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Abstract 

Antibody therapeutics are usually developed in animals, commonly in mouse, and then they are 

humanized by Complementary-Determining Regions (CDR) grafting. Several times, this key step fails 

because of the lack of stability and/or functionality of the new antibody and the immunogenicity. 

Different efforts have been made to improve the humanization; many of them rely on the 

quantification of the humanness of the variable region. Previous researches have reported a 

statistical approach based on a Multivariate Gaussian (MG) model which successfully distinguishes 

between human and murine sequences.   

However, the strength and weaknesses of this model have not be properly studied yet, and a full 

understanding of where its efficacy comes from, and how the model could be refined to improve it, is 

still lacking. 

Here, some tests and attempts of refinement of the MG model are performed to understand if the 

resulting interaction map is related to the protein's structure, to see if the predictions can be 

improved by introducing some score corrections and to find out which are the most relevant columns 

and how the number of sequences in the learning dataset affects the classification capabilities. 

The results that we obtain are somewhat surprising: We show that no strong correlation between 

the contact map and the emerging interactions between pairs of residues from the model was found, 

the classification is still good when a much smaller learning dataset is included and gap corrections 

do not affect the predictions power. We also present different indicators to identify key positions 

and infer the Kullback-Leibler divergence as the best one.  

 

Keywords 

Antibody humanization∣ Statistical sequence analysis ∣ Multivariate Gaussian model ∣ Residue –
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Introduction 

Monoclonal antibodies (mAbs) are one of the most important classes of therapeutics with a fast-

growing market due to the potential application in a large number of diseases. However, there still 

are some limitations in the process of antibody humanization, which includes the lack of efficient 

humanization methods and the high incidence of unwanted immune responses. Over the past 

decades, antibody-based drugs have repeatedly proven their efficacy and increasing importance in a 

wide range of conditions, including viral and bacterial infections, auto-immunity and inflammation, as 

well as the induction of anti-tumor responses. As antibody technologies have evolved, the number of 

patent applications relating to antibodies has increased dramatically over the past 20 years [5]. 

It is estimated that world-wide sales of this type of drugs will be nearly $125 billion by 2020 and 

there are currently hundreds of antibody-based products in clinical development [1]. However, such 

development is a long and difficult process, prone to fail at different stages. This seriously limits the 

widespread and repeated application to treat many diseases. Due to this concern, there is an 

increasing demand for more predictive preclinical models to minimize failures in following clinical 

phase. 

One of the key steps in the preclinical stage is antibody humanization. New antibodies are generally 

developed in animal models (most commonly in mouse), but they are limited by both the high 

incidence of unwanted immune responses and the lack of adequate effectors function. Thus, it is 

fundamental to introduce mutations on the murine antibody to produce a more human-like 

sequence in order to decrease the immunogenicity [10]. 

Antibodies are globular plasma proteins and produced by cells of the immune system known as B-

lymphocytes. They consist of four polypeptide chains: two heavy chains and two light chains joined 

by disulfide bonds to form a "Y" shaped molecule (see Fig. 1). There are two types of light chain; 

kappa (κ) chain and the lambda (λ) chain. The part of the antibody known as antigen-biding fragment 

(Fab) is the one that recognizes the antigen; while the rest of the structure, called fragment 

crystallizable region (Fc region) interacts with other proteins, such as phagocytes, to activate the 

immune system. 

The Fab region is is composed of one constant and one variable domain from each heavy and light 

chain of the antibody. The variable regions of antibodies consist of 4 framework regions (FRs), which 

are very conserved and 3 CDRs (also known as hypervariable regions) (see Fig. 2). In total, there are 

six loops CDR: H1, H2, H3 of the heavy chain variable domain (VH) and L1, L2, L3 of the light chain 

variable domain (VL). 

Thanks to the somatic recombination or V(D)J recombination of the immunoglobulins, a huge 

number of antibodies with unique variables regions can be generated. This variable region is encoded 

in three pools of gene segments (or subgenes) and exons: one encodes κ light chains, one λ light 

chains and one heavy chains. These subgenes are called variable (V), diversity (D) and joining (J) 

segments. By randomly combining gene segments that code for VL and VH regions, hundreds of 

different light chains and thousands of different heavy chains can be made and then pair to form 

antibodies with millions of different antigen-binding sites [16]. 
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Figure 1. Antibody structure 
Left figure retrieved from Topin, I. (2018, November 13). Monoclonal antibodies – all you need to know about 

antibody generation (https://www.tebu-bio.com/blog/2018/11/13/monoclonal-antibodies-all-you-need-to-know-

about-antibody-generation/). Right figure retrieved from Darling, D. Immunoglobulin. 

(https://www.daviddarling.info/encyclopedia/I/immunoglobulin.html) 

 

 

Figure 2. CDR grafting procedure 
Figure retrieved from Georgiev, I. S., Rudicell, R. S., Saunders, K. O., Shi, W., Kirys, T., McKee, K., … Kwong, P. D. 

(2014, February 1). Antibodies VRC01 and 10E8 Neutralize HIV-1 with High Breadth and Potency Even with Ig-

Framework Regions Substantially Reverted to Germline (https://www.jimmunol.org/content/192/3/1100)  

 

https://www.tebu-bio.com/blog/2018/11/13/monoclonal-antibodies-all-you-need-to-know-about-antibody-generation/
https://www.tebu-bio.com/blog/2018/11/13/monoclonal-antibodies-all-you-need-to-know-about-antibody-generation/
https://www.daviddarling.info/encyclopedia/I/immunoglobulin.html
https://www.jimmunol.org/content/192/3/1100
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CDR1 and CDR2 are found in the V segment and CDR3 includes some of V, all of D and J regions. The 

CDRs are in direct contact with the antigen, whereas the FR regions support the binding of the CDR to 

the antigen and help to stabilize the overall structure of the variable domains. To improve its 

stability, the FR regions have less variability compared to the CDR [17]. 

Nowadays, one of the initial and well-known methods for humanization involves Complementary-

Determining Regions (CDR) grafting (see Fig. 2), where a functional antigen-binding site from a non-

human “donor” antibody is grafted onto a human “acceptor” antibody, meaning CDRs are combined 

with human Framework Regions (FR) sequences [5]. In this approach, the hope is that the 

combination of human FRs with the original murine CDRs will result in an antibody (Ab) that still 

maintains its stability and activity, but it is tolerated by the human immune system. Most of the 

times, it is not entirely successful and researches must try further mutations, until an antibody with 

the desired properties is identified. In conclusion, available methods are time demanding and their 

predictions are hard to assess [6]. 

These humanization techniques also can lead to a loss in antibody affinity and/or specificity because 

of inaccurate definition of the CDR sequences, incorrect choice of the human framework scaffold 

used for loop grafting or wrong identification of residues from different species. 

Different attempts have previously been made to determine a humanness score of the variable 

region sequences of antibodies such as H-score, germinality index, G-score and T20 score [11-14]; 

which can be a helpful tool during the antibody drug development process. For a rational design of a 

humanized sequence, some reliable quantity indicating how much a given sequence is human-like is 

mandatory. 

In general, such scores are based on "one-site" properties, as for instance, the similarity of the given 

sequence to sequences from a human dataset, where the "similarity" is defined in terms of the 

number of mutations (i.e., the "Hamming distance") between sequences. However, the necessity of 

"backmutations" in the humanization pipeline, from a more human-like sequence backwards 

towards the original sequence, to cope with stability/aggregation/immunogenicity problems, 

suggests that correlations between pairs of residues at different positions should be taken into 

account, and correlated mutations at pair of sites, instead of independent ones dictated just by the 

similarity, should be performed in order to improve the humanization process. 

This prompts for the study of the probability distribution of the human sequences, a task that 

recently has been addressed in the field of structural biology, when trying to infer a protein contact-

map from the multiple sequence alignment of a family of similar proteins. Indeed, several global 

statistical inference approaches have emerged in the last years to predict residue contacts from 

sequence data: direct-coupling analysis, sparse inverse covariance estimation (PSICOV) and 

algorithms based on pseudo-likelihood maximization [7,8,9,15]. 

In every case, exact inference approaches are time demanding; an alternative way was proposed 

based on a Multivariate Gaussian Modeling, in which and practically out of reach; the discrete amino 

acid variables are replaced by continuous Gaussian variables [3,4]. The statistical model is a 

multivariate Gaussian distribution whose parameters are the mean and the covariance N(μ, Σ).  
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The input is a multiple sequence alignment (MSA) consisting of M homologous sequences of length L 

and is converted into a M x (QxL) matrix, being Q the 20 possible different amino acids. The residues 

are defined by a binary alphabet {0, 1}, 1 if the amino acid is present and 0 if not (thus gaps are 

represented as all 0) (Figure 3). In that way, each position of the MSA is defined by small real-valued 

vectors.  

 

Figure 3. Binary representation of a sequence 
Example of the encoding of a sequence is fasta format to it binary representation.  For simplicity, only an alphabet 

with Q=3 is considered. In this research, Q=20 and L=298. Figure retrieved from Baldassi, C., Zamparo, M., Feinauer, 

C., Procaccini, A., Zecchina, R., Weigt, M., & Pagnani, A. (2014). Fast and Accurate Multivariate Gaussian Modeling 

of Protein Families: Predicting Residue Contacts and Protein-Interaction Partners. PLoS ONE, 9(3). 

 

Being M the total number of sequences, each sequence denoted as x, the empirical average and 

covariance are: 

  ̅   
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where wm=1/nm represents the weight of each sequence.  
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nm is the number of sequences whose similarity     with sequence m is above the threshold   . The 

threshold parameter Ω is determined by the value that maximizes the Frobenius norm of    . 

However,     is typically not invertible due to the low number of sequences. To estimate proper 

parameters, a Bayesian inference method is used, which needs the introduction of a prior 

distribution over μ and Σ.  It is assumed that each of the M sequences in the databases is drawn from 

a normal distribution and a Normal Inverse Wishart prior distribution for the parameters μ,Σ, so a 

final posterior parameter are derived as: 
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〈 〉               ̅  

〈 〉                ̅          ̅       ̅         

where   and U are the mean and covariance estimates of a priori uniformly distributed sample and 

the parameter   determines the contribution of the prior. 

Based on this model, a new method using a multivariate Student distribution was developed to 

define a “humanness score” (called MG score) that is able to distinguish between human and murine 

variable regions [18].  

   |      (
 

    
    〈 〉     (   
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being y any given sequence and X the database of sequences. The MG score is defined as the 

logarithm of this probability density. 

The results obtained were very promising, since the method outperformed the others in 

classification, and provided reasonable results in the humanization task. However, at present it is not 

clear if the "interaction" (i.e. the precision matrix Σ-1) found have a structural meaning, which are the 

most important columns or the most important interactions or how the number of sequences in the 

learning dataset affects the results. The main objective of the project is to analyze in more detail the 

above issues. 

Hypothesis and objectives 

Correlation between the contact map and model covariance 

One of the most important issues in antibody humanization is to produce a peptide with a solid and 

stable structure. The prediction of the future humanized antibody’s structure and the knowledge of 

which residues are in contact are very valuable to be successful in the process.  

On the other hand, assuming that the human antibody sequences are extracted from a Multivariate 

Gaussian Distribution implies that the inverse covariance matrix Σ-1 plays the role of a kind of 

interaction between pairs of residues of different type at different positions. In the MG approach, 

such interactions are inferred from the correlations observed between pairs of residues, and the 

latter might be due to very different causes: physical (i.e. structural) proximity, interaction with the 

antigen (epitope), phylogenic rules (involving the way the antibodies sequences are generated at the 

gene level), etc. 

So, it is not clear how much structural information is contained in the inferred Σ matrix and if the 

latter can be understood in terms of the protein contact map. Thus, the first specific objective is to 

study the correlations between the covariance or interaction matrix, with the average antibody 

contact maps, i.e. the matrix of contacts between residues in known antibody structures, to see if 

and how much the inferred interaction matrix reproduces the physical interactions. 
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Identification of key positions 

The second aim consists of discovering which positions from the MSA are more relevant. It is 

reasonable to think that the columns in the alignment do not equally contribute to the performance 

of the model in the classification or humanization tasks.  Actually, since the latter is difficult to assess 

quantitatively (the quality of a humanized sequence is ultimately determined just by the 

experiments), we focus on the former task.  

Therefore, the goal is to identify how many and which residues in the sequences are the most 

relevant to discriminate between the human and murine classes. To do so, we consider a series of 

quantities that could explain the relevance of the different columns in the classification task. The first 

of these indicators that we consider is symbol entropy. 

It is expected that the columns in highest entropy would play the most important role in the 

prediction of the MG model. Asti et al. [3] eliminated columns progressively from the highest entropy 

(variability) to the lowest entropy and observed that such predictive power stayed constant until only 

the 60 more variable columns were used. The same method will be followed.  

Other quantities that we will consider are the difference between murine and human distributions 

and the average intensity of the interaction on a certain position. 

 

Study of the importance of the dataset 

The next purpose is to study the classification performance of the model as a function of the size of 

the learning database. Nowadays, the number of antibody’s sequences available is still limited.  

Moreover, one of the issues seen in the model is a possible overfitting of the learning dataset [18], 

since the number of sequences is very low, so it is appealing to study how the predictive power of 

the MG model changes with the size.  

On the one hand, the aim is to find the number of sequences of the variable domain needed to 

successfully separate the two categories. It is expected that the more sequences are used, the better 

the classification performance will be as more information is gathered. 

On the other hand, light and heavy chains repertoires are usually only separately available because 

they are translated into different mRNA molecules. Consequently, it is difficult to match both 

domains and a huge number of sequences were removed in the current VHVL learning dataset to 

avoid false partnerships [18]. The next objective is to study how well the model behaves with larger 

datasets consisting of only VH or VL regions. 

 

MG-score correction 

The MSAs that have been used in the model, and mostly any MSA, contain numerous gaps, which 

could affect the efficiency of the statistical model. On average, the proportion of gaps in all datasets 

used in the current project is 0.25.  

The aim is to determine the error produced by them, following the same methodology as Asti et al. 

[3] and how much they influence the MG score and the final performance classification. It is expected 

that somehow the score will be affected.  
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Methods 

Available materials and datasets 

The initial point is to consider a multiple sequence alignment (MSA), where each row represents a 

different homologous sequence of the variable domain (combined VH and VL regions) of antibodies. 

Databases are the same as in Ref [18] and consist of 1,309 VH-VL human sequences and 373 VH-VL 

murine (Mus musculus) sequences. Only the human learning database is used for the performance 

classification. The test database includes 1,388 VH-VL human sequences and 1,379 VH-VL murine 

sequences. In all databases, according to the AHo numbering [24] the VH region corresponds to 

residues 1-149 and the VL region to residues 150-298. In addition, to increase the statistics, we 

consider also two other human datasets of only VH domain (7,720 sequences) and only VL domain 

(3,723 sequences) again collected in [18]. These two datasets contain the sequences used for the 

VHVL dataset plus the sequences that did not match between the two and were removed for the 

combined dataset.   

 VH VL 
Seq 1 -----------------------AASG-FTFRS-----YWMTWVRQASGKGLE 

WVANIKQD---GSDKYYVDSVKGRFTISRDNAKNSLYLQMNSL 
RAEDTAVYYCARSGIVLVPA-------------APGLYYMDVWGQ-------- 

----MTQSPDSLAVSLGERATINCKSS—QSVLYSSNNKN 
YLAWYQHKPGQPPNLLIYW--------ASTRESGVPDRFSG 
SGSG--TDFTLTISSLQAEDVAVYYCQQYYS----------------- 
------TPYTFGQGTKLEIK- 

Seq 2 ----------EVKKPGASVKVSCKASG-YTFTN-----YYIYWVRQAPG 
QGLEWMGIINPS---GGSTSYAEEFQGRVTLTRDTSTSTVYME 
LSSLRSEDTALYYCARDFQAYY-----------------RYGYLYAWGQG 
TLSSVSS 

------P-PSVSGSPGQSVTISCTGTS-SDVGG----
YNRVSWYQQPPGTAPKLMIYD--------VSYRPSGVPD 
RFSGSKSG—NTASLTISGLQTEDEADYYCSSYTS 
S----------------------SLYVFGTGTKVTVL- 

Seq 3 EEQVVES-GGGFVQPGGSLRLSCAASG-FTFSP-----
YWMHWVRQAPGKGLVWVSRINS----
DGSTYYADSVKGRFTISRDNARNTLYLQMNSLRAEDTAVY 
YCARDRYY----------------------GPEMWGQGTMVTVSS 

DVVMTQSPLSLPVTLGQPASISCRSS--QSLVYSD-
GNTYLNWFQQRPGQSPRRLIYK--------
VSNRDSGVPDRFSGSGSG--
TDFTLKISRVEAEDVGVYYCMQGTH-----------------------
WPLTFGGGTKVEIK- 

Seq 4 -----ES-GPTLVKPTQTLTLTCNLSG-FSLSTS---
GVSVGWIRQPPGKALEWLALIYW----
DDDKRYSASLKSRLAITKDTSKNQVVLRMSNMDPADTGTYF 
CAHSWGL----------------------GFDFWGQGTLVTVSS 

----TQSPSSLCASVGDRVTITCRAS--QSIS------
SYLNWYQQKPGKAPKLLIYA--------
ASSLQSGVPSRFSGSGSG—TDFTLTISSLQPEDFATYY 
CQQS----------------------------Y----------- 

Table 1. Example of sequences of the dataset 
Example of four sequences of the multiple sequence alignment of the VH-VL human test dataset. The total length of the 

alignment is 298: VH 1-149 and VL 150-298.  

 

For convention, the following characters will be used: Q refers to the number of different amino 

acids (Q=20), M to number of sequences (peptides), L to the length of the sequences (L=298 for the 

VH-VL combined, L=149 when one variable domain) and N to the number of binary elements in each 

sequence (N=LxQ). Each column (L) corresponds to the length of the sequence according to the 

residue numbering scheme AHo. 

Julia codes with functions to generate the MG model and score sequences according to it were 

written by Clavero-Álvarez et al [18]. All the other codes used for the analysis presented in this report 

were written by myself, using Julia version 1.0.3 [2], when speed was an issue, and R version 3.5.2 

[22], when the availability of specific libraries for bioinformatics analysis, still not present in Julia, 

were crucial. The codes are provided in the appendix.   
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Correlation between the contact map and model covariance 

The first objective is to study residue correlation using the parameter covariance matrix  Σ generated 

by the multivariate Gaussian distribution  N(µ, Σ) [4,18].  

Using the available code from Ref [18] and using the same values for the parameters λ (determining 

the contribution of the prior) and Ω (reweighting of the sequences in the learning datasets, to reduce 

biases: see [3,18]), we obtain the most likely estimation of the parameters µ, Σ in the Multivariate 

Gaussian Distribution N(µ, Σ).   

In particular, for the combined VHVL case, the matrix Σ is estimated from the observed covariance 

matrix computed from the MSA of the learning database, having a 5960x5960 dimension (LQ x LQ = 

N x N).  

Its inverse (Σ-1), i.e. the precision or interaction matrix, represents the effective interactions that 

generate the observed distribution: indeed, its element ρ, τ with ρ =(i-1)*Q+ α and τ =(j-1)*Q+ β, 

represents the interaction between a residue of type α at position i and a residue of type β at 

position j, being α, β =1,...Q and i,j=1...L. In order to study how these interactions compare with the 

residues contact map, we need to reduce to a LxL matrix, that in some way accounts for the different 

species that can be found at any site. To do so, the Frobenius Norm (FN) of the inverse of the 

covariance matrix (Σ-1) is computed as described in [8],  

 

  ‖   
  ‖

 
  √∑    

        

 

     

  

so that a single score is obtained for each Q x Q block and the final matrix S has a dimension L x L. To 

simplify the comparison with the contact map, the diagonal and the lower triangular were set to zero 

so that the matrix contain only one value per pair of different residues.  

These steps were implemented using Julia version 1.0.3 [2] (code is provided in the Appendix) for 

each MSA (human and murine).  

In order to see if S contains some structural information, we need to compare it with a matrix that 

describes structural interactions. However, it is expected that every sequence in the database has its 

own (unknown, in most cases) structure, with small differences from one another, so it is pointless to 

choose a given structure and calculate precisely what energy would have a particular sequence 

adopting it, since this does not account for the structural adjustments that would affect the energy. 

On the contrary, it is better to use a coarse grained description of the interactions, as provided by a 

contact map. To this end, an average residue-residue contact or distance matrix  ̅ is calculated using 

56 PDB structures that contain the VH and VL regions (Table 2), yielding n=58 VH-VL sequences in 

total, from the Protein Data Bank [19]. In all cases, the VH and VL sequences are assigned as different 

chain identifier, so they were combined to construct the VHVL contact map.  
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The expression for  ̅ reads: 

 ̅   
 

 
 ∑  

 

   

  

where D is the 298x298 contact map matrix obtained from the PDB file of each sequence as 

described in the following. 

The PDB file of each antibody contains the coordinates of all its atoms, so it is easy to calculate a 

contact map, i.e., a matrix C whose elements Cij are 1 if two atoms from i and j are closer than a given 

threshold d0, and 0 otherwise. However, residues indices are challenging to deal with, since they 

refer to the residue position along the sequence of each chain in the PDB file, and of course, they do 

not contain gaps.  

Hence we generated two separate VH and VL fasta files with 58 sequences and they were aligned in 

ANARCI [21] to create a correspondence between the old (own PDB ID numbering) and the new 

indexes (AHo numbering scheme). Then, they both domain were combined so that there is a unique 

table of residues indices for each PDB. Thereby, having a correspondence between the PDB indexes 

(“old”) and the indexes in accordance with AHo numbering (“new”): inew = f(iold), the LxL matrix D 

can be initialized to the zero matrix and then filled in by setting Di_new,j_new = Ci_old,j_old.  

Since for each protein the contact matrix D is composed of 0 and 1, the final average contact matrix 

 ̅  satisfies      ̅     . 

The contact matrix  ̅ depends on the threshold d0 defining the contacts and was calculated for 

different contact thresholds: from 1.4 to 50 Å by 0.1 of difference (these are the cutoff distance 

values below which atoms, in this case alpha carbon atoms, are considered in contact). Such 

thresholds were selected because below 1.4 no less than 20 contacts are observed and the maximum 

was calculated using the software PyMol [20] to determine an approximated maximum distance 

between residues:  at d0=50 Å, basically all pairs of residues are in contact, so nothing changes upon 

further increasing the threshold. 

To properly calculate the correlation between the S and  ̅ matrix, another subtle technicality should 

be addressed: by construction, S will be a full matrix, with few (or none) null elements. On the other 

hand, depending on the distance threshold d0,  ̅ can be a more or less sparse matrix. In order to 

avoid biases on correlations just due to the increase of the non-zero elements, we proceeded as 

follows: for each  ̅, the number of non-zero elements c ( when  ̅     )  was counted. Then, the c 

largest values of the Frobenius matrix S (see Fig. 4) were maintained and the rest of the elements of 

the matrix converted to 0. These contact map matrices were obtained in R program [22] using the 

package Bio3D [23] (code is provided in the Appendix).   

The correlation coefficients between the human and murine S and all average contact matrices  ̅,  

was calculated in R using the Pearson and the Spearman methods (code is provided in the Appendix). 

Only the upper triangular of all matrices are considered in order to have 1 unique value per pair of 

residues. The results are reported in Table 4. 
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PDB ID structure 

1A14 1I3G 1OAR 4CKD 

1A6U 1FO0 1N4X 2YSS 

1A7N 1FVC 1NMC 3DUR 

1AP2 1I8I 1QNZ 4LLV 

1BVF 1IC4 1UA6 4LRN 

1BVK 1J1O 1VFA 4M8Q 

1BVL 1J05 1WZ1 4M62 

1C08 1JHL 2A0L 4OB5 

1DL7 1JV5 2DQE 4QXT 

1DLF 1KB5 2DQF 5AYU 

1DQL 1KIP 2EKS 43C9 

1DSF 1MFA 2GSG 3DUS 

1EZV 1MQK 2OTU 1DVF 

1FGV 1MVU 2UZI 1QFW 
Table 2. List of PDB structures analyzed 

The 56 PDB IDs from the Protein Data Bank (https://www.rcsb.org/) used to generate an average contact matrix. The search 

was done by the filter Fv, which corresponds to the variable fragment of the antibody. All of them contain 1 VH sequence 

and 1 VL sequence, except 1DVF and 1QFW entries, which include 2 sequences of each variable domain, yielding in total 58 

VH-VL sequences.  
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Figure 4.Distribution of the values of the FN of Σ-1 in the human and murine sequences. 
Histogram with the distribution of the values of the inverse of the Frobenius Norm (FN) of the covariance matrix. It 

is calculated based on the parameter of the Multivariate Gaussian (MG) model covariance matrix Σ using the 

learning human and mouse database respectively, then performing the Frobenius Norm (FN) of its inverse (Σ-1). Only 

the upper triangular matrix is left to avoid duplicated values. Maximum FN values are 53.16 in human sequences 

and 487.03 in murine sequences, but histogram has been cut because the large majority of the values are much 

lower. Peaks at 2 in human and at 17 in mouse corresponds to FN values between two gap positions.  
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Identification of key positions 

To analyze the importance of the columns of the MSA in the classification of human and murine 

sequences, we formulate the following questions: what are the columns whose removal most affect 

the classification effectiveness? Can such columns be identified independently, just based on some 

statistical properties? To translate these questions into a quantitative criterion, we use the Area 

Under the Curve of the Receiver Operating Characteristic curve as a measure of the goodness of a 

classification. Following Ref [18], we define as "positive" instances the human sequences in the test 

database, and "negative" instances the mouse sequences. So, a "true positive" prediction will 

correspond to a human sequence correctly predicted as such, while a "false negative" will represent 

a human sequence predicted as murine by the method, and so on. From these quantities, a ROC 

curve in the (TPR, FPR) plane can be drawn (see Fig. 5). The bigger the area under the curve, and 

close to 1, the better the performance of the classifier is. The column properties that we want to 

relate with the AUC are the site entropy, the Kullback-Leibler divergence between murine and human 

empirical distributions and "energy bias" at each position, as defined below. For each indicator, we 

sorted the columns from the least to the most important and deleted them following this order, 

progressively reducing the MSA length. Each time a new column was removed from the learning and 

test datasets; the posterior parameters of the model µ and Σ were generated again, without 

changing the values of the parameters λ and Ω.  

 

Figure 5. Example of a ROC curve 
Figure retrieved from https://scikit-learn.org/stable/auto_examples/model_selection/plot_roc_crossval.html.  It is a  

two-dimensional graph in which the false positive rate (FPR, proportion of murine sequences incorrectly considered 

as human) is plotted on the X axis and the true positive rate (TPR, proportion of human sequences correctly 

classified as human) is plotted on the Y axis. Each point represents a TPR/FPR corresponding to a particular 

threshold. The higher the Area Under the Curve (AUC), better the model is at predicting; AUC=1 represents the 

perfect test. The dashed red line in the diagonal represents the ROC curve of a random predictor (AUC=0.5).  

 

 

https://scikit-learn.org/stable/auto_examples/model_selection/plot_roc_crossval.html
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Once the posterior parameters of the model are calculated, the MG-score of each sequence of the 

test datasets are determined, yielding two vectors with the scores values of the human dataset 

(M=1,388) and the murine dataset (M=1,379). This score is defined as the logarithm of the 

probability density [18]. According to whether such scores are below or above the threshold score 

found in Ref.[18], the sequences are classified as murine or human, and  we can assess whether such 

predictions are True Positive, False Positives, True Negatives or False Negatives. 

To analyze the performance classification, a receiver operating characteristic (ROC) curve is created 

upon varying the threshold score and the Area Under the Curve (AUC) is used to compare the 

different ROC curves. All calculations were made in Julia version 1.0.3 (code is provided in the 

Appendix). Thus, in the end, we have a curve in the plane (number of deleted columns, AUC), 

indicating how much eliminating columns according to the proposed observable reduces the 

classification power of the method. 

Naive (“teleologic”) approach 

Our first approach was simply to investigate which column of the 298 caused, upon removal, the 

smallest decrease in the AUC (or possibly, also an increase), remove it, then finding which of the 297 

left causes the next smallest decrease upon removal, and so on. This procedure would yield a smooth 

curve that, possibly after a small increase, would decay without noise or bumps, by construction. 

Unfortunately, this approach resulted to be very expensive computationally, since it involves 

calculating hundreds of ROCS before removing any column, and each ROC involves many calculations 

with different threshold scores, between human and murine. 

So we used a different approach: we calculate at the beginning which column causes, upon removal, 

the smallest decrease in AUC, which one causes the second smallest, and so on, and then we remove 

them in this order, without calculating the AUC again. 

Site entropy 

The entropy of each column was defined by the information entropy (S) function: 

  
   ∑  

      
 

 

 

where   
  is the frequency of each amino acid character i that appears in columns α of the learning 

MSA.  

Kullback-Leibler divergence 

The relative entropy or Kullback–Leibler divergence (DKL) of each column was calculated as: 

   
   |    ∑  

 

 

 

   
  
 

  
  

where   
  is the frequency of each amino acid character i in columns α of the human MSA and   

  is 

the frequency of each residue i in columns α of the murine MSA. 
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Energy bias 

Notice that the DKL divergence is a quantity that depends on both the human and the murine learning 

datasets, while the entropy depends only on the human one. Another quantity just dependent on the 

human dataset is the energy bias, defined as follows. Consider that the interaction can be written as: 

                                             

where hj 

    (∑          
 

) 

hj acts as an external field, being µ and Σ-1 the mean and the inverse of the covariance matrix of the 

MG model. The interaction term cannot be written as an external field influencing the symbol xj 

appearing at position j because of the quadratic term in x. However, we can give an estimate of how 

relevant is the interaction for biasing a position, upon defining the average: 

  ̅   
 

 
∑ ∑            

 

   

 

   

 

where vj is the weight of interactions between residues and x are the human sequences from the 

dataset. Introducing       ̅      ,we have that: 

     ∑           

 

   

 

i=1...L, is an indicator of the amount of bias a residue feels at position i. 

Following the same steps explained before, columns were removed from the smallest to the largest 

  .  

 

Study of the importance of the dataset 

The learning database used to study the classification consists of 1,309 human sequences. It was 

reduced progressively by 20 sequences until only 9 sequences left (66 databases of different sizes in 

total), using always the same test databases. The choice of sequences selected each time to be 

deleted was done randomly by the program.  

The parameters of the model µ and Σ were recalculated, then the MG score of the human and 

murine test sequences was estimated and the performance classification was measured by AUC. The 

whole process was done with Julia program too (code is provided in the Appendix).  
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Those steps were performed 20 times for each size of the database (overall, the average AUC and the 

standard deviation were estimated) for the complete sequences (VH-VL), just VH (residues 1-149 of 

all datasets selected) and just VL (residues 150-298) (Figure 11). In the case of just VH or VL regions, 

the optimal λ and Ω are different, thus such values were changed to the appropriate value, which 

were already calculated by Clavero-Álvarez et al [18]. 

The same methodology was repeated for the other two human learning datasets of VH and VL 

(Figures 12 and 13). Because of the larger size of those databases, they were reduced each time by 

100 and 50 sequences respectively. The parameters λ and Ω were optimized before (codes are 

provided in the Appendix), obtaining λ=0.4 and Ω=0.4286 for the VH dataset and λ=0.1 and Ω=0.225 

for the VL dataset.   

Ω is defined as the value that maximizes the Frobenius norm of     [18]. From a range of values, 

being 0 < Ω < 1, the weights of the sequences of the dataset are calculated as   
   

  
 ⁄  where 

  
   ∑           

 

   

 

The empirical covariance for each Ω: 

   
   

 

 
 ∑   

     ̅     
     ̅

 

   

    
  

The score is defined as    |   
 
| , being |   

 
|  the Frobenius norm of the empirical covariance. The 

optimal value of Ω is the one that maximizes the score. 

For λ, the optimal value was calculated by analyzing different ROC curves. Again, from a range values, 

being 0 < λ < 1, the posterior parameters of the model µλ and Σλ are generated with the optimal Ω 

previously calculated. Then, the MG-scores of each sequence of the test datasets are determined, 

yielding two vectors with the scores values of the human dataset and the murine dataset.  To analyze 

the performance classification, a ROC curve is created upon varying the threshold score and the AUC 

is used to compare the ROC curves of the different λ values. We chose the optimal value as the one 

that with the highest AUC. 

 

MG-score correction 

In Ref.[4], a correction to the MG-score was proposed in order to reduce the influence of the gaps in 

the alignment, whose presence may bias the interaction matrix. This correction consists in 

subtracting, from the plain score, the one obtained upon learning from a different Multiple Sequence 

Alignment, where the gaps are maintained at their place and all other residues are randomized. 

Following here the same recipe, all amino acids positions were changed randomly, but the gap 

positions were unaltered (code provided in appendix) according to their original frequency in the 

MSA (Table 3).  
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Amino acid  Frequency Amino acid    Frequency 

Alanine (A) 0.063 Methionine (M) 0.013 

Cysteine (C) 0.019 Asparagine (N) 0.028 

Aspartic acid (D) 0.043 Proline (P) 0.044 

Glutamic acid (E) 0.031 Glutamine (Q) 0.058 

Phenilalanine (F) 0.031 Arginine (R) 0.045 

Glycine (G) 0.105 Serine (S) 0.136 

Histidine (H) 0.007 Threonine (T) 0.082 

Isoleucine (I) 0.038 Valine (V) 0.069 

Lysine (K) 0.037 Tryptophan (W) 0.024 

Leucine (L) 0.071 Tyrosine (Y) 0.057 

Table 3. Frecuencies of each amino acid in the VHVL human sequences. 
Frequency of each amino acid in the VHVL human sequences, gaps were not included. In order to see the error 

produced by gaps, the residue positions were changed randomly with weights according to this proportion table.  

Using this modified dataset, the posterior parameters μrand and Σrand from the gap-corrected dataset 

are calculated yielding a new MG-score (that is a log probability score, see Ref [18]. 

These steps were repeated 30 times to obtain an average MG random score. Lastly, the performance 

classification was studied with the MG-score corrected: 

                                            ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  

Following previous sections, the performance classification of the MG-score and the MG-score 

corrected was also compared by considering the AUC.  

All steps were performed for each of the three learning datasets (VH-VL, VH and VL) and for the VHVL 

sequences, they also were applied to the two separate domains. Parameters λ and Ω were not 

modified; the values previously optimized were used according to each dataset.  

Results and Discussion  

Correlation between the contact map and model covariance 

Table 4 reports the Pearson (r) and Spearman (s) correlations coefficients between the average 

contact map matrix for different distance thresholds and the Frobenius norm (FN) covariance matrix 

of the statistical model and its inverse. 

In the case of the inverse of the covariance matrix Σ-1 the best correlation coefficients are obtained 

when the minimum cutoff distance used to build the contact map (Å=1.4), in which the number of 

non-null elements in the contact matrix  ̅ is 260. Yet, the correlation coefficients are low (for human 

sequences r=0.298 and s=0.297 and for mouse r=0.38 and s=0.324), which indicates the correlation is 

weak. Taking into account that the total number of residues is 298, the contacts mainly correspond 

only to first neighbors. These results suggest that Σ-1 cannot predict the residue-residue correlations 

and it is only somehow coincident because of the first neighbor contacts. 

Even if our interest was on the correlation between the interaction Σ -1 and the contact map, we also 

test the association between the latter and Σ. 
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In the case of the covariance matrix Σ, the highest correlation coefficients correspond to the 

maximum cutoff distance (Å=50). The number of non-null elements in  ̅, that is, the number of 

contacts, is quite big, exceeding 28500 contacts. In this situation, the coefficients indicate a stronger 

correlation (for human sequences r=0.671 and s=0.782 and for mouse r=0.551 and s=0.757), 

although we suspect that it might be more related to the increase in the number of no-null matrix 

elements in the comparison, than to the actual similarity of the distributions.  

Distance  
threshold(Å) 

1.4 10 20 30 40 50 

Number of 
contacts 

260 12433 23135 27792 28514 28516 

 Pearson correlation coefficients (r) 

FN Σ-1 human  0.298 0.17 0.071 0.039 0.026 0.024 

FN Σ-1 murine 0.38 0.212 0.146 0.137 0.14 0.141 

FN Σ human 0.03 0.385 0.574 0.667 0.674 0.671 

FN Σ murine  0.03 0.358 0.489 0.543 0.553 0.551 

 Spearman correlation coefficients (s) 

FN Σ-1 human 0.297 0.043 0.09 0.09 0.084 0.085 

FN Σ-1 murine 0.324 0.12 0.223 0.256 0.262 0.266 

FN Σ human 0.026 0.41 0.634 0.77 0.781 0.782 

FN Σ murine 0.023 0.343 0.566 0.729 0.754 0.757 

Table 4. Correlation coefficients between average contact matrix and the covariance matrix 
Table with the Pearson and Spearman correlation coefficients obtained as a measure of the correlation between the 

Frobenius norm (FN) covariance matrix of the statistical model and the average contact map for different thresholds 

created with PDB structures. All correlations are statistically significant, with p-values less than 0.5. Only the upper 

triangular matrices were used to calculate the correlation. Cutoff distances values to consider alpha carbon atoms in 

contact were calculated from 1.4 to 50 Å by 0.1, but only 6 thresholds are shown. This cutoff distance value below which 

atoms are considered in contact. The number of contacts corresponds to the number of elements different from 0 in each 

average contact map matrix D.  

Our results are in line with those in Asti et at. [3], where the authors were not able to predict any 

structural information with the MG model again in the case of antibodies.  Baldassi et al. [4] used 

also the Frobenius Norm in the MG model to predict residue-residue contacts and they obtained very 

good results, but the average number of sequences used in their alignment (more than 30,000) could 

affect the difference in results compared to the current <M>= 841. Another significant difference is 

that they study the contacts in a variety of protein families. Because of the nature of the variable 

region of antibodies, the high variability in the CDR, the residue-residue contacts could be more 

difficult to predict based on sequence information only. 

Other explanation of not being able to predict contacts is the relatively high presence of gaps in the 

MSA (average proportion of gaps being 0.25), already been discussed how they can affect in the 

contact map prediction [29].  Authors explain in their work that when a gap correction term is 

applied in the model or when they do not include the inferred couplings involving gaps in the final 

scoring of the coupling matrix Σ-1, the accuracy of contact prediction significantly increases.  
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Relation between site properties and classification power 

We move now to the study of the importance of the columns in the classification task, using the area 

under the ROC curve as a measure of the goodness of the prediction. 

As explained in Methods, our strategy is to remove the columns according to an order dictated by 

the value of some observable and see how this affects the AUC. 

Naive (“teleologic”) approach 

As explained in methods, in this approach the columns are ranked according to increasing values of 

the quantity δ = AUCbefore_column_removal – AUCafter_column_removal (that may also be negative). Then, 

they were removed according to such ranking. Fig 9 reports the results.  

There are several comments that we might do: first, we observe that the fact that we do not 

recalculate the rank after each removal (time consuming, as explained in the methods) does not 

affect the results too much. Indeed, we see a rather smooth curve, with very few and small 

irregularity. If we had adopted the "correct" removal method, by definition the curve would have at 

most one maximum.   

Second, the prediction power remains more or less constant compared to the AUC value obtained 

when all columns are used in the MG model (AUC=0.966) until it reached a maximum value of 0.982 

when only 66 columns are left.  Only a few columns, which most of them are either conserved 

residues or located in the VHVL surface, as will be explained later, are enough to obtain a good 

classification.  

Third, a large number of the columns that even slightly improve the performance when removed 

correspond to the CDRs regions, most in VH: 17 of the top 20 less relevant columns are located in the 

CDRs. This indicates that CDRs regions negatively affect the correct classification of the two classes.      

Fourth, the number of important columns is approximately only 5, when AUC is already larger than 

0.95. They correspond to the positions 45 (Shuman=0.04, Smouse=0.84), 51 (Shuman=0.43, Smouse=1.18), 167 

(Shuman=1.2, Smouse=1.73), 250 (Shuman=1.12, Smouse=1.53) and 256 (Shuman=1.55, Smouse=1.54). 

It seems quite impressive that only a few columns are required to distinguish between the two 

classes. However, a closer inspection reveals that the residues of such positions are highly different 

in each group. The clearest example is column 250: 82% of the human sequences in the databases 

consist of the amino acids E or F, while in the murine sequences those amino acids are rarely present 

and the most frequents are A and L (64%).  

To understand the structural role of the important positions, we resort to the correspondence 

between AHo numbering and Kabat numbering [27], that gives some structural information. In this 

way we notice that column 51 in the MSA corresponds to the VH residue G44 according to Kabat 

numbering, which is located in the surface of VH that interacts with VL [26]. It is one of the most 

critical residues in the dimer interface [24]. In the antibody humanization process, the dimer 

interface residues must admit that any VL domain can combine with any VH domain to establish a 

functional and stable structure.  
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Column 45 refers to the VH residue R38 and it is also located near the VH-VL interface. Both are 

positioned in the framework region between CDR H1 and CDR H2. Critical residues in the interface of 

the two variable domains are frequently highly conserved and it is a common grafting strategy to 

maintain such residues because they affect the orientation of the region [28].      

Column 256 (107 in VL region in AHo numbering) refers to the VL residue 89, it is located in antigen 

interface [24] and is an important residue in the grafting process because it interacts with a crucial 

residue in CDR L1 [28]. It is a structurally conserved amino acid according to [30]. 

Column 167 (position 18 in VL according to AHo numbering) corresponds to the VL residue R18. It is 

situated in the first FR region. Column 250 (101 in VL in AHo numbering) refers to the VL residue 83 is 

located in FR3b. In the case of these two columns, no structural or functional relevance was found. 

After finding in this section a list of columns, whose ordered removal increasingly affects the 

classification capabilities of the method, we try to relate the classification relevance of these columns 

with other independent observables to understand if there is a way to predict when and why a 

column is relevant for the classification task. 

In particular, we consider the site entropy, the relative entropy (Kullback-Leibler divergence) and the 

"energy bias" defined in Methods. 

Site entropy 

Following [4], we start by considering the values of the information entropy      ∑   
 
    

 

 
 ), 

being i the specie, of each column that are reported in figure 7 with the top ranking positions in Table 

5. 

We observe that the majority of the most entropic columns are located in the CDRs regions 

especially in CDR3 (in VH located in positions 107-138 and in VL positions 257-287) following by CDR2 

(58-68 and 207-217) (Figure 7) as expected because they are the hypervariable regions, where the 

antigens bind to. Of these regions, the one that carry the most entropy is the third CDR of the VH 

domain, which matches with previous studies saying it is the most diverse of the six regions [25]. 
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Information entropy Human 

Ranking 
Residue 
Position 

     S Ranking 
Residue 
Position 

     S 

1 112 2.85 11 135 2.38 

2 111 2.78 12 109 2.37 

3 110 2.74 13 60 2.30 

4 113 2.70 14 67 2.29 

5 57 2.58 15 61 2.29 

6 284 2.47 16 132 2.24 

7 133 2.47 17 207 2.17 

8 114 2.46 18 285 2.14 

9 134 2.44 19 59 2.10 

10 286 2.40 20 40 2.10 

Information entropy Mouse 

Ranking 
Residue 
Position 

     S Ranking 
Residue 
Position 

     S 

1 109 2.65 11 181 2.21 

2 57 2.53 12 259 2.14 

3 110 2.51 13 61 2.14 

4 111 2.48 14 40 2.11 

5 207 2.42 15 258 2.11 

6 284 2.37 16 220 2.10 

7 67 2.29 17 59 2.03 

8 112 2.25 18 134 2.02 

9 135 2.24 19 191 2.00 

10 69 2.21 20 286 1.96 
Table 5. Top 20 positions with the greatest information entropy in the human and murine database. 

Entropy defined as     ∑   
 
    

   . The maximum possible entropy is Smax=3.05, as there are 21 possible characters (the 

20 amino acids and gap). In italics, position located in CDRs. The large majority of the top positions correspond to CDR 

locations. 

 

Kullback-Leibler divergence 

The observation that, following the naive approach, the most relevant columns are those with a 

definite difference in the residues frequency between human and murine database suggests to look 

at the Kullback-Leibler (DKL) divergence as another relevant column property (Table 6), even if, at 

difference from the entropy, DKL depends not only from the human distribution, but also from the 

murine one. 

The values of the Kullback-Leibler divergence     ∑       
  

  
  , being pi the human distribution and 

qi the murine distribution of the residues, are indicated in figure 6 and the top ranking positions in 

Table 6. Contrary to the site entropy results, columns with the highest DKL values are mostly situated 

in FR regions. This suggests that such columns might play an important role in the model to 

differentiate both classes of mAbs. The figure also shows a few residues that stand out, which differs 

with the site entropy results too, where entropy distribution is more uniform. 
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Kullback–Leibler divergence (DKL) 

Ranking 
Residue 
Position 

     DKL Ranking 
Residue 
Position 

     DKL 

1 200 3.98 11 296 1.37 

2 250 2.83 12 294 1.30 

3 220 2.56 13 287 1.16 

4 12 1.71 14 261 1.16 

5 244 1.61 15 259 1.14 

6 238 1.55 16 245 1.14 

7 47 1.55 17 173 1 

8 78 1.45 18 98 0.84 

9 295 1.44 19 71 0.83 

10 297 1.42 20 20 0.74 

Table 6. Top 20 positions with the largest Kullback-Leibler divergence. 

DKL defined as ∑       
  

  
  . The human distribution pi was used as a reference. In italics, position located in CDRs. The 

large majority of the top positions correspond to FR locations. 

 

 

 

Figure 6. Kullback-Leibler divergence of each column 
DKL defined as ∑       

  

  
  . The human distribution pi was used as a reference. The columns with the highest 

divergence are 200, 250, 220, 12, 244 and 238.   CDR regions indicated in orange. The total length of the MSA is 298. 
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Figure 7. Distribution of the values of the information entropy of each column 
Entropy (S= -Σ p log p) of each column of the human and murine MSA and the difference (Shuman – Smouse). Because 

of the alphabet of amino acids (Q=20) and gaps appearing as the 21st possible character, the maximum possible 

entropy is Smax=3.05.  CDR regions are indicated in orange. The total length is 298. Positions with zero entropy are 

columns composed of only gaps in the MSA. 
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Energy bias 

As explained in Methods, the quantity     gives an information of the effective "field" acting on a 

certain residue (i.e., column of the MSA), even if its intensity will indeed depend on the detailed 

amino-acid species that is placed at that position. A    that is small in norm means that the 

position is not very biased towards any species; a big positive     implies that the interaction term 

on average dominates over specific site-dependent preferences towards a residue, acting as an 

external field, while a big negative    implies that the latter term (the "external field") dominates 

over the interaction one. 

In table 7 and Figure 8, the distribution of |  | are shown. According to this measure of the 

importance of each column, the more relevant residues are located in FR2 and FR3 of both VH 

and VL domains.  

Top |  |  columns 

Ranking 
Residue 
Position 

    |  | Ranking 
Residue 
Position 

     |  | 

1 201 6170.59 11 226 5694.80 

2 255 6141.94 12 240 5669.80 

3 249 6115.76 13 233 5659.35 

4 100 6021.36 14 242 5640.61 

5 43 5968.98 15 222 5587.93 

6 192 5879.67 16 83 5567.50 

7 253 5861.92 17 104 5554.56 

8 45 5839.75 18 229 5537.58 

9 106 5735.89 19 77 5522.72 

10 198 5713.67 20 26 5489.84 
 

Table 7. Top 20 position with the highest |  | , defined as the difference between hj (external field) and vj (interactions 

between residues).     acts as an indicator of the amount of bias a residue feels at column j. All top 20 residues are 

located in FR regions, most in FR2 and FR3 of both variable domains. 
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Figure 8. Distribution of the values of |  |  and       of each column 

   is defined as the difference between hj (external field) and vj (interactions between residues).     acts as an 

indicator of the amount of bias a residue feels at column j. CDR residues are coloured in orange. Positions with 

lowest values, located particularly in CDR correspond to columns in the MSA with only gaps. The bottom figure 

shows how the external field h prevails over the interaction term v except some residues of FR1 and CDR3 of VH 

and FR1 of VL.   
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Comparison of all indicators 

 

 

Figure 9. AUC as a function of the MSA length for the different approaches 
The total length is 298. AUC was calculated each time a new column was removed according to different indicators.  In blue, 

Area Under the Curve when the columns are removed from the lowest to the highest site information entropy. In orange, 

the order of the columns depends on the Kullback-Leibler divergence. In purple, columns were removed according to the 

obtained AUC when they were deleted. In green, the order was followed according to   ,which mean the difference 

between hj (external field) and vj (the norm of interactions between positions). The best indicator is the Kullback-Leibler 

divergence, only 2 columns are enough for AUC larger than 0.9.  

 

Fig. 9 reports the results of the drop in AUC upon removing the columns, according to increasing 

values of entropy, KL divergence, or energy bias |  |. We see that removing the columns according 

to the entropy, KL divergence or energy bias reduces the AUC faster, and none of them is optimal, in 

reproducing the "naive" approach. 

Following the information entropy order, AUC values are considerably constant (AUC > 0.9) until only 

approximately 90 columns are left, then the performance classification starts to fall significantly.  

When L ≈ 30, the model cannot longer distinguish between human and murine sequences. However, 

following the DKL results order, only a few columns are necessary to get a good AUC value. 

Specifically, with 2 columns AUC= 0.93 and AUC=0.95 when L ≈ 10. These results suggest that the 

most important columns are the ones with the highest Kullback-Leibler distance and not the ones 

with the greatest entropy.  
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Notice that two columns with the highest DKL that are able to distinguish between the two species 

are 200 and 250. The column 250 was already explained before, as it is also one of the most 

important columns detected in the naive approach. The position 200, which corresponds to the 

residue 51 in the VL domain according to AHo numbering and residue 43 in the Kabat numbering 

scheme, is located in FR2. It has been found that A43 is highly conserved and is directly in contact 

with the VH domain [25]. 

It is clear that KL divergence is much more effective than Entropy in identifying which residues are 

relevant to account for in a classification task. However, it must be noticed that it has an important 

weakness: it depends on the murine and human distribution, and it is not an intrinsic characteristic of 

the latter. This means that it could not be calculated in a classification task where we simply should 

distinguish between human and not human, without knowing the alternative species (and its 

residues distribution). On the other hand the energy bias    could be a reasonable alternative that 

just depends on the human distribution, as the entropy, but with a better performance: by following 

this approach, the MSA length has to be much larger to obtain a high AUC (AUC is close to 0.8 if L≈20 

and AUC>0.9 if L≈30). 

From the results of the naive approach, we calculate the difference in the Area Under the Curve 

when a column was removed with respect to the previous AUC value:  dAUCi = AUCi-1 - AUCi. The 

Pearson correlation coefficient between the values of dAUC of each column and Kullback-Leibler 

divergence of each column is 0.34, p value=1.45 x 10-9.  

Figure 10 suggests why the correlation is not very high, even between the KL ordering and the naive 

approach: even if the 5 most relevant residues in the latter have a substantial KL divergence, there 

are several columns with high values of KL that do not correspond to crucial residues. 

This can be further seen in Table 8, that reports the top positions (most relevant columns, the last to 

be removed in the corresponding graphs in fig 9), for the KL and Naive approach.  There are some top 

positions in common and indeed 5 of the first 7 high ranking KL residues are found in the first high 

ranking positions according to the Naive approach. However, there is no clear relation overall 

between the two ranks, and the global Spearman correlation coefficient is approximately zero, since 

low ranking positions are poorly related in the two lists. 
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Naive (“teleologic”) approach Kullback-Leibler divergence 

Ranking Residue 
position 

Ranking Residue 
position 

Ranking Residue 
position 

Ranking Residue 
position 

1 250 21 73 1 200 21 258 

2 256 22 190 2 250 22 86 

3 167 23 186 3 220 23 236 

4 45 24 228 4 12 24 241 

5 51 25 157 5 244 25 45 

6 191 26 71 6 238 26 247 

7 49 27 204 7 47 27 207 

8 290 28 145 8 78 28 32 

9 184 29 173 9 295 29 190 

10 220 30 194 10 297 30 181 

11 77 31 103 11 296 31 150 

12 238 32 187 12 294 32 286 

13 284 33 78 13 287 33 169 

14 200 34 21 14 261 34 163 

15 207 35 98 15 259 35 17 

16 47 36 166 16 245 36 218 

17 156 37 86 17 173 37 21 

18 258 38 245 18 98 38 260 

19 101 39 164 19 71 39 178 

20 170 40 13 20 20 40 164 

Table 8. Comparison between the 40 most important columns according to the method used 
In color, columns that appear in top positions in both methods. The top 7 columns of KL divergence are present in the top 

16 columns of the Naïve (“teleologic”) approach.  

 

Compared to previous researches, the outcome of the reduction of the MSA based on the entropy of 

the columns is similar to Asti et al [3]. The performance of the MG model remained the same until 

only the 60 more variable columns are left when they used a hypermutated cluster antibodies test, 

but they obtain approximately 10 important columns with a germline cluster. 

However, they compare the performance of the MG score with the neutralization power of the Abs, 

so it is related to the most entropic columns (CDR). In the present project, the performance is 

compared to the ability to differentiate human and murine classes, in which the importance of 

columns might depend not in the variability or entropy, which is higher in CDR regions, but on the 

columns located in FR regions.  

To sum up, the best method to select the positions that carry the greatest information is the KL 

divergence, since a few high-valued columns are enough to produce good classifications. However, it 

depends on two distributions and cannot be applied for generic classification human/non-human. 
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Moreover, even using the KL divergence, it is difficult to predict exactly, before performing the test, 

which columns are important. This is frustrating, because it implies that we cannot simplify the 

method using shorter MSA that disregard less relevant columns. However, this could also be taken as 

an indication that interactions between residues (and co-mutations) are indeed relevant also in 

classification, and no single-column quantity, as the ones that we have analyzed here, is enough to 

account for the changes in AUC. 

 

 

Figure 10. Correlation between Naive approach and DKL approach 
The length of the MSA is 298. In orange, Kullback-Leibler divergence values of each column. In black bars, the difference in 

the Area Under the Curve when a column was removed with respect to the previous AUC value:  dAUCi = AUCi-1 - AUCi. The 

Pearson correlation coefficient is 0.34, p value=1.45 x 10-9. 

 

Study of the importance of the dataset 

When progressively reducing the size of the learning database by 20 sequences each time, (initially 

M=1309), the performance classification remain constant until M ≈ 300 (Figure 11). If only the 

residues corresponding to the VL domain are used, the results overall are better than the VH domain. 
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Figure 11. AUC as a function of the size of the VHVL learning database 
Average Area Under the Curve (AUC) along the reduction of the VH-VL learning dataset with a total of 1,309 

sequences. Results are shown for the whole MSA (VH-VL) and for only VH and only VL. In the three cases, sequences 

are the same but only the columns to the corresponding domain are used. Standard deviations are represented by 

confidence bars. Each time, the number of sequences was reduced by 20. 

 

The results of the VH learning dataset (M=7,720) and the VL learning dataset (M=3,723) are also very 

similar (Figures 12 and 13): only when the size of the dataset is approximately 200, AUC starts to fall. 

It can be confirmed that the VL domain performs better in the classification even with a smaller 

learning dataset (Table 9). 

 

 Average Area Under the Curve (AUC) 

Number of 
sequences 

  VH-VL 
VH of VH-VL 
dataset 

VL of VH-VL 
dataset 

VH VL 

7700         -            -           -    0.925         - 

3700         -            -           -    0.923     0.971 

1300    0.966        0.923        0.97    0.923     0.97 

200    0.958         0.91       0.959      0.91    0.963 

20    0.848        0.762       0.832    0.844    0.907 
Table 9. AUC of the different learning datasets 

The number of sequences was randomly reduced and then an average AUC was calculated.  

Here only 5 different-size datasets are shown.  
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Figure 12. AUC as a function of the size of the VH learning database 
Average Area Under the Curve (AUC) along the reduction of the VH learning dataset with a total of 7,720 sequences. 

Standard deviation is represented by bars. Each time, the number of sequences was reduced by 100. 

 

 

Figure 13. AUC as a function of the size of the VL learning database 
Average Area Under the Curve (AUC) along the reduction of the VH learning dataset with a total of 3,723 sequences. 

Standard deviation is represented by bars. Each time, the number of sequences was reduced by 50. 
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In general, it seems that not many sequences in the learning dataset are necessary to perform a good 

classification while we expected a steeper decline in the prediction power.  

On the one hand, it could be related to the entropy results of the previous section. They have shown 

that there are a few columns in the MSA that are sufficient to differentiate both classes of 

sequences. Although the dataset is progressively reduced, the important columns might keep the 

crucial information for a successful prediction.  The results in the previous section could also explain 

why the VL sequences perform always better than the VH sequences even when the size of the VH 

dataset is much larger (with a size difference of 7500 sequences, VL still predict slightly better). 

Indeed, the distribution of the top columns in table 8 reveals that there are more important residues 

located in the VL domain (positions 140-298). According to the Kullback-Leibler divergence, only 6 of 

the top 20 position are located in VH (Table 6) and the top 3 most important residues depending on 

the AUC values correspond to VL (167, 256 and 250).  In the case of S and      there is no a significant 

difference in the distribution of the most relevance columns, although these two methods perform 

worse in the prediction when columns were removed in their corresponding order. 

On the other hand, we could think, based on the observed results, that the weight of the prior 

distribution   weight is greater than the empirical parameters, as reducing sequences does not affect 

significantly the prediction power. However, λ values are quite low, indicating that the empirical 

mean  ̅ and covariance  ̅ are not annulled: 〈 〉               ̅ , 〈 〉                ̅      

    ̅       ̅      . 

MG-score correction 

Applying the score correction proposed by Asti and coworkers to correct for gap effects (see 

Methods) we see that there is no considerable difference between the original MG-score and the 

adjusted score in the VHVL dataset. The performance classification slightly improves when applying 

the gap corrected MG-score for the VH sequences, but worsens a little for the VL region (Table 10). 

Overall, there is no significant difference with the gap correction. 

 Area Under the Curve (AUC) 

 VH-VL 
VH of VH-VL  
dataset 

VL of VH-VL 
dataset 

VH VL 

Original 
MG-score 

0.9658 0.9226 0.97 0.9252 0.971 

Gap corrected 
MG-score 

0.9664 0.9487 0.9674 0.9476 0.9633 

Table 10. AUC using the original and the gap corrected MG-score 

The performance classification is compared for different datasets. An average random MG-score is calculated using the 

original sequences, but changing randomly the residues and maintaining the gaps positions. Then subtract from the 

original scores the random score.   

 

In Ref [3] upon implementing the gap corrected score, the prediction of the binding affinities of the 

antibodies against a specific antigen improved. However, in this case, the aim is to improve the 

model in order to successfully differentiate human sequences from other species. As the results 

show, gaps in the MSA of the datasets do not affect the humanness score obtained with the MG 

model in terms of correct human and murine predictions. 
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Conclusions 

 

In the creation of antibody therapeutics, the antibody usually developed in mouse is humanized by 

Complementary-Determining Regions (CDR) grafting. This technique, however, still requires 

additionally mutations until it has the stability and functionality required as well as the necessary 

immunogenicity and safety. 

 

In the recent years, several attempts have been made to improve the humanization process, most of 

which requiring on some kind of humanness score. Humanness scores of the variable region have 

been proposed based on the similarity/difference between human and murine sequences. In the 

present work, we have focused on the humanness score provided by a statistical approach based on 

a Multivariate Gaussian Distribution, in which the discrete amino acid variables are replaced by 

continuous Gaussian variable.  

 

In previous tests, the MG model has proved to be better than competitors in the classification of 

human and murine sequences, and has provided promising humanized candidates.  

However, the model had not been analyzed in details, to understand what are its strength and limits. 

In the present work, we have analyzed the model to understand the meaning of the inferred 

parameters, trying to understand if it could benefit of shorter multiple sequence alignments or from 

a change in the number of sequences in the datasets, and trying to refine it with score modifications, 

to compensate for the influence of gaps. The results we obtain are interesting and somewhat 

surprising, even if they don't clarify completely what are the principal features of the model. 

 

By construction, the inverse covariance matrix Σ-1 of the Multivariate Gaussian Distribution 

represents an effective interaction between pairs of residues. To study if these interactions are 

related to physical interactions, due to the protein structure, we have thoroughly compared the 

interaction matrix with the average contact maps obtained from a set of 58 structures at difference 

distance cutoffs, as a crude representation of the structural interactions. However, the correlation 

between the interaction matrix and an average contact map generated by PDB sequences is weak. 

The relatively low number of sequences in the dataset, the distinctive variability of the CDRs and the 

high presence of gaps could be factors that affect the correlation. Even if the most likely explanation, 

already put forward in Ref. [3], is that for antibodies, the effective interactions do not reflect 

faithfully physical interactions, and are deeply influenced by other factors, related to the process of 

generation of the antibody sequence. 

Then, we resorted to the study of the importance of the different columns in the MSA, corresponding 

to different residues positions. Our goal was to understand if there are columns that emerge are 

more relevant than others, and we had to limit ourselves to the classification task, since it is much 

more difficult to quantify the performance of the MG model for the humanization task, while for the 

classification task, the Area Under the Curve in the ROC diagram, when classifying sequences from 

the human and murine test databases, is a reliable indicator. So, to analyze the importance of the 

columns of the MSA in the classification of human and murine sequences, different column 

properties were studied: site entropy, the Kullback-Leibler divergence between murine and human 

empirical distributions and "energy bias" at each position trying to understand which of them is more 

important in predicting the relevance of the columns. 
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Following a naive approach, we calculated at the beginning which column causes, upon removal, the 

biggest change in AUC, finding that the most relevant columns (only with 5 columns AUC is already 

larger than 0.95) are mostly conserved residues or located in the VHVL surface and present a clear 

difference in residue frequencies between the two classes. These columns correspond to 45, 51, 167, 

250 and 256.  

On the contrary, we observed that the majority of the most site entropic columns are located in the 

CDRs regions, but when we deleted the columns following this order, the model soon cannot longer 

distinguish between human and murine sequences. Therefore, these hypervariable regions do not 

carry the greatest information for classification task. 

By sorting the columns from the least to the highest Kullback-Leibler divergence and progressively 

reducing the MSA length according to this order, we notice that two columns with the highest DKL are 

already able to clearly distinguish between the two species, which are 200 and 250, located in the 

FRs of VL domain.  

Although Kullback-Leibler divergence is the most effective in identifying the relevant residues, it 

depends on the murine and human distribution, which means that it could not be calculated in a 

classification task between human and other non-human species. That is why we also proposed an 

energy bias indicator (defined as the difference between an external field term and an interaction 

term), that depend only on human distribution, as the site entropy, but performed a better 

classification than the latter. 

We also compare the order of relevance of the columns according to the two best indicators, AUC 

and Kullback-Leibler divergence, but a weak correlation was found. So, in the end we were not able 

to find columns that can be safely eliminated from the MSA for a generic classification purpose, even 

if criteria based on the energy bias (for generic classification) or KL divergence (for classification in 

just to classes) could be devised with a good expectation of classification performance. We believe 

that interactions between residues might be important in the classification and taking into 

consideration a single column is not enough to find important positions.  

Furthermore, one of the main limitations in the field is the low number of antibody’s sequences 

available so we studied the predictive power of the statistical model as a function of the size of the 

learning dataset. Surprisingly, the results show that approximately 200 sequences are enough to 

perform a good classification although a steeper decline was expected. We suspect that this is due to 

the fact that since in the end a few columns are sufficient to distinguish the two species, this reduces 

the amount of information needed so that a successful prediction is possible even when the dataset 

is highly reduced.  When independently larger VH and VL datasets are used, we verify that VL domain 

performs better in the classification, which could also be related to the most important columns, as 

the majority of them are located in VL.  

Finally, we applied a gap correction in the MG score, but, contrary to other MG score applications in 

previous researches, no difference in the correct prediction was found. Hence, even with a high 

number of gaps in the Multiple Sequence Alignment, they affect the final score but not the 

performance of the model. 
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These results are not conclusive, and prompt for more research, for instance to study the 

performance of the model in the classification task when different type of antibodies (and not just 

murine and human) are involved, and to try to  understand better  the relative role of interactions 

and site propensities as they emerge from the model. 
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Appendix 

Julia code to obtain the covariance matrix Σ of LxL dimension from a MSA file 

#Code to generate Σ-1 

 

###Packages 

using LinearAlgebra 

using DataFrames 

using CSV 

 

###Arguments 

filename = ARGS[1] #Name of the learning database MSA file 

λ   = parse(Float64, ARGS[2]) #Value of  λ 

Ω   = parse(Float64, ARGS[3]) #Value of Ω 

 

###Generate the covariance matrix Σ  

seqmatrix = inputtoascii(filename) #Read MSA files and return matrix of characters 

μ, Σ = posterior(seqmatrix, λ = λ, customΩ = Ω) #Mean and covariance a posteriori 

invsig=inv(Σ) #Inverse of the covariance matrix Σ 

 

###Compute the Frobenius Norm 

    L=298 

    Q=20 

    S=zeros(Float64,L,L) 

    for i=1:L 

        for j=i+1:L 

            for α=1:Q 

                for β=1:Q 

                    k=(i-1)*Q + α 

                    l=(j-1)*Q + β 

                    S[i,j]=S[i,j]+(invsig[k,l]^2) 

                end 

            end 

S[i,j]=sqrt(S[i,j])/Q 

S[j,i]=S[i,j] 

        end 

    end 

 

#Obtain upper triangular matrix 

for i=1:L 

    for j=1:L 

        if i > j 

            S[i,j]=0 

        end 

    end 

end 

 

###Save as CSV file 

df = DataFrame(S) 

CSV.write("filename.csv",df,writeheader=true) 
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R code to generate an average contact matrix 

#Code to generate average contact map for different thresholds of VH-VL sequence with AHo 

#numbering from PDB files 

library(bio3d) #package to analyze protein structure and sequence data 

 

###Select the variables for the contact map 

assign("nfi","1IC4") #PDB ID (the 4-character identifier), example: 1IC4 

assign("thres",seq(1.4, 50, by=.1)) #Threshold interval in Å 

pdb <- read.pdb(nfi) #read PDB file from RCSB online database 

VH.inds <- atom.select(pdb,chain="H",type="ATOM") #Select only atoms from VH domain 

VL.inds <- atom.select(pdb,chain="L",type="ATOM") #Select only atoms from VL domain 

#Warning: each PDB file has different names for the chains, change the letter assigned in each 

#case 

VHVL.inds <- combine.select(VH.inds,VL.inds,operator="+") #Combine both variable domains 

 

###Generate contact map for each threshold 

#Define variables as list 

cm.mg <- list()  

contacts <-list()  

D <- list() 

for (i in thres) { 

cm.mg[[i]] <- cmap(pdb,inds=VHVL.inds,dcut=i,scut=0) #function to construct contact map     

#dcut: cutoff distance value, scut: cutoff neighbour value 

  dime <- dim(cm.mg[[i]])[c(1)] #dimension of contact matrix 

  contacts[[i]] <- which(cm.mg[[i]] !=0, arr.ind = T) #obtain indices where there is a contact 

  new <- read.table(paste(nfi, "txt", sep=".")) #read table of corresponding indices according to 

#AHo numbering scheme. Warning: a text document with new indexes from ANARCII is needed for 

#each PDB 

  new2 <- new[c(1:dime),c(1)] #transform new indexes from list to integer 

  if (dim(cm.mg[[i]]) != dim(new)) { 

    print("different length between old indexes and new indexes") 

    break  #Check all corresponding indexes are given, according to the length of contact matrix 

  } 

  old <-  1:dime #select old indexes 

  #Change from old indexes to new indexes 

  contacts[[i]][contacts[[i]] %in% old] <- new2[match(contacts[[i]], old, nomatch = 0)] 

  D[[i]]=matrix(0,nrow=298,ncol=298) #Initialize L x L matrix 

  D[[i]][contacts[[i]]]=1 #Put contacts according to new indexes 

  #Write contact matrix in a file with name depending on PDB ID and threshold  

  write.csv(D[[i]],paste0(nfi,"_D_",i, ".csv"), row.names = FALSE, quote=FALSE) 

} 

 

###Calculate average contact map 

#Define variables as list 

read_my_files <- list() 

average_my_files <-list() 

for (i in thres) { 

  all_my_files <- list.files(pattern=paste0("_D_",i, ".csv")) #Select all files for each threshold 

  read_my_files[[i]] <- lapply(all_my_files, read.csv) #Read selected files 

  average_my_files[[i]] <- Reduce("+", read_my_files[[i]]) / length(read_my_files[[i]]) #Calculate 

the average matrix 

  #Write average contact matrix in a file with name depending on threshold 

  write.csv(average_my_files[[i]],paste0("aveD_",i, ".csv"),row.names=FALSE,quote=FALSE) 

} 
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R code to calculate the Pearson correlation coefficient of Σ and contact map 

#Code to determine the Pearson correlation coefficient of covariance matrix and average contact 

#map 

###Define variables 

assign("thres",seq(1.4, 50, by=.1)) 

aveD <- list() 

contacts <-list() 

threshold <- list() 

r <- list() 

sp <- list() 

 

###Calculate Pearson correlation coefficient for each average contact map 

for (i in thres) { 

  S=read.csv("covariancematrixfilename.csv") #Read file with covariance matrix 

  Svector <- as.vector(t(S)) 

  Ssorted <- sort(Svector,decreasing=TRUE) #Sort in descending order all values of S 

  aveD[[i]] <- read.csv(paste("aveD_",i,".csv",sep="")) #Read file with average contact map 

  contacts[[i]] <- length(which(aveD[[i]] > 0)) #Count number of contacts in average contact map 

  threshold[[i]] <- Ssorted[contacts[[i]]] #Calculate threshold for such number of contacts 

    for (k in 1:nrow(S)) { 

      for (l in 1:ncol(S)) { 

        if (S[k,l] < threshold[[i]]) { 

          S[k,l]=0 #Leave only contacts above the threshold 

          } 

        } 

    } 

   S[lower.tri(S)] <- NA #delete values in lower triangular 

  aveD[[i]][lower.tri(aveD[[i]])] <-NA 

  r[[i]] <- cor(c(as.matrix(S)), c(as.matrix(aveD[[i]])),method="pearson",use="complete.obs")    

#only select Non NA positions 

  #Pearson correlation of the two matrices 

  sp[[i]] <- cor(c(as.matrix(S)), c(as.matrix(aveD[[i]])),method="spearman",use="complete.obs") 

  #Spearman correlation of the two matrices 

} 

} 

 

#Save in CSV file 

write.csv(r,paste0("newfilename.csv"), row.names = FALSE, quote=FALSE) 

write.csv(sp,paste0("newfilename.csv"), row.names = FALSE, quote=FALSE) 

 

#Histogram of the covariance matrix 

S=read.csv("filename.csv") #Read matrix file 

Svector <- as.vector(t(S)) #Change to vector mode 

hist(Svector,main="Mouse",xlab="Value",ylab="Number of occurrences", breaks=1000, 

xlim=c(0,40),col="gray")#Computes histogram 

 

Julia code to calculate the entropy 

#Code to calculate the entropy of each column  

 

###Packages 

using DelimitedFiles 

using StatsBase 

using Plots 

using StatsPlots 
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###Information entropy given by      ∑             

seqmatrix = inputtoascii("filename.seqs") #read MSA file and return matrix of characters 

(M,L)=size(seqmatrix) 

Stot=[] 

for i in 1:L 

    d=proportionmap(seqmatrix[:,i]) #returns dictionary with proportions of characters 

    S=[] 

    for p in values(d) 

        push!(S,p*log(p)) #Array with entropy of each amino acid character 

    end 

    push!(Stot,-sum(S)) #Array with total entropy of each column 

end 

 

Stotsorted= sortperm(Stot,rev=true) #returns indices that put the array into sorted order 

 

writedlm("entropy_per_column_filename.txt", Stot) #save entropy of each column in txt file 

writedlm("high_to_low_entropy_filename.txt",Stotsorted)  

#save indices of columns from highest to lowest entropy in txt file 

 

### Kullback–Leibler divergence  

human = inputtoascii("human_filename.seqs") #read human MSA file and return matrix of 

#characters 

mouse = inputtoascii("mouse_filename.seqs") #murine MSA file 

(M,L)=size(human) 

(m,L)=size(mouse) 

Dtot=[] #array to save total KL divergence 

for i in 1:L #for each column of both MSA 

#returns dictionary with proportions of characters of each column of human and murine 

        d=proportionmap(human[:,i]) 

        e=proportionmap(mouse[:,i]) 

        D=[] #array to save KL diveregence of each character 

        for k in keys(d) 

            for l in keys(e) 

                if k==l  #only when a character is present in both dicionaries 

                    p=d[k] #select proportion of that character in the human dict 

                    q=e[l] #select proportion of that character in the murine dict 

                    push!(D,p*log(p/q)) #Array with entropy of each amino acid 

                end 

            end 

        end 

    push!(Dtot,sum(D)) #Array with total entropy of each column 

end 

 

Dtotsorted= sortperm(Dtot,rev=true) #returns indices that put the array into sorted order 

 

writedlm("Kullback_entropy_per column.txt", Dtot) #save entropy of each column in txt file 

writedlm("Kullback_high_to_low_entropy.txt",Dtotsorted) 

#save indices of columns from highest to lowest entropy in txt file 

 

###Plot 

x=[1:1:298;] #columns of the MSA 

y=readdlm("entropy_per_column_filename.txt")[:,1] #read file with entropy per column 

#make a bar plot 
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bar(x,y,xticks=0:20:298,legend=false,ylabel = "Entropy", xlabel = "Residues positions", 

background_color = :ivory, color=:gray,linecolor=:gray,title="Human") 

savefig("newfigurename.png") #save as png format 

human=readdlm("entropy_human_filename.txt")[:,1] #read file with human entropy 

mouse=readdlm("entropy_mouse_filename.txt")[:,1] #read file with mouse entropy 

y=human-mouse #perform the difference of entropy per column 

bar(x,y,xticks=0:20:298,legend=false,ylabel = "Entropy", 

xlabel = "Residues positions", background_color = :ivory, color=:gray, 

linecolor=:gray,title="Difference between human and mouse entropy") 

savefig("newfigurename.png") #save as png format 

 

#Code to calculate φ=vj-hj 

 

###Packages 

using LinearAlgebra 

using DelimitedFiles 

 

###Parameters of the model 

seqmatrix = inputtoascii("exthuman_jointVHVL_AHo_final.seqs") 

#Read MSA files and return matrix of characters 

(M,L)=size(seqmatrix) 

λ=0.1 

Ω=0.4898 

μ, Σ = posterior(seqmatrix, λ = λ, customΩ = Ω) 

#Mean and covariance a posteriori 

invsig=inv(Σ) #Inverse of the covariance matrix Σ 

(N,N)=size(invsig) 

 

###Calculate h (external field) 

h=[] 

for i in 1:N 

    k=μ[i].*invsig[i,:] 

    l=sum(k) 

    push!(h,l) 

end 

hj=2*h 

writedlm("Hvalues.txt",hj) 

 

###Calculate v (interaction between positions) 

x=asciitobinary(seqmatrix) #convert to binary matrix 

vseq=[] 

for j in 1:M 

    for i in 1:N 

        k=x[j,i].*invsig[i,:] 

        l=sum(k) 

        push!(vseq,l) 

    end 

end 

vj=reshape(vseq, (N, div(length(vseq), N))) #divide by sequence 

vf=(sum(vj,dims=2))/M #sum over all sequences to calculate average 

writedlm("vvalues.txt",vf) 

φ=abs.(vj-hj) #absolute value of the difference v-h 

Q=20 

φ=reshape(φ, (Q, div(length(φ), Q))) #reshape in blocks of 20 (each column one position) 

φj=sum(φ,dims=1) #sum all elements of each column 
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writedlm("Importance_per_column.txt",vec(φj)) 

SortedCols = sortperm(vec(φj)) #Sorted from least to most relevance 

writedlm("low_to_high_importance.txt",SortedCols) 

 

 

Julia code to study the classification performance by eliminating columns 

#Code to calculate Area Under the Curve after reducing number of columns in the MSA 

 

#Packages 

using LinearAlgebra 

using SpecialFunctions 

using DataFrames 

using DelimitedFiles 

using ROCAnalysis 

using Plots 

 

###Arguments 

filename_human_learning = ARGS[1] #Name of the human learning database MSA file 

filename_human_test = ARGS[2] #Name of the human test database MSA file 

filename_mouse_test = ARGS[3] #Name of the human test database MSA file 

λ = parse(Float64, ARGS[4]) #Value of λ 

Ω = parse(Float64, ARGS[5]) #Value of Ω 

 

###Progressively eliminate selected columns 

c=readdlm("low_to_high_entropy.txt",Int64)[:,1] #read file with sorted columns 

L=[1:1:298;] #length of the MSA 

AUC_output=[] #array to save results 

for i in L 

 k=c[1:i] #select columns to delete 

#Learning human dataset 

    learnhuman = DataFrame(inputtoascii("filename_human_learning")) 

    deletecols!(learnhuman, k)  

    learnhuman=convert(Matrix,learnhuman) 

#Test human dataset 

    testhuman= DataFrame(inputtoascii("filename_human_test")) 

    deletecols!(testhuman, k) 

    testhuman=convert(Matrix,testhuman) 

#Test mouse dataset 

    testmouse= DataFrame(inputtoascii("filename_mouse_test")) 

    deletecols!(testmouse, k) 

    testmouse=convert(Matrix,testmouse) 

 

###Generate new parameters 

M = size(learnhuman, 1) 

μ, Σ = posterior(learnhuman, λ = λ  , customΩ = Ω) 

N = length(μ) 

invsig=inv(Σ) 

(m,n)=size(invsig) 

logdetinvsig = logdet(invsig) 

 

###Calculate scores of test databases 

#Scores of human dataset 

Nseqsh, Lseqh = size(testhuman) 

Ph=zeros(Nseqsh) 
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for i in 1:Nseqsh 

    x = asciitobinary(testhuman[i, :]) #converts character matrix into its binary representation 

    logP = prob_in_model(x, λ, M, μ, invsig, logdetinvsig) #returns the natural logarithm of the 

#probability of the peptide in the statistical model (a Student's t distribution) 

    Ph[i]=logP #array with score of each peptide of the human test dataset 

end 

#Scores of mouse dataset 

Nseqsm, Lseqm = size(testmouse) 

Pm=zeros(Nseqsm) 

for i in 1:Nseqsm 

    x = asciitobinary(testmouse[i, :]) 

    logP = prob_in_model(x, λ, M, μ, invsig, logdetinvsig) 

    Pm[i]=logP #array with score of each peptide of the human test dataset 

end 

 

###Perform ROC analysis 

r=roc(Pm,Ph) #computes statistics for evaluation of the performance of a two-class classifier. 

AUC=auc(r) #calculates Area Under the Curve 

push!(AUC_output, AUC) #add each new AUC to the array 

end 

writedlm("newfilename.txt", AUC_output) #save results in txt file 

 

###Sort AUC values just when only 1 column was deleted each time 

AUCcols=readdlm("newfilename.txt", Float64) #read file with AUC results 

AUCsorted=sortperm(AUCcols[:,1],rev=true) #place in order from high to low the array’s indices 

writedlm("newfilename.txt", AUCsorted) #save results in txt file 

 

###Plot 

S=readdlm("AUC_Entropy.txt")[:,1] #file with AUC according to S entropy 

D=readdlm("AUC_Kullback.txt")[:,1] #file with AUC according to KL divergence 

AUC=readdlm("AUC_by_deleting.txt")[:,1] #file with AUC according to deletion one by one 

Phi=readdlm("AUC_Phi.txt")[:,1] #file with AUC according to φ 

x=[1:1:298;] #Columns in the MSA 

plot(x,S,xticks=0:28:298, yticks = 0:0.1:1, label="Information Entropy",legend = :bottomleft, 

ylabel = "Area Under the Curve", xlabel = "Number of columns deleted", background_color = 

:ivory) #S entropy 

plot!(x,D,xticks=0:28:298,label="Kullback-Liebler divergence", yticks = 0:0.1:1, ylabel = "Area 

Under the Curve", xlabel = "Number of columns deleted", background_color = :ivory) #KL 

plot!(x,AUC,xticks=0:28:298,label="AUC", yticks = 0:0.1:1, 

ylabel = "Area Under the Curve", xlabel = "Number of columns deleted", 

background_color = :ivory) #AUC 

plot!(x,Phi,xticks=0:28:298,label="hj-vj", yticks = 0:0.1:1, 

ylabel = "Area Under the Curve", xlabel = "Number of columns deleted", 

background_color = :ivory) #ϕ 

savefig("newfigurename.png") #save in png format 

 

 

Julia code to study the model as a function of the learning database 

 

#Code to calculate Area Under the Curve after reducing number of sequences in the learning MSA 

 

###Packages 

using LinearAlgebra 

using SpecialFunctions 
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using DataFrames 

using DelimitedFiles 

using StatsBase 

using Statistics 

using ROCAnalysis 

using Plots 

 

###Arguments 

filename_human_learning = ARGS[1] #Name of the human learning database MSA file 

filename_human_test = ARGS[2] #Name of the human test database MSA file 

filename_mouse_test = ARGS[3] #Name of the human test database MSA file 

λ = parse(Float64, ARGS[4]) #Value of λ 

#dataset VHVL λ=0.1    only VH λ=0.3    only VL λ=0.1  

#dataset VH λ=0.4     

#dataset VL λ=0.1     

Ω = parse(Float64, ARGS[5]) #Value of Ω 

#dataset VHVL Ω =0.4898    VH Ω =0.5102    VL Ω =0.4286  

#dataset VH  Ω =0.4286     

#dataset VL   Ω =0.2250     

 

###Reduce randomly the number of sequences in the learning database  

#return matrix of characters in dataframe format 

learningdata = DataFrame(inputtoascii("filename_human_learning"))  

deleteseqs=[0:20:1300;] #array with range of sequences to delete from learning database 

timesdelete=repeat(deleteseqs,20) #array with sequences to delete multiple times (20) 

(k,l)=size(learningdata) #rows and columns of the learning database 

AUC_output=[] #array to save results 

for i in timesdelete 

s=k-i #Number of sequences sample must contain 

reduceddata=learningdata[sample(axes(learningdata, 1), s; replace = false), :] #Select randomly 

#d rows 

learnhuman=convert(Matrix,reduceddata) 

#Read test databases 

testhuman= inputtoascii("filename_human_test") 

testmouse= inputtoascii("filename_mouse_test") 

 

###Generate new parameters 

M = size(learnhuman, 1) 

μ, Σ = posterior(learnhuman, λ = λ  , customΩ = Ω) 

N = length(μ) 

invsig=inv(Σ) 

(m,n)=size(invsig) 

logdetinvsig = logdet(invsig) 

 

###Calculate scores of test databases 

#Scores of human dataset 

Nseqsh, Lseqh = size(testhuman) 

Ph=zeros(Nseqsh) 

for i in 1:Nseqsh 

    x = asciitobinary(testhuman[i, :]) #converts character matrix into its binary representation 

    logP = prob_in_model(x, λ, M, μ, invsig, logdetinvsig) #returns the natural logarithm of the 

#probability of the peptide in the statistical model (a Student's t distribution) 

    Ph[i]=logP #array with score of each peptide of the human test dataset 

end 

#Scores of mouse dataset 
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Nseqsm, Lseqm = size(testmouse) 

Pm=zeros(Nseqsm) 

for i in 1:Nseqsm 

    x = asciitobinary(testmouse[i, :]) 

    logP = prob_in_model(x, λ, M, μ, invsig, logdetinvsig) 

    Pm[i]=logP #array with score of each peptide of the human test dataset 

end 

 

###Perform ROC analysis 

r=roc(Pm,Ph) #computes statistics for evaluation of the performance of a two-class classifier. 

AUC=auc(r) #calculates Area Under the Curve 

push!(AUC_output, AUC) #Save each AUC value calculated in an array 

print("($i)","($AUC)") 

end 

writedlm("newfilename.txt", AUC_output) #save array in txt file 

 

###Calculate the average 

VHVL1=readdlm("VHVLfilename1.txt",Float64) #read AUC values as matrix 

VHVL1=VHVL1[:,1] #to change to 1 dimensional array  

#repeat for all n filenames: VHVLfilename2.txt, VHVLfilename3.txt,….VHVLfilenameN.txt 

VHVL=hcat(VHVL1,VHVL2,VHVL3,…,VHVLN) #concatenate in one array so that each row contains 

all AUC values for the corresponding size  

ave_VHVL=mean(VHVL,dims=2) #calculates the mean of each row 

std_VHVL=std(VHVL,dims=2) #calculates standard deviation of each row 

#repeat for VH and VL  

 

###Plot 

plot(d,ave_VHVL,yerror=std_VHVL,xticks=0:100:1300, yticks = 0:0.1:1, 

label="VHVL",legend=:bottomleft, ylabel = "Area Under the Curve", xlabel = "Number of 

sequences deleted", background_color = :ivory) #VHVL line 

plot!(d,ave_VH,yerror=std_VH,xticks=0:100:1300,label="VH", yticks = 0:0.1:1,ylabel = "Area 

Under the Curve", xlabel = "Number of sequences deleted", background_color = :ivory) #VH line 

plot!(d,ave_VL,yerror=std_VL,xticks=0:100:1300,label="VL", yticks = 0:0.1:1,ylabel = "Area 

Under the Curve", xlabel = "Number of sequences deleted", background_color = :ivory) #VL line 

savefig("newfigurename.png") #save figure in png format 

 

Julia code to optimize Ω 

 

#Code to optimize Ω 

 

###Packages 

using LinearAlgebra 

using DelimitedFiles 

 

###Arguments 

Ωrange = range(0.001,stop=0.999,length=50) #construct a range of Ω values 

get_norm(Σ) = norm(Σ,2) #function to compute the p-norm of the covariance matrix 

file = "filename.seqs" #MSA filename 

seqs = inputtoascii(file) #read file and return matrix of characters 

seqsB = asciitobinary(seqs) #convert character matrix into its binary representation 

outnorm = open("frobnorm_$file.csv","w") #create file to later save the Frobenius norm 

outweight = open("weights_$file.txt","w") #create file to later save the weigths 

 

###Calculate Frobenius norm for each Ω value 
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for Ω in Ωrange 

        w = weight(seqs,customΩ=Ω, memoize=true) # calculate weight of each sequence 

        writedlm(outweight, w') #save weights in file 

        Σ = empiricalcovariance(seqsB, w) #compute empirical covariance by given weights 

        #write results in files 

    println(outnorm, file, ",", Ω, ",", get_norm(Σ)) 

        flush(outnorm) 

        flush(outweight) 

end 

 

###Find the minimum 1-|Σ| 

file=readdlm("frobnorm_filename.csv.seqs.csv", ',') #open file with Ω and its Frobenius norm 

fronorm=file [:,3] #read column with frobenius norm values 

one=ones(50) 

score=one-fronorm #calculate score=1-get_norm(Σ) 

(score_min, ind_ Ω) = findmin(score) #find value and position of minimum score 

 Ωopt= Ωrange [ind_ Ω]  #find value of Ω of given index 

#Results 

#VH 0.4286 

#VL 0.2250 

Julia code to optimize λ 

#Code to optimize λ 

 

###Packages 

using DelimitedFiles 

using ROCAnalysis 

using LinearAlgebra 

using SpecialFunctions 

 

###Arguments 

filename_human_learning = ARGS[1] #Name of the learning database MSA file 

filename_human_test = ARGS[2] #Name of the human test database MSA file 

filename_mouse_test = ARGS[3] #Name of the human test database MSA file 

Ω = parse(Float64, ARGS[4]) #Value of Ω previously optimized 

 

###Study the classification performance for each λ value 

λ_range  = exp10.(range(-3.5,stop=-0.01,length=10)) #construct a range of λ values 

AUC_output=[] #array to save results 

for λ in λ_range 

#Generate new parameters 

M = size(filename_human_learning, 1) 

μ, Σ = posterior(filename_human_learning, λ = λ  , customΩ = Ω) 

N = length(μ) 

invsig=inv(Σ) 

(m,n)=size(invsig) 

logdetinvsig = logdet(invsig) 

 

#Calculate scores of test databases 

Nseqsh, Lseqh = size(filename_human_test) 

Ph=zeros(Nseqsh) 

for i in 1:Nseqsh 

    x = asciitobinary(filename_human_test[i, :]) #converts character matrix into its binary 

representation 
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    logP = prob_in_model(x, λ, M, μ, invsig, logdetinvsig) #returns the natural logarithm of the 

#probability of the peptide in the statistical model (a Student's t distribution) 

    Ph[i]=logP #array with score of each peptide of the human test dataset 

end 

#Scores of mouse dataset 

Nseqsm, Lseqm = size(filename_mouse_test) 

Pm=zeros(Nseqsm) 

for i in 1:Nseqsm 

    x = asciitobinary(filename_mouse_test[i, :]) 

    logP = prob_in_model(x, λ, M, μ, invsig, logdetinvsig) 

    Pm[i]=logP #array with score of each peptide of the human test dataset 

end 

 

#ROC analysis 

r=roc(Pm,Ph) #computes statistics for evaluation of the performance of a two-class classifier. 

AUC[k]=auc(r) #calculates Area Under the Curve 

push!(AUC_output, AUC) #add each new AUC to the array 

end 

writedlm("newfilename.txt", AUC_output) #save results in txt file 

 

###Find the best λ 

(AUC_max, ind_λ) = findmax(AUC_output) #find value and position of maximum AUC 

λopt= λ_range[ind_λ]  #find value of λ of given index 

#Results 

#VH 0.4 

#VL 0.1 

 

Julia code to adjust MG-score 

#Code to generate random sequences to correct MG-score 

 

###Packages 

using LinearAlgebra 

using DataFrames 

using DelimitedFiles 

using StatsBase  

 

###Arguments 

filename= ARGS[1] #MSA file 

 

###Calculate amino acid distribution over the whole alignment 

seqmatrix = inputtoascii(filename) 

(m,n) = size(seqmatrix) 

all = collect(Iterators.flatten(seqmatrix)) #Collect all residues 

aminos = deleteat!(all, all .== '-') #Delete gaps 

d = proportionmap(aminos)  #Dictionary with frequencies of each amino acid 

residues = collect(keys(d)) #Amino acids characters 

weights = collect(values(d)) #Amino acids frequencies 

 

###Replace amino acids with new distribution 

aminosdict = ['A','C','D','E','F','G','H','I','K','L','M','N','P','Q', 

'R','S','T','V','W','Y'] #amino acid dictionary 

gapdict = [' ','_','-'] #gap dictionary 
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###GAP CORRECTION: Change only positions with amino acid characters 

for i in aminosdict 

    for k in 1:m 

        for l in 1:n 

            if i==seqmatrix[k,l] #only residues (gaps are left) 

                #Generate random character according to given proportions 

                seqmatrix[k,l]= sample(residues, Weights(weights)) 

            end 

       end 

    end 

end 

 

writedlm("gap_$filename", seqmatrix,',') #save in same format of the MSA file 

 


