasonable to think that the columns in the alignment do not equally contribute to the performance
of the model in the classification or humanization tasks. Actually, since the latter is difficult to assess
guantitatively (the quality of a humanized sequence is ultimately determined just by the
experiments), we focus on the former task.

Therefore, the goal is to identify how many and which residues in the sequences are the most
relevant to discriminate between the human and murine classes. To do so, we consider a series of
guantities that could explain the relevance of the different columns in the classification task. The first
of these indicators that we consider is symbol entropy.

It is expected that the columns in highest entropy would play the most important role in the
prediction of the MG model. Asti et al. [3] eliminated columns progressively from the highest entropy
(variability) to the lowest entropy and observed that such predictive power stayed constant until only
the 60 more variable columns were used. The same method will be followed.

Other quantities that we will consider are the difference between murine and human distributions
and the average intensity of the interaction on a certain position.

Study of the importance of the dataset

The next purpose is to study the classification performance of the model as a function of the size of
the learning database. Nowadays, the number of antibody’s sequences available is still limited.
Moreover, one of the issues seen in the model is a possible overfitting of the learning dataset [18],
since the number of sequences is very low, so it is appealing to study how the predictive power of
the MG model changes with the size.

On the one hand, the aim is to find the number of sequences of the variable domain needed to
successfully separate the two categories. It is expected that the more sequences are used, the better
the classification performance will be as more information is gathered.

On the other hand, light and heavy chains repertoires are usually only separately available because
they are translated into different mRNA molecules. Consequently, it is difficult to match both
domains and a huge number of sequences were removed in the current VHVL learning dataset to
avoid false partnerships [18]. The next objective is to study how well the model behaves with larger
datasets consisting of only VH or VL regions.

MG-score correction

The MSAs that have been used in the model, and mostly any MSA, contain numerous gaps, which
could affect the efficiency of the statistical model. On average, the proportion of gaps in all datasets
used in the current project is 0.25.

The aim is to determine the error produced by them, following the same methodology as Asti et al.
[3] and how much they influence the MG score and the final performance classification. It is expected
that somehow the score will be affected.
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Methods

Available materials and datasets

The initial point is to consider a multiple sequence alignment (MSA), where each row represents a
different homologous sequence of the variable domain (combined VH and VL regions) of antibodies.
Databases are the same as in Ref [18] and consist of 1,309 VH-VL human sequences and 373 VH-VL
murine (Mus musculus) sequences. Only the human learning database is used for the performance
classification. The test database includes 1,388 VH-VL human sequences and 1,379 VH-VL murine
sequences. In all databases, according to the AHo numbering [24] the VH region corresponds to
residues 1-149 and the VL region to residues 150-298. In addition, to increase the statistics, we
consider also two other human datasets of only VH domain (7,720 sequences) and only VL domain
(3,723 sequences) again collected in [18]. These two datasets contain the sequences used for the
VHVL dataset plus the sequences that did not match between the two and were removed for the
combined dataset.

VH VL

[T — AASG-FTFRS---—-YWMTWVRQASGKGLE ---MTQSPDSLAVSLGERATINCKSS—QSVLYSSNNKN
WVANIKQD---GSDKYYVDSVKGRFTISRDNAKNSLYLQMNSL YLAWYQHKPGQPPNLLIYW-------- ASTRESGVPDRFSG
RAEDTAVYYCARSGIVLVPA--------e-- APGLYYMDVWGQ-------- SGSG--TDFTLTISSLQAEDVAVYYCQQYYS----rnrmmrmemene

------ TPYTFGQGTKLEIK-

Y ) [—— EVKKPGASVKVSCKASG-YTFTN--——-YYIYWVRQAPG | - P-PSVSGSPGQSVTISCTGTS-SDVGG---
QGLEWMGIINPS---GGSTSYAEEFQGRVTLTRDTSTSTVYME YNRVSWYQQPPGTAPKLMIYD------- VSYRPSGVPD
LSSLRSEDTALYYCARDFQAYY------nemmememee RYGYLYAWGQG | RFSGSKSG—NTASLTISGLQTEDEADYYCSSYTS
TLSSVSS Y — SLYVFGTGTKVTVL-

Seq 3| EEQVVES-GGGFVQPGGSLRLSCAASG-FTFSP---- DVVMTQSPLSLPVTLGQPASISCRSS--QSLVYSD-
YWMHWVRQAPGKGLVWVSRINS---- GNTYLNWFQQRPGQSPRRLIYK--------
DGSTYYADSVKGRFTISRDNARNTLYLQMNSLRAEDTAVY VSNRDSGVPDRFSGSGSG--

1707 1o) Y ——— GPEMWGQGTMVTVSS TDFTLKISRVEAEDVGVYYCMQGTH-----normemememmneas
WPLTFGGGTKVEIK-

Seq 4| - ES-GPTLVKPTQTLTLTCNLSG-FSLSTS-- ----TQSPSSLCASVGDRVTITCRAS--QSIS------
GVSVGWIRQPPGKALEWLALIYW---- SYLNWYQQKPGKAPKLLIYA--------
DDDKRYSASLKSRLAITKDTSKNQVVLRMSNMDPADTGTYF ASSLQSGVPSRFSGSGSG—TDFTLTISSLQPEDFATYY
(O] P —————— GFDFWGQGTLVTVSS cQQs Y

Table 1. Example of sequences of the dataset
Example of four sequences of the multiple sequence alignment of the VH-VL human test dataset. The total length of the
alignment is 298: VH 1-149 and VL 150-298.

For convention, the following characters will be used: Q refers to the number of different amino
acids (Q=20), M to number of sequences (peptides), L to the length of the sequences (L=298 for the
VH-VL combined, L=149 when one variable domain) and N to the number of binary elements in each
sequence (N=LxQ). Each column (L) corresponds to the length of the sequence according to the
residue numbering scheme AHo.

Julia codes with functions to generate the MG model and score sequences according to it were
written by Clavero-Alvarez et al [18]. All the other codes used for the analysis presented in this report
were written by myself, using Julia version 1.0.3 [2], when speed was an issue, and R version 3.5.2
[22], when the availability of specific libraries for bioinformatics analysis, still not present in Julia,
were crucial. The codes are provided in the appendix.
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Correlation between the contact map and model covariance
The first objective is to study residue correlation using the parameter covariance matrix Z generated
by the multivariate Gaussian distribution N(y, Z) [4,18].

Using the available code from Ref [18] and using the same values for the parameters A (determining
the contribution of the prior) and Q (reweighting of the sequences in the learning datasets, to reduce
biases: see [3,18]), we obtain the most likely estimation of the parameters |, £ in the Multivariate
Gaussian Distribution N(y, ).

In particular, for the combined VHVL case, the matrix 2 is estimated from the observed covariance
matrix computed from the MSA of the learning database, having a 5960x5960 dimension (LQ x LQ =
N x N).

Its inverse (£7), i.e. the precision or interaction matrix, represents the effective interactions that
generate the observed distribution: indeed, its element p, T with p =(i-1)*Q+ a and t =(j-1)*Q+ B,
represents the interaction between a residue of type a at position i and a residue of type B at
position j, being a, B =1,...Q and i,j=1...L. In order to study how these interactions compare with the
residues contact map, we need to reduce to a LxL matrix, that in some way accounts for the different
species that can be found at any site. To do so, the Frobenius Norm (FN) of the inverse of the
covariance matrix (£7) is computed as described in [8],

Q
s=lggtll,= | ), 5702

kl=1

so that a single score is obtained for each Q x Q block and the final matrix S has a dimension L x L. To
simplify the comparison with the contact map, the diagonal and the lower triangular were set to zero
so that the matrix contain only one value per pair of different residues.

These steps were implemented using Julia version 1.0.3 [2] (code is provided in the Appendix) for
each MSA (human and murine).

In order to see if S contains some structural information, we need to compare it with a matrix that
describes structural interactions. However, it is expected that every sequence in the database has its
own (unknown, in most cases) structure, with small differences from one another, so it is pointless to
choose a given structure and calculate precisely what energy would have a particular sequence
adopting it, since this does not account for the structural adjustments that would affect the energy.
On the contrary, it is better to use a coarse grained description of the interactions, as provided by a
contact map. To this end, an average residue-residue contact or distance matrix D is calculated using
56 PDB structures that contain the VH and VL regions (Table 2), yielding n=58 VH-VL sequences in
total, from the Protein Data Bank [19]. In all cases, the VH and VL sequences are assigned as different
chain identifier, so they were combined to construct the VHVL contact map.
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The expression for D reads:

D;

o
I
SRl

n
i=1

where D is the 298x298 contact map matrix obtained from the PDB file of each sequence as
described in the following.

The PDB file of each antibody contains the coordinates of all its atoms, so it is easy to calculate a
contact map, i.e., a matrix C whose elements C; are 1 if two atoms from i and j are closer than a given
threshold dy, and 0 otherwise. However, residues indices are challenging to deal with, since they
refer to the residue position along the sequence of each chain in the PDB file, and of course, they do
not contain gaps.

Hence we generated two separate VH and VL fasta files with 58 sequences and they were aligned in
ANARCI [21] to create a correspondence between the old (own PDB ID numbering) and the new
indexes (AHo numbering scheme). Then, they both domain were combined so that there is a unique
table of residues indices for each PDB. Thereby, having a correspondence between the PDB indexes
(“old”) and the indexes in accordance with AHo numbering (“new”): inew = f(iolg), the LxL matrix D

can be initialized to the zero matrix and then filled in by setting Di_new,j new = Ci_old,j_old-

Since for each protein the contact matrix D is composed of 0 and 1, the final average contact matrix
D satisfies 0 < D;; < 1.

The contact matrix D depends on the threshold dy defining the contacts and was calculated for
different contact thresholds: from 1.4 to 50 A by 0.1 of difference (these are the cutoff distance
values below which atoms, in this case alpha carbon atoms, are considered in contact). Such
thresholds were selected because below 1.4 no less than 20 contacts are observed and the maximum
was calculated using the software PyMol [20] to determine an approximated maximum distance
between residues: at do=50 A, basically all pairs of residues are in contact, so nothing changes upon
further increasing the threshold.

To properly calculate the correlation between the S and D matrix, another subtle technicality should
be addressed: by construction, S will be a full matrix, with few (or none) null elements. On the other
hand, depending on the distance threshold dy, D can be a more or less sparse matrix. In order to
avoid biases on correlations just due to the increase of the non-zero elements, we proceeded as
follows: for each D, the number of non-zero elements ¢ ( when Bij > 0) was counted. Then, the c
largest values of the Frobenius matrix S (see Fig. 4) were maintained and the rest of the elements of
the matrix converted to 0. These contact map matrices were obtained in R program [22] using the
package Bio3D [23] (code is provided in the Appendix).

The correlation coefficients between the human and murine S and all average contact matrices D,
was calculated in R using the Pearson and the Spearman methods (code is provided in the Appendix).
Only the upper triangular of all matrices are considered in order to have 1 unique value per pair of
residues. The results are reported in Table 4.
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PDB ID structure
1A14 113G 10AR 4CKD
1A6U 1FO0 IN4X 2YSS
1A7N 1FVC INMC 3DUR
1AP2 1181 1QNZ aLv
1BVF 1i1C4 1UA6 4LRN
1BVK 1J10 1VFA 4M8Q
1BVL 1J05 1wWz1 4M62
1C08 1JHL 2A0L 40B5
1DL7 1JV5 2DQE 40XT
1DLF 1KB5 2DQF 5AYU
1DQL 1KIP 2EKS 43C9
1DSF 1MFA 2GSG 3DUS
1EZV 1MQK 20TU 1DVF
1FGV 1MVU 2UZ| 1QFW

Table 2. List of PDB structures analyzed
The 56 PDB IDs from the Protein Data Bank (https://www.rcsb.org/) used to generate an average contact matrix. The search
was done by the filter Fv, which corresponds to the variable fragment of the antibody. All of them contain 1 VH sequence
and 1 VL sequence, except 1DVF and 1QFW entries, which include 2 sequences of each variable domain, yielding in total 58
VH-VL sequences.
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Figure 4.Distribution of the values of the FN of £ in the human and murine sequences.
Histogram with the distribution of the values of the inverse of the Frobenius Norm (FN) of the covariance matrix. It
is calculated based on the parameter of the Multivariate Gaussian (MG) model covariance matrix £ using the
learning human and mouse database respectively, then performing the Frobenius Norm (FN) of its inverse (Z'l). Only
the upper triangular matrix is left to avoid duplicated values. Maximum FN values are 53.16 in human sequences
and 487.03 in murine sequences, but histogram has been cut because the large majority of the values are much
lower. Peaks at 2 in human and at 17 in mouse corresponds to FN values between two gap positions.
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Identification of key positions

To analyze the importance of the columns of the MSA in the classification of human and murine
sequences, we formulate the following questions: what are the columns whose removal most affect
the classification effectiveness? Can such columns be identified independently, just based on some
statistical properties? To translate these questions into a quantitative criterion, we use the Area
Under the Curve of the Receiver Operating Characteristic curve as a measure of the goodness of a
classification. Following Ref [18], we define as "positive" instances the human sequences in the test
database, and "negative" instances the mouse sequences. So, a "true positive" prediction will
correspond to a human sequence correctly predicted as such, while a "false negative" will represent
a human sequence predicted as murine by the method, and so on. From these quantities, a ROC
curve in the (TPR, FPR) plane can be drawn (see Fig. 5). The bigger the area under the curve, and
close to 1, the better the performance of the classifier is. The column properties that we want to
relate with the AUC are the site entropy, the Kullback-Leibler divergence between murine and human
empirical distributions and "energy bias" at each position, as defined below. For each indicator, we
sorted the columns from the least to the most important and deleted them following this order,
progressively reducing the MSA length. Each time a new column was removed from the learning and
test datasets; the posterior parameters of the model p and X were generated again, without
changing the values of the parameters A and Q.

Receiver operating characteristic example

1.0 A
0.8
z
1]
T 0.6 -
g
= ROC fold 0 (AUC = 0.80)
S J ROC fold 1 (AUC = 0.74)
g 041 »° ROC fold 2 (AUC = 0.75)
£ ,,-’ ROC fold 3 (AUC = 0.73)
e ROC fold 4 (AUC = 0.80)
0.2 4 2 ROC fold 5 (AUC = 0.88)
.
7 — = Chance
7 —— Mean ROC (AUC = 0.78 + 0.05)
0.0 1 Al + 1 std. dev.
T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0

False Positive Rate

Figure 5. Example of a ROC curve
Figure retrieved from https://scikit-learn.org/stable/auto_examples/model_selection/plot_roc_crossval.html. Itis a
two-dimensional graph in which the false positive rate (FPR, proportion of murine sequences incorrectly considered
as human) is plotted on the X axis and the true positive rate (TPR, proportion of human sequences correctly
classified as human) is plotted on the Y axis. Each point represents a TPR/FPR corresponding to a particular
threshold. The higher the Area Under the Curve (AUC), better the model is at predicting; AUC=1 represents the
perfect test. The dashed red line in the diagonal represents the ROC curve of a random predictor (AUC=0.5).
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Once the posterior parameters of the model are calculated, the MG-score of each sequence of the
test datasets are determined, yielding two vectors with the scores values of the human dataset
(M=1,388) and the murine dataset (M=1,379). This score is defined as the logarithm of the
probability density [18]. According to whether such scores are below or above the threshold score
found in Ref.[18], the sequences are classified as murine or human, and we can assess whether such
predictions are True Positive, False Positives, True Negatives or False Negatives.

To analyze the performance classification, a receiver operating characteristic (ROC) curve is created
upon varying the threshold score and the Area Under the Curve (AUC) is used to compare the
different ROC curves. All calculations were made in Julia version 1.0.3 (code is provided in the
Appendix). Thus, in the end, we have a curve in the plane (number of deleted columns, AUC),
indicating how much eliminating columns according to the proposed observable reduces the
classification power of the method.

Naive (“teleologic”) approach

Our first approach was simply to investigate which column of the 298 caused, upon removal, the
smallest decrease in the AUC (or possibly, also an increase), remove it, then finding which of the 297
left causes the next smallest decrease upon removal, and so on. This procedure would yield a smooth
curve that, possibly after a small increase, would decay without noise or bumps, by construction.
Unfortunately, this approach resulted to be very expensive computationally, since it involves
calculating hundreds of ROCS before removing any column, and each ROC involves many calculations
with different threshold scores, between human and murine.

So we used a different approach: we calculate at the beginning which column causes, upon removal,
the smallest decrease in AUC, which one causes the second smallest, and so on, and then we remove
them in this order, without calculating the AUC again.

Site entropy
The entropy of each column was defined by the information entropy (S) function:

St = —Zpi" logp{*
i
where p{* is the frequency of each amino acid character i that appears in columns a of the learning

MSA.

Kullback-Leibler divergence
The relative entropy or Kullback—Leibler divergence (D.) of each column was calculated as:

a

N
p.
Diula) = ) piflog g
i

L

where p{* is the frequency of each amino acid character i in columns a of the human MSA and gf* is
the frequency of each residue i in columns a of the murine MSA.

17



Energy bias
Notice that the Dy, divergence is a quantity that depends on both the human and the murine learning
datasets, while the entropy depends only on the human one. Another quantity just dependent on the
human dataset is the energy bias, defined as follows. Consider that the interaction can be written as:

—(x—pwWCE DT x—p) = —xCEHTx + hT x + constant

where h;

h; =2 Zﬂi ™Yy
i

h; acts as an external field, being p and s the mean and the inverse of the covariance matrix of the
MG model. The interaction term cannot be written as an external field influencing the symbol x;
appearing at position j because of the quadratic term in x. However, we can give an estimate of how
relevant is the interaction for biasing a position, upon defining the average:

1 M N
- 3 S,

where v; is the weight of interactions between residues and x are the human sequences from the
dataset. Introducing ¢; = 7, — hj ,we have that:

Q

(pl — Z(D(l—l)Q‘l'a

a=1
i=1...L, is an indicator of the amount of bias a residue feels at position i.

Following the same steps explained before, columns were removed from the smallest to the largest
Pj-

Study of the importance of the dataset
The learning database used to study the classification consists of 1,309 human sequences. It was
reduced progressively by 20 sequences until only 9 sequences left (66 databases of different sizes in
total), using always the same test databases. The choice of sequences selected each time to be
deleted was done randomly by the program.

The parameters of the model p and I were recalculated, then the MG score of the human and
murine test sequences was estimated and the performance classification was measured by AUC. The
whole process was done with Julia program too (code is provided in the Appendix).
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Those steps were performed 20 times for each size of the database (overall, the average AUC and the
standard deviation were estimated) for the complete sequences (VH-VL), just VH (residues 1-149 of
all datasets selected) and just VL (residues 150-298) (Figure 11). In the case of just VH or VL regions,
the optimal A and Q are different, thus such values were changed to the appropriate value, which
were already calculated by Clavero-Alvarez et al [18].

The same methodology was repeated for the other two human learning datasets of VH and VL
(Figures 12 and 13). Because of the larger size of those databases, they were reduced each time by
100 and 50 sequences respectively. The parameters A and Q were optimized before (codes are
provided in the Appendix), obtaining A=0.4 and 0=0.4286 for the VH dataset and A=0.1 and Q=0.225
for the VL dataset.

Q is defined as the value that maximizes the Frobenius norm of C;; [18]. From a range of values,

being 0 < Q < 1, the weights of the sequences of the dataset are calculated as wk = 1/71“ where
m

M
nf — Z 0Oy, — L)
=1

The empirical covariance for each Q:

M
1 _ _
Ch= 7 D GI'= %) 6" — %) wh
m=1

The score is defined as 1 — |Cf} , being |Cf]1| the Frobenius norm of the empirical covariance. The

optimal value of Q is the one that maximizes the score.

For A, the optimal value was calculated by analyzing different ROC curves. Again, from a range values,
being 0 < A < 1, the posterior parameters of the model u)‘ and 3 are generated with the optimal Q
previously calculated. Then, the MG-scores of each sequence of the test datasets are determined,
yielding two vectors with the scores values of the human dataset and the murine dataset. To analyze
the performance classification, a ROC curve is created upon varying the threshold score and the AUC
is used to compare the ROC curves of the different A values. We chose the optimal value as the one
that with the highest AUC.

MG-score correction

In Ref.[4], a correction to the MG-score was proposed in order to reduce the influence of the gaps in
the alignment, whose presence may bias the interaction matrix. This correction consists in
subtracting, from the plain score, the one obtained upon learning from a different Multiple Sequence
Alignment, where the gaps are maintained at their place and all other residues are randomized.
Following here the same recipe, all amino acids positions were changed randomly, but the gap
positions were unaltered (code provided in appendix) according to their original frequency in the
MSA (Table 3).
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Amino acid Frequency | Amino acid Frequency
Alanine (A) 0.063 | Methionine (M) 0.013
Cysteine (C) 0.019 | Asparagine (N) 0.028
Aspartic acid (D) 0.043 | Proline (P) 0.044
Glutamic acid (E) 0.031 | Glutamine (Q) 0.058
Phenilalanine (F) 0.031 | Arginine (R) 0.045
Glycine (G) 0.105 | Serine (S) 0.136
Histidine (H) 0.007 | Threonine (T) 0.082
Isoleucine (I) 0.038 | Valine (V) 0.069
Lysine (K) 0.037 | Tryptophan (W) 0.024
Leucine (L) 0.071 | Tyrosine (Y) 0.057

Table 3. Frecuencies of each amino acid in the VHVL human sequences.
Frequency of each amino acid in the VHVL human sequences, gaps were not included. In order to see the error
produced by gaps, the residue positions were changed randomly with weights according to this proportion table.

Using this modified dataset, the posterior parameters W ang and Z.ang from the gap-corrected dataset
are calculated yielding a new MG-score (that is a log probability score, see Ref [18].

These steps were repeated 30 times to obtain an average MG random score. Lastly, the performance
classification was studied with the MG-score corrected:

MG score corrected = MG score — MG random score

Following previous sections, the performance classification of the MG-score and the MG-score
corrected was also compared by considering the AUC.

All steps were performed for each of the three learning datasets (VH-VL, VH and VL) and for the VHVL
sequences, they also were applied to the two separate domains. Parameters A and Q were not
modified; the values previously optimized were used according to each dataset.

Results and Discussion

Correlation between the contact map and model covariance

Table 4 reports the Pearson (r) and Spearman (s) correlations coefficients between the average
contact map matrix for different distance thresholds and the Frobenius norm (FN) covariance matrix
of the statistical model and its inverse.

In the case of the inverse of the covariance matrix = the best correlation coefficients are obtained
when the minimum cutoff distance used to build the contact map (A=1.4), in which the number of
non-null elements in the contact matrix D is 260. Yet, the correlation coefficients are low (for human
sequences r=0.298 and s=0.297 and for mouse r=0.38 and s=0.324), which indicates the correlation is
weak. Taking into account that the total number of residues is 298, the contacts mainly correspond
only to first neighbors. These results suggest that ¥ cannot predict the residue-residue correlations
and it is only somehow coincident because of the first neighbor contacts.

Even if our interest was on the correlation between the interaction £ ™ and the contact map, we also
test the association between the latter and 2.
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In the case of the covariance matrix £, the highest correlation coefficients correspond to the
maximum cutoff distance (A=50). The number of non-null elements in D, that is, the number of
contacts, is quite big, exceeding 28500 contacts. In this situation, the coefficients indicate a stronger
correlation (for human sequences r=0.671 and s=0.782 and for mouse r=0.551 and s=0.757),
although we suspect that it might be more related to the increase in the number of no-null matrix
elements in the comparison, than to the actual similarity of the distributions.

Distance
threshold(A) 1.4 10 20 30 40 50
Number of 260 12433 23135 27792 28514 28516
contacts
Pearson correlation coefficients (r)
FN £ human 0.298 0.17 0.071 0.039 0.026 0.024
FN £ murine 0.38 0.212 0.146 0.137 0.14 0.141
FN £ human 0.03 0.385 0.574 0.667 0.674 0.671
FN X murine 0.03 0.358 0.489 0.543 0.553 0.551
Spearman correlation coefficients (s)
FN £ human 0.297 0.043 0.09 0.09 0.084 0.085
FN 2 murine 0.324 0.12 0.223 0.256 0.262 0.266
FN 2 human 0.026 0.41 0.634 0.77 0.781 0.782
FN 2 murine 0.023 0.343 0.566 0.729 0.754 0.757

Table 4. Correlation coefficients between average contact matrix and the covariance matrix

Table with the Pearson and Spearman correlation coefficients obtained as a measure of the correlation between the
Frobenius norm (FN) covariance matrix of the statistical model and the average contact map for different thresholds
created with PDB structures. All correlations are statistically significant, with p-values less than 0.5. Only the upper
triangular matrices were used to calculate the correlation. Cutoff distances values to consider alpha carbon atoms in
contact were calculated from 1.4 to 50 A by 0.1, but only 6 thresholds are shown. This cutoff distance value below which
atoms are considered in contact. The number of contacts corresponds to the number of elements different from 0 in each
average contact map matrix D.

Our results are in line with those in Asti et at. [3], where the authors were not able to predict any
structural information with the MG model again in the case of antibodies. Baldassi et al. [4] used
also the Frobenius Norm in the MG model to predict residue-residue contacts and they obtained very
good results, but the average number of sequences used in their alignment (more than 30,000) could
affect the difference in results compared to the current <M>= 841. Another significant difference is
that they study the contacts in a variety of protein families. Because of the nature of the variable
region of antibodies, the high variability in the CDR, the residue-residue contacts could be more
difficult to predict based on sequence information only.

Other explanation of not being able to predict contacts is the relatively high presence of gaps in the
MSA (average proportion of gaps being 0.25), already been discussed how they can affect in the
contact map prediction [29]. Authors explain in their work that when a gap correction term is
applied in the model or when they do not include the inferred couplings involving gaps in the final
scoring of the coupling matrix £, the accuracy of contact prediction significantly increases.
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Relation between site properties and classification power
We move now to the study of the importance of the columns in the classification task, using the area
under the ROC curve as a measure of the goodness of the prediction.

As explained in Methods, our strategy is to remove the columns according to an order dictated by
the value of some observable and see how this affects the AUC.

Naive (“teleologic”) approach
As explained in methods, in this approach the columns are ranked according to increasing values of
the quantity 6 = AUCbefore_co|umn_remova| - AUCafter_co|umn_remova| (that may a|SO be negatiVE). Then,
they were removed according to such ranking. Fig 9 reports the results.

There are several comments that we might do: first, we observe that the fact that we do not
recalculate the rank after each removal (time consuming, as explained in the methods) does not
affect the results too much. Indeed, we see a rather smooth curve, with very few and small
irregularity. If we had adopted the "correct" removal method, by definition the curve would have at
most one maximum.

Second, the prediction power remains more or less constant compared to the AUC value obtained
when all columns are used in the MG model (AUC=0.966) until it reached a maximum value of 0.982
when only 66 columns are left. Only a few columns, which most of them are either conserved
residues or located in the VHVL surface, as will be explained later, are enough to obtain a good
classification.

Third, a large number of the columns that even slightly improve the performance when removed
correspond to the CDRs regions, most in VH: 17 of the top 20 less relevant columns are located in the
CDRs. This indicates that CDRs regions negatively affect the correct classification of the two classes.

Fourth, the number of important columns is approximately only 5, when AUC is already larger than
0.95. They correspond to the positions 45 (Syuman=0.04, Simouse=0.84), 51 (Shuman=0.43, Smouse=1.18), 167
(Shuman=1.2, Smouse=1.73), 250 (Shuman=1.12, Smouse=1.53) and 256 (Shuman=1.55, Smouse=1.54).

It seems quite impressive that only a few columns are required to distinguish between the two
classes. However, a closer inspection reveals that the residues of such positions are highly different
in each group. The clearest example is column 250: 82% of the human sequences in the databases
consist of the amino acids E or F, while in the murine sequences those amino acids are rarely present
and the most frequents are A and L (64%).

To understand the structural role of the important positions, we resort to the correspondence
between AHo numbering and Kabat numbering [27], that gives some structural information. In this
way we notice that column 51 in the MSA corresponds to the VH residue G44 according to Kabat
numbering, which is located in the surface of VH that interacts with VL [26]. It is one of the most
critical residues in the dimer interface [24]. In the antibody humanization process, the dimer
interface residues must admit that any VL domain can combine with any VH domain to establish a
functional and stable structure.
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Column 45 refers to the VH residue R38 and it is also located near the VH-VL interface. Both are
positioned in the framework region between CDR H1 and CDR H2. Critical residues in the interface of
the two variable domains are frequently highly conserved and it is a common grafting strategy to
maintain such residues because they affect the orientation of the region [28].

Column 256 (107 in VL region in AHo numbering) refers to the VL residue 89, it is located in antigen
interface [24] and is an important residue in the grafting process because it interacts with a crucial
residue in CDR L1 [28]. It is a structurally conserved amino acid according to [30].

Column 167 (position 18 in VL according to AHo numbering) corresponds to the VL residue R18. It is
situated in the first FR region. Column 250 (101 in VL in AHo numbering) refers to the VL residue 83 is
located in FR3b. In the case of these two columns, no structural or functional relevance was found.

After finding in this section a list of columns, whose ordered removal increasingly affects the
classification capabilities of the method, we try to relate the classification relevance of these columns
with other independent observables to understand if there is a way to predict when and why a
column is relevant for the classification task.

In particular, we consider the site entropy, the relative entropy (Kullback-Leibler divergence) and the
"energy bias" defined in Methods.

Site entropy
Following [4], we start by considering the values of the information entropy (S; = —ZiQ p,logp,),

being i the specie, of each column that are reported in figure 7 with the top ranking positions in Table
5.

We observe that the majority of the most entropic columns are located in the CDRs regions
especially in CDR3 (in VH located in positions 107-138 and in VL positions 257-287) following by CDR2
(58-68 and 207-217) (Figure 7) as expected because they are the hypervariable regions, where the
antigens bind to. Of these regions, the one that carry the most entropy is the third CDR of the VH
domain, which matches with previous studies saying it is the most diverse of the six regions [25].
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Information entropy Human
. Residue . Residue
Rankige Position LT Position S
1 112 2.85 11 135 2.38
2 111 2.78 12 109 2.37
3 110 2.74 13 60 2.30
4 113 2.70 14 67 2.29
5 57 2.58 15 61 2.29
6 284 2.47 16 132 2.24
7 133 2.47 17 207 2.17
8 114 2.46 18 285 2.14
9 134 2.44 19 59 2.10
10 286 2.40 20 40 2.10
Information entropy Mouse
. Residue . Residue
Ranking Position Ranking Position S
1 109 2.65 11 181 2.21
2 57 2.53 12 259 2.14
3 110 2.51 13 61 2.14
4 111 2.48 14 40 2.11
5 207 2.42 15 258 2.11
6 284 2.37 16 220 2.10
7 67 2.29 17 59 2.03
8 112 2.25 18 134 2.02
9 135 2.24 19 191 2.00
10 69 2.21 20 286 1.96

Table 5. Top 20 positions with the greatest information entropy in the human and murine database.
Entropy defined as (s = — ¥, p,logp,). The maximum possible entropy is Smax=3.05, as there are 21 possible characters (the
20 amino acids and gap). In italics, position located in CDRs. The large majority of the top positions correspond to CDR
locations.

Kullback-Leibler divergence
The observation that, following the naive approach, the most relevant columns are those with a
definite difference in the residues frequency between human and murine database suggests to look
at the Kullback-Leibler (Dy,) divergence as another relevant column property (Table 6), even if, at
difference from the entropy, D¢, depends not only from the human distribution, but also from the
murine one.

The values of the Kullback-Leibler divergence Dy, = Y; p; log% , being p; the human distribution and
13

gi; the murine distribution of the residues, are indicated in figure 6 and the top ranking positions in

Table 6. Contrary to the site entropy results, columns with the highest Dy, values are mostly situated

in FR regions. This suggests that such columns might play an important role in the model to

differentiate both classes of mAbs. The figure also shows a few residues that stand out, which differs

with the site entropy results too, where entropy distribution is more uniform.
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Kullback—Leibler divergence (D)
Ranking Resid.ue Diw. | Ranking Resid.ue Du
Position Position

1 200 3.98 11 296 1.37
2 250 2.83 12 294 1.30
3 220 2.56 13 287 1.16
4 12 1.71 14 261 1.16
5 244 1.61 15 259 1.14
6 238 1.55 16 245 1.14
7 47 1.55 17 173 1
8 78 1.45 18 98 0.84
9 295 1.44 19 71 0.83
10 297 1.42 20 20 0.74

Table 6. Top 20 positions with the largest Kullback-Leibler divergence.

Dy, defined as ; p; log% . The human distribution p; was used as a reference. In italics, position located in CDRs. The

large majority of the top positions correspond to FR locations.
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Figure 6. Kullback-Leibler divergence of each column
Dy, defined as ¥; p; log% . The human distribution p; was used as a reference. The columns with the highest

divergence are 200, 250, 220, 12, 244 and 238. CDR regions indicated in orange. The total length of the MSA is 298.
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Figure 7. Distribution of the values of the information entropy of each column

Entropy (S= -2 p log p) of each column of the human and murine MSA and the difference (Shuman — Smouse)- BeCause

of the alphabet of amino acids (Q=20) and gaps appearing as the 21% possible character, the maximum possible
entropy is Sma=3.05. CDR regions are indicated in orange. The total length is 298. Positions with zero entropy are
columns composed of only gaps in the MSA.
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Energy bias

As explained in Methods, the quantity ¢; gives an information of the effective "field" acting on a
certain residue (i.e., column of the MSA), even if its intensity will indeed depend on the detailed
amino-acid species that is placed at that position. A @; that is small in norm means that the
position is not very biased towards any species; a big positive ¢; implies that the interaction term
on average dominates over specific site-dependent preferences towards a residue, acting as an
external field, while a big negative ¢; implies that the latter term (the "external field") dominates
over the interaction one.

In table 7 and Figure 8, the distribution of |<pj| are shown. According to this measure of the
importance of each column, the more relevant residues are located in FR2 and FR3 of both VH
and VL domains.

Top |@;| columns
. Residue . Residue
Ranking b ition |#j| | Ranking Position il
1 201 6170.59 11 226 5694.80
2 255 6141.94 12 240 5669.80
3 249 6115.76 13 233 5659.35
4 100 6021.36 14 242 5640.61
5 43 5968.98 15 222 5587.93
6 192 5879.67 16 83 5567.50
7 253 5861.92 17 104 5554.56
8 45 5839.75 18 229 5537.58
9 106 5735.89 19 77 5522.72
10 198 5713.67 20 26 5489.84

Table 7. Top 20 position with the highest |<pj| , defined as the difference between h; (external field) and v; (interactions
between residues). ¢; acts as an indicator of the amount of bias a residue feels at column j. All top 20 residues are
located in FR regions, most in FR2 and FR3 of both variable domains.
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Figure 8. Distribution of the values of |goj| and ¢; of each column
@;j is defined as the difference between h; (external field) and v; (interactions between residues). ¢; acts as an
indicator of the amount of bias a residue feels at column j. CDR residues are coloured in orange. Positions with
lowest values, located particularly in CDR correspond to columns in the MSA with only gaps. The bottom figure
shows how the external field h prevails over the interaction term v except some residues of FR1 and CDR3 of VH
and FR1 of VL.
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Comparison of all indicators
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Figure 9. AUC as a function of the MSA length for the different approaches
The total length is 298. AUC was calculated each time a new column was removed according to different indicators. In blue,

Area Under the Curve when the columns are removed from the lowest to the highest site information entropy. In orange,
the order of the columns depends on the Kullback-Leibler divergence. In purple, columns were removed according to the
obtained AUC when they were deleted. In green, the order was followed according to ¢;,which mean the difference
between h; (external field) and v; (the norm of interactions between positions). The best indicator is the Kullback-Leibler
divergence, only 2 columns are enough for AUC larger than 0.9.

Fig. 9 reports the results of the drop in AUC upon removing the columns, according to increasing
values of entropy, KL divergence, or energy bias |@;|. We see that removing the columns according
to the entropy, KL divergence or energy bias reduces the AUC faster, and none of them is optimal, in
reproducing the "naive" approach.

Following the information entropy order, AUC values are considerably constant (AUC > 0.9) until only
approximately 90 columns are left, then the performance classification starts to fall significantly.
When L = 30, the model cannot longer distinguish between human and murine sequences. However,
following the Dy, results order, only a few columns are necessary to get a good AUC value.
Specifically, with 2 columns AUC= 0.93 and AUC=0.95 when L = 10. These results suggest that the
most important columns are the ones with the highest Kullback-Leibler distance and not the ones
with the greatest entropy.
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Notice that two columns with the highest Dy, that are able to distinguish between the two species
are 200 and 250. The column 250 was already explained before, as it is also one of the most
important columns detected in the naive approach. The position 200, which corresponds to the
residue 51 in the VL domain according to AHo numbering and residue 43 in the Kabat numbering
scheme, is located in FR2. It has been found that A43 is highly conserved and is directly in contact
with the VH domain [25].

It is clear that KL divergence is much more effective than Entropy in identifying which residues are
relevant to account for in a classification task. However, it must be noticed that it has an important
weakness: it depends on the murine and human distribution, and it is not an intrinsic characteristic of
the latter. This means that it could not be calculated in a classification task where we simply should
distinguish between human and not human, without knowing the alternative species (and its
residues distribution). On the other hand the energy bias ¢; could be a reasonable alternative that
just depends on the human distribution, as the entropy, but with a better performance: by following
this approach, the MSA length has to be much larger to obtain a high AUC (AUC is close to 0.8 if L=20
and AUC>0.9 if L=30).

From the results of the naive approach, we calculate the difference in the Area Under the Curve
when a column was removed with respect to the previous AUC value: dAUC; = AUCj_; - AUC;. The

Pearson correlation coefficient between the values of dAUC of each column and Kullback-Leibler
divergence of each column is 0.34, p value=1.45 x 10°.

Figure 10 suggests why the correlation is not very high, even between the KL ordering and the naive
approach: even if the 5 most relevant residues in the latter have a substantial KL divergence, there
are several columns with high values of KL that do not correspond to crucial residues.

This can be further seen in Table 8, that reports the top positions (most relevant columns, the last to
be removed in the corresponding graphs in fig 9), for the KL and Naive approach. There are some top
positions in common and indeed 5 of the first 7 high ranking KL residues are found in the first high
ranking positions according to the Naive approach. However, there is no clear relation overall
between the two ranks, and the global Spearman correlation coefficient is approximately zero, since
low ranking positions are poorly related in the two lists.
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Naive (“teleologic”) approach Kullback-Leibler divergence
Ranking Residue Ranking = Residue | Ranking | Residue | Ranking Residue
position position position position

1 250 21 73 1 200 21 258
2 256 22 190 2 250 22 86
3 167 23 186 3 220 23 236
4 45 24 228 4 12 24 241
5 51 25 157 5 244 25 45
6 191 26 71 6 238 26 247
7 49 27 204 7 47 27 207
8 290 28 145 8 78 28 32
9 184 29 173 9 295 29 190
10 220 30 194 10 297 30 181
11 77 31 103 11 296 31 150
12 238 32 187 12 294 32 286
13 284 33 78 13 287 33 169
14 200 34 21 14 261 34 163
15 207 35 98 15 259 35 17
16 47 36 166 16 245 36 218
17 156 37 86 17 173 37 21
18 258 38 245 18 98 38 260
19 101 39 164 19 71 39 178
20 170 40 13 20 20 40 164

Table 8. Comparison between the 40 most important columns according to the method used
In color, columns that appear in top positions in both methods. The top 7 columns of KL divergence are present in the top
16 columns of the Naive (“teleologic”) approach.

Compared to previous researches, the outcome of the reduction of the MSA based on the entropy of
the columns is similar to Asti et al [3]. The performance of the MG model remained the same until
only the 60 more variable columns are left when they used a hypermutated cluster antibodies test,
but they obtain approximately 10 important columns with a germline cluster.

However, they compare the performance of the MG score with the neutralization power of the Abs,
so it is related to the most entropic columns (CDR). In the present project, the performance is
compared to the ability to differentiate human and murine classes, in which the importance of
columns might depend not in the variability or entropy, which is higher in CDR regions, but on the
columns located in FR regions.

To sum up, the best method to select the positions that carry the greatest information is the KL
divergence, since a few high-valued columns are enough to produce good classifications. However, it
depends on two distributions and cannot be applied for generic classification human/non-human.
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Moreover, even using the KL divergence, it is difficult to predict exactly, before performing the test,
which columns are important. This is frustrating, because it implies that we cannot simplify the
method using shorter MSA that disregard less relevant columns. However, this could also be taken as
an indication that interactions between residues (and co-mutations) are indeed relevant also in
classification, and no single-column quantity, as the ones that we have analyzed here, is enough to
account for the changes in AUC.
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Figure 10. Correlation between Naive approach and Dy, approach
The length of the MSA is 298. In orange, Kullback-Leibler divergence values of each column. In black bars, the difference in

the Area Under the Curve when a column was removed with respect to the previous AUC value: dAUC; = AUC;; - AUC,. The
Pearson correlation coefficient is 0.34, p value=1.45 x 10°

Study of the importance of the dataset

When progressively reducing the size of the learning database by 20 sequences each time, (initially
M=1309), the performance classification remain constant until M = 300 (Figure 11). If only the
residues corresponding to the VL domain are used, the results overall are better than the VH domain.
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Figure 11. AUC as a function of the size of the VHVL learning database
Average Area Under the Curve (AUC) along the reduction of the VH-VL learning dataset with a total of 1,309

sequences. Results are shown for the whole MSA (VH-VL) and for only VH and only VL. In the three cases, sequences
are the same but only the columns to the corresponding domain are used. Standard deviations are represented by
confidence bars. Each time, the number of sequences was reduced by 20.

The results of the VH learning dataset (M=7,720) and the VL learning dataset (M=3,723) are also very
similar (Figures 12 and 13): only when the size of the dataset is approximately 200, AUC starts to fall.
It can be confirmed that the VL domain performs better in the classification even with a smaller
learning dataset (Table 9).

Average Area Under the Curve (AUC)
Number of VH-VL VH of VH-VL | VL of VH-VL VH VL
sequences dataset dataset
7700 - - - 0.925 -
3700 - - - 0.923 0.971
1300 0.966 0.923 0.97 0.923 0.97
200 0.958 0.91 0.959 0.91 0.963
20 0.848 0.762 0.832 0.844 0.907

Table 9. AUC of the different learning datasets
The number of sequences was randomly reduced and then an average AUC was calculated.

Here only 5 different-size datasets are shown.
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Figure 12. AUC as a function of the size of the VH learning database

Average Area Under the Curve (AUC) along the reduction of the VH learning dataset with a total of 7,720 sequences.
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Standard deviation is represented by bars. Each time, the number of sequences was reduced by 100.
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Figure 13. AUC as a function of the size of the VL learning database

Average Area Under the Curve (AUC) along the reduction of the VH learning dataset with a total of 3,723 sequences.

Standard deviation is represented by bars. Each time, the number of sequences was reduced by 50.
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In general, it seems that not many sequences in the learning dataset are necessary to perform a good
classification while we expected a steeper decline in the prediction power.

On the one hand, it could be related to the entropy results of the previous section. They have shown
that there are a few columns in the MSA that are sufficient to differentiate both classes of
sequences. Although the dataset is progressively reduced, the important columns might keep the
crucial information for a successful prediction. The results in the previous section could also explain
why the VL sequences perform always better than the VH sequences even when the size of the VH
dataset is much larger (with a size difference of 7500 sequences, VL still predict slightly better).
Indeed, the distribution of the top columns in table 8 reveals that there are more important residues
located in the VL domain (positions 140-298). According to the Kullback-Leibler divergence, only 6 of
the top 20 position are located in VH (Table 6) and the top 3 most important residues depending on
the AUC values correspond to VL (167, 256 and 250). In the case of Sand ¢; there is no a significant
difference in the distribution of the most relevance columns, although these two methods perform
worse in the prediction when columns were removed in their corresponding order.

On the other hand, we could think, based on the observed results, that the weight of the prior
distribution U weight is greater than the empirical parameters, as reducing sequences does not affect
significantly the prediction power. However, A values are quite low, indicating that the empirical
mean X and covariance C are not annulled: (Wpost = M+ (A =DX, (Bpost = AU+ (1 - DC+A(1 -
NE-mE- .

MG-score correction

Applying the score correction proposed by Asti and coworkers to correct for gap effects (see
Methods) we see that there is no considerable difference between the original MG-score and the
adjusted score in the VHVL dataset. The performance classification slightly improves when applying
the gap corrected MG-score for the VH sequences, but worsens a little for the VL region (Table 10).
Overall, there is no significant difference with the gap correction.

Area Under the Curve (AUC)
VH of VH-VL]| VL of VH-VL
R dataset dataset o L
el 0.9658 | 0.9226 0.97 09252 |0.971
MG-score
Gap corrected | ) o0/ | 9487 0.9674 0.9476 | 0.9633
MG-score

Table 10. AUC using the original and the gap corrected MG-score
The performance classification is compared for different datasets. An average random MG-score is calculated using the
original sequences, but changing randomly the residues and maintaining the gaps positions. Then subtract from the
original scores the random score.

In Ref [3] upon implementing the gap corrected score, the prediction of the binding affinities of the
antibodies against a specific antigen improved. However, in this case, the aim is to improve the
model in order to successfully differentiate human sequences from other species. As the results
show, gaps in the MSA of the datasets do not affect the humanness score obtained with the MG
model in terms of correct human and murine predictions.
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Conclusions

In the creation of antibody therapeutics, the antibody usually developed in mouse is humanized by
Complementary-Determining Regions (CDR) grafting. This technique, however, still requires
additionally mutations until it has the stability and functionality required as well as the necessary
immunogenicity and safety.

In the recent years, several attempts have been made to improve the humanization process, most of
which requiring on some kind of humanness score. Humanness scores of the variable region have
been proposed based on the similarity/difference between human and murine sequences. In the
present work, we have focused on the humanness score provided by a statistical approach based on
a Multivariate Gaussian Distribution, in which the discrete amino acid variables are replaced by
continuous Gaussian variable.

In previous tests, the MG model has proved to be better than competitors in the classification of
human and murine sequences, and has provided promising humanized candidates.

However, the model had not been analyzed in details, to understand what are its strength and limits.
In the present work, we have analyzed the model to understand the meaning of the inferred
parameters, trying to understand if it could benefit of shorter multiple sequence alighments or from
a change in the number of sequences in the datasets, and trying to refine it with score modifications,
to compensate for the influence of gaps. The results we obtain are interesting and somewhat
surprising, even if they don't clarify completely what are the principal features of the model.

By construction, the inverse covariance matrix 3! of the Multivariate Gaussian Distribution
represents an effective interaction between pairs of residues. To study if these interactions are
related to physical interactions, due to the protein structure, we have thoroughly compared the
interaction matrix with the average contact maps obtained from a set of 58 structures at difference
distance cutoffs, as a crude representation of the structural interactions. However, the correlation
between the interaction matrix and an average contact map generated by PDB sequences is weak.
The relatively low number of sequences in the dataset, the distinctive variability of the CDRs and the
high presence of gaps could be factors that affect the correlation. Even if the most likely explanation,
already put forward in Ref. [3], is that for antibodies, the effective interactions do not reflect
faithfully physical interactions, and are deeply influenced by other factors, related to the process of
generation of the antibody sequence.

Then, we resorted to the study of the importance of the different columns in the MSA, corresponding
to different residues positions. Our goal was to understand if there are columns that emerge are
more relevant than others, and we had to limit ourselves to the classification task, since it is much
more difficult to quantify the performance of the MG model for the humanization task, while for the
classification task, the Area Under the Curve in the ROC diagram, when classifying sequences from
the human and murine test databases, is a reliable indicator. So, to analyze the importance of the
columns of the MSA in the classification of human and murine sequences, different column
properties were studied: site entropy, the Kullback-Leibler divergence between murine and human
empirical distributions and "energy bias" at each position trying to understand which of them is more
important in predicting the relevance of the columns.

36



Following a naive approach, we calculated at the beginning which column causes, upon removal, the
biggest change in AUC, finding that the most relevant columns (only with 5 columns AUC is already
larger than 0.95) are mostly conserved residues or located in the VHVL surface and present a clear
difference in residue frequencies between the two classes. These columns correspond to 45, 51, 167,
250 and 256.

On the contrary, we observed that the majority of the most site entropic columns are located in the
CDRs regions, but when we deleted the columns following this order, the model soon cannot longer
distinguish between human and murine sequences. Therefore, these hypervariable regions do not
carry the greatest information for classification task.

By sorting the columns from the least to the highest Kullback-Leibler divergence and progressively
reducing the MSA length according to this order, we notice that two columns with the highest Dy, are
already able to clearly distinguish between the two species, which are 200 and 250, located in the
FRs of VL domain.

Although Kullback-Leibler divergence is the most effective in identifying the relevant residues, it
depends on the murine and human distribution, which means that it could not be calculated in a
classification task between human and other non-human species. That is why we also proposed an
energy bias indicator (defined as the difference between an external field term and an interaction
term), that depend only on human distribution, as the site entropy, but performed a better
classification than the latter.

We also compare the order of relevance of the columns according to the two best indicators, AUC
and Kullback-Leibler divergence, but a weak correlation was found. So, in the end we were not able
to find columns that can be safely eliminated from the MSA for a generic classification purpose, even
if criteria based on the energy bias (for generic classification) or KL divergence (for classification in
just to classes) could be devised with a good expectation of classification performance. We believe
that interactions between residues might be important in the classification and taking into
consideration a single column is not enough to find important positions.

Furthermore, one of the main limitations in the field is the low number of antibody’s sequences
available so we studied the predictive power of the statistical model as a function of the size of the
learning dataset. Surprisingly, the results show that approximately 200 sequences are enough to
perform a good classification although a steeper decline was expected. We suspect that this is due to
the fact that since in the end a few columns are sufficient to distinguish the two species, this reduces
the amount of information needed so that a successful prediction is possible even when the dataset
is highly reduced. When independently larger VH and VL datasets are used, we verify that VL domain
performs better in the classification, which could also be related to the most important columns, as
the majority of them are located in VL.

Finally, we applied a gap correction in the MG score, but, contrary to other MG score applications in
previous researches, no difference in the correct prediction was found. Hence, even with a high
number of gaps in the Multiple Sequence Alignment, they affect the final score but not the
performance of the model.
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These results are not conclusive, and prompt for more research, for instance to study the
performance of the model in the classification task when different type of antibodies (and not just
murine and human) are involved, and to try to understand better the relative role of interactions
and site propensities as they emerge from the model.
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Appendix

Julia code to obtain the covariance matrix Z of LxL dimension from a MSA file
#Code to generate =

## #Packages
using LinearAlgebra
using DataFrames
using CSV

###Arguments

filename = ARGS[1] #Name of the learning database MSA file
A = parse(Float64, ARGS[2]) #Value of A

Q = parse(Float64, ARGS[3]) #Value of Q

# # #Generate the covariance matrix

segmatrix = inputtoascii(filename) #Read MSA files and return matrix of characters
M, = = posterior(segmatrix, A = A, customQ = Q) #Mean and covariance a posteriori
invsig=inv(Z) #Inverse of the covariance matrix X

###Compute the Frobenius Norm
L=298
Q=20
S=zeros(Float64,L,L)
fori=1:L
for j=i+1:L
fora=1:Q
for p=1:Q
k=(i-1)*Q + a
I=(3-1)*Q + B
S[i,j1=SIi,j1+(invsig[k,1]1"2)
end
end
S[i,jl=sart(S[i,j1)/Q
S[i,i1=SIi,j]
end
end

#Obtain upper triangular matrix
fori=1:L
forj=1:L
ifi >j
S[i,jl=0
end
end
end

###Save as CSV file
df = DataFrame(S)
CSV.write("filename.csv",df,writeheader=true)
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R code to generate an average contact matrix

#Code to generate average contact map for different thresholds of VH-VL sequence with AHo
#numbering from PDB files

library(bio3d) #package to analyze protein structure and sequence data

## #Select the variables for the contact map

assign("nfi","11C4") #PDB ID (the 4-character identifier), example: 1I1C4
assign("thres",seq(1.4, 50, by=.1)) #Threshold interval in A

pdb <- read.pdb(nfi) #read PDB file from RCSB online database

VH.inds <- atom.select(pdb,chain="H",type="ATOM") #Select only atoms from VH domain
VL.inds <- atom.select(pdb,chain="L",type="ATOM") #Select only atoms from VL domain
#Warning: each PDB file has different names for the chains, change the letter assigned in each
#case

VHVL.inds <- combine.select(VH.inds,VL.inds,operator="+") #Combine both variable domains

# # #Generate contact map for each threshold
#Define variables as list
cm.mg <- list()
contacts <-list()
D <- list()
for (i in thres) {
cm.mg[[i]] <- cmap(pdb,inds=VHVL.inds,dcut=i,scut=0) #function to construct contact map
#dcut: cutoff distance value, scut: cutoff neighbour value
dime <- dim(cm.mg[[i]])[c(1)] #dimension of contact matrix
contacts[[i]] <- which(cm.mg[[i]] !=0, arr.ind = T) #obtain indices where there is a contact
new <- read.table(paste(nfi, "txt", sep=".")) #read table of corresponding indices according to
#AHo numbering scheme. Warning: a text document with new indexes from ANARCII is needed for
#each PDB
new?2 <- new[c(1:dime),c(1)] #transform new indexes from list to integer
if (dim(cm.mg[[i]]) !'= dim(new)) {
print("different length between old indexes and new indexes")
break #Check all corresponding indexes are given, according to the length of contact matrix
b
old <- 1:dime #select old indexes
#Change from old indexes to new indexes
contacts[[i]][contacts[[i]] %in% old] <- new2[match(contacts[[i]], old, nomatch = 0)]
D[[i]]=matrix(0,nrow=298,ncol=298) #Initialize L x L matrix
D[[i]][contacts[[i]]]=1 #Put contacts according to new indexes
#Write contact matrix in a file with name depending on PDB ID and threshold
write.csv(D[[i]],pasteO(nfi,"_D_",i, ".csv"), row.names = FALSE, quote=FALSE)

b

# # #Calculate average contact map

#Define variables as list

read_my_files <- list()

average_my_files <-list()

for (i in thres) {
all_my_files <- list.files(pattern=paste0("_D_",i, ".csv")) #Select all files for each threshold
read_my_files[[i]] <- lapply(all_my_files, read.csv) #Read selected files
average_my_files[[i]] <- Reduce("+", read_my_files[[i]]) / length(read_my_files[[i]]) #Calculate

the average matrix
#Write average contact matrix in a file with name depending on threshold
write.csv(average_my_files[[i]],paste0("aveD_",i, ".csv"),row.names=FALSE,quote=FALSE)

¥
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R code to calculate the Pearson correlation coefficient of Z and contact map

#Code to determine the Pearson correlation coefficient of covariance matrix and average contact
#map

## #Define variables

assign("thres",seq(1.4, 50, by=.1))

aveD <- list()

contacts <-list()

threshold <- list()

r <- list()

sp <- list()

###Calculate Pearson correlation coefficient for each average contact map
for (i in thres) {
S=read.csv("covariancematrixfilename.csv") #Read file with covariance matrix
Svector <- as.vector(t(S))
Ssorted <- sort(Svector,decreasing=TRUE) #Sort in descending order all values of S
aveD[[i]] <- read.csv(paste("aveD_",i,".csv",sep="")) #Read file with average contact map
contacts[[i]] <- length(which(aveD[[i]] > 0)) #Count number of contacts in average contact map
threshold[[i]] <- Ssorted[contacts[[i]]] #Calculate threshold for such number of contacts
for (k in 1:nrow(S)) {
for (I in 1:ncol(S)) {
if (S[k,I] < threshold[[i]]) £
S[k,I1=0 #Leave only contacts above the threshold
b
b
b

S[lower.tri(S)] <- NA #delete values in lower triangular
aveD[[i]][lower.tri(aveD[[i]])] <-NA
r[[i1] <- cor(c(as.matrix(S)), c(as.matrix(aveD[[i]])),method="pearson",use="complete.obs")
#only select Non NA positions
#Pearson correlation of the two matrices
sp[[i]] <- cor(c(as.matrix(S)), c(as.matrix(aveD[[i]])),method="spearman",use="complete.obs")
#Spearman correlation of the two matrices
b
b

#Save in CSV file
write.csv(r,paste0("newfilename.csv"), row.names = FALSE, quote=FALSE)
write.csv(sp,paste0("newfilename.csv"), row.names = FALSE, quote=FALSE)

#Histogram of the covariance matrix

S=read.csv("filename.csv") #Read matrix file

Svector <- as.vector(t(S)) #Change to vector mode
hist(Svector,main="Mouse",xlab="Value",ylab="Number of occurrences", breaks=1000,
xlim=c(0,40),col="gray")#Computes histogram

Julia code to calculate the entropy
#Code to calculate the entropy of each column

## #Packages
using DelimitedFiles
using StatsBase
using Plots

using StatsPlots
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###Information entropy given by S = — ¥, p; log p;
segmatrix = inputtoascii("filename.seqs") #read MSA file and return matrix of characters
(M,L)=size(segmatrix)
Stot=[]
foriin 1:L
d=proportionmap(segmatrix[:,i]) #returns dictionary with proportions of characters
S=[1]
for p in values(d)
push!(S,p*log(p)) #Array with entropy of each amino acid character
end
push!(Stot,-sum(S)) #Array with total entropy of each column
end

Stotsorted= sortperm(Stot,rev=true) #returns indices that put the array into sorted order

writedlm("entropy_per_column_filename.txt", Stot) #save entropy of each column in txt file
writedlm("high_to_low_entropy_filename.txt",Stotsorted)
#save indices of columns from highest to lowest entropy in txt file

### Kullback-Leibler divergence
human = inputtoascii("human_filename.seqgs") #read human MSA file and return matrix of
#characters
mouse = inputtoascii("mouse_filename.seqgs") #murine MSA file
(M,L)=size(human)
(m,L)=size(mouse)
Dtot=[] #array to save total KL divergence
foriin 1:L #for each column of both MSA
#returns dictionary with proportions of characters of each column of human and murine
d=proportionmap(humanl:,i])
e=proportionmap(mouse[:,i])
D=[] #array to save KL diveregence of each character
for k in keys(d)
for | in keys(e)
if k==I #only when a character is present in both dicionaries
p=d[k] #select proportion of that character in the human dict
g=e[l] #select proportion of that character in the murine dict
push!(D,p*log(p/q)) #Array with entropy of each amino acid
end
end
end
push!(Dtot,sum(D)) #Array with total entropy of each column
end

Dtotsorted= sortperm(Dtot,rev=true) #returns indices that put the array into sorted order

writedlm("Kullback_entropy_per column.txt", Dtot) #save entropy of each column in txt file
writedim("Kullback_high_to_low_entropy.txt",Dtotsorted)
#save indices of columns from highest to lowest entropy in txt file

## #Plot

x=[1:1:298;] #columns of the MSA
y=readdIim("entropy_per_column_filename.txt")[:,1] #read file with entropy per column
#make a bar plot
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bar(x,y,xticks=0:20:298,legend=false,ylabel = "Entropy", xlabel = "Residues positions",
background_color = :ivory, color=:gray,linecolor=:gray,title="Human")
savefig("newfigurename.png") #save as png format
human=readdlm("entropy_human_filename.txt")[:,1] #read file with human entropy
mouse=readdlm("entropy_mouse_filename.txt")[:,1] #read file with mouse entropy
y=human-mouse #perform the difference of entropy per column
bar(x,y,xticks=0:20:298,legend=false,ylabel = "Entropy",

xlabel = "Residues positions", background_color = :ivory, color=:gray,
linecolor=:gray,title="Difference between human and mouse entropy")
savefig("newfigurename.png") #save as png format

#Code to calculate @=vj-hj

## #Packages
using LinearAlgebra
using DelimitedFiles

## #Parameters of the model

segmatrix = inputtoascii("exthuman_jointVHVL_AHo_final.seqs")
#Read MSA files and return matrix of characters
(M,L)=size(segmatrix)

A=0.1

Q=0.4898

M, = = posterior(segmatrix, A = A, customQ = Q)

#Mean and covariance a posteriori

invsig=inv(X) #Inverse of the covariance matrix =
(N,N)=size(invsig)

# # #Calculate h (external field)
h=[]
foriin 1:N

k=p[i].*invsigli,:]

I=sum(k)

push!(h,l)
end
hj=2*h
writedim("Hvalues.txt", hj)

## #Calculate v (interaction between positions)
x=asciitobinary(seqgmatrix) #convert to binary matrix
vseq=[]
forjin 1:M
foriin 1:N
k=x[j,il.*invsig[i,:]
I=sum(k)
push!(vseq,l)
end
end
vj=reshape(vseq, (N, div(length(vseq), N))) #divide by sequence
vf=(sum(vj,dims=2))/M #sum over all sequences to calculate average
writedlm("vvalues.txt",vf)
@=abs.(vj-hj) #absolute value of the difference v-h
Q=20
@=reshape(o, (Q, div(length(®), Q))) #reshape in blocks of 20 (each column one position)
@j=sum(@,dims=1) #sum all elements of each column



writedim("Importance_per_column.txt",vec(®j))
SortedCols = sortperm(vec(gpj)) #Sorted from least to most relevance
writedlm("low_to_high_importance.txt",SortedCols)

Julia code to study the classification performance by eliminating columns
#Code to calculate Area Under the Curve after reducing number of columns in the MSA

#Packages

using LinearAlgebra
using SpecialFunctions
using DataFrames
using DelimitedFiles
using ROCAnalysis
using Plots

###Arguments

filename_human_learning = ARGS[1] #Name of the human learning database MSA file
filename_human_test = ARGS[2] #Name of the human test database MSA file
filename_mouse_test = ARGS[3] #Name of the human test database MSA file

A = parse(Float64, ARGS[4]) #Value of A

Q = parse(Float64, ARGS[5]) #Value of Q

## #Progressively eliminate selected columns
c=readdIm("low_to_high_entropy.txt",Int64)[:,1] #read file with sorted columns
L=[1:1:298;] #length of the MSA
AUC_output=[] #array to save results
foriinL
k=c[1:i] #select columns to delete
#Learning human dataset
learnhuman = DataFrame(inputtoascii("filename_human_learning"))
deletecols!(learnhuman, k)
learnhuman=convert(Matrix,learnhuman)
#Test human dataset
testhuman= DataFrame(inputtoascii("filename_human_test"))
deletecols!(testhuman, k)
testhuman=convert(Matrix,testhuman)
#Test mouse dataset
testmouse= DataFrame(inputtoascii("filename_mouse_test"))
deletecols!(testmouse, k)
testmouse=convert(Matrix,testmouse)

###Generate new parameters

M = size(learnhuman, 1)

M, 2 = posterior(learnhuman, A = A , customQ = Q)
N = length(p)

invsig=inv()

(m,n)=size(invsig)

logdetinvsig = logdet(invsig)

# # #Calculate scores of test databases
#Scores of human dataset

Nsegsh, Lsegh = size(testhuman)
Ph=zeros(Nsegsh)
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for i in 1:Nseqgsh
X = asciitobinary(testhuman[i, :]) #converts character matrix into its binary representation
logP = prob_in_model(x, A, M, y, invsig, logdetinvsig) #returns the natural logarithm of the
#probability of the peptide in the statistical model (a Student's t distribution)
Ph[i]l=logP #array with score of each peptide of the human test dataset
end
#Scores of mouse dataset
Nsegsm, Lsegm = size(testmouse)
Pm=zeros(Nsegsm)
for i in 1:Nsegsm
X = asciitobinary(testmouseli, :])
logP = prob_in_model(x, A, M, y, invsig, logdetinvsig)
Pm[i]=logP #array with score of each peptide of the human test dataset
end

###Perform ROC analysis

r=roc(Pm,Ph) #computes statistics for evaluation of the performance of a two-class classifier.
AUC=auc(r) #calculates Area Under the Curve

push!(AUC_output, AUC) #add each new AUC to the array

end

writedim("newfilename.txt", AUC_output) #save results in txt file

## #Sort AUC values just when only 1 column was deleted each time
AUCcols=readdIm("newfilename.txt", Float64) #read file with AUC results
AUCsorted=sortperm(AUCcols[:,1],rev=true) #place in order from high to low the array’s indices
writedlm("newfilename.txt", AUCsorted) #save results in txt file

## #Plot

S=readdim("AUC_Entropy.txt")[:,1] #file with AUC according to S entropy
D=readdIm("AUC_Kullback.txt")[:,1] #file with AUC according to KL divergence
AUC=readdim("AUC_by_deleting.txt")[:,1] #file with AUC according to deletion one by one
Phi=readdIm("AUC_Phi.txt")[:,1] #file with AUC according to ¢

x=[1:1:298;] #Columns in the MSA

plot(x,S,xticks=0:28:298, yticks = 0:0.1:1, label="Information Entropy",legend = :bottomleft,
ylabel = "Area Under the Curve", xlabel = "Number of columns deleted", background_color =
:ivory) #S entropy

plot!(x,D,xticks=0:28:298,label="Kullback-Liebler divergence", yticks = 0:0.1:1, ylabel = "Area
Under the Curve", xlabel = "Number of columns deleted", background_color = :ivory) #KL
plot!(x,AUC,xticks=0:28:298,label="AUC", yticks = 0:0.1:1,

ylabel = "Area Under the Curve", xlabel = "Number of columns deleted",

background_color = :ivory) #AUC

plot!(x,Phi,xticks=0:28:298,label="hj-vj", yticks = 0:0.1:1,

ylabel = "Area Under the Curve", xlabel = "Number of columns deleted",

background_color = :ivory) #¢

savefig("newfigurename.png") #save in png format

Julia code to study the model as a function of the learning database

#Code to calculate Area Under the Curve after reducing number of sequences in the learning MSA
## #Packages

using LinearAlgebra
using SpecialFunctions
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using DataFrames
using DelimitedFiles
using StatsBase
using Statistics
using ROCAnalysis
using Plots

###Arguments

filename_human_learning = ARGS[1] #Name of the human learning database MSA file
filename_human_test = ARGS[2] #Name of the human test database MSA file
filename_mouse_test = ARGS[3] #Name of the human test database MSA file
A = parse(Float64, ARGS[4]) #Value of A

#dataset VHVL A=0.1 only VH A=0.3 only VL A=0.1

#dataset VH A=0.4

#dataset VL A=0.1

Q = parse(Float64, ARGS[5]) #Value of Q

#dataset VHVL Q =0.4898 VH Q =0.5102 VL Q =0.4286

#dataset VH Q =0.4286

#dataset VL Q =0.2250

###Reduce randomly the number of sequences in the learning database

#return matrix of characters in dataframe format

learningdata = DataFrame(inputtoascii("filename_human_learning"))
deleteseqs=[0:20:1300;] #array with range of sequences to delete from learning database
timesdelete=repeat(deleteseqgs,20) #array with sequences to delete multiple times (20)
(k,I)=size(learningdata) #rows and columns of the learning database

AUC_output=[] #array to save results

for i in timesdelete

s=k-i #Number of sequences sample must contain
reduceddata=Ilearningdata[sample(axes(learningdata, 1), s; replace = false), :] #Select randomly
#d rows

learnhuman=convert(Matrix,reduceddata)

#Read test databases

testhuman= inputtoascii("filename_human_test")

testmouse= inputtoascii("filename_mouse_test")

## #Generate new parameters

M = size(learnhuman, 1)

M, = = posterior(learnhuman, A = A , customQ = Q)
N = length(p)

invsig=inv(Z)

(m,n)=size(invsig)

logdetinvsig = logdet(invsig)

###Calculate scores of test databases
#Scores of human dataset
Nsegsh, Lsegh = size(testhuman)
Ph=zeros(Nsegsh)
for i in 1:Nseqsh
X = asciitobinary(testhuman[i, :]) #converts character matrix into its binary representation
logP = prob_in_model(x, A, M, y, invsig, logdetinvsig) #returns the natural logarithm of the
#probability of the peptide in the statistical model (a Student's t distribution)
Ph[i]=logP #array with score of each peptide of the human test dataset
end
#Scores of mouse dataset
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Nsegsm, Lsegm = size(testmouse)
Pm=zeros(Nsegsm)
for i in 1:Nsegsm
X = asciitobinary(testmouseli, :])
logP = prob_in_model(x, A, M, y, invsig, logdetinvsig)
Pm[i]=logP #array with score of each peptide of the human test dataset
end

###Perform ROC analysis

r=roc(Pm,Ph) #computes statistics for evaluation of the performance of a two-class classifier.
AUC=auc(r) #calculates Area Under the Curve

push!(AUC_output, AUC) #Save each AUC value calculated in an array

print("($i)","($AUC)")

end

writedlm("newfilename.txt", AUC_output) #save array in txt file

## #Calculate the average

VHVL1=readdIm("VHVLfilenamel.txt",Float64) #read AUC values as matrix

VHVL1=VHVLI1[:,1] #to change to 1 dimensional array

#repeat for all n filenames: VHVLfilename2.txt, VHVLfilename3.txt,....VHVLfilenameN.txt
VHVL=hcat(VHVL1,VHVL2,VHVL3,...,VHVLN) #concatenate in one array so that each row contains
all AUC values for the corresponding size

ave_VHVL=mean(VHVL,dims=2) #calculates the mean of each row
std_VHVL=std(VHVL,dims=2) #calculates standard deviation of each row

#repeat for VH and VL

## #Plot

plot(d,ave_VHVL,yerror=std_VHVL,xticks=0:100:1300, yticks = 0:0.1:1,
label="VHVL",legend=:bottomleft, ylabel = "Area Under the Curve", xlabel = "Number of
sequences deleted", background_color = :ivory) #VHVL line
plot!(d,ave_VH,yerror=std_VH,xticks=0:100:1300,label="VH", yticks = 0:0.1:1,ylabel = "Area
Under the Curve", xlabel = "Number of sequences deleted", background_color = :ivory) #VH line
plot!(d,ave_VL,yerror=std_VL,xticks=0:100:1300,label="VL", yticks = 0:0.1:1,ylabel = "Area
Under the Curve", xlabel = "Number of sequences deleted", background_color = :ivory) #VL line
savefig("newfigurename.png") #save figure in png format

Julia code to optimize Q

#Code to optimize Q

## #Packages
using LinearAlgebra
using DelimitedFiles

###Arguments

Qrange = range(0.001,stop=0.999,length=50) #construct a range of Q values
get_norm(X) = norm(Z,2) #function to compute the p-norm of the covariance matrix
file = "filename.seqgs" #MSA filename

seqs = inputtoascii(file) #read file and return matrix of characters

seqsB = asciitobinary(seqgs) #convert character matrix into its binary representation

outnorm = open("frobnorm_¢$file.csv","w") #create file to later save the Frobenius norm
outweight = open("weights_$file.txt","w") #create file to later save the weigths

# # #Calculate Frobenius norm for each Q value
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for Q in Qrange
w = weight(segs,customQ=Q, memoize=true) # calculate weight of each sequence
writedlm(outweight, w') #save weights in file
2 = empiricalcovariance(seqsB, w) #compute empirical covariance by given weights
#write results in files
printin(outnorm, file, ",", Q, ",", get_norm(X))
flush(outnorm)
flush(outweight)
end

###Find the minimum 1-|Z|

file=readdIm("frobnorm_filename.csv.segs.csv", ',') #open file with Q and its Frobenius norm

fronorm=file [:,3] #read column with frobenius norm values

one=ones(50)

score=one-fronorm #calculate score=1-get_norm(%)

(score_min, ind_ Q) = findmin(score) #find value and position of minimum score
Qopt= Qrange [ind_ Q] #find value of Q of given index

#Results

#VH 0.4286

#VL 0.2250

Julia code to optimize A
#Code to optimize A

## #Packages

using DelimitedFiles
using ROCAnalysis
using LinearAlgebra
using SpecialFunctions

###Arguments

filename_human_learning = ARGS[1] #Name of the learning database MSA file
filename_human_test = ARGS[2] #Name of the human test database MSA file

filename_mouse_test = ARGS[3] #Name of the human test database MSA file

Q = parse(Float64, ARGS[4]) #Value of Q previously optimized

## #Study the classification performance for each A value
A_range = expl0.(range(-3.5,stop=-0.01,length=10)) #construct a range of A values
AUC_output=[] #array to save results

for A in A_range

#Generate new parameters

M = size(filename_human_learning, 1)

M, Z = posterior(filename_human_learning, A = A , customQ = Q)
N = length(p)

invsig=inv()

(m,n)=size(invsig)

logdetinvsig = logdet(invsig)

#Calculate scores of test databases
Nsegsh, Lsegh = size(filename_human_test)
Ph=zeros(Nsegsh)
for i in 1:Nseqgsh
x = asciitobinary(filename_human_test[i, :]) #converts character matrix into its binary
representation
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logP = prob_in_model(x, A, M, y, invsig, logdetinvsig) #returns the natural logarithm of the
#probability of the peptide in the statistical model (a Student's t distribution)
Phli]=logP #array with score of each peptide of the human test dataset
end
#Scores of mouse dataset
Nsegsm, Lsegm = size(filename_mouse_test)
Pm=zeros(Nsegsm)
for i in 1:Nsegsm
x = asciitobinary(filename_mouse_test[i, :])
logP = prob_in_model(x, A, M, y, invsig, logdetinvsig)
Pm[i]=logP #array with score of each peptide of the human test dataset
end

#ROC analysis

r=roc(Pm,Ph) #computes statistics for evaluation of the performance of a two-class classifier.
AUC[k]=auc(r) #calculates Area Under the Curve

push!(AUC_output, AUC) #add each new AUC to the array

end

writedim("newfilename.txt", AUC_output) #save results in txt file

###Find the best A

(AUC_mayx, ind_A) = findmax(AUC_output) #find value and position of maximum AUC
Aopt= A_range[ind_A] #find value of A of given index

#Results

#VH 0.4

#VL 0.1

Julia code to adjust MG-score
#Code to generate random sequences to correct MG-score

## #Packages
using LinearAlgebra
using DataFrames
using DelimitedFiles
using StatsBase

###Arguments
filename= ARGS[1] #MSA file

## #Calculate amino acid distribution over the whole alignment

segmatrix = inputtoascii(filename)

(m,n) = size(seqgmatrix)

all = collect(Iterators.flatten(segmatrix)) #Collect all residues

aminos = deleteat!(all, all .=="'-") #Delete gaps

d = proportionmap(aminos) #Dictionary with frequencies of each amino acid
residues = collect(keys(d)) #Amino acids characters

weights = collect(values(d)) #Amino acids frequencies

## #Replace amino acids with new distribution

aminosdict = [lAI,lCI,lDl,lEl,lFl,lGl’IHl’IIIIlKl,lLl,lMl,lNl,lPl,lQl’
'R','S','T",'V','W',"Y'] #amino acid dictionary

gapdict = ['',"_","-"] #gap dictionary
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###GAP CORRECTION: Change only positions with amino acid characters
for i in aminosdict
for kin 1:m
forlin 1:n
if i==segmatrix[k,|] #only residues (gaps are left)
#Generate random character according to given proportions
segmatrix[k,|]= sample(residues, Weights(weights))
end
end
end
end

writedlm("gap_$filename", segmatrix,’,') #save in same format of the MSA file
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