s Universidad 1 - f r
macultad de Ciencias @ Zara goza - a

Universidad Zaragoza 1542 internet y tecnologia

UNIVERSIDAD DE ZARAGOZA

MASTER EN MODELIZACION E INVESTIGACION
MATEMATICA, ESTADISTICA Y COMPUTACION.

Trabajo de fin de master:

Redes Neuronales Convolucionales.
Aspectos teoricos y aplicaciones en
aprendizaje supervisado.

Inés Aldea Blasco

Directores del trabajo: José Tomas Alcala Nalvaiz y

Lidia Orellana Lozano
Septiembre 2019

Glosario

Accuracy: porcentaje de predicciones correctas respecto al total de clases posibles.
API (application programming interface): interfaz de programacién de aplicaciones.
Backpropagation: algoritmo de retopropagacion para el aprendizaje de una CNN.
Batch: lote.

Bias: sesgo.

Convolutional Neural Network (CNN): red neuronal convolucional.

Epoch: época, tiempo en el cual se procesa todo el conjunto de entrenamiento en la CNN.
Feature maps: capas de caracteristicas.

Feedforward: nombre de las redes que usan la propagacién hacia delante.

Flattening: proceso que agrupa y cambia la forma de las matrices de salida de la dltima
capa de convolucién por un dnico vector.

Forward o Forward propagation: proceso por el cual la red envia la informacién de
entrada a través de sus capas en sentido de salida sin permitir retrocesos (propagacién
hacia delante).

Frame: fotograma.

Fully connected: Parte de la arquitectura de la CNN que configura el modelo de red
neuronal normalmente llamada capas completamente conectadas en este ambito.

Intranet: red informatica privada interna de una institucién, organizacién o empresa.
Loss function: funcién de pérdida.

Neural Network (INN): red neuronal.

One hot encoding: método utilizado en la codificacién de las clases.

Padding: proceso que aumenta el tamano de una matriz con la finalidad de que los
términos del exterior influyan de igual modo que los centrales.

Pooling: etapa de la capa de convoluciéon que reduce el tamano de matriz.

Stride: medida de definicién del avance del filtro por la matriz en el producto de con-
volucién. También es usado para definir el avance del entorno rectangular en la etapa de
pooling.

111

Abstract

Over the last few years, the increase in the databases and the volumen of these have made
models proliferate naturally capable of processing and analyzing this data.

During this work, we will talk about one of these models: convolutional neural networks
(CNNs), which are currently booming. The increase of the data mentioned above together with
the technological improvements have facilitated and improved the performance of its construc-
tion, training and execution.

CNNs are a model of artificial intelligence corresponding to deep learning that is, they are
models capable of extracting for themselves the information necessary to, in the case of CNNs,
make a classification.

We will begin by detailing the architecture of the model defining the elements that configure
it by differentiating two parts; the first in charge of extracting the characteristics of the data
and, the second, more focused on the classification.

Throughout this part, we will specify the convolution layers that form the first part of the
architecture, defining the convolution product for the CNN context, the activation functions
and the pooling functions. In addition, we will see how the second part of the architecture is
composed of a neural network model, which is responsible for classification, and the process of
flattening responsible for linking both parts.

Once the model is defined, we will explain the learning process during which the parame-
ters of the model are modified thanks to the optimization of a loss function that measures the
error made by the network. This process will be carried out using the learning algorithm called
backpropagation optimized thanks to the stochastic gradient descent technique.

To finish the theoretical part of the work we will make a small comment about the evalua-
tion of the classification of these models focusing on the study of the confusion matrix.

With the purpose of greater knowledge of the model and reflecting the current state of the
art, we will comment on a small collection of articles where we will show different applications
as well as different data sets to which we can apply our networks.

Finally, we will use the knowledge acquired in the viability analysis of a project of automatic
management of room occupancy in the Efor company. This company, belonging to the integra
group and dedicated to providing services and technological solutions for the management,
communication and marketing of companies, facilitated the logistics with which to carry out
the study.

VI Abstract

The study was developed using the Tensorflow library, using Jupyter notebook and will
be presented following the real temporal evolution that has been undergoing as the work was
carried out in order to better understand the changes that have been made in the model and
how they have influenced the final result. During this part of the work, the preprocessing of the
data set will be shown, as well as the adjustment and validation of the selection of a network
architecture.

The analysis of the selected model come to the conclusion that carrying out the project for
the automatic management of room occupancy by applying the convolutional neural network
model is feasible because the network does yield good results in the evaluation of the model.

Resumen

En los ultimos anos el aumento de bases de datos y del volumen de estas han hecho que
proliferen de forma natural modelos capaces de hacer frente al procesamiento y andlisis de estos
datos.

Durante el presente trabajo hablaremos de uno de estos modelos: las redes neuronales con-
volucionales (CNNs de ahora en adelante), que se encuentran actualmente en auge. El aumento
de los datos mencionado mas arriba junto a las mejoras tecnolégicas han facilitado y mejorado
el rendimiento de su construccién, entrenamiento y ejecucién.

Las CNNs son un modelo de inteligencia artificial correspondiente al deep learning es decir,
son modelos capaces de extraer por ellos mismos la informacién necesaria para, en el caso de
las CNNs, realizar una clasificacién.

Comenzaremos detallando la arquitectura del modelo definiendo los elementos que lo confi-
guran diferenciando dos partes; la primera encargada en la extraccion de las caracteristicas de
los datos y, la segunda, més enfocada en la clasificacién.

A lo largo de esta parte, especificaremos las capas de convolucién que forman la primera
parte de la arquitectura, definiendo el producto de convolucion para el contexto de las CNNs,
las funciones de activacion y las funciones de pooling. Ademads, veremos cémo la segunda parte
de la arquitectura esta formada por un modelo de red neuronal, que es el encargado de la cla-
sificacion, y el proceso de flattening encargado de enlazar ambas partes.

Una vez definido el modelo explicaremos el proceso de aprendizaje durante el cual se modi-
fican los parametros del modelo gracias a la optimizacién de una funcién de pérdida que mide el
error cometido por la red. Este proceso se llevara a cabo mediante el algoritmo de aprendizaje
llamado retropropagacién optimizado gracias a la técnica del gradiente descendente estocastico.

Para finalizar la parte tedrica del trabajo realizaremos un breve comentario acerca de la eva-
luacién de la clasificacion de estos modelos centrandonos en el estudio de la matriz de confusién.

Con la finalidad de un mayor conocimiento del modelo y de reflejar el estado actual del arte,
comentaremos una pequena recopilacion de articulos donde mostraremos diferentes aplicaciones
asi como diferentes conjuntos de datos a los que podemos aplicar nuestras redes.

Finalmente, emplearemos los conocimientos adquiridos en el estudio de la fase de viabilidad
de un proyecto de gestion autéomata de la ocupacién de salas en la empresa Efor. Esta empresa,
perteneciente al grupo integra y que se dedicada a dar servicios y soluciones tecnolégicas para
la gestién, comunicacién y marketing de las empresas, nos facilito la logistica con la que poder
llevar a cabo el estudio.

VII

VIII Resumen

El estudio se ha desarrollado utilizando la libreria Tensorflow mediante Jupyter notebook y
se presentard siguiendo la evolucion temporal real que ha ido sufriendo conforme se iba reali-
zando el trabajo con el fin de poder comprender mejor los cambios que se han llevado a cabo en
el modelo y cémo han influido en el resultado final. Durante esta parte del trabajo se mostrara
el preprocesamiento del conjunto de datos, asi como el ajuste y la validacién de la seleccién de
una arquitectura de red.

El analisis del modelo seleccionado nos permite llegar a la conclusién de que realizar el
proyecto de la gestion autémata de la ocupaciéon de salas aplicando el modelo de redes neuronales
convolucionales es factible ya que se alcanzan muy buenos resultados en la evaluacion del
modelo.

Indice general

Glosario
Abstract
Resumen

1. Introduccion
1.1. Entorno tecnoldgico e e
1.2. Democratizacién de las redes neuronales convolucionales
1.3. Desarrollo del trabajo L

2. Redes Neuronales Convolucionales
2.1. Arquitectura de las redes neuronales convolucionales
2.1.1. Capasdeconvolucién
2.1.2. Capasdelared neuronal,
2.2. Aprendizaje
2.2.1. Funcién de pérdida
2.2.2. Retropropagacién o Backpropagation.o
2.2.3. Gradiente Estocéstico Descendente (SGD)
2.2.4. Importancia de las funciones de activacién en el aprendizaje
2.3. Evaluacién de la clasificacion de las CNNs
2.3.1. Matriz de confusion
2.3.2. Otras técnicas de validacion,
2.4. Prediccidéndelaclase.

3. Estado del arte

4. Gestién autémata de la ocupacién de salas
4.1. Descripcion y metodologia del proyectoo
4.2. Presentacién del conjunto de datos y obtencion de frames
4.3. Fase de viabilidad
4.3.1. Estudiodelasala
4.3.2. Estudio de los datos y obtencién de los conjuntos del experimento
4.3.3. Creacion, aplicacion y evaluacién de las CNNs
4.3.4. Validacién del modelo seleccionado
4.4. Conclusiones e e

Anexos
A. Funciones definidas

B. Pretratamiento y estudio de los datos

IX

III

VII

14
16
17
18
20
22
24
24
26
27

29

37
37
38
39
40
43
44
95
61

63

65

73

X Indice general

C. Diseno, resultados y ejecucion de los modelos 85

Bibliografia 107

Capitulo 1

Introduccion

Hoy en dia un término del que se suele hablar con frecuencia es el Big Data, que descri-
be conjuntos de datos o combinaciones de ellos que, por su volumen, variedad o complejidad
y velocidad de almacenamiento dificultan su procesamiento o analisis mediante técnicas con-
vencionales. Por tanto, un problema de Big Data es aquel que cumple las 3 V mencionadas,
volumen, variedad y velocidad. Este término ha generado una demanda en el procesamiento de
estos datos de forma autémata e inteligente, cuestiéon que la inteligencia artificial (IA) es capaz
de solventar.

La IA se puede interpretar como la incorporacién de la inteligencia humana a las maquinas.
Son sistemas capaces de entender, aprender o incluso razonar gracias a una serie de algoritmos
o reglas estipuladas que nos lleva a pensar en ese comportamiento “inteligente”.

La clave de la TA para solucionar un problema de las 3 V es el aprendizaje mediante algo-
ritmos que lo permiten. Para entender lo que hacen estos algoritmos podemos compararlos con
nuestros propios métodos de aprendizaje. En el aprendizaje supervisado, por ejemplo, premia-
remos aquellas conductas que queremos que se repitan, lo que aumenta la probabilidad de que
aparezcan y sancionamos las que no, para que tiendan a desaparecer.

Este aprendizaje supervisado es el que trataremos a lo largo de este trabajo, el cual requiere
cierta intervencién humana para hacer saber al algoritmo lo que estd bien y lo que esta mal.
Para ello contaremos con un conjunto de entrenamiento con el que el algoritmo es capaz de
obtener patrones y a través de nuestra participacién, aprender. El término que hace referencia
a desarrollar estas técnicas o algoritmos de aprendizaje de la TA es el Machine Learning.

En nuestro caso hablaremos de un tipo de técnicas de Machine Learning llamadas Deep Lear-
ning. E1 Deep Learning intenta incorporar la percepcion humana a las maquinas siendo capaces
de descubrir automéaticamente las caracteristicas que se usan para la clasificaciéon. Técnicas
como las redes neuronales o las redes neuronales convolucionales imitan el comportamiento
del sistema nervioso humano mediante capas de unidades de procesamiento que llamaremos
neuronas. Estas semejanzas permiten que dentro de un sistema global haya neuronas que se
especialicen permitiendo una mejora en el aprendizaje.

2 Capitulo 1. Introduccion

Machine Learning

Figura 1.1: Diagrama que muestra la relaciéon entre los términos de la inteligencia artificial.

Durante este trabajo hablaremos de las redes neuronales convolucionales (CNN). Actual-
mente, el uso mas generalizado de este tipo de redes estd en el tratamiento y clasificacion de
imdagenes, por eso nos centraremos en él, sin embargo no es el tnico uso de estas redes como se
mostrard en algiun ejemplo mas adelante.

Asi como hemos adaptado el concepto de aprendizaje a la CNN, debemos adaptar el con-
cepto de imagen ya que para un ordenador una imagen no es lo mismo que para nosotros.

Para una maquina, una imagen es una aplicacién I : C C R? — [0,1] de manera que, a
cada pixel de la imagen, le asignamos un nimero que corresponde con el color dentro de una
escala de grises, donde el 0 es el negro y el 1 es el blanco, en el caso que tengamos una imagen
en blanco y negro. Si la imagen es en color, la imagen de nuestra aplicacién seria un vector de
longitud tres, correspondiente al color rojo, verde y al azul de la imagen. Esto se debe a que las
imdgenes utilizan la codificacién del color RGB (red, green, blue), ya que es posible representar
un color mediante la mezcla de los tres colores primarios. En este tltimo caso diremos que la
imagen tiene tres canales correspondientes a esos tres colores.

Figura 1.2: Diferencia entre la forma en la que nosotros vemos una imagen en blanco y negro
(izquierda) y la forma en la que las maquinas “ven” la misma imagen (derecha).

De esta manera, al utilizar imdgenes como entradas a nuestra red neuronal convolucional en
realidad hablaremos y trataremos con matrices de pixeles o simplemente matrices. Si la matriz
es en blanco y negro tendremos una matriz con las dimensiones de la imagen m x n y en el caso
de que la matriz sea a color, tendremos una matriz para los tres canales, por tanto estaremos

Redes Neuronales Convolucionales - Inés Aldea Blasco

tratando con una matriz de tamano m x n x 3. Hablaremos entonces de tres dimensiones, alto,
ancho y profundo. Como consecuencia, las imdgenes en blanco y negro tendran profundidad uno.

A continuacién se muestra una pequefia linea de tiempo con los eventos més importantes
para la evolucién que han ido teniendo las CNN.

Redes . Yann.Lecun disefid la Creacion de lo Aparicion de
Neuronoles arquitectura de arquitectura una nueva
NetS, una de las por técnico de
primeras redes Alex Krizhevsky. deteccidn de
neuronales .“ objetos,
convolucionales. 5 P 2
. Creacidén de Q“’ . A S C A L
(oase de datos de tational Le
imdgenes de ndmeros
escritos o manao).
. o Proyecto . Disefio de
o . doetdedesacorion
Kunihiko l:'ukushlmo nnannn proporciona un roaricion de lo
* . L]
construyd uno red ’ conjunto de datos , asf P .
neuronal |) i como herramientas e Presentacién de
que serd la predecesora £24993789 0158y para occeder a ellos y lo arquitectura
de las rerjles neuronales FEIYEEIRITNEES o sus anotaciones. (You Only
convolucionales. ALARRALALLLLLLL Look Once)
201 2017
1950 1959 1980 1989 1994 1998 2005 2009 2011 2014 29"%,0162°" 018
& Dovid Hubel y Yann LeCun avanzd en las s+ Disefiodelo Mejora de
Torsten Wiesel técnicas de arguitectura lo red
,%Ub‘“:‘;‘,m”f s of basdndose en que reduce el nimero
siﬁ;fgﬂ';ﬁr;‘jrf como indico en su articulo de parametros de
the cat's striate ‘Gradient-Based Learning modelos anteriores,
cortex’, Applied to Document . Creacion de lo base
* RusselKirschy su Recognition”. de datos
equipe (Comman Object in
desarrollaron una . Context L _
méguina que Yann LeCun aplicd el Creacidn de ontext) parala. Aparicién
transforma algoritmo de . una deteccidn de objetos. de la
aprendizaje de base de datos e Aporicién de los v
I ala visual, por el Region- convolutional 3
arquitecturo de red neural network

neurcnal
convolucional para
leer digitos escritos o
mano.

profesor Fei-Fei

Lidela { usodas para
universidad de lo deteccidn de
Stanford. objetos.

. Disefio de

Figura 1.3: Linea de tiempo de la Evolucién de las CNN.

1.1. Entorno tecnoloégico

Los principales entornos de trabajo mas extendidos para la programacién de las redes neu-

ronales convolucionales son:

e Tensorflow (ver [23]): libreria de deep learning desarrollada por Google basada en C++
con interfaces de programacion en Python capaz de construir y entrenar redes.

e Theano (ver [24]): libreria programada en Python y compilador de optimizacién para
manipular y evaluar expresiones matemadticas, especialmente las de valor matricial. Este
paquete ofrece valores de tiempo muy buenos a la hora del entrenamiento por su optimi-

zacion.

e Keras (ver [13]): API de alto nivel escrito en Python capaz de ejecutarse tanto sobre
Tensorflow como sobre Theano disenado especialmente para experimentar de forma réapida

y sencilla.

4 Capitulo 1. Introduccion

Para emplear estos paquetes utilizaremos Jupyter Notebook (ver [12]), aplicacién web de
codigo abierto que posibilita crear documentos o cuadernos que permiten incorporar elementos
de cédigo con texto narrativo con el que podremos facilitar la explicaciéon y documentacion de
nuestras observaciones. Esta herramienta que permite visualizar datos, hacer simulacién numé-
rica, modelado estadistico, transformacion de datos, aprendizaje automadtico,... es una de las
mas usadas en la actualidad. Grandes empresas como IBM o Microsoft utilizan esta herramienta
como elemento base en sus aplicaciones o plataformas.

Jupyter Notebook cuenta con un niicleo que se encarga de ejecutar el cédigo, en nuestro caso
para cédigo en Pyhton, aunque Jupyter también soporta otros lenguajes como R, scala o Ju-
lia. Otra caracteristica de esta aplicacion web es la capacidad de mostrar resultados utilizando
medios enriquecidos como Latex, PNG, HTML, ... y adjuntos al cédigo que los generé.

La facilidad de introducir notacién matematica dentro de las celdas, la edicién de texto
enriquecido que permite no limitarnos al texto sin formato en los comentarios o el resaltado
automatico de sintaxis y sangria facilitan el uso y aportan limpieza a los cuadernos.

1.2. Democratizacion de las redes neuronales convolucionales

Grandes empresas de hoy en dia han apostado por acercar estas técnicas de redes neu-
ronales convolucionales a personas que no tienen grandes conocimientos sobre ellas ni sobre
programacion. Para ello han generado plataformas de servicios cognitivos a través de las cuales
las maquinas son capaces de procesar informacion, aprender, resolver problemas,...

Dos ejemplos de esto son Watson de IBM (Ver [11]) y Azure de Microsoft (ver [17]) que se
encargan de entrenar modelos, mantenerlos y actualizarlos. Unos de los servicios cognitivos que
ofrecen es la vision por ordenador, donde tienen gran relevancia las redes convolucionales que
vamos a estudiar. Con estas herramientas los tinicos conocimientos que debemos saber son la
manera de introducir los datos y la interpretacién de los resultados.

Otra de las importantes ventajas que ofrecen estas plataformas son los corpus (bancos de
imdgenes, textos, conjuntos de datos estructurados) de los que disponen y que ponen al servicio
de los usuarios. Estos grandes conjuntos de informacion, con los que hacen dificil la competen-
cia, suponen grandes ventajas a la hora de entrenar los modelos como veremos mas adelante.

Google es otra de las empresas que destaca por el desarrollo de TensorFlow y por la construc-
cién de GoogLeNet (ver [22, pags 4-8]). Aunque es cierto que no es tan automatico el disfrute de
estas herramientas, aportan grandes ventajas en el uso de las redes neuronales convolucionales
y en su investigacion.

De esta manera, estos servicios cognitivos hacen de la IA un servicio que se ofrece para sa-
tisfacer ciertas necesidades capacitandola de un valor econémico con el que poder comercializar.

1.3. Desarrollo del trabajo

El presente trabajo esta dividido en tres grandes capitulos junto con una pequena introduc-
cién al tema que hemos realizado a lo largo de este.

El primer capitulo tras la introduccién consta de una recopilacion y explicaciéon detallada
donde se recoge la teoria basica de las CNNs. En esta teoria encontramos fundamentalmente
informacién sobre las partes de la arquitectura de las redes y, los algoritmos de aprendizaje y

Redes Neuronales Convolucionales - Inés Aldea Blasco 5

su optimizacién. Asimismo, también se aportan una serie de referencias donde poder ampliar
la informacién si se desea.

Durante el segundo capitulo, se presentan una serie de articulos en los cuales se exponen
alguna de las posibles aplicaciones de las redes, asi como una muestra de los diferentes tipos de
datos de entrada y algun ejemplo del pretratamiento de estos.

Finalmente, en el ultimo capitulo, se aplicaran los conocimientos adquiridos en la creacion
del trabajo para resolver un problema real sobre la gestion de salas en la empresa Efor. Veremos
ademads, como esta técnica es realmente eficaz alcanzando muy buenos resultados.

Capitulo 2

Redes Neuronales Convolucionales

Como ya hemos mencionado en la introduccién, las redes neuronales convolucionales son
una técnica del Deep Learning que, ademas, incorpora redes neuronales en su estructura. Esta
técnica es la que desarrollaremos a lo largo del presente trabajo desde una perspectiva tanto
tedrica como practica.

Una red neuronal artificial es un modelo matematico que emula de manera simplificada el
funcionamiento de las neuronas cuya funcién principal es recibir, procesar y transmitir infor-
macién. Se denomina arquitectura de una red neuronal a la estructura o patrén de conexion
de la red. Esta estructura tendra un elemento esencial al que hemos llamado neurona la cudl
se organizard en capas. Veremos como si nos abstraemos de la inspiracion bioldgica, las redes
neuronales se pueden ver como una serie de operaciones matematicas sobre una lista de nameros
que da como resultado otra lista de nimeros.

Las redes neuronales convolucionales son redes neuronales que utilizan la convolucién en
lugar de la multiplicacion usual de matrices en al menos una de sus capas. Su arquitectura
se puede dividir en dos partes diferenciadas: las capas de convolucién que son las encargadas
de extraer los patrones y las caracteristicas de los datos que introducimos a la red, y la capas
formadas por la red neuronal que son las encargadas de utilizar la informacién obtenida para
clasificar.

CAPAS DE DETECCION DE CARACTERISTICAS CAPAS CLASIFICADORAS

22 CAPA DE
12 CAPA DE CONVOLUCION

CONVOLUCION .
CAPA DE REDUCCION DE @ REDUCCION DE

By Ene—
‘IE'%

RED NEURONAL

Figura 2.1: Ejemplo de una estructura de red neuronal convolucional.

De este modo, las CNN son clasificadores, su propdsito es asignar a un elemento de entrada
una categoria o clase conocida gracias a la informacion que ella misma adquiere mediante un
algoritmo. Para alcanzar este objetivo, se han de llevar a cabo las siguientes fases.

8 Capitulo 2. Redes Neuronales Convolucionales

Se comienza fijando las caracteristicas del modelo, en nuestro caso, el disefio de la arqui-
tectura de nuestra red. Durante la fase de entrenamiento, se contard con un conjunto de datos
similares a los que se quieren predecir, clasificados de forma correcta, con el fin de ir modifican-
do el valor de los pardmetros del modelo para que pueda desarrollar correctamente su funcién.
Terminado el entrenamiento, se procede a la validaciéon del modelo con el conjunto de valida-
cién, un conjunto similar al de entrenamiento pero formado por datos diferentes y en menor
cantidad que junto con el conjunto de entrenamiento formardn el conjunto de datos inicial. La
finalidad de esta fase es estimar la precisién de la clasificacién con datos que no hayan sido
utilizados para el entrenamiento. Si aceptamos la precision de la red, ya puede ser utilizada
para realizar la tarea para la que fue definida, si por el contrario no lo hacemos, tendremos que
cambiar las caracteristicas del clasificador y volver a realizar todo el proceso o, realizar otro
entrenamiento cambiando el conjunto de entrenamiento o aumentando el nimero de iteraciones.

Durante la parte tedrica de este trabajo seguiremos este esquema: explicaremos la arquitec-
tura, tanto el proceso que se realiza como las caracteristicas de esta; el algoritmo por el cual la
CNN va aprendiendo y, finalmente, el estudio de la precision de la red.

2.1. Arquitectura de las redes neuronales convolucionales

El diseno de una red neuronal convolucional no es una tarea facil. La elecciéon del niimero de
capas, los tipos o las conexiones no sigue un patrén definido, ni existe un proceso especifico que
ayude a la definicién. Se utiliza la “prueba y error” como el método heuristico para ir probando
alternativas y comprobando que funcionan.

Para abordar este problema lo que se suele hacer es utilizar aquellas redes que han de-
mostrado una alta capacidad de aprendizaje llegando a buenas tasas de exactitud. Algunas de
estas redes son AlexNet, GoogleNet, VGG o la ResNet pudiendo encontrar un resumen de sus
caracteristicas en [14].

La arquitectura de una red se estructura en la concatenacién de una serie de capas, llamando
capa de entrada a la capa que incorpora nuestros datos a la red, la capa de salida donde se
obtienen los resultados y una serie de capas intermedias a las que llamaremos capas ocultas.

En estas capas podemos distinguir dos partes diferenciadas. Las primeras capas de la ar-
quitectura son las capas de convolucién, que son las encargadas de detectar e identificar carac-
teristicas o patrones del conjunto de datos que introducimos en la red neuronal convolucional.
Después seguiran las capas que forman una red neuronal que se encargan de clasificar los datos
utilizando la informacién extraida en las capas anteriores.

A continuacién vamos a explicar las caracteristicas de estas capas donde he seguido los
siguientes textos [2], [10] y [8] fundamentalmente.

2.1.1. Capas de convolucion

Las capas de convolucién son las que hacen convolucional a una red neuronal. Durante las
primeras capas de convolucién se detectan patrones simples como lineas, figuras geométricas
simples como circulos o bordes. Al realizar la concatenacién de varias de estas capas y, por
tanto, aumentar la profundidad de la arquitectura, la red es capaz de mezclar esta informacién
para ir aprendiendo conceptos cada vez méas complejos.

Redes Neuronales Convolucionales - Inés Aldea Blasco 9

Una capa de convolucion estd formada por tres etapas. La primera, donde se realiza la
operacion de la convolucién, una segunda donde se aplica una funcién de activaciéon y por
dltimo, la aplicacion del pooling. No obstante las dos tltimas son optativas en el diseno de la
arquitectura.

Convolucion

La convoluciéon es un operador matemdatico que transforma dos funciones f y g en una
tercera donde se representa la magnitud en la que se superponen g y una versién trasladada de
f. Se denota f * g y generalmente se define como:

— [soetig(
D

Sin embargo, el producto de convolucién en el d&mbito de las CNNs no sigue la definicién
mencionada anteriormente. Se utiliza la siguiente variaciéon de la convolucion que definiremos
para dimensién dos:

(fxg)(x1,22) = /_00 /_00 flz1 +t1, 22 + t2)g(t1, t2) dt1dis.

Podemos comprobar como efectivamente la definicién formulada es una convolucién realizando
el cambio de variable t = —y.

(f % g)(1,22) = / h / T+ tws o+ t)g(t,) dirdty =

= / / f(z1 —y1, 02 — y2)9(=y1, —y2) dyrdyz = (f * h) (21, 72).
Considerando h = g(—t).

Por lo general, las entradas a nuestras redes neuronales seran datos discretos, lo que nos
llevara a usar la definicién discreta de la convolucién:

(f x g)(z1, 32) ZZ f(@1+ 1, m2 + t2)g(ta, t2).

—00 —00

Una vez definido el producto que usaremos en las capas de convolucién, vamos a explicar
el proceso que se sigue en ellas. Este proceso consiste en multiplicar una matriz de pequenas
dimensiones a la que llamaremos filtro o Kernel por submatrices de la que llamaremos matriz
de entrada a la capa o simplemente matriz mediante la convolucién discreta que acabamos de
definir,

:I I
—

m-1
Ci(i,j) = I+ K)(i I(i +m,j+n)K(m,n),

m=0 0

3
Il

donde, adaptando la definicién a nuestro entorno, I es una submatriz de la matriz de entrada
y K es la matriz del filtro, ambas de dimensiones m X 7.

Durante el proceso de convolucién, el filtro va recorriendo la matriz para hacer el producto
de convolucién que hemos definido. Para regular este movimiento se define el stride que es la
medida que define el avance del filtro por la matriz.

10 Capitulo 2. Redes Neuronales Convolucionales

Veamos un pequeiio ejemplo para aclarar y visualizar como se transforma la entrada al
convolucionar con el filtro. Supongamos que queremos convolucionar la matriz de letras con el

1 0 -1
filtro 0 0 O stride=1, la operacién se realiza como sigue:
y)
-1 0 1
a b ec|d e alb ¢ dle
f e hli j 1 0 -1 a—c—k+m fle & ilj 10 -1 a—c—k+m b—d—I+n
k| m|ln o || 0 0 0 |= k(! m nfle =] 0 0 0 |[=
p g r s i -1 0 1 P g r st -1 0 1
u v w x oy u v ow ox y
a b ¢ d e
foeglh i j 1 0 -1 a—c—k+m b—d—-Il+n c—e—m+o
=R aes k I|lmn ol 0 0 0 |=| f=h—p+r g—i—qg+s h—j—r+t "
p glr s 1t -1 0 1
v ow x y
a b ¢ d e
f g h i J 10 -1 a—c—k+m b—d—-Il+n c—e—m+o
k'l m n o |+ 0o 0 0 = f—h—p+r g—i—qg+s h—j—r+t
p g r s t -1 0 1 k—m—u+w l—n—v+x m—o—w+y
u v ow x y

Haciendo el cédlculo un poco mas detallado de un elemento de la matriz resultante tenemos,

2 2
C1(1,2) = > I(1+m, 2+ n)K(m,n) = I(1,2)K(0,0) + 1(2,2)K(1,0) + I1(3,2)K(2,0)+

m=0n=0
FI(1,3)K(0,1)+1(2,3)K(1,1)+1(3,3)K (2, 1)+1(1,4)K(0,2)+1(2,4) K (1,2)+1(3,4) K (2,2) =
=h-14m-0+7r-(-1)+i-04+n-0+s-04+75-(-1)+0-0+1¢-1.

Podemos aplicar el mismo filtro a la entrada pero esta vez modificando la forma en la que
el filtro recorre la imagen con un stride=2 para ver como influye en el producto.

d 1 b ;
feg h|ij 1 0 =1 a—c—k+m felh i j (I | | a=c=k+m c—e—m+o)
k'l m|n o |+x] 0 0 0 = k I|lm n o .(000) = (]
pq r st -1 0 1 P g r st =1 0 1
v ow Xy MvwIXy
ab e de a b ¢ d e
fehij 10 -1 g=c=k+m c—e-m+o fgh i 1o -l a—c—k+m c—e—m+o
ET mln o« 0 0 0 |= klfm o+« 0 0 0 |= k i o
pqg r|st -1 0 1 k=m-u+w Mm=0=—wW+y pglr st -1 0 |) —m=u+w m—=0—w+y
uv wlx y w oviw x v

Observamos que el producto de convolucién reduce la dimensién de la matriz que convolu-
cionamos. Ese cambio estd influido por el tamano del filtro y por el stride que se aplica en la
convolucién. Supongamos que la dimensién de la matriz que convolucionamos es I; X Iy y la
del filtro es m x 7, la dimensién resultante al hacer la multiplicacién por el filtro es:

I —m Ir—7

2.1
stride stride (2.1)

En ocasiones, esta reduccion del tamaiio en la matriz de entrada puede generar desventajas
como la limitacién de la profundidad de la arquitectura en las capas convolucionales. Otra de

Redes Neuronales Convolucionales - Inés Aldea Blasco 11

las desventajas estd relacionada, a su vez, con la definicion del producto de convoluciéon porque
los elementos de los bordes de las matrices influyen en menor medida que los situados en las
zonas centrales, esto puede producir un efecto de perdida de informacién dependiendo de la
estructura de los datos.

Si se desea solventar, se utiliza el método conocido como padding. Consiste en aumentar el
tamano de la matriz para que el Kernel pueda acceder a los elementos de los bordes de las matri-
ces y mantener esa informacion. Estos elementos anadidos pueden tomar diferentes valores; cero,
los valores del borde opuesto o la extensién de los valores del propio borde son algunos ejemplos.

Si evadimos la abstraccién matemética de este concepto, la convolucién tan solo es la apli-
cacion de un filtro a la imagen como cualquier filtro determinado que aplicamos cuando las
retocamos. Como ya hemos dicho, mediante estos filtros la CNN extrae la informacién sobre
ciertas caracteristicas de las matrices para luego aprender de estas.

Mediante la herramienta GIMP (ver [5]), que es un programa de edicién de imédgenes digita-
les, podemos ver las transformaciones de los filtros en las imagenes ya que nos permite aplicarlos
introduciendo la matriz con la que queremos convolucionar.

Estos son algunos ejemplos de como cambia la imagen al convolucionar con los siguientes

filtros:

e Filtro para la deteccion de bordes.

0 1 0
1 -4 1
1 0

Figura 2.2: Cambio de una imagen al convolucionar por un filtro que detecta los bordes.

e Filtro para un mayor enfoque.

Figura 2.3: Cambio de una imagen al convolucionar por un filtro que provoca un mayor enfoque.

12 Capitulo 2. Redes Neuronales Convolucionales

Funcion de activacion

Tras la etapa de convolucién, a cada elemento de la matriz resultante al que llamaremos
neurona, se le aplica una funcién de activacion. Esta etapa sirve para detectar las caracte-
risticas dando lugar a las matrices llamadas feature maps o mapas de caracteristicas. Estas
funciones deciden como modificar la informacion antes de seguir procesandola. De manera si-
milar a nuestras neuronas que se activan si se debe seguir transmitiendo el impulso nervioso,
las neuronas artificiales se activan o no gracias a estas funciones para seguir transmitiendo la
informacién si se activan, o cero en caso contrario.

Una aplicacién importante de estas funciones es aportar la no linealidad si nuestro conjunto
de datos lo requiere ya que el producto de convolucién es lineal. Una de las més utilizadas es
la funcién de activacién ReLU (Rectified Linear Unit) que puede definirse por,

o(x) = méx(0, z),

siendo x el valor de la neurona tras la convoluciéon. Podemos observar como la funcién de acti-
vacién solo hace que se activen las neuronas en el caso de salidas positivas.

Otra funcion bastante utilizada, para la capa de salida de la red neuronal, es la funcién
Softmax. Esta funcién calcula la distribucién de probabilidades del elemento de entrada sobre
n clases diferentes,

X
€ .
- parat=1,...,n con x € R".

Z;L:l e’

Como nos devuelve un vector de cantidades comprendidas en (0,1] se utiliza para estimar la
probabilidad de pertenecer a las clases que queremos clasificar.

Pi(x) =

Estas son otras funciones que pueden ser utilizadas como funciones de activacién:
e Funcién sigmoide (Sigmoid Function):

1
o(x) = [t
Toma el valor real de entrada y genera otro entre 0 y 1.
e Funcién tangente hiperbdlica (Hiperbolic Tangent Function):
e —e*

¢(x) =
Esta funcién es similar a la funcién sigmoide con las diferencias de que los valores reales

los convierte al rango [-1,1] y su salida esté centrada en el 0.

e Funcién ELU (Ezponential Linear Unit):

d)(w):{ 2(61_1) six >0,

en otro caso.

Es similar a la funciéon ReLLU, pero en las entradas negativas se vuelve suave hasta que su
salida es igual a —a y puede producir salidas negativas.

Durante la seccién de Aprendizaje explicaremos en profundidad la importancia de estas
funciones y sus caracteristicas particulares.

Redes Neuronales Convolucionales - Inés Aldea Blasco 13

Pooling

La etapa de pooling consiste en reemplazar la salida de la capa de convolucién por un resu-
men estadistico de las salidas cercanas reduciendo su dimension.

Durante esta etapa se define un entorno rectangular que recorre la matriz de entrada de
manera similar a la del filtro para luego aplicar el resumen estadistico deseado. Hay diferentes
formas de realizar esta operacion, aunque la mas utilizada es la max pooling que consiste en
calcular el maximo de los valores del entorno definido. Otras de las opciones utilizadas son sum
pooling que consiste en la suma de los datos del entorno definido, average pooling con la media
de los datos del entorno, una media ponderada basada en la distancia con el pixel central o la
norma L?.

Para definir el proceso se debe detallar las dimensiones del entorno rectangular y el stride
con el que se mueve, en este caso, el entorno rectangular. Tras este proceso la dimensién de la
salida sigue la férmula (2.1) pero en vez de calcularse con las dimensiones del filtro serdn las
dimensiones del entorno definido.

Si queremos, por ejemplo, aplicar a la siguiente matriz la etapa de pooling utilizando max
pooling de dimensiones 2 x 2 y stride=2, obtenemos como resultado:

1220 ‘ 15 0

8 714 3 , ———(20 | 15
15 35|34 7 Max Pooling 2 x 2 stride =2 (4.7100 75)
100 59|75 13

Si nos fijamos, el pooling realizado con las caracteristicas del ejemplo reduce las dimensiones
de la entrada a la mitad.

Esta etapa mantiene las caracteristicas obtenidas en las etapas anteriores aunque puede
modificar su lugar, de manera que, gracias a este proceso, se captura la invarianza espacial de
los datos, es decir, por ejemplo, la posicion o un pequeno cambio en la forma de un objeto no
confunden a la red o hace que pierda informacién importante.

Las capas de convolucién son la concatenacién de estas etapas, con la aclaraciéon que en
capa de convolucion no solo se utiliza un tnico filtro sino que se aplican varios de ellos a la vez,
ocasionando que en cada capa, paralelamente, se realicen las etapas con las mismas caracteris-

ticas a excepcion de los elementos del filtro, haciendo que la arquitectura tenga apariencia de
red.

14 Capitulo 2. Redes Neuronales Convolucionales

8 filtros 5x5x 4

max pooling 2 x 2 stride=1
stride=2 stride=3

1Tx11x8

4 filtros 3x 3 x 1

; max pooling 3 x 3
stride=1

30x30x4

32x32 15 %15 x4 4x4x8

I
B
© =
B i
.% EEE. r
(n]

JE

Figura 2.4: Transformaciéon de una imagen en dos capas de convolucion segin las dimensiones
y caracteristicas de dichas capas.

Aparentemente podemos pensar que el producto de convolucién funciona de manera dife-
rente a la definicién planteada si el filtro utilizado y la matriz con la que se convoluciona no
tiene profundidad 1, sin embargo, lo que ocurre es que cada elemento de la matriz resultante es
influido por la suma de las convoluciones de las matrices con las que se realiza la convolucion
en ese mismo lugar tal y como las hemos definido. Hay ocasiones en las que se anade a esa
suma un término llamado bias o sesgo para poder modificar los valores de entrada a la funcion
de activacién. De esta manera podremos formular el producto de una matriz I con dimensién
I X Is X py un filtro K de a X b X p como

q=1

Observamos que la matriz resultante del producto de convolucion tiene profundidad uno. Para
el resto de dimensiones se respetard la férmula de las dimensiones (2.1).

Tras las capas convolucionales, se debe “aplanar” la salida de la dltima capa oculta de esta
parte convolucional para que deje de ser tridimensional y asi poder enlazarla con la red neuro-
nal. Esta transformacion se realiza gracias al proceso llamado flattening el cual extrae cada
una de las lineas de pixeles de cada matriz y las alinea.

20

20 15\ —F/—F—7F—7— 15
(100 75) Flattening 100
75

2.1.2. Capas de la red neuronal

Después de las capas de convolucién se utilizan capas completamente conectadas (fully con-
nected) que forman una red neuronal convencional. Estas capas serdn las encargadas de utilizar
la informacion adquirida durante las capas de convolucién para clasificar la informacién de
nuestro conjunto de datos.

Redes Neuronales Convolucionales - Inés Aldea Blasco 15

Cada elemento del vector obtenido con el proceso de flattening formara la entrada a nuestra
red neuronal. Como consecuencia, tendremos tantas entradas como longitud de ese vector.

La labor de la neurona consiste en, dado un conjunto de entradas {z;}!_;, calcular una
suma ponderada con una serie de pesos {w;}!' ; que reflejan las conexiones entre las neuronas.
Estos pesos determinan el efecto de la entrada en la neurona. Del mismo modo que habiamos
anadido un sesgo tras el proceso de convolucién, podemos anadirlo en esta suma ponderada de
manera que este valor w,41 no estara influido por ninguna neurona.

Otra forma de ver esta suma ponderada es verla como un producto de matrices donde W
es una matriz de dimensién 1 X n con los pesos y x de dimensién n x 1 con las entradas a la
red neuronal.

Finalmente, se aplica una funcién de activacion ¢ que, del mismo modo que en las capas de
convolucion, se encarga de transmitir la informacion si se activa o cero en caso contrario. Estas
funciones de activacion pueden ser las mismas que los ejemplos mostrados en la explicacion de
las capas de convolucién y su resultado establecera el valor de salida de la neurona.

n+1
oY ox) o
i=1

X1 =1

Figura 2.5: Estructura de una neurona

Cada capa oculta de la red neuronal estd formada por un conjunto de neuronas. Cada una
de estas tiene conexiones con todas las neuronas de la capa anterior por las cuales le llega la
informacion ({z;}7 ;) y conexiones con todas las neuronas de la capa posterior a las que enviara
la salida producida de manera que no permitiremos conexiones hacia atras.

La capa de salida, la tltima capa de la red neuronal, estd formada por neuronas que reciben
la informacién procesada y la devuelven al exterior. La finalidad de la red neuronal de clasificar
es finalmente ejecutada en esta capa, de tal forma que, con los procesos realizados, se selecciona
como candidata una de todas las clases para clasificar.

—.>
Flattening

CLASIFICACION

RED NEURONAL

Figura 2.6: Unién de la red neuronal con la red neuronal convolucional

16 Capitulo 2. Redes Neuronales Convolucionales

En pocas palabras, la CNN va transformando en cada capa la matriz de entrada y propa-
gando los resultados hacia las capas posteriores a lo largo de nuestra red para ir obteniendo més
informacién hasta llegar a la capa de salida donde se realizara una prediccion. Esta forma de
propagacion en la que solo se transmite desde la capa de entrada a la de salida, sin conexiones
hacia atras, se llama forward.

Si se desea hacer una idea visual, tanto de la propagacién como de todo el desarrollo de
una CNN;, se puede visitar http://scs.ryerson.ca/"aharley/vis/conv/flat.html. En es-
ta pagina web se muestra un red neuronal convolucional que toma como entrada una imagen
con un numero que nosotros mismos le dibujamos y cuya finalidad es predecir el nimero dando
ademads no solo la primera opcién de prediccién sino también la segunda con mayor probabilidad.

Figura 2.7: Captura de pantalla de la CNN de la pagina web.

Como vemos, esta CNN tiene una arquitectura de 2 capas de convolucién, 2 ocultas de
fully connected y una capa de salida, donde se iluminan con mayor intensidad los niimeros que
tienen més probabilidades de ser el dibujado. Ademads, una de las ventajas de la interactividad
de la web es la visualizacion de los elementos que van influyendo en el siguiente paso si ponemos
nuestro cursor encima.

Para que la predicciéon de la CNN sea correcta deberemos ensenarle la relacién entre la
entrada y la salida en funcién de la prediccién que ella misma hace. Este proceso de aprendizaje
se realiza durante la ya mencionada fase de entrenamiento.

2.2. Aprendizaje

La forma de enseniar a las CNNs es modificar sus parametros hasta alcanzar la precision
deseada o, aceptar la precisiéon que se alcanza. Los pardametros de este tipo de redes son: los
filtros de las capas de convolucidn, los pesos de la red neuronal integrada y los sesgos utilizados
en los productos; asi pues, modificindolos, iremos cambiando la informacién que la red extrae
de los datos de entrada hasta fijar los pardmetros que le permitan distinguir los datos de entrada
entre las clases deseadas.

Como hemos visto, los pesos de la parte de red neuronal se pueden agrupar y ser tratados
como una matriz, asimismo cada elemento del filtro se puede ver como un elemento indepen-
diente. De esta manera, todos los parametros de la red pueden ser tratados de forma similar

http://scs.ryerson.ca/~aharley/vis/conv/flat.html

Redes Neuronales Convolucionales - Inés Aldea Blasco 17

aunque organizados de diferente manera en la arquitectura. De ahora en adelante, si hablamos
de pesos en forma genérica haremos referencia a todos los parametros de la red como elementos
independientes, es decir, a cada elemento del filtro, a los pesos de la parte neuronal convencional
y a los sesgos.

El razonamiento anterior nos permite igualar en cierta manera las dos partes diferenciadas
en la arquitectura. Igualmente, estas similitudes residen en la forma de definir las operaciones en
las diferentes capas. Tanto la convolucion como la suma ponderada son productos de matrices
con la adicién de un sesgo, pero la organizacién en las matrices de filtros (de menor tamano
que las matrices de entrada) de los pesos de la parte convolucional supone una reduccién en el
nimero de pardmetros. Ademads, cada elemento del filtro es usado en todas las posiciones de la
matriz de entrada (a excepcién de algunos elementos del borde dependiendo de las decisiones
del diseno de la convolucién) dando como resultado que, en lugar de aprender un conjunto
aislado de pardmetros para cada ubicacién, aprendamos un conjunto.

El proceso de aprendizaje, es decir del proceso de actualizacion de pesos que generalmente se
inicializan de forma aleatoria viene dada, en lineas generales, por la optimizacién de la funcion
de pérdida L. Esta funcién £ mide el error cometido por la red durante su proceso de apren-
dizaje y nos muestra el progreso de aprendizaje o retroceso. Durante la fase de entrenamiento,
se minimizara esta funcién con la ayuda de optimizadores mientras la red va reajustando los
pesos. Reiteraremos este proceso para un determinado nimero de iteraciones de forma que en
cada una de ellas se minimiza la funcién de pérdida.

Durante este trabajo nos centraremos en el algoritmo de aprendizaje de retropropagacién
o backpropagation optimizado gracias a la técnica del gradiente descendente estocéstico o Sto-
chastic Gradient Descent.

A lo largo del proceso de aprendizaje utilizaremos el conjunto de entrenamiento {z1, zo, ..., 2t },
con t el nimero de observaciones que tendremos en cuenta. Este conjunto esta formado por pa-
rejas de elementos, z; = (I;,y;), con I; la matriz de entrada a la CNN e y; el valor real de la
clase a la que pertenece I; para i € {1,...,t}.

2.2.1. Funcién de pérdida

Las funciones de pérdida £ son funciones que miden el error que comete una red durante
el algoritmo de aprendizaje; miden la distancia entre el valor real y; y la prediccién de la red
¥i- Su evaluacién depende de los pesos asignados ya que influyen en la prediccién de la red
L = L(0;{z}_;) donde 0 es el conjunto de valores de los pesos de la red en esa evaluacién.

Si £ disminuye después de cada iteracion podemos decir que la red esta aprendiendo gra-
dualmente de los errores anteriores. Una red con funcién de pérdida minima deberia devolver
una prediccién cercana al valor real.

Ejemplos de diferentes funciones de pérdida son:

e Error cuadrado medio:

L) = 1 D~)

i=1

e Error medio absoluto:

t

1 ~

L0 {zi}i=1) = ;Z lyi — Uil
i=1

18 Capitulo 2. Redes Neuronales Convolucionales

e Norma Li:

¢
LO;{zi}im) =) lyi — Tl
i=1

e Norma Lo:
t

LO:{zYm) =D (v —5)?

i=1

e Entropia Cruzada o Cross Entropy:
1
L£(0; {zi) = 7 D wiLog(B:) + (1 - yi) Log(1 — 5i)
i=1

Notar que el verdadero valor de la prediccién de una entrada y; es una clase, es decir una
etiqueta, pero estas se codifican numéricamente para poder realizar estas evaluaciones y calcular
el error obtenido.

2.2.2. Retropropagaciéon o Backpropagation

El algoritmo de retropropagacién estima la contribucién de cada peso al valor del error
tomando la derivada de la funcién de pérdida. Es el método utilizado para minimizar la funcién
de pérdida y a su vez el cédlculo de la actualizacién de los pesos.

Con el fin de modelar el algoritmo de la retropropagacion introduciremos la siguiente nota-
cion.

o n.: Numero de capas de convolucion.

o ng,: Numero de capas de la red neuronal.

o N =n.+ n,: Nimero de capas totales de la cnn.

o ¢,: Funcién de activacion en la capa n, con n € N.

o 1,: Funcién de pooling en la capa n, para n € {1,...,n.}.

o y™: Salida de la capa n de la red neuronal (n € {n.+1,...,n. + n,}).

o C': Matriz de salida tras el proceso de convolucién con el filtro r en la capa n con
dimensiones m" x n' y aplicacién de la funcién de activacién a todos sus elementos.

o S': Matriz de salida tras el proceso de pool en la capa n con dimensiones my x ny.
o F': Funcion que realiza el proceso de flattening.

Pardmetros de la red 0

o K%’%p: r filtros de la capa n de tamano m X 7 x p con n € {1,...,n.}.

o W™: Matriz de pesos de la capa n cuyo niimero de neuronas es «,, conn € {n.+1,...,n.+

o by': Sesgo r utilizado en la capa n, con n € {1,...,n.}.

o b™: Vector de sesgos utilizados en la capa n de la red neuronal (n € {n.+1,...,n. + n,})
cuya longitud es ™.

Redes Neuronales Convolucionales - Inés Aldea Blasco 19

Esta notacién estd inspirada en [28], donde se muestra el algoritmo de la retropropagacién
para una arquitectura especifica de CNN. En el presente trabajo haremos una generalizacion
del mismo.

Antes de comenzar a explicar el método de la retropropagacién, comenzaremos haciendo
una pequena modelizacién del proceso de prediccion de las CNN de forward del que hemos
estado hablando a lo largo de este trabajo con la notacién anteriormente formulada.

Pseudocdédigo de feedforward (CNN)

for 1:n. do
= on(X0_1 Sy~ ! * K00+ b)) Etapa de convolucion y funcion de activacion
= Y (C1) Etapa de pooling
end for
F({S}<},) =y"™ Flattening
for n.+1: N do
7" = ¢ (WY1 4+ b") Capas completamente conectadas

end for

N Prediccion de la red neuronal convolucional

Notar que la capa 0 corresponde a la matriz de entrada a la CNN de dimensiones g X 719 X 7y.

El objetivo del algoritmo de retropropagacién es minimizar la funcién de pérdida, para ello
se utiliza el cdlculo diferencial por medio de la regla de la cadena con el motivo de percibir
el cambio de la funcién de pérdida respecto a los parametros de la red. De esta forma iremos
transmitiendo la senal desde la capa de salida de la CNN a la de entrada, al contrario que se
trasmite cuando la CNN hace una prediccién.

De forma genérica obtendremos,

Pesos de las nn

oc oL 87" (4) OWT 4 b)(3)
own(i,j) — dgn(i) O(Wngn=t +b)(i) own (i, j)
Vie{l,..,a"}, Vje{l,..,a" 1}

Sesgos de las nn

an (’L,j) E -

Ol o oL 0y™ (1) .8(W"g7”_1 + ™) (7)
ST abn(iy o) d(WrgnT 4 b7 (i) b (i)
Vie{l,..,a"}
Filtros de la cnn
oL
Vi) = GRET ()
ms—1 ng—1 me—1 me—1 N g
Z Z Z Z 0S7(i,7) 807?(@,]) dinc(i', 5"
= 85” (,7) = o acr (i, 3" Bing(i', ') 8K;Lfn7p(u,v)
Yu € {1, ...,m},Vv e{1,..,n}
Sesgos de la cnn
ms—1 mng—1 me—1 me—1 80”(1/],) 8inc(i’,j’)

VipL c%” Z Zasnu D Zacn D) amfc(i/:f)' b

=0 j'=0

20 Capitulo 2. Redes Neuronales Convolucionales

Con ine(7,5') = >0y Sy~ x Ko+ b

El método de optimizar buscando los puntos criticos y, entre ellos, obtener el minimo, es
muy costoso por la cantidad de parametros de la red. Por este motivo, el algoritmo de pro-
pagacién se ayuda de optimizadores como el Gradiente Estocdstico Descendente (Stochastic
Gradient Descent).

2.2.3. Gradiente Estocastico Descendente (SGD)

Aplicar optimizadores al método de retropropagacién ayuda a encontrar el minimo de una
funcién de pérdida de forma mads rapida ya que resuelven de forma numérica el sistema de
ecuaciones no lineales de la seccién anterior. El optimizador SGD pertenece a la familia de los
optimizadores que utilizan la técnica del gradiente descendente, buscan el minimo actualizando
los parametros en la direccién opuesta al gradiente.

El motivo anterior conlleva a la necesidad de reiteraciones, ya que es muy probable que no
se alcance el minimo a la primera. Como consecuencia, se hace necesaria la definicién de varios
conceptos correlados que pueden inducir a error:

e Una época o epoch es el tiempo en el que se procesa todo el conjunto de entrenamiento.

e El tamano del lote o batch size es el nimero de elementos del conjunto de entrenamiento
utilizado en cada proceso de aprendizaje.

e Una iteracién es el tiempo en el que se procesa un lote tras el cual se actualizaran los
parametros.

La relacion entre estos tres conceptos es la siguiente. Para cada una de las épocas definidas
en la CNN se ha de cumplir,

tamano del lote X iteraciones > tamano del conjunto de entrenamiento.

Por este motivo tan solo es necesaria la definicién de un elemento mas a parte del namero de
épocas porque el otro queda univocamente determinado.

El método del gradiente estocastico descendente utiliza un tnico elemento escogido al azar
de entre todo el conjunto de entrenamiento para actualizar los pesos en la iteracién k + 1 como
sigue,

Op11 = O — nVoL(0k; 2i), para un i € {1,...,t},

con 7 el pardmetro de aprendizaje, que nos indica la magnitud de cambio en la direccién opuesta
al gradiente. Dicho pardmetro no tiene porque ser constante a lo largo de todas las iteraciones.

Este elemento escogido al azar indicard el orden en el cual los elementos seran predichos por la
CNN.

No se puede calcular analiticamente la tasa de aprendizaje éptima para un modelo dado un
conjunto de entrenamiento. Se sabe que si el pardmetro es muy pequeiio podemos tener una
convergencia muy lenta y si es muy grande puede no converger o diverger como se muestra en
la siguiente figura.

Redes Neuronales Convolucionales - Inés Aldea Blasco 21

£(0; {=},) L(0:{zi}o1)

*
v
.
¢
¢
'
o
*
-
0

7] MUY PEQUENO 7] BUENO 0 7] DEMASIADO GRANDE 0

LO:{=}im1)

Figura 2.8: Cambio en la convergencia respecto al tamanio el parametro de aprendizaje.

Las condiciones necesarias para que el SGD converja siendo 7 el parametro de aprendizaje
de la iteracién k son:

o0 oo
domk=00 ¥ Y i< oo
k=1 k=1

En la practica se suele usar el valor predeterminado 0.1 o 0.01.

Como podemos ver en [26], la idea del SGD se puede relacionar con la teoria de Herbert Rob-
bins y Sutton Monro, quienes hicieron un estudio detallado del método de bisqueda de raices en
el algoritmo de Robbins-Monro en lo que forma parte de la teoria “A stochastic approrimation
method”. Esta relacién surge de que se puede considerar equivalente el problema de obtener el
minimo de la funcién de pérdida con el de encontrar el cero del gradiente de dicha funcién. De
esta forma podemos aplicar al SGD resultados como las condiciones de convergencia presentadas
anteriormente. Si se desea ampliar la informacién sobre esto se puede consultar la referencia [25].

Dentro de la familia de los optimizadores que emplean la técnica del gradiente descendente
también se incluyen por ejemplo el mini-batch gradient descent, que actualiza los pardmetros
tras procesar un lote completo del conjunto de entrenamiento pero no cada elemento como el
SGD o el Batch gradient descent que los actualiza tras procesar todo el conjunto de entrena-
miento, lo que aporta mas varianza en el gradiente. Otros ejemplos junto con su formulacion
los encontramos en [20)].

N — >---PREDICCION DE LA ENTRADA EN LA CNN------- S FUNCION PERDIDA--,

(Estimacion del erro v
== (I y) ' :

DE LOS PESOS
DE LA RED

: B i § {
ACTUALIZACION | . %lr_-‘-rlr_ %Eﬁrlrr_r”-r_ - o
| L Relt ok

P D — €emmm<----<---RETROPROPAGACION & SGD----< ~---= €=momme < mmmm & omme &=

Figura 2.9: Esquema del proceso de aprendizaje de retropropagaciéon durante una iteracién para
la observacién ¢ escogida al azar con el optimizador SGD.

22 Capitulo 2. Redes Neuronales Convolucionales

2.2.4. Importancia de las funciones de activaciéon en el aprendizaje

A simple vista puede parecer que la eleccién de las funciones de activacion es superflua pero
no es asi. Como hemos visto, durante el proceso de retropropagacién debido al uso de la regla
de la cadena, se calculan los gradientes de las funciones de activacién. Estos gradientes influyen
mucho en el proceso de aprendizaje dado que pueden provocar que una red aprenda de forma
lenta o incluso deje de aprender.

De igual modo que en [16], vamos a realizar un estudio de las ventajas y desventajas de las
funciones de activacién presentadas anteriormente y su intervencién en el proceso de aprendi-
zaje.

1

e Funcién sigmoide, ¢(x) = Tres
e

Funcion Sigmoide Derivada de la funcién Sigmoide

06 ¢ () = P01~ $(x))

0
-100 -75 =50 -25 00 25 50 75 100 -100 -75 -50 -25 00 25 50 75 100
Eje X Eje X

Figura 2.10: Funcién sigmoide y su derivada.

Una de las ventajas que presenta esta funcion es la facilidad de su derivada, ya que se
puede escribir en términos de ella misma, ¢'(x) = ¢(z)(1 — ¢(z)) .

La funcién sigmoide toma un valor real y genera un valor en el intervalo (0,1). Debido
a su forma y al dominio de definiciéon tan grande, se puede considerar que, para valores
muy grandes o muy pequenos de los pesos la salida es casi binaria, lo que implica que el
gradiente en estos puntos es practicamente nulo. De esta forma se puede inicializar una
neurona de tal manera que no se active o que nunca aprenda. En estos extremos, se cumple
también que, grandes cambios en la entrada corresponden a cambios pequenos en la salida.

x —X

e
et + e’

—e
e Funcién tangente hiperbdlica, ¢(x) =

Funcién Tanh Derivada de la funcién Tanh

Tre

Ee Y
2
3

050 6 (x)=1-¢*(x)

-0 -75 -50 25 G0 25 S0 I5 100 -100 -75 -50 -25 00 25 50 75 100
Eje X Eje X

Figura 2.11: Funciéon Tanh y su derivada.

La tangente hiperbdlica es similar a la funcién sigmoide, toma un nimero real trans-
forméndolo esta vez en el rango [—1,1], centrando la salida en el 0 y con una derivada
¢'(z) = 1 — ¢*(x) mas pronunciada.

Redes Neuronales Convolucionales - Inés Aldea Blasco 23

La funcion sigmoidea y la tangente hiperbdlica tienen el problema conocido por “vanishing
gradient problem” o “gradiente de fuga”. Este problema es causado porque los gradientes
se encuentran en el intervalo (0,0.25) para la funcién sigmoidea y (0,1) para la tangente
hiperbdlica. El efecto de multiplicar n veces en el proceso de aprendizaje, siendo n el
numero de capas que usan estas funciones de activaciéon, produce un decrecimiento ex-
ponencial del gradiente lo que provoca que la red aprenda de forma lenta. Ir alternando
estas funciones con otras de activaciéon hace que este problema pueda desaparecer.

e Funcién ReLU, ¢(x) = maz(0, z).

Funcién ReLU Derivada de la funcién ReLu

RelU(x) = max(0,x)

EjeY

-100 -75 -50 -25 00 25 50 75 100 -100 75 -50 -25 00 25 50 75 100
Eje X Eje X

Figura 2.12: Funciéon ReLU y su derivada.

La funcién ReLU ofrece las ventajas de la no linealidad de las funciones anteriores con un
mayor rendimiento y menos coste computacional por la forma de su derivada. Presenta
el inconveniente de restringir su uso a las capas intermedias de la red por su rango de
definicién en la salida [0, 00).

Esta funcién de activacion hace que la informacion se propague a través de la red si la
entrada es mayor o igual a cero. Para el resto de entradas el valor del gradiente serd 0 asi
que los pesos puede que no se ajusten durante la fase de aprendizaje. Esto significa que
estas neuronas pueden dejar de responder a las variaciones en el error porque el gradiente
es cero, problema conocido como “dying ReLU problem”.

Notar que esta funcién no es derivable aunque definiremos su derivada para el cero obte-

niendo,
o)1 stz >0,
¢($)_{0 six <0.

De esta manera podemos aplicar la regla de la cadena sin ofrecer problema ni oponernos
al trasfondo del aprendizaje. Si la entrada de la funcién de activacion es cero, esta funcién
no se activa y no envia informacién (envia cero), luego no influird en el error esta neurona
asi que la propagacién hacia atras se puede tomar como cero.

T stx >0,

e Funcién ELU, ¢(x) = { a(e® —1) en otro caso.

Funcién ELU Derivada de la funcién ELU

125

Ee Y
-

Ele Y
5
3

-100 -75 -50 -25 00 25 50 75 100

-100 -75 -50 -25 00 25 50 75 100
Eje X

Eje X

Figura 2.13: Funcién ELU y su derivada para a=1.

24 Capitulo 2. Redes Neuronales Convolucionales

Esta funcién es bastante usada ya que tiende a converger el coste a cero mas rapido y con
resultados més precisos. Puede producir salidas negativas para entradas negativas y esta
indicada para capas ocultas por su rango de salida. Su principal diferencia con la ReLLU
es la suavidad hasta alcanzar el valor -a.

En el caso de las capas convolucionales, por su configuracion, estas apreciaciones pueden
cambiar ligeramente. La razon es el algoritmo de retropropagacion, ya que se modifican los
parametros a través de varias neuronas, al contrario que las capas de la red neuronal que se
hace mediante una tnica neurona. Es decir, en las capas convolucionales, que una neurona no
se active no implica necesariamente que esos pesos no se modifiquen.

2.3. Evaluacion de la clasificacion de las CNNs

El conjunto de validacién tiene la finalidad de testear la CNN con un conjunto que no ha
sido utilizado para el aprendizaje. De esta manera tendremos una representacion mas fiel de
como clasifica nuestra red y evitar el sobreajuste.

Como hemos mencionado anteriormente, el conjunto de validacion tiene las mismas ca-
racteristicas que el de entrenamiento ya que ambos componen la base de datos con la que
construiremos nuestro modelo. Esta particién se suele hacer entorno a un 80% de los datos
para entrenar y el 20 % para validar.

Haremos una prediccién de este conjunto de activacion con la red entrenada para aplicar
técnicas que nos miden la buena clasificacion del modelo, haciendo un estudio de los resultados
de esas predicciones. En este trabajo le daremos mayor importancia a las matrices de confusion.

2.3.1. Matriz de confusion

La matriz de confusién permite visualizar el rendimiento del modelo. Aunque normal-
mente en forma de tabla, la matriz de prediccién representa el niimero de predicciones de cada
clase (filas) en funcién de las instancias en la clase real (columnas) o viceversa.

CLASE REAL
Sujetos clase 1 Sujetos clase 2 e Sujetos clase n

f Predichos clase 1 B].]. ﬂ/flxz A/Ilﬂ,
:

£ Predichos clase 2 A/Igl 322 ﬂ’j?n
:

E

D .

1

c

: Predichos clase n ﬂf[n]_ R/InQ e Bnn

Figura 2.14: Esquema de una matriz de confusion para n clases.

Con la informacién ordenada de esta manera, se ve de forma sencilla que el nimero de indi-
viduos bien clasificados se sitdan en la diagonal de la matriz y fuera los que se han clasificado
de forma errénea.

Redes Neuronales Convolucionales - Inés Aldea Blasco 25

La matriz de confusién tiene especial relevancia si el numero de clases a clasificar es dos
ya que nos permite hace un analisis mas detallado sobre la calidad de la clasificaciéon de la
red. Cominmente se usa la terminologia de renombrar las clases como positiva y negativa si la
matriz de confusién solo tiene dos clases y asi hablar de falsos positivos o falsos negativos para
los individuos mal clasificados.

CLASE

POSITIVA NEGATIVA

POSITIVA TP FP

NEGATIVA FN TN

Zo-0n-—-0Om=37o

Figura 2.15: Esquema de una matriz de confusion para 2 clases.

El anélisis consiste en el calculo de los siguientes conceptos.

Tasa de bien clasificados (accuracy): porcentaje de los individuos bien clasificados respecto
al total de predicciones.

TP+TN
TP+ FP+ FN+TN

ACC =

Tasa de mal clasificados (TMC): porcentaje de los individuos mal clasificados respecto al
total de predicciones.

FP+FN

TMC =
¢ TP+ FP+FN+TN

Sensibilidad (TPR): porcentaje de los individuos correctamente clasificados como positivos
respecto al total de individuos positivos (tasa de verdaderos positivos).

TP

TPR=——
R=Tprrn

Especificidad (TNR): porcentaje de los individuos correctamente clasificados como nega-
tivos respecto al total de individuos negativos (tasa de verdaderos negativos).

TN

TNR= ——"_
R=wprrn

Precisién (PPV): porcentaje de los individuos correctamente clasificados como positivos
respecto al total de individuos clasificados como positivos.

TP

PPV = ———
v TP+ FP

Tasa de falsos positivos (FPR): porcentaje de individuos negativos que se han clasificado
como positivos.

FpP

FPR= 557N

26 Capitulo 2. Redes Neuronales Convolucionales

e Tasa de falsos negativos (FNR): porcentaje de individuos positivos que han sido clasifica-
dos como negativos.

_FN
 FN+TP

Un buen clasificador deberia tener los valores de la tasa de bien clasificados, sensibilidad,
especificidad y precisién préximos a 1 o lo mayor posible y la tasa de mal clasificados, de falsos
positivos y falsos negativos lo méas cercana a 0 o lo méas pequena posible. No siempre se podran
obtener los valores de lo que seria un perfecto clasificador porque a nuestros datos no lo permi-
ten o no queremos complicar tanto el modelo por algiin motivo como puede ser la rapidez de
ejecucioén.

FNR

El anélisis de nuestro clasificador consistira en observar aquellos porcentajes de los conceptos
mencionados y ver si nuestro modelo estd en un ratio de resultados que aceptemos, como por
ejemplo que la tasa de bien clasificados sea por lo menos del 80 %, si no es asi deberemos cambiar
la arquitectura del modelo y volver a entrenar el modelo para volver a hacer la validacién.

2.3.2. Otras técnicas de validacién

Otras técnicas que se pueden emplear para la evaluacién de la clasificaciéon de nuestra red
son:

e Tasa de error nula (null error rate): frecuencia con la que se equivocaria si siempre se
predijera la clase mayoritaria.

e Kappa de Cohen: Es una media que compara lo bien que cataloga el clasificador en
comparacién de una asignacién de las clases al azar.

e Curva ROC: Grafico utilizado solo en el caso de tener dos clases donde se representa la
tasa de falsos positivos (eje x) frente a la tasa de verdaderos positivos (eje y) en funcién de
un valor de decision creciente. Calculando el area bajo la curva (AUC) nos podemos hacer
idea de lo buen clasificador que es nuestro modelo teniendo en cuenta que un clasificador
que no se equivoca nunca tendria un AUC=1.

En funcién del resultado de estas técnicas, se finalizaran la construccién y aprendizaje del
modelo o se modificaran con el fin de conseguir resultados satisfactorios, tal y como se refleja
en el siguiente esquema:

DISENO DE LA CNN
DATOS

mrrE

FASE DE APRENDIZAJE

CONJUNTO DE
ENTRENAMIENTO

RETROPROPAGACION &
OPTIMIZADOR (SGD)

CONJUNTO

FASE DE VALIDACION

VALIDACION

SI NO
FINALIZACION DE LA
CONSTRUCCION

Figura 2.16: Esquema del proceso de construccién de una CNN.

Redes Neuronales Convolucionales - Inés Aldea Blasco 27

2.4. Prediccion de la clase

Tras la validacién de nuestro modelo, la CNN estara lista para usarse y poder realizar la
finalidad para la que se construyo.

Tanto las predicciones que se realizan a lo largo del proceso de construccion de la CNN
como las predicciones de los datos nuevos se resumen en una serie de operaciones dentro de la
red, como hemos visto, gracias a las definiciones de los algoritmos utilizados. En nuestro caso
particular, la entrada a la red serd una imagen codificada en forma de matriz con la que reali-
zaremos operaciones (sumas y productos) y obtendremos un valor que correspondera a una clase.

Como ya mencionamos sin detenimiento, estos valores que obtenemos son codificaciones
numéricas de las etiquetas de las clases de nuestro problema. Codificaciones habituales son el
uso del 0 y 1 en el caso de tener dos clases o la codificacién one hot encoding. Esta ultima
codificacién es la mas utilizada para problemas multiclase, es decir, problemas con mas de dos
clases en la prediccién. Consiste en la asignacién de un vector de longitud igual al ntimero
total de clases cuyo tnico elemento distinto de cero tiene valor 1 y cuyo lugar corresponde con
una de las clases a clasificar. Estas codificaciones basadas en 0s y 1s independientemente del
numero de clases nos permiten definir el algoritmo del modelo, fundamentalmente las funciones
de activacién, como lo hemos hecho.

Capitulo 3

Estado del arte

La aplicacién mas conocida de las CNNs es la visién por ordenador, donde el conjunto de
entrada son una serie de imagenes y la red realiza una tarea tras la extraccién de patrones de
estas. Sin embargo, las imdgenes no son el inico formato de datos con los que las CNNs pueden
trabajar, los textos o las series temporales son ejemplos de esto. Pero no solo eso, si nuestros
datos se pueden codificar de manera que concuerden con la forma de entrada, es muy probable
que las redes puedan sacar patrones y aprender de ellos para poder llevar a cabo una labor.
Aunque esta tarea resulta complicada porque se afiade esa complejidad de codificar los datos
de manera eficiente para poder sacar informacién de estos. Como curiosidad, en relacién a esto
ultimo, se puede ver el articulo [3] donde se codifican los ficheros ejecutables binarios en image-
nes en escala de grises para poder introducirlos a una red y con esto detectar cédigos maliciosos.

Vamos a ver algunos ejemplos de forma detallada de las aplicaciones de las CNNs a imagen,
texto y series temporales con la exposicién de varios articulos:

e Ayuda en el diagnéstico de enfermedades.

Una de las aplicaciones importantes de las CNNs es la ayuda en el diagndstico de en-
fermedades. Este tipo de redes extraen patrones de los datos recogidos por las pruebas
médicas que en algin caso, por su volumen, hace dificil su analisis manual.

Un ejemplo de la obtencién de gran cantidad de datos es la resonancia magnética, que
proporciona imagenes tridimensionales que posibilitan la deteccién de las lesiones de ma-
teria blanca. Estas lesiones son células desmielinizadas que se encuentran en la materia
blanca del cerebro. Este ejemplo es el que se recoge en el articulo [4], donde se aplican las
CNNs para la deteccién de estas lesiones.

Aunque en este caso los datos que se han de estudiar estdn en forma de imagen, y por
tanto ya tenemos nuestros datos en forma de matriz, se realiza un preprocesamiento por
dos motivos principales: mejorar la imagen y adaptarla a la entrada de la CNN construida.
Para este preprocesamiento se realizan varios procesos.

Primero se extrae el craneo de las imagenes obtenidas en la resonancia magnética, proceso
que esta explicado en [1] en el apartado C' Skull Stripping. Una vez tenemos solo la imagen
del cerebro sin el recubrimiento del crdneo la mejoramos. Esta mejora principalmente se
aplica para aumentar el contraste en la imagen y que asi sea mads facil la clasificacion
de las células para saber si estdn desmielinizadas. En este articulo que estamos presen-
tando se aplica el algoritmo de comparacién de histogramas que se puede consultar en

29

30

Capitulo 3. Estado del arte

[7, pags 88-108]. Finalmente para adaptar la imagen a la entrada de la CNN entrena-
da se utiliza el algoritmo SLICO que se encarga de hacer una segmentacion del cerebro
agrupando los pixeles en funcién de algin requisito, que en nuestro caso es el color. Esta
agrupacién se llamard superpixel. Para més informacién del algoritmo SLICO se puede
consultar [18]. Finalmente, la entrada a nuestra red serdn estos superpixeles y sus vecinos.

EXTRACCION DEL CRANEO AUMENTO DEL CONTRASTE

SEGMENTACION DEL CEREBRO ENTRADAA LA CNN

Figura 3.1: Antes y después de los procesos indicados en el tratamiento de la imagen. Imagenes
tomadas del articulo [4].

He elegido este articulo a parte de su aplicacién con el fin de mostrar que el uso de imé&-
genes en las CNNs también puede requerir un tratamiento de estas previo. Aunque la
imagen para el ordenador sea como una matriz de nimeros y no necesite esa adaptacion
hay veces que es necesario recortarla o mejorarla. Estos tratamientos previos de las imé-
genes pueden mejorar y simplificar la tarea de clasificacién para resultar mas sencilla.

El articulo presenta la red que mejor resultados da para su finalidad, clasificar los super-
pixeles en danados y no danados entendiendo por danados aquellos que representarian
lesiones blancas, después de realizar experimentos para su diseno. La arquitectura del
modelo seleccionado, presentada en el cuadro 3.1, ha sido la que mejor resultado obtuvo
comprando los resultados de sensibilidad, especificidad, tasa de bien clasificados y falsos
positivos por imagen. La red destacada se compone de las siguientes caracteristicas:

Redes Neuronales Convolucionales - Inés Aldea Blasco 31

Arquitectura de la CNN

Convolucion con 20 filtros de 5 x 5
Funcién de activacion ReLu
Maxpooling 2 x 2

Convolucion con 50 filtros de 5 x 5
Funcién de activacion ReLu
Maxpooling 2 x 2

Flattening

Capa completamente conexa de 500 neuronas & ReLu

Capa de salida 2 neuronas & Softmax

Cuadro 3.1: Arquitectura de la CNN utilizada en el experimento.

Destacamos que después de la segunda capa de convolucién se aplica Dropout del 50 %.
Esta técnica consiste en bloquear un porcentaje de neuronas de una capa que se indica al
azar, en este caso el 50 % de ellas, para que no actualicen sus pesos y como consecuencia
no aprendan. Esta técnica evita el sobreajuste de los datos previniendo que la red se
adapte mucho a los datos del conjunto de entrenamiento.

El conjunto de datos con el que se cuenta tiene la informacién de 91 pacientes de los cua-
les, una vez determinada la arquitectura de la CNN, se han usado 76 para el conjunto de
entrenamiento y 15 para el conjunto de validacién seleccionados al azar. La red resultante
detect6 el 78.79% de las lesiones de materia blanca con solo un 0.005 de falsos positivos
por imagen y con una especificidad de 98.77 % y tasa de bien clasificados de 98.73 %.

o Anilisis de texto.

Como ya hemos mencionado las CNNs no se aplican inicamente a imagenes. En el articulo
[15] se aplican para andlisis de texto como clasificadores de la satisfaccién o sentimiento
recogido en el texto. Es decir, en nuestro caso, clasifica si en el texto que se le introduce
se expresa un sentimiento positivo o uno negativo.

Este tipo de redes se propone para estudios de este tipo ya que, gracias a sus capas de
convolucién, son capaces de agrupar y extraer informacién global. Esta caracteristica pre-
tende mejorar los métodos convencionales como la méquina de vector soporte (SVM) o
Naive Bayes que analizan el texto palabra por palabra perdiendo informacién al clasificar
la palabra principal sin tener en cuenta al resto.

Para hacer una clasificacién con las redes estudiadas necesitaremos un preprocesamiento
de los datos que nos transforme el texto en una matriz con su informacién en la que cada
fila serd un vector que representa a cada una de las palabras. Si el texto cuenta con s
palabras y el vector que codifica las palabras tiene dimension d, el texto se sustituird por
una matriz de dimensiones s x d. Uno de los métodos més conocidos para este preproce-
samiento es el método Word2vec, que se explica de forma detallada en [6].

32

Capitulo 3. Estado del arte

Tras este proceso, tendremos una matriz de palabras que formard la entrada a la red. Una
vez tenemos los datos en forma de matriz se aplicaran los procesos que hemos descrito a lo
largo de este trabajo aunque con una pequena modificacién ya que en este caso se utiliza
la convolucién y pooling conocidos como convolucién 1D (1-dimensional) o pooling 1D.
La diferencia entre la 1D y la 2D (que es la presentada en el capitulo 2 de este trabajo)
es la dimensionalidad de los datos de la entrada junto con su adaptacion del producto de
convolucién, como se desliza el filtro a través de la matriz resultante y el entorno en el
que hacemos el pooling.

Este
seria

el

texto
0

tuit
que

nosotros

queremaos

clasificar

Figura 3.2: Forma en la que el filtro recorre la matriz en la que hemos codificado el texto.

Podemos observar en los casos 1-dimensionales como el filtro solo se mueve en una direc-
cion a diferencia de los filtros en el caso 2D. Por tanto, para definir estos filtros 1D, nos
bastard con definir su altura ya que el niimero de columnas sera igual al nimero de colum-
nas del conjunto de entrada. Esta construccién nos hace poder agrupar n palabras (que
serd la dimension del filtro) para obtener patrones de los conjuntos de palabras mediante
la convolucién. No tendria sentido el movimiento del filtro en sentido horizontal, ya que
no nos podemos olvidar que las filas representan la codificaciéon de palabras completas
y por tanto no obtendriamos la relacién entre ellas. Como resultado de este proceso de
convolucién obtenemos una matriz cuyas dimensiones son:

(n® filas de la matriz — n® de filas del filtro+ 1) x n°® filtros aplicados.

La convolucion genera en la matriz resultante, para cada columna, los resultados de convo-
lucionar con el mismo filtro. El proceso de pooling se aplica en estas columnas, definiéndose
ahora el entorno como un niimero de elementos contiguos a los que aplicarle los resimenes
estadisticos que mencionamos en la parte tedrica y asi reducir dimensiones.

Redes Neuronales Convolucionales - Inés Aldea Blasco 33

Un ejemplo de arquitectura y funcionamiento de red para texto seria:

i activation function

convolution

softmax function
regularization

in this layer
2 classes

3 region sizes: (2.3,4) 2 feature

Sentence matrx 2fitters for_eal:h region maps for 6 univariate
Tx5 size sach vectors
totally 6 filters region size concatenatad

together to form a
single feature
vector
=5
I
like

this

movie
very >
much -
1

|

;

Figura 3.3: Ejemplo de una estructura de red neuronal convolucional aplicada a textos.

En el articulo se hace un experimento con dos conjuntos de datos: el conjunto MR, que
consta de una coleccién de resenas de peliculas y el conjunto STS, una coleccién de tweets
reales. Se consigue para los conjuntos de validacién de los datos mencionados una tasa de
bien clasificados de 74.5 % y 68 % respectivamente, obteniendo un porcentaje mayor que
para los clasificadores convencionales.

Si se desea tener mayor informacién de este proceso a parte de [15] se puede consultar
[27] que cuenta con un estudio mas extenso y es donde se ha obtenido la figura 3.3.

e Prediccion en series temporales.

En el articulo [9] se proponen, para predecir la velocidad y la direccién del viento, las
técnicas de clasificacion de las 1D CNNs con un conjunto de datos del viento en forma
de series temporales, es decir, secuencias de datos medidos en el tiempo (en intervalos
regulares) y ordenados cronolégicamente.

El conjunto de datos utilizado para el experimento estd formado por series temporales
para la direccién y la velocidad del viento, medidas en dos lugares diferentes, Stuttgart
(Alemania) y Holanda, con intervalos de tiempo mensuales. Las muestras de este conjunto
tendran multiples entradas, en concreto una para cada elemento que queremos predecir.
Es decir, para un valor de tiempo t; tendremos dos mediciones, la respectiva a la velocidad
v la de la direccién en cada entrada.

Para definir la longitud de la entrada asi como el valor de la clase de esta se definen dos
escalares, Wy y Wg. Por un lado, W que define las Wy + 1 medidas consecutivas que for-
maran la entrada a la red a partir de un cierto tiempo ¢; que se ird moviendo para obtener
diferentes muestras. Como consecuencia la entrada de la red estara formada por las medi-
ciones de la velocidad y la direccién del viento en los valores del tiempo {t;, 41, ..., tj+w, }-

34 Capitulo 3. Estado del arte

Por otra parte, Wp definen las Wp + 1 medidas consecutivas tras el dltimo valor de la
entrada, es decir tras t;yw,, de la misma manera que se definen los valores la entrada. El
conjunto definido por Wp sirve para calcular el valor real de la prediccién (su clase) de
la entrada como veremos a continuacion y para definir el intervalo de tiempo para el que
se hard la prediccién.

Medicion de la Medicion de la
direccion del viento —‘ velocidad del viento
¥
tj
tis1
ti+w,

Figura 3.4: Matriz de entrada a la CNN de las series temporales y forma de recorrer el filtro en
dicha matriz.

La forma de predecir de estas redes consiste en fragmentar R en varios segmentos o inter-
valos donde incluiremos el extremo inferior y excluiremos el superior. Esta fragmentacion
se basa en la media p y la desviacién estdndar o del conjunto completo de los datos
calculado para la velocidad y la direcciéon por separado. En este estudio se definen los
limites de los intervalos de la misma forma para ambas caracteristicas, dando lugar a las
11 clases con las que clasificarda la CNN. Como resultado, la CNN predice clasificando la
entrada en una de las siguientes clases:

Clase Rango inferior Rango superior

1 w—kio w+ ko
2 p+ ko p+ koo
3 p+ koo p+ k3o
4 p+ kso p+ kso
5 p+ kso p+ kso
6 M+ k50’ o0

7 m— k‘QU om—]ﬁO’
8 uw— kso W — koo
9 w— kqo w— kso
10 o= k50’ M — k40
11 —0 w— kso

Cuadro 3.2: Definicién de las clases utilizadas.

Redes Neuronales Convolucionales - Inés Aldea Blasco 35

Donde se toman los valores de ki, ko, k3, k4 y k5 como 0'15,0'45,0'65,0'95 y 125 respec-
tivamente. Notar que aunque se definan de la misma forma para clasificar la velocidad y
la direccion, los valores de p y o cambian y por tanto los valores de los intervalos seran
distintos.

Una vez definidas las clases, la forma de calcular la etiqueta de las muestras es ordenar
los Wp + 1 valores en estos intervalos y calcular el intervalo con mayor ntimero de ellos.
Este intervalo sera la clase o etiqueta que le asignemos a la muestra. Notar que en cada
arquitectura que se presentan se entrena y se estudia los resultados para la velocidad y
la direccién por separado cambiando tnicamente los valores de las etiquetas, las entradas
seran exactamente las mismas para ambos casos.

En este articulo se proponen dos arquitecturas de 1D CNN, una simple (1DS) donde
la entrada es la que hemos mencionado anteriormente y una multiple (1IDM) donde la
entrada se duplica de varias formas para obtener 5 entradas diferentes y con ello se extrae
informacién diferente en 5 grupos de convolucion aislados hasta que se conectan tras
el proceso de flattening. La duplicacién de la informacién consiste en, para un grupo de
convolucién, introducir los datos como en 1DS, para el segunda comenzando con el primer
valor de la muestra e incrementando el valor de t; en dos, para el tercero la duplicacién
se hace de forma analoga a la segunda pero comenzado con el segundo valor. La entrada
al cuarto y al quinto grupo es definido de forma similar al del segundo y tercero pero
realizando un incremento de tres. El esquema resultante de las arquitecturas utilizadas es
el siguiente.

12 CAPA DE
CONVOLUCION

Transformacion

de la entrada

0 filtros de dimension 3

2% CAPADE
CONVOLUCION

12 CAPA DE 1° CAPA DE 1* CAPA DE 19 CAPA DE 1¢ CAPA DE
CONVOLUCION CONVOLUCGION CONVOLUCION ‘CONVOLUCION CONVOLUCION

I I I I I

2° CAPA DE 2 CAPA DE 2* CAPADE 2" CAPADE 2" CAPADE
CONVOLUCION CONVOLUCION CONVOLUCION CONVOLUCION CONVOLUCION

3* CAPA DE 3 CAPADE 3" GAPADE 3% CAPADE 3* CAPA DE
CONVOLUCION CONVOLUGION CCONVOLUCION CONVOLUCION CONVOLUCION
FLATTENING

CAPA COMPLETAMENTE
(CONEXA DE 200 NEURONAS

CAPA COMPLETAMENTE
CONEXA DE 100 NEURONAS
CAPA DE SALIDA
11 NEURONAS

Figura 3.5: Estructuras propuestas de las CNN (a la izquierda la estructura simple y a la derecha
la estructura multiple).

10 filtros de dimension 3

3% CAPADE
CONVOQLUCION

FLATTENING
CAPA COMPLETAMENTE
CONEXA DE 200 NEURONAS

CAPA COMPLETAMENTE

20 filtros de dimension 3

CONEXA DE 100 NEURONAS

CAPA DE SALIDA
11 NEURONAS

Las caracteristicas de las partes convolucionales son las mismas que en el caso simple y
la funcién de activacién utilizada durante todo momento es la ELU con a = 30. Ademas,
después de cada una de las capas de convolucién se realiza un dropout del 20% de las
neuronas y la técnica de Batch Normalization que reduce la covarianza de los datos nor-
malizandolos de manera que optimiza y acelera el entrenamiento de la red.

36 Capitulo 3. Estado del arte

Algunos de los resultados obtenidos en el estudio son los siguientes, no obstante, se recalca
en él que los resultados podrian mejorar anadiendo més capas en las arquitecturas aunque
requiere de recursos de hardware y unidades de procesamiento grafico (GPU) mejores a los
utilizados. Para mayor detalle del proceso y mas informacién de los resultados, consultar
el propio articulo [9].

Stuttgart Holanda
Caracteristica peor accuracy mejor accuracy Ppeor accuracy MeEjor accuracy
velocidad 85.4 % 90.2 % 90 % 95.2 %
direccion 89.8% 95.1% 91.3% 94.7 %

Cuadro 3.3: Resultados para la arquitectura 1DS CNN.

Stuttgart Holanda
Caracteristica peor accuracy mejor accuracy PEOr accuracy Mejor GCCuracy
velocidad 92.0% 96.8 % 93.6 % 99.7 %
direccién 97.5% 98.8% 97.6 % 99.4 %

Cuadro 3.4: Resultados para la arquitectura 1DM CNN.

Estudios de este tipo son importantes, por ejemplo como se comenta en el articulo, para
la instalaciéon de aerogeneradores cuya potencia depende de la velocidad y direccién del
tiempo.

Estos son algunos ejemplos en las aplicaciones de las CNNs, pero no son los tinicos. Se ha
elegido un ejemplo que resulte representativo para los principales tipos de datos con los que
se trabaja hoy en dia en las CNNs y que, igualmente, contuviese alguna caracteristica especial
como el tratamiento de las imagenes, la codificacién de los datos iniciales o arquitecturas di-
ferentes a las simples que se han mostrado en la teoria permitiendo varios grupos de capas de
convolucién aislados.

Los estudios relacionados con las técnicas de las CNNs han experimentado en estos ultimos
anos un aumento, bien por los resultados que proporcionan, o bien por las mejoras en tecnologia
que hacen que disminuya el tiempo computacional de las miiltiples operaciones que se realizan
en estas “cajas negras”, proliferando sus aplicaciones.

Capitulo 4

Gestion autémata de la ocupacion
de salas

Durante el desarrollo de este capitulo se va a llevar a cabo el estudio del problema de ges-
tion de salas en la empresa Efor mediante la implementacion de CNNs poniendo en practica la
teoria mencionada a lo largo del trabajo. Efor es una empresa aragonesa que forma parte del
grupo integra dedicada a dar servicios y soluciones tecnoldgicas para la gestién, comunicacién
y marketing de las empresas. El tratamiento de este problema de una manera autémata y con
herramientas actualmente emergentes y en crecimiento hace efectivo su eslogan “la innovacion
es necesaria’.

4.1. Descripcion y metodologia del proyecto

Efor cuenta con una serie de salas para la atencién de clientes, reuniones, formacion,... Estas
salas se pueden reservar mediante una intranet en la cual aparecen tanto los horarios disponi-
bles como las franjas de horas en la que estan las salas ocupadas. La problemética a resolver
comienza aqui.

En alguna ocasién, la reserva de salas se programa de manera periédica, de modo que, si por
algin motivo no se puede llevar a cabo la finalidad por la que fue reservada, la sala figura como
ocupada pero no se usa. Salvo que la sala se deje libre de manera andloga a la que se reservo,
aparecera como ocupada y nadie podra emplearla. La anulacién de una visita de clientes o el
cambio del horario y reserva de otra sala si anteriormente se disponia de una, también pueden
dar lugar al problema anterior.

El principal motivo del presente trabajo es la automatizacion del conocimiento de la ocupa-
cion de las salas sin la necesidad de molestar ni desplazarnos al asegurarnos nosotros de manera
presencial si la sala estd vacia y la podemos emplear. Para llevarlo a cabo, contamos con una
serie de videos, de los cuales sacaremos frames para poder trabajar con estas imagenes y apli-
carles las CNNs para obtener de la imagen la informacién de si la sala esta vacia o estd ocupada.
Estos controles se podrian realizar de manera reiterada en intervalos de tiempo homogéneos de
cuarto de hora empezando a las 8:00, horario en el que la empresa abre, o implementar una
aplicacién para que el control solo se realizase si es necesario.

El proyecto se realiza siguiendo el siguiente diagrama de fases. Como se muestra, el proyecto
distinguira principalmente dos fases, la primera donde se realiza un estudio de viabilidad con las
herramientas propuestas y una segunda donde se pondra en marcha las conclusiones obtenidas
para la resolucién del problema.

37

38 Capitulo 4. Gestién autémata de la ocupacién de salas

FASE DE VIABILIDAD FASE DE EJECUCION
Analisis del Estudio y LB ERE FIEHIC " .
" experimentacion marcha y Seguimiento y Conclusiones
problema y seleccion de P i
P de las técnicas adaptacion del control finales
datos técnicas .
escogidas modelo

Figura 4.1: Diagrama usual de fases de un proyecto de empresa.

En el estudio de viabilidad afrontaremos el estudio de la aplicacién de CNNs a este proyecto.
Aplicaremos de manera directa una arquitectura disenada de CNN con las caracteristicas que
hemos estado mencionando a lo largo de la parte tedrica del trabajo. Para ello se realizara un
preprocesamiento de la imagen para fragmentarla con el fin de que la entrada de la red definida
sean fragmentos de la propia imagen que queremos predecir. La parte practica del presente
trabajo fin de méster (TFM) corresponde a esta primera fase.

Una vez se ha experimentado con la técnica anterior y se ha visto que es factible abordar
este experimento con ella, se pondria en marcha la ejecuciéon. Durante esta fase se adaptaria
el modelo seleccionado a las diferentes salas de la empresa, entrenando, para ello, el modelo
seleccionado en las diferentes salas, generando asi un modelo entrenado por sala.

Con la finalidad de enlazar estos modelos, se haria otra red la cual fuese capaz de adjudicar
el modelo correspondiente en funcién de la imagen de la sala. Esta red tomaria el fragmento
de imagen donde aparece el numero de camara de vigilancia, asignando a cada uno de esos
numeros el modelo de la sala correspondiente teniendo en cuenta que contamos con una camara
diferente por sala.

Tras un pequeno seguimiento sobre la implantacién de estas redes, el proyecto global de la
gestidén autémata llegaria a su fin.

4.2. Presentacion del conjunto de datos y obtencién de frames

Para este estudio se han usado una serie de videos de la red de seguridad de Efor propor-
cionados por la propia empresa con el formato de tipo .asf (Advanced Streaming Format). Los
videos extraidos son 3 en diferentes horas y dias para tener muestras con diferentes alteraciones
de luz en la sala:

Sala Dia Hora de grabacién Duracién (min) Ocupacién Uso
Boole 4/07/2019 15:30 30 vacia Entrenamiento
Boole 5/07/2019 9:30 30 ocupada Entrenamiento
Boole 23/07/2019 13:00 20 ocupada Validacién

Cuadro 4.1: Informacion sobre los videos.

Redes Neuronales Convolucionales - Inés Aldea Blasco 39

Para obtener los frames con los que trabajaremos de estos videos se ha utilizado el cédigo
mostrado en el cuaderno “Obtencion de frames” adjuntado en el anexo B. Notar que la ocupa-
cién del video no hace referencia a los frames que podemos obtener, ya que los videos ocupados
tienen fragmentos grabados en los que no tenemos personas, bien porque se han grabado los
fragmentos de entrada y salida a la sala o bien, porque hemos salido de la sala para tener
muestras de la sala sin personas en otro contexto.

Los frames extraidos son imdgenes (en formato .jpg) de tamano 1920 x 1080 obtenidas
aproximadamente con una tasa de 15 frames por segundo en cada video. Supone un volumen
grande del conjunto de datos con los que desarrollaremos el proyecto, pero no debemos olvidar
la peculiaridad de que muchos de los frames son muy similares por obtenerlos en intervalos tan
proximos lo que supone llevar especial cuidado a la hora de tomar el subconjunto de frames
con los que entrenaremos el modelo.

En alguna ocasién necesitaremos hacer un tratamiento previo en las imagenes para reducir
tamafio y resolucién para que las imagenes sean més ligeras y los entrenamientos de los modelos
sean mas rapidos. Esto no supone un impedimento en las predicciones ya que introduciremos
las imagenes de una manera analoga a lo que nuestros modelos de redes haran con las imagenes.

4.3. Fase de viabilidad

La fase de viabilidad es la que toma mayor relevancia por ser un punto de inflexién. Gracias
a los estudios realizados durante esta fase se obtienen una serie de resultados y conclusiones
con los que se conocera si se pone en marcha el proyecto o por el contrario, este no es factible
o en nuestro caso, la técnica propuesta no es capaz de solventar el problema, por resultados o
por eficiencia de los modelos.

En esta fase se disenard una red personalizada para nuestro problema experimentando con
diferentes modelos y documentando tanto los experimentos como las conclusiones que nos lle-
van a seleccionar o descartar las redes. Por consiguiente, disenaremos redes que sean capaces
de clasificar dos clases, ocupada y vacia, que hacen referencia al estado de la sala, afrontando
de esta manera el problema como uno de clasificacion biclase.

Asimismo se realizard un preprocesamiento de los datos ya que el método empleado para
introducir la informacién al modelo sera fragmentando las imédgenes de la salas generando ven-
tajas que comentaremos mas adelante.

De esta manera, la argumentacién a seguir serd la siguiente; si la red predice todos los tro-
zos de la imagen como la clase vacia, la sala estara vacia y, si hay al menos un fragmento que
pertenezca a la clase ocupada, esté sera el estado que tendrd la sala.

El esquema de esta fase experimental sigue la evolucién temporal real realizada. Comien-
za con un andlisis y pretratamiento de los datos con los que se prueban varias arquitecturas
modificando elementos que varian el nimero de parametros del modelo como son el nimero
de capas, filtros y neuronas hasta encontrar una arquitectura sencilla que aportase buenos re-
sultados con los que comenzar a ajustar ese modelo. Durante este proceso de ajuste se pone
especial relevancia en el conjunto de entrenamiento con el que aprende la red, el niimero de
épocas, la mejora del modelo con nuevas inicializaciones y el ajuste de la prediccién final a
través de la modificacion del valor de corte en la funcién de activacion de la iltima capa. Una
vez seleccionado el modelo final, realizaremos un estudio de la evaluacion de su clasificacion
mas apropiado segin la casuistica del proyecto y la argumentacién seguida para clasificar.

40 Capitulo 4. Gestién autémata de la ocupacién de salas

Senalar que los experimentos mostrados a continuacién se han realizado con un ordenador
con procesador Intel(R) Core (TM) i5-7200U CPU @ 2.50GHz 2.71 GHz, una memoria RAM
de 8.00 GB y un sistema operativo de 64 bits.

4.3.1. Estudio de la sala

Para acotar el experimento, aplicaremos esta técnica a una de las salas, la sala Boole. Co-
menzamos estudiando la sala tanto con los frames obtenidos con los videos como de forma
presencial.

La sala Boole tiene la siguiente distribucién donde nos encontramos igualmente los objetos
con los que cuenta la sala que con la posicién de la camara de donde hemos obtenido los datos.

4/07/2619 15: 39 00

I I
I I I

Figura 4.2: Distribucién de la sala Boole.

Debido al tamano de las imagenes adquiridas en los videos, asi como lograr una pequena
optimizacion en los tiempos de ejecucién y prevenir falsos negativos cuando la sala esté vacia,
se ha optado porque la entrada de la red definida sean fragmentos de los frames y no estos
completos. De esta manera, se logra optimizar los tiempos de ejecucién ya que el tamaiio de las
imdagenes se estara reducido significativamente y se eliminan fragmentos que contienen espacios
donde no vamos a encontrar personas, como son los fragmentos del techo, consiguiendo ademas,
evitar falsos negativos.

El estudio de la sala en la que se aplicard la red es importante puesto que, dependiendo
de la perspectiva, localizaciéon de la camara de seguridad, luz o tamano de la sala puede pro-
ducir la necesidad de aplicar alguna mejora a la imagen. En nuestro caso, el motivo esencial
del estudio de la sala radica en aplicar uno u otro mallado a la imagen para segmentarla evi-
tando la perdida de informacién y ayudando, en la medida de lo posible, a mejorar la prediccion.

Para la realizacién de este estudio se ha de tener en cuenta la forma en la que las imagenes
se leen con Python en los cuadernos de jupyter, ya que la funcién que segmenta la imagen se ha
programado de manera que los fragmentos de imagen que queden fuera de un mallado regular
se pierdan. Este mallado comenzara definiéndose en la parte superior izquierda de la lectura de
la imagen pudiendo provocar pérdida de informacion en la parte derecha e inferior de esta.

Se comenz6 proponiendo un mallado compuesto por cuadrados llevando cuidado con el
tamafio de estos porque si son muy pequenos nos pueden llevar a confusién. Un ejemplo de
un mallado demasiado pequenio es cortar la siguiente imagen que forma parte de los frames

Redes Neuronales Convolucionales - Inés Aldea Blasco 41

obtenidos con un mallado de 65 x 65. El mallado nos representa los trozos extraidos donde los
rectangulos pintados nos indican la pérdida de informacién.

o
A

pretd

inte
¥ setemd

et

"
c0rd®

25

»

Figura 4.3: Mallado de la sala Boole de dimensiones 65 x 65.

Como vemos la pérdida de informacién es minima, sin embargo se plantea otro problema,
ya que los siguientes fragmentos pertenecientes al mallado anterior serian dificiles de clasificar,
incluso para el ojo humano, en relacién a si pertenecen a fragmentos de sala vacia o trozos de

las personas de la imagen.
EREn e

Figura 4.4: Fragmentos del mallado que pueden provocar error.

Con esta informacién se propuso un mallado de dimensiones 120 x 120. Este mallado era
lo suficientemente grande como para solventar el efecto anterior y ademads nos ofrece la ventaja
de no tener pérdida de informacion en los laterales.

P
g 11| \ P

Figura 4.5: Mallado de la sala Boole de dimensiones 120 x 120.

Al realizar experimentos con este mallado se observaba que para mejorar las predicciones se

42 Capitulo 4. Gestion autémata de la ocupacién de salas

debia complicar mas la arquitectura, lo que suponia un aumento en el tiempo de entrenamiento
del modelo pero no mejoraba significativamente las predicciones en cada paso.

El siguiente paso fue ver como la red estaba prediciendo para mejorar el mallado. Ejemplos
de iméagenes de las predicciones que obteniamos eran:

Figura 4.6: Imagenes de predicciones de una red con dos capas convolucionales y dos capas
completamente conectadas.

Como veremos en profundidad mas adelante, las zonas verdes son aquellas que la red pre-
dice como fragmentos de sala vacia y los rojos de sala ocupada. Se puede ver en las imagenes
anteriores como hay zonas de la sala vacia que nos la predice como ocupada, produciéndose un
falso negativo y zonas de la sala ocupada, como son trozos de la mesa y sillas, que predice como
si estuviese ocupada.

Para mejorar estas predicciones, se observé que la figura de las personas se asemeja mas a un
rectangulo, introduciendo de esta manera més informacion en cada iteracién de entrenamiento
resultando mas facil la distincién de los fragmentos y reduciendo los falsos negativos. Finalmen-
te, haciendo pruebas con varios mallados rectangulares, se opto por uno de dimensiones 120 x
240. De esta forma, los fragmentos de las imagenes serian los resultantes de romper la imagen
por el siguiente mallado:

G 11

Figura 4.7: Imégenes del mallado finalmente seleccionado de dimensiones 120 x 240.

El cédigo empleado para la realizacién de este estudio se puede ver en el cuaderno “Estudio
de la sala” del anexo B.

Redes Neuronales Convolucionales - Inés Aldea Blasco 43

4.3.2. Estudio de los datos y obtencion de los conjuntos del experimento

Tras escoger el mallado con el que cortar la imagen, tenemos que formar los conjuntos con
los que el modelo de la red trabajard. En nuestro caso, se realizard cada experimento con dos
conjuntos de datos, el conjunto de entrenamiento y el conjunto de validaciéon. Por la forma en
la que la red estd programada junto con la lectura de los datos, cada uno de estos conjuntos
estard dividido en dos carpetas, una por cada clase de clasificacién, que en nuestro caso seran
dos (vacia y ocupada).

CONJUNTO DE DATOS

ENTRENAMIENTO VALIDACION

QOCUPADA VACIA OCUPADA VACIA

Figura 4.8: Estructura de los datos utilizada.

Para obtener estos conjuntos, se comenzé con la eleccion manual del los frames para cada
uno de ellos. Esta seleccién manual condicioné las imédgenes que posteriormente formaban los
conjuntos. Para solventar esto, se opto por seleccionar de manera aleatoria las imagenes para
cada uno de los conjuntos.

Tras obtener el nimero de los frames que pertenecen a los diversos conjuntos, se procedio
a guardarlos en distintas carpetas para proceder a la inspeccion visual y seleccién manual de
cada uno de los fragmentos de esas imagenes que finalmente si pertenecerian a los conjuntos
finales. Se puede consultar el cédigo utilizado para este proceso en el cuaderno “Preparacion de
los conjuntos de entrenamiento y validacion” del anexo B.

La selecciéon manual fue variando a lo largo de las diferentes experimentaciones. Se comenzd
seleccionando sin mucho detalle pero se observé modificando los conjuntos del modelo, que
conforme se estudiaba un poco la seleccién de estos conjuntos, la red daba mejores resultados.
Por tanto, se hizo teniendo en cuenta que aproximadamente mds del 70 % del fragmento de la
imagen tuviese elementos representativos de la clase a la que iba a representar (en el caso de
entrenamiento) siendo un poco menos estrictos en el caso de los conjuntos de validacién. La
seleccién realizada es debida a que nos interesa que la red aprenda con un buen conjunto de en-
trenamiento, pero a la hora de validar el modelo, con el conjunto de validacién, queremos poner
al limite la red para ver si la clasificacion de esta se adapta mucho al conjunto de entrenamiento.

44 Capitulo 4. Gestién autémata de la ocupacién de salas

.

(a) ocupada(b) ocupada(c) ocupada (d) vacia (e) vacla (f) vacia

Figura 4.9: Ejemplos de imagenes del conjunto de entrenamiento y sus etiquetas.

Finalmente se seleccioné un conjunto de entrenamiento con 1000 elementos para cada una
de las dos clases que configuran nuestro proyecto y un conjunto de validacién de 200 por clase, lo
que forma un total de 2000 imagenes de entrenamiento y 400 para una primera validacion inicial.

4.3.3. Creacion, aplicacion y evaluacién de las CNNs

En esta parte correspondiente de la fase de viabilidad se disenan los modelos que queremos
aplicar para resolver nuestro problema, de los cuales seleccionaremos el modelo que nos dé
mejores resultados. Con este fin, se han ido disefiando diferentes arquitecturas, entrenando y
validando los modelos ayudadndonos de los cuadernos “Diseno, entrenamiento y primeros resul-
tas de la CNN” y “carga del modelo y clasificacién” adjuntos en el anexo C.

Notar que el primer criterio para seleccionar un modelo es tener una tasa de bien clasifi-
cados superior al 70 % de manera que aquellos modelos que no lo superen los descartaremos
de ser nuestro modelo final automaticamente sin la necesidad de estudiar ninguna otra métrica
del modelo. Otra de las caracteristicas de la arquitectura que fijamos al comienzo de los ex-
perimentos, por ser una clasificacién biclase, es usar como capa de salida una tinica neurona
con la funcién de activacion sigmoide. De esta manera, se predice la clase ocupada si el valor
resultante de la red es menor que 0.5 y vacia si es mayor.

Se comenz6 diseniando arquitecturas de red para el caso del mallado compuesto por cuadra-
dos. Durante estos experimentos la principal caracteristica de la arquitectura que obtuvimos
es la dimension de los filtros. Estos no debian ser muy grandes ya que el tamano de nuestras
imégenes es pequeno porque la entrada son fragmentos de la imagen original obtenida. Otra
informacién que pudimos deducir de los experimentos es que las etapas de pooling no suponian
una gran mejora en la clasificacién por tener imagenes tan pequenas, lo que hizo agilizar nues-
tros modelos al eliminar estas fases.

Enseguida se pudo ver, como comentamos durante el estudio de la sala, que las predicciones
se podian mejorar no solo cambiando la arquitectura de nuestros modelos, sino cambiando la
forma en la que introducimos la informacién, es decir cambiando el mallado pasando a estar
compuesto por rectangulos. Para probar nuevos modelos en esta linea se aplic la arquitectura
del mejor modelo conseguido hasta el momento a un nuevo conjunto de datos con fragmentos
de imagenes en secciones rectangulares obtenidos de los mismos frames con los que se habian
obtenido los buenos resultados de la red. La arquitectura usada para esta comparacién fue:

Redes Neuronales Convolucionales - Inés Aldea Blasco 45

Arquitectura de la CNN

Convolucion con 6 filtros de 3 x 3
Funcién de activacién ELU

Convolucion con 6 filtros de 3 x 3
Funcién de activacion ELU

Flattening

Capa completamente conexa de 512 neuronas & Sigmoide

Capa completamente conexa de 256 neuronas & Sigmoide

Capa de salida 1 neurona & Sigmoide

Cuadro 4.2: Arquitectura de la CNN usada para comparar la entrada en cuadrados y en rec-
tangulos.

Al usar los mismos frames en ambos casos para la obtencién de los fragmentos de imagen con
los que la red iba a trabajar, las caracteristicas del experimento quedan ligeramente modificadas
para las distintas entradas viniendo resumidas en el siguiente cuadro. La reduccién del volumen
de elementos en la entrada rectangular es debida al aumento del tamafio de los fragmentos de
la imagen.

Tipo mallado | dimensiones | n° de elementos de entrenamiento | n® de elementos de validacién

Cuadrado 120 x 120 2002 178

Rectangulo 120 x 240 1000 102

Cuadro 4.3: Cuadro resumen de la adaptacién del mismo modelo para dos mallados distintos.

Tras hacer la adaptacién y el entrenamiento para 20 épocas en estos dos conjuntos de datos,
los primeros resultados obtenidos para cada experimento vienen resumidos en el cuadro 4.4.
Destacamos el aumento de parametros del modelo al cambiar la entrada, es decir, una mayor
complejidad del modelo empleado pero un tiempo de entrenamiento muy similar.

T d ACC de Ia ACC de Ia
Tipo mallado | n° parametros 1empo‘ ¢ dltima iteracién | dltima iteracién
entrenamiento . S1
(entrenamiento) (validacidn)
Cuadrado 41469427 37 min 50 seg 0.8328 0.7472
Rectangulo 84231667 37 min 3 seg 0.8093 0.7647

Cuadro 4.4: Cuadro resumen comparativo de los resultados con la misma arquitectura.

Realizamos un estudio sobre la evoluciéon de ambos modelos para cada experimento en
funcién de la funcion de pérdida y de la tasa de bien clasificados o accuracy con respecto a las
épocas. Para el modelo cuyas entradas son fragmentos cuadrados de los frames obtenemos las
siguientes variaciones:

46 Capitulo 4. Gestién autémata de la ocupacién de salas

Comparacidn de la funcién de pérdida
en el conjunto de entrenamiento y de validacion

.“\ =-@=- Conjunto entrenamiento
0.65 .‘1—:}"”’""'—.. e - =&= Conjunto de validacion
o Rt S T
2 060 ~e-a__C >
E
S
o 055 -
5 .- -
5 050 g™
g -
045 e
S
0.40 ——e
0.0 25 50 75 0.0 125 15.0 175
Epocas
Comparacidn de |a tasa de bien clasificados
en el conjunto de entrenamiento y de validacion
-@- Conjunto entrenamiento Tt bl
080 { -@- Conjunto de validacion T .
----- -« LT
T - -
0.75 P e SN, - e
= - g A e
P S P Sl ., -
g 070 PP — [- - Pt - S
o RSN J-lp b WP e e g L) g
Yy - L g - - L
065 T e
el
- * L]
0.60 .
-
055 Ll

Epocas

Figura 4.10: Variacion de error y tasa de bien clasificados del modelo con entrada en cuadrados.

La evolucién del modelo es bastante lineal salvo un pequeno pico en la época 16. Debe-
mos destacar, ademads, lo ocurrido en la ultima época. Parece que la tendencia del conjunto
de validacién es aumentar el error de clasificacién (aumenta la funcién de pérdida) y dismi-
nuir la tasa de bien clasificados al contrario de lo ocurrido con la tendencia del conjunto de
entrenamiento; se debe a que el aumento en las épocas de entrenamiento puede producir un
sobreajuste respecto al conjunto de entrenamiento, es decir, se adapta muy bien a ese conjunto
y como consecuencia, si las nuevas imagenes no son muy parecidas al conjunto de entrenamien-
to, el modelo las clasificard mal. Hecho muy importante en nuestro caso particular ya que un
pequenio cambio en la posicién de las sillas al dejar la sala vacia nos daria una mala clasificacién.

Con estos resultados deducimos que, para este caso particular del mallado de la imagen
en cuadrados, no se necesitan mds épocas ya que no va a aprender mas el modelo sino que,
se producirdn sobreajustes. Para solucionarlo, se podria modificar el conjunto de datos con el
que entrenar para hacerlo mas heterogéneo, seguir modificando la arquitectura de la red (nue-
vos pesos, funciones de activacidn,...) o, como en nuestro caso, estudiar otro mallado para las
imédgenes. Seguiremos la evolucién del experimento en esta ultima linea (por la mejoria de esos
modelos en los resultados que iremos mostrando a continuacion).

Haciendo el mismo estudio grafico en el caso del mallado rectangular, los resultados de la
variacién en el modelo son:

Redes Neuronales Convolucionales - Inés Aldea Blasco 47

Comparacién de |a funcién de pérdida
en el conjunto de entrenamiento y de validacion

070 - -
-~ Conjunto entrenamienta

—&- Conjunto de validacion

L 0ES R
s ~ il T
E =~ TTee-l
. e .
§ 060 S R L A
i N ——— —— e "‘\'__.—r'.:,.‘._\'_’f \‘-‘ /, 5,
= 2 . .
s e ‘:::::t ———— - . - \
= ~. A AN
Z 050 e bl .
_____ \
g - »
0.45 B ,———

0.0 25 5.0 75 0.0 125 150 175
Epocas

Comparacidn de |a tasa de bien clasificados
en el conjunto de entrenamiento y de validacion

0.80 1 -e= Conjunto entrenamiento e -
=-@= Conjunto de validacién

Epocas

Figura 4.11: Variacién de error y tasa de bien clasificados del modelo con entrada rectangular.

Al contrario que en el caso anterior, la evolucién es més inestable lo que nos lleva a pensar
en aumentar el nimero de épocas para los siguientes entrenamientos y asi dejar que el modelo
se estabilice. Destacar, en la época 12, un pequeno aumento en la funcién de error produce una
disminucion en la tasa de bien clasificados notable por lo que nos interesa esa estabilidad del
modelo.

Observamos ademds, como en las iltimas épocas, la tendencia de la funcién de error es
decreciente y la tasa de bien clasificados es creciente lo que lleva a pensar que estos modelos
pueden seguir entrenando sin producir sobreajustes. Este modelo de red podra entrenar durante
mdés épocas consiguiendo mejores resultados en las clasificaciones.

Tras hacer las analiticas de los modelos, también podemos hacer un estudio visual de la
prediccién de las clases en las imagenes. Con este pequenio analisis podemos ver las zonas pro-
bleméticas donde las redes fallan pudiendo asi cambiar el conjunto de entrenamiento reforzando
estas zonas. Las imdgenes de este estudio se obtienen modificando los canales de color de la
imagen a estudiar, dejando solo el canal verde o rojo haciendo cero al resto de valores. El color
dependerd de la clase con la que la red clasifica el fragmento de imagen, siendo rojo si la clase
predicha es ocupada y verde en caso contrario originandonos una idea rapida de la clasificacién
del modelo.

Tomamos dos frames del video ocupado que no forman parte del conjunto de entrenamiento
ni validacién para hacer este estudio visual en ambos modelos.

48 Capitulo 4. Gestion autémata de la ocupacién de salas

05%07/2019 09 20 38 4 B 05/07/2019 0930 00

N05707/2019 09 90 88 4 . 05/07/2019 09 30 00

Figura 4.12: Estudio visual de las clases predichas por los modelos. Las imégenes superiores
corresponden al modelo con entrada en forma de cuadrados y las inferiores al modelo con
entrada rectangular.

Puede parecer que las primeras imégenes son mejores que las segundas, pero no debemos ol-
vidar que es un modelo que se habia hecho para mejorar la clasificacion para trozos de imagenes
cuadradas y que en el caso rectangular admite més épocas de entrenamiento, lo que nos permite
mejorar mucho las clasificaciones adaptando el modelo al nuevo tipo de datos. Esta percepcién
es debida a que en la zona rectangular hay mé&s drea pintada de rojo y asociamos el rojo a
elementos erréneos. La dificultad del disefio y ajuste de este tipo de redes reside en este punto;
hay veces que malos resultados se puede mejorar notablemente produciendo un pequeno cambio.

Las apreciaciones que no debemos pasar por alto para comparar las predicciones en estas
imagenes son:

e Hay una persona que pasa desapercibida en la clasificacién de ambos modelos.

e Las zonas de error aproximadamente son las mismas; las zonas de borde de la mesa junto
con las zonas de sillas. En esta comparacion debemos considerara que estas zonas se evitan
mas facilmente con el mallado rectangular ya que se puede aportar mas informaciéon en
cada iteracion sin correr el peligro de tener un sobreajuste.

Con estos resultados no podemos distinguir sin incertidumbre cual es mejor aunque, parece
que la clasificacién del modelo del mallado rectangular es preferible ya que, la clasificacion para
nuevos elementos (tasa de bien clasificados en el conjunto de validacién) es mejor en sentido
analitico.

Debemos recalcar que la asignacion de los pesos iniciales es aleatoria, lo que puede mejorar
notablemente el modelo. Para ello, podemos entrenar varias veces los modelo y observar los
resultados para poder ver en media si efectivamente se avanzaria y se mejoraria con una arqui-
tectura o con otra, obteniendo cierta informacién sobre la dependencia de la inicializacién de
los pesos en nuestros modelos.

Redes Neuronales Convolucionales - Inés Aldea Blasco

49

Para observar este fendmeno, se ha evaluado varias veces el modelo anterior para el mallado
formado por rectangulos con el mismo conjunto de datos. Una muestra de los resultados de
estas evaluaciones son:

Identificad T d ACC de Ta ACC de Ta
.el_lt,l o or n® parametros 1empo de dltima iteracion | ultima iteracién
de inicializacion entrenamiento (entrenamiento) (validacién)
i1 84231667 37 min 3 seg 0.8093 0.7647
19 84231667 38 min 47 seg 0.7737 0.7255
i3 84231667 38 min 30 seg 0.7871 0.6961
14 84231667 1h 14 min 8 seg 0.8153 0.7451

Cuadro 4.5: Cuadro resumen del efecto de la aleatoriedad de los pesos iniciales.

En la cuarta ejecucién, el aumento del tiempo de entrenamiento es debido a que se ejecutd
con el portatil sin conectar a la luz, lo que conlleva un menor rendimiento al depender de la
bateria. La agilidad de este tipo de modelos dependen en gran medida de la potencia y el ren-
dimiento del ordenador.

La variabilidad de los valores de la tasa de bien clasificados no es alta. Por este motivo, se
puede pensar que un modelo con estas caracteristicas alcanzaria aproximadamente una tasa de
bien clasificados del 79.6 % para el conjunto de entrenamiento y un 73.2 % para el de validacion.

Con la ayuda de estas conclusiones, se opté por fijar esta arquitectura para el mallado
rectangular por el buen comportamiento que parecia tener. Para lograr una mejora en la clasi-
ficacion se paséd a adaptar el conjunto de entrenamiento a la entrada de la red, como se mostro
en la parte final de la obtencién de los conjuntos del experimento, siendo maés estrictos a la
hora de coger los fragmentos de la red etiquetados como clase ocupada y generando al azar los
frames utilizados. De esta manera se probd la arquitectura anterior con los nuevos conjuntos
de datos formados.

Para proceder a este estudio con una arquitectura de red ya fijada se pasé a fijar semillas
para poder reproducir los resultados e ir ajustando el modelo. Hasta el momento, este hecho no
era relevante ya que la asignacién aleatoria de los pesos del modelo nos daba un conocimiento
general del comportamiento del modelo y podiamos observar, como en el estudio del cuadro
4.5, si la tasa de bien clasificados varia significativamente o no. Esta aleatoriedad nos aportaba
informacién de la robustez modelo y, ademads, los modelos podian guardarse si se descargaban
los pesos y se era conocedor de la arquitectura. Ahora, necesitamos poder reproducir el entrena-
miento de la red con el fin de ajustar el modelo. Por esta razon las semillas toman importancia
en este punto del experimento.

Con este pequeiio cambio en el conjunto de entrenamiento podemos ver como los resultados
tienen mejoras bastante significativas. Para el conjunto de entrenamiento se clasifica bien un
90 % de los datos y para el de validacién un 87 % en comparacién con 80.93 % y 76.47 % obtenidos
anteriormente.

50 Capitulo 4. Gestion autémata de la ocupacién de salas

05%07/2019 09 20 38 4 B 05/07/2019 0930 00

N05707/2019 09 90 88 4 . 05/07/2019 09 30 00

Figura 4.13: Comparacién del estudio visual de las clases predichas por el mismo modelo cam-
biando tnicamente los conjuntos con los que trabaja la red. Las imégenes superiores correspon-
den a las predicciones hechas anteriormente y las inferiores al modelo con los nuevos conjuntos.

Hacemos un estudio més en profundidad de los resultados obtenidos. Por un lado, pode-
mos calcular la matriz de confusién del modelo sobre el conjunto de validacién. Esta matriz
presentada no toma exactamente la misma forma que la nombrada en la teoria porque ha sido
normalizada de manera que todos sus elementos suman uno. Teniendo en cuenta que cada fila
representa el 0.5 de los datos por la normalizacién observamos que, en los elementos etiquetados
como vacios, la prediccién de clasificacién acertada por la red es casi del 100 % de los elementos
(representaria alrededor del 98.5%). Sin embargo, para el caso de los elementos etiquetados co-
mo ocupados la precision no es tan buena. Segiin se muestra en el estudio visual anteriormente
mostrado de este modelo, atn sigue clasificando mal el trozo de imagen de la persona donde ya
fallaba, error bastante importante.

Matriz de Confusion

ocupada 150

125

100

Valores Reales

vacia

Valores Predichos

Figura 4.14: Matriz de confusiéon normalizada para el modelo de 20 épocas.

Redes Neuronales Convolucionales - Inés Aldea Blasco

51

Por otro lado, podemos calcular la evolucion del modelo respecto a las épocas. Se observa el
mismo efecto que ya hemos comentado con anterioridad, a partir de este momento parece que
la tendencia de las variaciones va a producir un sobreajuste.

06
0s
04
V]

Funcion de pérdida

0z

09

0.8

Accuracy

07

06

Comparacion de la funcion de pérdida
en el conjunto de entrenamiento y de validacién

""‘.a.._.. N -&- Conjunto entrenamiento
bt DT N -®- Conjunto de validacion
s "‘.""f:t*_-.._—o\ :
Bt N
“.h"“w
.
g™ .
S e
0.0 5 50 75 100 125 150 175
Epocas

Comparacion de la tasa de bien clasificados
en el conjunto de entrenamiento y de validacion

Lo

"...40'""—-. - .

=g= Conjunto entrenamiento
—o- Conjunto de validacian

.. o il
EE SN '0",'_4" -y
L L NS
- ¥
0.0 25 50 75 10.0 125 150 175

Epocas

Figura 4.15: Variacién de error y tasa de bien clasificados del modelo fijado con 20 épocas.

Como tenfamos fijada la semilla, podemos reproducir el resultado para un nimero de épocas
mayor y ver si se produce ese fendmeno o se estabilizan las variaciones de la funcién de pérdida
y de accuracy con la finalidad de fijar el nimero de épocas 6ptimo para el modelo. Repetimos
el experimento con 30 épocas.

Comparacion de la funcién de pérdida
en el conjunto de entrenamiento y de validacion

-9

o B B
= 06 -9 -, -~ Conjunto entrenamiento
b= bt T >
e i “"h‘_‘t —a -#- Conjunto de validacion
v 04 T,
w
L]
£ “"‘"-’:a e °
=2 '.2'.. -y ~ N
2oz » Rt W T .
2 e o 08
) 5 10 15 0 5 0
Epocas
Comparacion de la tasa de bien clasificados
10 en el conjunto de entrenamiento y de validacién
- - -®
-e@- Conjunto entrenamiento '.—0—':_'_"" ;"’.’M‘i
09 1 -@- Conjunto de validacién e e N
g ! o 1 S LS -
5 08 e
o ° R g
=§-4"
071 o gt F KT
P g v
06 L , . . , T ;
o 5 10 15 20 5 30
Epocas

Figura 4.16: Variacién de error y tasa de bien clasificados del modelo fijado con 30 épocas.

En este ultimo gréafico se observa como esa variacién de la ultima época del modelo entre-
nado en 20 épocas se acaba estabilizando produciendo, en varias épocas méas, una mejora en
la accuracy y reduciendo la funcién de pérdida. A partir de la época 26 (contando desde 1) el

modelo estabiliza los resultados pudiendo producir otro desajuste pasada la época 30.

52 Capitulo 4. Gestién autémata de la ocupacién de salas

Aprovechamos esta estabilidad para estudiar el modelo en uno de estos puntos. El ntimero
de épocas elegido para realizar un estudio sobre la mejora del modelo es de 27 ya que queda en
un punto central de la estabilidad donde no tiene grandes desequilibrios en su entorno.

Tras fijar este parametro y entrenar nuevamente el modelo, calculamos la matriz de confu-
sién para el conjunto de validacién.

Matriz de Confusidn

200

ocupada 150

125

100

Valores Reales

vacia

Valares Predichos

Figura 4.17: Matriz de confusiéon normalizada para el modelo de 27 épocas.

La matriz de confusién para los datos del conjunto de validacién es realmente buena. Se
observa que la prediccion de la clasificacion de los elementos etiquetados como vacia es correcta
en el 100 % de los casos y para los datos etiquetados como ocupada del 91 %.

0570772019 09 Ellg 89 £ r o 105707/2019 09:30: 00

Figura 4.18: Estudio visual de las clases predichas por el modelo de 27 épocas.

El estudio del modelo con 27 épocas dio muy buenos resultados para el conjunto de valida-
cién sin embrago, si hacemos un estudio visual de un frame que no pertenece a ninguno de los
dos conjuntos (entrenamiento y validacién), como hemos visto en la figura 4.18, no se obtiene
una buena clasificacién ya que en la imagen de la sala vacia hay un fragmento clasificado como
ocupado, lo que conlleva una mala prediccién el estado de la sala. Como consecuencia, debemos
seguir ajustando un modelo que solucione nuestro problema.

Redes Neuronales Convolucionales - Inés Aldea Blasco 53

Seguimos estudiamos el modelo para otras de las épocas donde el modelo estabilizaba su
variacion, obteniendo peores resultados al modelo anterior salvo para 29 épocas. Para este
modelo, la matriz de confusién para el conjunto de validaciéon mejord ya que habia un mayor
porcentaje de aciertos en la clase ocupada manteniéndose los buenos resultados para la clase
vacia.

Matriz de Confusion

ocupada

Valores Reales

vacia

Valores Predichos

Figura 4.19: Matriz de confusién para el modelo de 29 épocas.

Con este modelo conseguimos el objetivo que queremos, todos los fragmentos de un frame
que no ha sido utilizado en el modelo de sala vacia son clasificados bien. Pero este modelo
presenta un problema, si predecimos un frame del video empleado para la validacién del modelo
en profundidad vemos como la prediccion con la sala vacia no funciona bien.

' 04/07/2019 15 30 05 4 23/07/2019 13:00: 00

Figura 4.20: Estudio visual de las clases predichas por el modelo de 29 épocas. En el caso de la
derecha para un frame del video utilizado para el disefio y entrenamiento del modelo y en el de
la izquierda un frame del video utilizado solo para la validacion y estudio del comportamiento
del modelo.

Llegados a este punto, como la funcién de perdida alcanzada en la tltima época del mo-
delo es de 0.1057 para el conjunto de entrenamiento y 0.1202 para el conjunto de validacién
decidimos reducir este error para encontrar un modelo mejor. Para ello cambiamos la semilla
y volvemos a inicializar los pesos con la intencién de que el modelo mejore globalmente fijando

las épocas en 30.

54 Capitulo 4. Gestién autémata de la ocupacién de salas

Comparacion de la funcion de pérdida
en el conjunto de entrenamiento y de validacion

o
=
£ 06 B e .
E ‘F'O--.._._'_._] Con!unm entren.aml.e.nto
= V=g =@= Conjunto de validacion
% 0.4 .'-.:,.at .
L o iy
5 02 ‘-._:._. <
S 0. - -
: R &5 0 |
* 0 5 10 15 0 3 0

Epocas

Comparacion de la tasa de bien clasificados
en el conjunto de entrenamiento y de validacion
—e- Conj i -o-o-0-3%-
®- Conjunto entrenamiento ’f:.:‘.h' :

-@- Conjunto d lidacio A
®- Conjunto de validacion ‘zk‘_'_-"‘ ¢

10
09
08
-
_.—".‘5.'
0.7 :;g:b.

] 5 10 15 20 5 30
Epocas

Accuracy

Figura 4.21: Evolucién del modelo con 30 épocas con la nueva inicializacién de los pesos.

La variacion a lo largo de las épocas de este modelo es casi inexistente alcanzando el valor
de 0.0516 para la funcién de pérdida del conjunto de entrenamiento y 0.0898 para el conjunto
de validacién. De este modo conseguimos reducir la funcién de pérdida obteniendo ademas una
tasa de bien clasificados del 98.85 % para el conjunto de entrenamiento y 97.25 % para el con-
junto de validacién.

Matriz de Confusién Matriz de Cenfusion

175

ccupada 150 ocupada

125

100

Valores Reales
Valores Reales

vacia vacia

& &
& &
&

Valores Predichos Valores Predichos

Figura 4.22: Matrices de confusién del modelo inicial con 30 épocas (izquierda) y el de 30 épocas
con la nueva inicializacién de los pesos (derecha).

Al aumentar la complejidad del modelo con una época mas y cambiando los pesos iniciales,
mejoramos el modelo respecto al de 29 épocas aumentando la tasa de bien clasificados de la
clase ocupada y manteniendo los buenos resultados de la vacia. Si comparamos los modelos de
30 épocas con las dos inicializaciones de los pesos mediante la matriz de confusién observamos
como el modelo con los pesos antiguos mejora la clasificacién de la etiqueta ocupada pero no
mantiene los buenos resultados de la vacia. Podriamos mejorar el modelo de 30 épocas antiguo
para obtener una mejor clasificacién en ocupada pero por la casuistica de nuestro proyecto es
més facil ajustar la clase vacia ya que a excepcién del cambio de posicion de las sillas, la clase
es mas homogénea y tiene menos variabilidad en los fragmentos. Con estos buenos resultados
obtenidos, el modelo de 30 épocas con la nueva inicializacién de los pesos es con el que nos
quedaremos.

Redes Neuronales Convolucionales - Inés Aldea Blasco 55

4.3.4. Validacion del modelo seleccionado

Tras hacer una pequena primera validacion del modelo con la matriz de confusién sobre el
conjunto de validacién que representaba aproximadamente el 20 % de los datos usados para el
diseno del modelo, se procedié a hacer un estudio més a fondo para analizar los buenos resul-
tados del modelo.

Se procedid ha hacer un estudio visual de algunos frames como habiamos hecho con algunos
de los modelos del apartado anterior para valorar las zonas de error en la prediccion de la
clasificacion.

04/07/2019 15:30 05 05/07/2019 09:30 00 = 05/07/2019 09 59 37

_

5 9 0934 08 U5/07/2019 0939, & F BNGo/07/2619 09 50 33
05/07/2019 0934 08 PRLO/07/2819 09,39 89 105/07/2019 09,59 §8

Figura 4.23: Estudio visual de las predicciones de la clasificacién del modelo seleccionado.

Las predicciones realizadas en frames con la sala vacia de la clasificacién es correcta en
todos los casos. En frames de la sala ocupada observamos como la red predice bastante bien la
clase ocupada a excepcién de fragmentos realizados con el letrero de la cdmara de vigilancia,
que no debe preocuparnos porque podriamos recortar la imagen como hemos hecho con la zona
del techo, y un fragmento en la imagen central por la posicion de las sillas.

Una vez realizado este pequeno estudio, realizamos otro estudio visual, pero esta vez con los
frames del video utilizado para la validacién. Este video presenta otra disposicién de las sillas
diferente a los usados para el entrenamiento y validacion, asi como nuevas personas que hasta
este momento la red no ha visto. Si comenzamos con algin frame de la sala vacia veremos como
la prediccion es errénea.

23/07/2019 13:60: 00

Figura 4.24: Estudio visual de las predicciones de un frame de la sala vacia del video de vali-
dacién.

Este efecto es producido por los datos con los que contamos. Aunque tengamos muchas
imagenes, las posiciones, por ejemplo del video de la sala vacia, no varian ya que la sala estd

56 Capitulo 4. Gestién autémata de la ocupacién de salas

completamente vacia durante todo el video. Eso implica que el modelo pueda dar pequenos
fallos en este aspecto. Para evitarlo, cambiamos la forma en la que la red predice. En vez de
utilizar el razonamiento de si es menor que 0.5, la clasificacién serd ocupada y en caso contra-
rio vacia, disminuiremos ese punto de corte al valor de 0.2. De esta manera conseguimos que
las predicciones realizadas como ocupada sean reales evitando el efecto de las sillas ya que las
predicciones de la red en estos casos oscilaba el valor de 0.4.

La seleccién de este nuevo punto de corte se ha realizado ayudandonos del calculo de la
curva ROC para valores a partir de 0.1 hasta 0.6 con una distancia entre ellos de 0.1 sobre
las predicciones de un conjunto de 929 elementos seleccionados aleatoriamente sobre los frag-
mentos de los frames extraidos del video utilizado para la validacién. En la seleccién de este
conjunto se ha optado por no lograr un equilibrio en el nimero de clases para que el estudio
sea mas realista ya que en las predicciones de las imagenes, por lo general, hay mayor niimero
de elementos clasificados como “vacia” que como “ocupada”.

Notar que se debe calcular la curva ROC sobre un valor de decisién creciente, por ese motivo
los valores representados se invierten para su calculo. Para ver el cédigo de su construccion se
puede consultar el cuaderno “Analisis de la curva ROC” del anexo C.

Curva ROC
Curva ROC 100
10
-
h-* .
7 0.99
-
.
0.8 2 0
-6 7 7 4
" - g 098
g 2 02 0.1
g - $ 0971 =
& Rl i 0.3
S 0.6 - 8
E - O
g - T 0.96
B 7 b 0.4
S ; 2
5 . g
> 04 - 2 0.95 7
2 7 ° 0.6 0.5
bid el E . .
B . & 0.94 -
0.2 1 i
.
,
e 0.93 -
e — AUC=10.98 — AUC=0.98
0.0 : . . ! 0.92 T . : . !
0.0 0.2 0.4 0.6 0.8 1.0 0.00 0.01 0.02 0.03 0.04 0.05

Tasa de Falsos Positivos Tasa de Falsos Positivos

Figura 4.25: Curva ROC y ampliacién del extremos superior izquierdo.

Se puede observar que el mejor valor de corte, que corresponde con el punto de menor dis-
tancia a la esquina superior izquierda del gréfico, es el que toma un valor de 0.2. Estimacion
que, como hemos mencionado anteriormente, hemos escogido para cambiar la prediccién de
nuestro modelo.

Volvemos a hacer el mismo estudio visual de la figura 4.23 para ver el efecto que tiene este
cambio en las predicciones realizadas.

Como vemos en la siguiente figura, estas predicciones quedan ligeramente modificadas mejo-
rando la clasificacion de los fragmentos problematicos que habiamos mencionado anteriormente.
Al ser mas estrictos a la hora de clasificar un fragmento como “ocupada” se necesitara mayor
porcentaje de elementos representativos que no hagan a la red clasificarlo como “vacia”’. Este
efecto se puede ver en la imagen inferior central donde ahora el drea pintada de rojo es menor.

Redes Neuronales Convolucionales - Inés Aldea Blasco 57

05/07/2019 09 30 05 g - 05/07/2019 09 30 00 05/07/2019 09 99 37

0)

. ﬂﬁ/m/?l"l‘!-l 09 K1) 33

=B 05/07/2019 09 34 08 V072819 09,39 50

Figura 4.26: Estudio visual de las predicciones de la clasificacién del modelo seleccionado.

Este impacto también se puede ver en las matrices de confusién (con mayor facilidad en las
matrices sin normalizar). Como en el conjunto de validacién habfamos sido menos estrictos a la
hora de etiquetar los fragmentos de la clase ocupada, la tasa de bien clasificados disminuira en el
caso de utilizar el valor de corte de 0.2. Se deduce de este estudio que el nimero de fragmentos
etiquetados como ocupados que perderiamos por el cambio del valor de corte como vemos no

es muy relevante.

Matriz de Confusién Matriz de Confusion

ocupada 150 ccupada 150
8 125 a 125
[+ m
LT L
o
n o0 % 100
u o
= 5
2 B2 7

50

vacia 50 vacia 4

I g - faad kS
& & & &

Valores Predichos Valores Predichos

Figura 4.27: Matrices de confusién sin normalizar para el modelo seleccionado. La matriz de la
izquierda se consigue con un valor de corte de 0.2 y la derecha de 0.5.

A continuacion realizamos un estudio visual para un pequenio conjunto de frames del video
de validacién. Estos serdn los que nos sirvan para evaluar de una forma maés realista la calidad

del modelo.

58 Capitulo 4. Gestién autémata de la ocupacién de salas

23/07/2019 1300 00 2 23/07/2019 13 07 03 > 23/07/2019 13:07:31

23/07/2019 13:08 50, | 23/07/2019 13:09 40 z)y ﬂ/(]?/?l"l‘!-l 13 l_1“ ﬂ'-)

Figura 4.28: Estudio visual de un pequeno conjunto de frames del video de validacién.

La clasificacion del modelo elegido es muy buena. El frame de la sala vacia esta correctamen-
te clasificado y, en el caso de los frames que corresponden con la sala ocupada, las predicciones
de dichas zonas ocupadas son bastante exactas incluso para momentos como la entrada a la
sala que suele conducir a error.

Gracias a la finalidad de construcciéon de nuestro modelo nos interesa la clasificacién de la
imagen completa del frame, por tanto evaluaremos el modelo desde este punto de vista. Por
este motivo, calcularemos la matriz de confusién para la clasificacién de las imdgenes completas
y no de sus fragmentos.

La construccién de esta nueva matriz se basa en la idea de clasificacion que hemos llevado a
lo largo del experimento. Recordamos que el proceso que sigue una imagen para ser clasificada
es el siguiente:

1. La imagen es troceada eliminando la cabecera de esta.
2. Los fragmentos con clasificados por el modelo de red seleccionado.

3. Se realiza la clasificacién de la imagen global. Si hay al menos un fragmento que el modelo
haya predicho como ocupada, el estado de la sala serd ocupado. En caso contrario la sala
estara vacia.

Este ltimo punto del proceso serd el principal para crear la nueva matriz de confusién que
aplicaremos al video de validacién.

Igualmente, nos aprovecharemos de la estructura del video de validacién. En este video, la
sala comienza vacia hasta el momento que un grupo de personas entran y se mantienen en ella
hasta el final; lo que nos hace poder trasladar esta informacién a los frames. Podemos seleccionar
un numero de frame que nos sirva de referencia de tal manera que los frames que ocurran antes
tengan la etiqueta vacia y a los frames de después les corresponda la ocupada. Debemos tener
en cuenta que durante el proceso de extraccion de los frames del video se guardaron mediante
una enumeracion.

Por la cantidad de frames extraida por segundo de los videos se hace dificil esa eleccion
de un unico frame, por tanto cogemos una sucesion que sirvan de transicién entre una y otra
clase. Esta sucesion consta de 15 frames que corresponderian al intervalo de un segundo de video.

Redes Neuronales Convolucionales - Inés Aldea Blasco 59

Tras la clasificacién de la imagen global y comparandola de este modo con su etiqueta real,
podemos generar la matriz de confusion que buscdbamos aplicada a un segundo conjunto de
validacion extraido de los frames del video de validacion. Esta matriz se ha creado con 1800
de esos frames generados aleatoriamente de entre todos los del video, imponiendo que si hay
algin frames que pertenezca a la sucesién de transicién se clasifique como erréneo.

Esta imposicién, aunque nos empeore los resultados de la clasificaciéon del modelo, nos per-
mitird hacer un estudio distinguiendo los frames erréneos por clasificacion de aquellos que
muestran momentos probleméticos como entradas y salidas de la sala. Para mayor detalle de
la construccién y del estudio de esta matriz de confusién se puede ver el cuaderno “Estudio del
modelo seleccionado” del anexo C.

Matriz de confusién

1000

ocupada
800

600

Valores Reales

400

vacia 4

200

Valores Predichos

Figura 4.29: Matriz de confusién aplicado a un conjunto aleatorio de 1800 frames del video de
validacion.

Podemos ver que los resultados de la evaluacion del modelo en la matriz de confusién son
muy buenos, solo se confunde en 5 de los 1800 frames. Para terminar de obtener informacion del
rendimiento del modelo podemos analizar los conceptos definidos en la parte tedrica extraidos
de la matriz. Estos resultados son:

e Tasa de bien clasificados (accuracy), 99.72 %
e Tasa de mal clasificados, 0.28 %

e Sensibilidad, 99.55 %

e Especificidad, 99.82 %

e Precisién, 99.70 %

60 Capitulo 4. Gestién autémata de la ocupacién de salas

e Tasa de falsos positivos, 0.18 %

e Tasa de falsos negativos, 0.45 %

Son muy buenos resultados ya que, como dijimos en teorfa, estdn préximos a los de un mo-
delo éptimo. La accuracy, sensibilidad, especificidad y precisién estdn muy proximas al 100 % y
el resto al 0 %. Destacamos también que la tasa de falsos negativos es més alta que la de falsos
positivos como cabria esperar porque, como vimos a lo largo del experimento, las imégenes con
cambios en las posiciones de las sillas podia producir errores en la prediccién de la clasificacion.

Gracias a la forma del cédigo podemos hacer un estudio de los 5 frames mal clasificados.
Estos son:

n° frame | clase de clasificacién errénea
5251 ocupada
5382 ocupada
6325 vacia
6337 vacia
6341 vacia

Cuadro 4.6: Cuadro de los 5 frames mal clasificados durante la prueba de la matriz de confusién
del estudio de validacién del modelo global.

Procedemos a hacer un estudio visual de estos elementos para ver el porqué de la mala
clasificacién. De esta manera podremos saber cudntos de estos frames se han clasificado mal
por la red y cudntos lo han hecho por formar parte de esos elementos de transicién entre una
clase y otra en el video.

Comenzamos con los frames clasificados erréneamente como “ocupada”.

23/07/2019 130350 = £ 23/07/2019 130358

(a) frame 5251 (b) frame 5381

Figura 4.30: Iméagenes mal clasificadas como ocupadas

El intervalo de tiempo transcurrido entre ambas imégenes es de 8 segundos. Del mismo
modo, si nos fijamos en la figura 4.28, contemplamos como se clasificé un frame de un entorno
de tiempo similar al de estos por la red de manera correcta. Este efecto puede ser consecuencia
de los pequenos cambios de luz de momentos puntuales que hacen que varie la clasificacion.

En el caso de los frames mal clasificados como vacios podemos repetir este mismo estudio.

Redes Neuronales Convolucionales - Inés Aldea Blasco 61

23/07/2019 13:6Z: 01 e 23/07/2019 13 07 02

(a) frame 6325 (b) frame 6337

23/07/2019 13:07 02

(¢) frame 6341

Figura 4.31: Imagenes mal clasificadas como vacias

Tan solo uno de estos frames, el nimero 6325 de todos los erréneamente clasificados, pertene-
ce a la sucesién de transicién. A este frame se le asigné una mala clasificacién por la imposicién
que hicimos al construir la matriz de confusién. No obstante, podemos observar como la puerta
no esta del todo cerrada, efecto que requiere de detenimiento. Es por esto, que se tomaron este
tipo de frames como elementos de transicion. Podriamos pensar, en esta situacion, que hubiese
clasificado bien la sala ya que no hay nadie dentro y por tanto estd vacia.

Las dos siguientes clasificaciones erréneas ya no pertenecen a los elementos de transicion
pero son situaciones dificiles de clasificar para la red, los momentos de entrada y salida. Hasta
que la persona no estd totalmente dentro de la sala, la red no es capaz de diferenciar que la
sala estd ocupada. Para comprobar este efecto podemos comparar estas dos imédgenes con la
imagen central superior de la figura 4.28, donde la red si que es capaz de clasificar bien el
fragmento correspondiente a entrar en la sala. Para solucionar este efecto bastaria con tener
mas elementos de entrada y salida en los videos de las salas y entrenar con ellos la red del modelo.

En resumen, estas clasificaciones erroneas obtenidas son bastante comprensibles ya que, los
errores se pueden atribuir en gran medida a la sucesién de transicién que hemos fijado para
decir que esos fragmentos se consideran como sala ocupada.

4.4. Conclusiones

Para concluir la fase de viabilidad, que corresponde a este TFM, podemos afirmar tras los
experimentos realizados que, es posible llevar a cabo el proyecto bajo la aplicacién de las téc-
nicas de las CNNs expuestas en las notas tedricas.

Esta afirmacion se deriva de que los principales problemas encontrados han sido las pocas
configuraciones distintas de las sillas en los videos de la sala donde se realizaron las pruebas
y los momentos de entrada y salida. Ambos problemas remediables si extraemos de la actual
fuente de datos, es decir, del sistema de seguridad que dispone la empresa en las salas, una

62 Capitulo 4. Gestién autémata de la ocupacién de salas

mayor muestra para reforzar el entrenamiento en estos aspectos.

Ademi4s el modelo finalmente seleccionado, ha obtenido resultados muy buenos con los con-
juntos de datos con lo que contdbamos. Para hacernos una idea, segiin estos resultados, si se
quisiese poner un piloto en la puerta de la sala el cual se iluminase de verde si la sala esta vacia
o de rojo si la sala estd ocupada automaticamente, apenas se equivocaria en 20 segundos al
seleccionar el color de la luz para un intervalo de tiempo de aproximadamente 2 horas. Durante
estos segundos (no necesariamente seguidos) se podria ver el error en el cambio de color, ya que
se puede ser consciente si alguien estd entrando o no en la sala. De esta manera se lograria un
gran grado de fiabilidad del estado de la sala.

Finalmente, este estudio no solo sirve para gestionar las salas sino que, también, se pueden
extraer datos con los que poder hacer un estudio estadistico sobre el buen o mal uso de las salas
en la empresa.

Como resultado de esta prueba de viabilidad, se ha pasado a planificar la puesta en produc-
cién del modelo dentro de Efor.

Anexos

63

Anexo A

Funciones definidas

Los cddigos mostrados a continuaciéon son las funciones necesarias que se han programado
para que resultase mas facil la programacién del proyecto omitiendo de esta manera cédigo
repetitivo. Estas funciones estdn programadas en ficheros de Python, que seran cargados en los
cuadernos de Python del proyecto que se mostrardn en los siguientes anexos. De esta manera
podremos hacer uso de estas funciones a lo largo del cédigo programado.

Las funciones son:

1. Funcién mallado.

2. Funcién mallado numerado.

3. Funcién corte de iméagenes.

4. Funcién de cambio de color.

5. Funcién de lista a imagen.

6. Funcion de guardado.

7. Funcién célculo de la matriz de confusion.

Notar que para las funciones mallado y mallado numerado se ha utilizado la estructura de
una respuesta encontrada en [19] y la funcién para dibujar la matriz de confusién se inspira en
el c6digo de la documentacién que podemos encontrar en [21].

65

15

16

NONN NN
AR W N =

35

Funcion mallado

mallado.py

#!/usr/bin/env python
coding: utf-8

In[2]:

get_ipython().run_line_magic(’pylab’, ’’)
from PIL import Image

import matplotlib

import matplotlib.pyplot as plt

import pickle

import matplotlib.ticker as plticker

H#okkkkkkkkkkkkkkFuncion mallado s skskskskskskskskskskkkk

#

#Funcidén que superpone a la imagen introducida un mallado.

#

#Argumentos:

#
#

#

#
#

img ---> imagen.
myIntervalx ---> dimensién del rectdngulo del mallado (Inicializado por defecto a 100)

en el eje x.

myIntervaly ---> dimensién del rectdngulo del mallado (Inicializado por defecto a 100)

en el eje y.

my_dpi ---> resolucién de la figura (Inicializado por defecto a 100).

#Devuelve una figura con el mallado pintado sobre la imagen.

def mallado (img,myIntervalx=100. ,myIntervaly=100. ,my_dpi=100.):

fig=plt.figure(figsize=(float(img.size[0])/my_dpi,float(img.size[l])/my_dpi),dpi=
my_dpi)

ax=fig.add_subplot(111)
fig.subplots_adjust(left=0,right=1,bottom—=0,top=1)

loc = plticker.MultipleLocator(base=myIntervalx)

locl = plticker.MultipleLocator(base=myIntervaly)
ax.xaxis.set_major_locator (loc)

ax.yaxis.set_major_locator (locl)

ax.grid(which=’both’ ,b=bool, axis=’both’, linestyle=’-’,linewidth=2)
ax.imshow (img)

return fig

Funcion mallado numerado

mallado_num.py

#!/usr/bin/env python
coding: utf-8

In[2]:

6 get_ipython().run_line_magic(’pylab’, ’’)
7 from PIL import Image

8 import matplotlib

9 import matplotlib.pyplot as plt

10 import pickle

11 import matplotlib.ticker as plticker

13 #*xckkokckkokkkkkkkFuncion mallado_num sk kok ks ok %ok ok kok %k
14 #
15 #Funcién que superpone a la imagen introducida un mallado que ademas enumera.
16 #
17 #Argumentos:
18 # img ---> imagen.
19 # myIntervalx ---> dimensién del rectangulo del mallado (Inicializado por defecto a 100)
en el eje x.
20 # myIntervaly ---> dimensién del rectangulo del mallado (Inicializado por defecto a 100)
en el eje y.
my_dpi ---> resolucién de la figura (Inicializado por defecto a 100).
#

#Devuelve una figura con el mallado pintado sobre la imagen y enumerado.

NNNNN
I N ORI s

26 def malladonum (img,myIntervalx=100. ,myIntervaly=100. ,my_dpi=100.):

27 fig=plt.figure(figsize=(float(img.size[0])/my_dpi,float(img.size[l])/my_dpi),dpi=
my_dpi)

28 ax=fig.add_subplot(111)

29 fig.subplots_adjust(left=0,right=1,bottom—=0,top=1)

30 loc = plticker.MultipleLocator(base=myIntervalx)

31 locl = plticker.MultipleLocator(base=myIntervaly)

32 ax.xaxis.set_major_locator (loc)

33 ax.yaxis.set_major_locator (locl)

34 ax.grid(which=’both’ ,b=bool, axis=’both’, linestyle=’-’,linewidth=2)

35 ax.imshow (img)

36 nx=abs (int (float(ax.get_xlim()[1l]-ax.get_xlim()[0])/float(myIntervalx)))

37 ny=abs (int (float (ax.get_ylim()[1]-ax.get_ylim()[0])/float(myIntervaly)))

38 for j in range(ny):

39 y=myIntervaly/2+j myIntervaly

40 for i in range(nx):

11 x=myIntervalx/2.4+float (i) “myIntervalx

42 ax.text(x,y,’{:d}’.format (i+j*nx),color=’g’ ,ha=’center’,va=’center’)

43 return fig

15

16

S R R
= O ©

N
g W N

NN NN

-~

Funcion corte de imagenes

gridcrop.py

#!/usr/bin/env python

coding:

In[2]:

utf -8

get_ipython().run_line_magic(’pylab’, ’’)
import numpy as np
from PIL import Image

import
import
import
import

matplotlib

matplotlib.pyplot as plt
pickle

matplotlib.ticker as plticker

HakkxkkkrkkkkkkFuncion gridcrop kkkkkkkkkxkkk

#

#Funcién que corta la imagen segin el mallado introducido.

#

#Argumentos:
image

dimx

dimy

#

---> imagen.
---> dimensién del rectadngulo en el eje x.
---> dimensién del rectdngulo en el eje y.

#Devuelve una lista con todos los trozos de la imagen.

def gridcrop(image ,dimx ,dimy):
nx=int (image.size[0]/dimx)
ny=int (image.size[1l]/dimy)
trocitos=][]
for j in range (0,ny):

for i in range (0,nx):

trocitos=trocitos+[image.crop((i*dimx,j*dimy,dimx+i*dimx,dimy+j*dimy))]

return trocitos

15

16

NN = e e
= O © 0 =

@ N

SN

NN N NN

N

40
41
42
43
11
45
46

Funcion de cambio de color

colors.py

#!/usr/bin/env python
coding: utf-8

In[2]:

get_ipython().run_line_magic(’pylab’, ’’)
import numpy as np

from PIL import Image

import matplotlib

import matplotlib.pyplot as plt

import pickle

import matplotlib.ticker as plticker

Hkkkkkkkkxkxxxx*x Funciones change_color**************

#

#Funciones que anulan dos de los tres canales de una imagen en formato rgb.
#

#Argumentos:

change_list ---> indices de los elementos que queremos cambiar
S ---> lista con imagenes.
#

#Devuelve la misma lista con el color de las imagenes modificado.

def change colorred(change_list ,S):
for i in change_list:
foto=S[i].copy()
data=foto.getdata()
r = [(d[0], 0, 0) for d in data] #se cambian los colores salvo el verde
S[i].putdata(r)
return S

def change colorgreen(change_list ,S):
for i in change_list:
data=S[i].getdata()
r = [(0, d4[0], 0) for d in data] #se cambian los colores salvo el verde
S[i].putdata(r)
return S

def change colorblue (change_list ,S):
for i in change_list:
foto=S[i].copy ()
data=foto.getdata()
r = [(0, 0, d[0]) for d in data] #se cambian los colores salvo el verde
S[i].putdata(r)
return S

15

16

S R R
= O ©

N
g W N

NN NN

-~

Funcion de lista a imagen

list2img.py

#!/usr/bin/env python
coding: utf-8

In[2]:

import cv2
get_ipython().run_line_magic(’pylab’, ’’)
import numpy as np

from PIL import Image

import matplotlib

import matplotlib.pyplot as plt

import pickle

import matplotlib.ticker as plticker

#HoAkkkkokkkkkkkkx Funcion 1ist2imeg sk kskkkskokskkkkokx*

#

#Funcién que reconstruye una imagen desde un array donde estan sus fragmentos.
#

#Argumentos:

S ---> lista con iméagenes.

dim_x ---> nimero de fragmentos horizontales.
dim_y ---> nimero de fragmentos verticales.

#

#Devuelve la imagen reconstruida.

def list2img(S,dim_x ,dim_y):

foo=S[0]

for i in range (1,dim_x):
foo=np.concatenate ((foo,S[i]) ,axis=1)

bar=foo

for i in range (1,dim_y):
foo=S[dim_x"1i]
for j in range (1,dim_x):

foo=np.concatenate ((foo,S[dim_x*i+j]) ,axis=1)

bar=np.concatenate ((bar,foo) ,axis=0)

b,g,r = cv2.split(bar)

rgb_img = cv2.merge([r,g,b])

return rgb_img

15

Funcion de guardado

Save.py

#!/usr/bin/env python
coding: utf-8

In[]:

import cv2
get_ipython().run_line_magic(’pylab’, ’’)
import numpy as np

from PIL import Image

#oaokkoxokkkookkokk Rk Funcion guardar % kokokkkok ok oxokk ok

#

#Funcidén que guarda las imagenes de un array independientemente con un nombre
predefinido.

#

#Argumentos:

lis ---> lista de imagenes que queremos guardar.

name---> nombre con el que quremos guardar las imé&genes.

def guardar (lis ,name):
for i in range (0,len(lis)):
m=1lis[i]
m.save (nametstr(i)+’.jpg’)

15

16

Funcion calculo de la matriz de confusion

PlotConfusionMatrix_num.py

#!/usr/bin/env python
coding: utf-8

In[]:

import itertools

from sklearn.metrics import confusion_matrix
import matplotlib.pyplot as plt

import numpy as np

#xxxxxxxxxxxxxxFuncién que dibuja la matriz de confusiomn *kxxkkkkkkkkkxk
#

#Funcién que calcula y dibuja la matriz de confusién de forma visual.
#

#Argumentos:

y_real ---> etiquetas reales del conjunto de datos.

y_pred---> etiquetas predichas por el modelo del conjunto de datos.

Classes ---> nombre de las clases del modelo.

Normalize --> Booleano que nos indica si se normaliza o no la matriz de confusiédn.
defecto no se realiza la normalizacién.

Title ---> Titulo de la figura resultante. Por defecto sera ’Matriz de Confusién’.

cmap ---> Definicién de los colores de la matriz de confusién. Por defecto serd en

escala de azules.

def plot_confusion_matrix(y_real,y_pred, Classes,Normalize—=False, Title=’Matriz de
Confusién’ ,cmap=plt.cm.Blues):
Confusion_Matrix—=confusion_matrix(y_real, y_pred)
plt.imshow (Confusion_Matrix ,interpolation=’nearest’ 6 cmap=cmap)
plt.title(Title)
plt.colorbar ()
tick_marks=np.arange(len(Classes))
plt.xticks(tick_marks,6Classes ,rotation—=45)
plt.yticks(tick_marks, Classes)
if Normalize:

Por

Confusion_Matrix—Confusion_Matrix.astype(’float’)/Confusion_Matrix.sum()# (axis

=1) [: ,np.newaxis]

print (’Matriz de confusion normalizada’)
else:

print (’Matriz de confusion sin normalizar’)
thresh=Confusion_Matrix.max () /2.

for i,j in itertools.product(range(Confusion_Matrix.shape[0]) ,range(Confusion_Matrix

.shape[1])):
plt.text(j,i,Confusion_Matrix[i,j],horizontalalignment=’center’,
color=’white’ if Confusion_Matrix[i,j] > thresh else ’black’)
plt.tight_layout ()
plt.ylabel(’Valores Reales’)
plt.xlabel(’Valores Predichos’)

Anexo B

Pretratamiento y estudio de los
datos

En este anexo se presentan los cuadernos de Jupyter con el cédigo empleado en el pretrata-
miento de los datos cedidos por Efor y en el posterior estudio de estos. Se adjuntan los siguientes
cuadernos:

e Obtencion de frames. Se extraen las imagenes de los videos que se utilizaran para el
diseno y estudio del modelo.

e Estudio de la sala. Se realiza el estudio de la sala sobre como fragmentar de forma
Optima la imagen sin pérdida de informacion.

e Preparacion de los conjuntos de entrenamiento y validacién. Se generan de ma-
nera aleatoria los frames con los que entrenaremos y haremos una primera validacién del
modelo. También se fragmentan las imagenes y se guardan en carpetas para una inspeccion
y seleccién manual posterior para formar los conjuntos.

73

Obtencién de frames

In [1]: import cv2
Jpylab
import numpy as np
from PIL import Image
import matplotlib
import matplotlib.pyplot as plt
import pickle
import matplotlib.ticker as plticker

Using matplotlib backend: QtbAgg
Populating the interactive namespace from numpy and matplotlib

Proceso de lectura de los frames del video y guardado de las imagenes de la sala ocupada.
In [2]: %cd C:\Users\ialdea\Documents\TFM\Caso Practico\data\sala ocupada

In [3]: vidcap = cv2.VideoCapture('videosalaocupada.asf"')

success,image = vidcap.read()

count = 0O

success = True

while success:
cv2.imwrite("frame/d. jpg" % count, image)
success,image = vidcap.read()
count += 1

Proceso de lectura de los frames del video y guardado de las imagenes de la sala vacia.
In [4]: Ycd C:\Users\ialdea\Documents\TFM\Caso Practico\data\sala vacia

In [5]: vidcap = cv2.VideoCapture('videosalavacia.asf')

success,image = vidcap.read()

count = 0O

success = True

while success:
cv2.imwrite("frame/d. jpg" % count, image)
success,image = vidcap.read()
count += 1

Proceso de lectura de los frames del video y guardado de las imagenes del video de validacién.
In [6]: %cd C:\Users\ialdea\Documents\TFM\Caso Practico\data\sala validacion

In [7]: vidcap = cv2.VideoCapture('video validacidén.asf"')

success,image = vidcap.read()

count = 0O

success = True

while success:
cv2.imwrite ("frame/d. jpg" % count, image)
success,image = vidcap.read()
count += 1

Estudio de la sala

In [1]: import cv2
Jpylab
import numpy as np
from PIL import Image
import matplotlib
import matplotlib.pyplot as plt
import pickle
import matplotlib.ticker as plticker

Using matplotlib backend: QtbAgg
Populating the interactive namespace from numpy and matplotlib

In [2]: #CARGA DE LAS FUNCIONES DEFINIDAS
%hcd C:\Users\ialdea\TFM
Jrun colors.py
Jrun gridcrop.py
Jrun list2img.py
Jirun mallado.py
Jirun mallado_num.py

Mallado cuadrado
In [3]: %cd C:\Users\ialdea\Documents\TFM\Caso Practico\data\sala ocupada

In [4]: #Definicidn de las dimensiones del mallado
rectangle_x=120
rectangle_y=120

In [5]: frameO=Image.open('framel.jpg')
dim_x=int (frame0.size[0] /rectangle_x)

dim_y=int(frame0.size[1]/rectangle_y)

In [6]: mallado(frame0,rectangle_x,rectangle_y)

<

Al

1080
0

360

In [7]: framel=Image.open('frame3721.jpg')

Out[7]:

mallado(framel,120,120)

1080
0

Estudio de mallados més pequefios.

360

720

960 1080 1200 1320 1440
960 1080 1200 1320 1440

1560

1560

1680

1680

1800

1800

1920

1920

In [8]

Out [8]

65
195
325

390

585

650

1040

In [9]

Out [9]

6

325
Y
55

520

s

780

frame2=Image.open('frame9069.jpg")

mallado(frame2,65,65)

r ¥ 6gic3**
- 3
!
ke
eord®
\ i
!
‘ \
!
\\
A\ e
\
I P =5
& ;
y
\ 4
UIJ I:[EI.I >
65 130 195 260 325 30 45 520 585 650 s ol0 975 1040 105 170 1235 1300 1365 1430 1495 1560 1625 1690 1755 1820
mallado_num(frame2,65,65)
s | 1 | u | n»
% v | ® | ®» | 0 | a
64 | 65 | 66 | 67 | 68 | e | ic
| %2 93 04 05 % o7 98 9 103 A
20 | 21 | 122 | 23 | 126 | 15 | w6 | 127 | 18
! | w9 | 150 | 151 | 12 | 153 | 154 | 155 | 156 | 157 | 158 || 259 | 160 169 | 170
176 s | 179 | 10 | 181 | 182 | 183 | 184 | 185 | 186 | 107 | 188 | 189 95 197 o
5 207 | 208 | 209 | 20 | 2u | 212 | 213 | 218 | 215 | 2e | w7 | 25 | 226 228
3
2 36 | 237 | 238 | 239 | 200 | 241 | 242 | 243 | 248 | 205 | 2 2 2o | 253 fomsa 256
\
263 |\\264 266 | 267 | 268 | 269 | 270 | 21 | 22 | 273 | 274 | 21 27 1 gs2 | 283 | 284 |4
292 | 203 | 2 206 | 207 | 208 | 209 | 300 | 301 | 32 | 303 | 304 5 |37 | 308 10 | a1 | ;2
E TR 2 8 = | s | 35 | 36 | ;7 | w6 | 3 | 0
\
I) F o
30 [31 | w2 361 | 362 | 363 | 364 | 365 | e | 367 | 368 3
<
@9 | 0 | \\352 20 | o1 | soptes | e | 95 | w6 | 20
\ N 4
8 | w09 | a0 | a1 a0 | 2lWPan | a3 | aa
S N
6 10 195 260 325 3 45 520 585 650 85 910 975 1040 105 1170 1235 1300 1365 1430 1495 1560 1625 1690 1755 1820

1885

1885

Los siguientes fragmentos de la imagen anterior pueden conducir a error en las redes.

In [10]: P=gridcrop(frame2,65,65)

lis_error=[300,258,129,398]

foo=P[136]

for i in lis_error:
foo=np.concatenate((foo,P[i]) ,axis=1)
b,g,r = cv2.split(foo)
rgb_img = cv2.merge([r,g,bl)

cv2.imshow('fragmentos problemdticos',rgb_img)

Mallado Rectangular
In [11]: mallado(framel,120,240)

Out[11]:

o

09/07/2019 09:34 08

480

720

960

Estructura del mallado rectangular finalmente utilizado eliminando la cabecera de las fotos
para no inducir a error.

In [12]: %cd C:\Users\ialdea\Documents\TFM\Caso Practico\data\sala ocupada
frame=Image.open('frame3721.jpg"')
foo=gridcrop(frame,120,120)
bar=1ist2img(foo[16:144] ,dim_x,dim_y-1)
%cd C:\Users\ialdea\Documents\TFM\Caso Practico\data\pausa
cv2.imwrite('img. jpg',bar)
img=Image.open('img.jpg')
mallado(img,120,240)

In [13]: close('all')

Preparacion de los conjuntos de entrenamiento y validacién

In [1]: import cv2
Jpylab
import numpy as np
from PIL import Image
import matplotlib
import matplotlib.pyplot as plt
import pickle
import matplotlib.ticker as plticker
import random

Using matplotlib backend: QtS5Agg
Populating the interactive namespace from numpy and matplotlib

In [2]: #CARGA DE LAS FUNCIONES DEFINIDAS
hcd C:\Users\ialdea\TFM
Jirun gridcrop.py
Jirun Save.py
Jrun list2img.py

Seleccién de los frames para el entrenamiento y la validacion

In [3]: random.seed(0)
n=1200
#Frames del video de la sala ocupada donde estd la sala ocupada
bussy = [random.randint(3526,24525) for _ in range(n)]
m=300
#Frames del video de la sala ocupada donde estd la sala vacia
a = [random.randint(0,3526) for _ in range(m)]
p=300
#Frames del video de la sala ocupada donde estd la sala vacta
b= [random.randint(24526,27006) for _ in range(p)]
q=600
#Frames del video de la sala vacia
c=[random.randint (0,26994) for _ in range(q)]

In [4]: lis_bussy_train=bussy[0:1000]
lis_bussy_val=bussy[1000:1len(bussy)]
lis_empty_train0=al[0:250]+b[0:250]
lis_empty_trainl=c[0:500]

lis_empty_valO=a[250:1en(a)]+b[250:1en(b)]
lis_empty_vall=c[500:1len(c)]

Guardado de los frames seleccionados y fragmentados en carpetas

Definicién de las dimensiones para el corte de las imagenes

In [5]: #Tamafio de la primera fila que wvamos a quitar
quitx=120
quity=120
#Tamafio del mallado con el que cortamos las imdgenes
rectangle_x=120
rectangle_y=240
#Dimensiones de los frames
dim_img_x=1920
dim_img_y=1080
#Nimero de trozos de imdgenes resultantes
dim_x=int (dim_img_x/quitx)
dim_y=int (dim_img_y/quity)

Frames del conjunto de entrenamiento con la sala ocupada.

In [6]: for i in lis_bussy_train:
%cd C:\Users\ialdea\Documents\TFM\Caso Practico\data\sala ocupada
frame=Image.open('frame'+str(i)+'.jpg")
foo=gridcrop(frame,120,120)
bar=list2img(foo[16:144],dim_x,dim_y-1)
%cd C:\Users\ialdea\Documents\TFM\Caso Practico\data\pausa
cv2.imwrite('img.jpg' ,bar)
img=Image.open('img.jpg')
foo=gridcrop(img,120,240)
%cd C:\Users\ialdea\Documents\TFM\Caso Practico\data\seleccién de ocupada
guardar(foo, 'nb'+str(i)+'_")

Frames del conjunto de entrenamiento con la sala vacia.

In [7]: for i in lis_empty_trainO:
%cd C:\Users\ialdea\Documents\TFM\Caso Practico\data\sala ocupada
frame=Image.open('frame'+str(i)+'.jpg"')
foo=gridcrop(frame,120,120)
bar=list2img(foo[16:144],dim_x,dim_y-1)
%cd C:\Users\ialdea\Documents\TFM\Caso Practico\data\pausa
cv2.imwrite('img. jpg',bar)
img=Image.open('img.jpg')
foo=gridcrop(img,120,240)
%cd C:\Users\ialdea\Documents\TFM\Caso Practico\data\seleccién de vacia
guardar(foo, 'nb'+str(i)+'_")

for i in lis_empty_trainl:

%cd C:\Users\ialdea\Documents\TFM\Caso Practico\data\sala vacia

frame=Image.open('frame'+str(i)+'.jpg"')

foo=gridcrop(frame,120,120)

bar=list2img(foo[16:144],dim_x,dim_y-1)

%cd C:\Users\ialdea\Documents\TFM\Caso Practico\data\pausa
cv2.imwrite('img. jpg' ,bar)

img=Image.open('img. jpg')

foo=gridcrop(img, 120,240)

%cd C:\Users\ialdea\Documents\TFM\Caso Practico\data\seleccién de vacia
guardar(foo, 'ne'+str(i)+'_")

Frames del conjunto de validacién con la sala ocupada.

In [8]: for i in 1lis_bussy_val:
%cd C:\Users\ialdea\Documents\TFM\Caso Practico\data\sala ocupada
frame=Image.open('frame'+str(i)+'.jpg"')
foo=gridcrop(frame,120,120)
bar=list2img(foo[16:144],dim_x,dim_y-1)
%cd C:\Users\ialdea\Documents\TFM\Caso Practico\data\pausa
cv2.imwrite('img.jpg' ,bar)
img=Image.open('img.jpg')
foo=gridcrop(img,120,240)
%cd C:\Users\ialdea\Documents\TFM\Caso Practico\data\seleccién de ocupada val
guardar(foo, 'nb'+str(i)+'_")

Frames del conjunto de validacién con la sala vacia.

In [9]: for i in lis_empty_valO:
%cd C:\Users\ialdea\Documents\TFM\Caso Practico\data\sala ocupada
frame=Image.open('frame'+str(i)+'.jpg"')
foo=gridcrop(frame,120,120)
bar=list2img(foo[16:144],dim_x,dim_y-1)
%cd C:\Users\ialdea\Documents\TFM\Caso Practico\data\pausa
cv2.imwrite('img. jpg' ,bar)
img=Image.open('img.jpg')
foo=gridcrop(img, 120,240)
%cd C:\Users\ialdea\Documents\TFM\Caso Practico\data\seleccién de vacia val
guardar (foo, 'nb'+str(i)+'_")

for i in lis_empty_vall:

%cd C:\Users\ialdea\Documents\TFM\Caso Practico\data\sala vacia
frame=Image.open('frame'+str(i)+'.jpg")
foo=gridcrop(frame,120,120)
bar=1list2img(foo[16:144],dim_x,dim_y-1)
%cd C:\Users\ialdea\Documents\TFM\Caso Practico\data\pausa
cv2.imwrite('img.jpg' ,bar)
img=Image.open('img.jpg"')
foo=gridcrop(img,120,240)
%cd C:\Users\ialdea\Documents\TFM\Caso Practico\data\seleccién de vacia val
guardar(foo, 'ne'+str(i)+'_")

84

Anexo B. Pretratamiento y estudio de los datos

Anexo C

Diseno, resultados y ejecucion de los
modelos

En este anexo queda recogido el cédigo base usado para disenar, usar y validar los modelos
de CNN empleados en el proyecto del trabajo. Se adjuntan los siguientes cuadernos:

e Diseno, entrenamiento y primeros resultados de la CNN. Cuaderno principal del
experimento donde se programan los modelos. Se muestra el cédigo utilizado tomando de
ejemplo el modelo de red finalmente seleccionado. Aparecen las definiciones del modelo,
la lectura de los conjuntos, el entrenamiento de la red y una pequena validacién inicial.

e Carga del modelo y clasificacion. Se muestra la forma en la que se cargan los modelos
guardados y se usan para predecir las imagenes junto con un previo tratamiento de estas
para que tengan la misma forma de entrada a la red que hemos modelado. Al final del
cuaderno se muestra el c6digo necesario para realizar el estudio visual aunque lo que
verdaderamente nos interesa en un futuro es el cédigo que nos dice si la sala esta ocupada
o vacia, ya que la visualizacion de la imagen nos sirve principalmente para el ver los fallos
del modelo.

e Anadlisis de la curva ROC. Cédigo necesario para el calculo de la curva ROC sobre
nuevas predicciones.

e Estudio del modelo seleccionado. Se amplia el estudio de validacién con el cdlculo de
los conceptos definidos a partir de la matriz de confusion del estudio de la clasificacién de
la imagen global en vez de en los fragmentos.

Las lineas de cédigo de estos cuadernos han sido escritas con la ayuda de la documentacién
de Keras y los ejemplos de esta que podemos encontrar en [13].

85

In [1]:

Disefio, entrenamiento y estudio de la CNN

from scipy importx*
hpylab
from numpy.fft importx*
from PIL import Image
import numpy as np
import cv2
import matplotlib.pyplot as plt

import matplotlib.ticker as plticker

from sklearn.metrics import confusion_matrix

Using matplotlib backend: QtbAgg
Populating the interactive namespace from numpy and matplotlib

In [2]:

import tensorflow as tf
import tensorflow
tensorflow import keras

from
from
from
from
from
from
from
from
from

keras
keras

keras
keras
keras

.preprocessing.image import ImageDataGenerator
.models import Sequential

keras.
keras.
keras.

layers import Convolution2D, MaxPooling2D

layers import Activation, Dropout, Flatten, Dense
optimizers import SGD

import initializers

.utils import to_categorical

import models

import numpy as np

import matplotlib.pyplot as plt

import pickle

from keras.models import model_from_json

Using TensorFlow backend.

In [3]:

#CARGAMOS LAS FUNCIONES DEFINIDAS
hcd C:\Users\ialdea\TFM
gridcrop.py

Save.py

list2img.py
PlotConfusionMatrix.py

%run
%run
J%run
Jrun

Definicién de los conjuntos

In [4]: train_datagen = ImageDataGenerator(rescale=1./255)
test_datagen = ImageDataGenerator(rescale=1./255)

In [5]: #Tamafio de las imdgenes de entrada a la red
img_width=120
img_height=240

In [6]: #Conjunto de entrenamiento
train_generator = train_datagen.flow_from_directory(
"C://Users//ialdea//Documents//TFM//Caso Practico//data//train definitivo",
target_size=(img_width, img_height),
batch_size=20,
class_mode='binary')

Found 2000 images belonging to 2 classes.

In [7]: #Conjunto test
validation_generator = test_datagen.flow_from_directory(
"C://Users//ialdea//Documents//TFM//Caso Practico//data//validation definitivo"
target_size=(img_width, img_height),
batch_size=20,
shuffle=False,
class_mode='binary')

Found 400 images belonging to 2 classes.

In [8]: #Codificacidn de etiquetas
train_generator.class_indices

Out[8]: {'ocupada': 0, 'vacia': 1}
Informacién del modelo

In [9]: #xxxxxxINFORMACION DEL MODEL(O+#+%%%%%%%
#
numero de imdgenes que se consideran para el entrenamiento
train_samples = 2000
numero de imdgenes se utilizan en la validacion
validation_samples = 400
numero de veces que se ejecutard la red
sobre el conjunto de entrenamiento antes
de empezar con la wvalidacion
epoch = 30

B

Disefio del modelo

In [10]: # ** DISENO DE LA ARQUITECTURA *+*
#
from numpy.random import seed
seed(2)
from tensorflow import set_random_seed
set_random_seed(2)
init=initializers.glorot_uniform(seed=1)
model = Sequential()

#CAPAS DE CONVOLUCION
model.add(Convolution2D(6, (3, 3), padding='valid', use_bias=True,
kernel_initializer=init, bias_initializer='zeros',
input_shape = (img_width, img_height,3), data_format="channels_last"))
model.add(Activation('elu'))

model.add(Convolution2D(6, (3, 3),padding='valid', use_bias=True,
kernel_initializer=init,bias_initializer="'zeros',
input_shape = (img_width, img_height,3), data_format='"channels_last"))
model .add(Activation('elu'))

#FLATTENING
model .add(Flatten())

#FULL CONNECTION
model.add(Dense(512,activation="sigmoid"'))
model.add(Dense (256 ,activation="'sigmoid"'))
model.add(Dense(1l,activation="'sigmoid'))

x FIN DEL MODELO #+#

In [11]: #x**xxxCARACTERISTICAS DEL APRENDIZAJE**¥*###%%%%*
#
#Antes de compilar el modelo hay que configurar el proceso de aprendizaje,
#la funcidon de perdida, el optimizador y medida para la cnn
model.compile(loss='binary_crossentropy',
optimizer='sgd',
metrics=['accuracy'])
#Modelo resultante
print (model.summary())

Layer (type) Output Shape Param #

conv2d_1 (Conv2D) (None, 118, 238, 6) 168

activation_1 (Activation) (Nome, 118, 238, 6) o
conmv2d_2 (Comv2D) ~ (Nome, 116, 236, 6) 330
activation 2 (Activation) (Nome, 116, 236, 6) o
flatten i (Flatten) (Nome, 164256) o
dense_1 (Dense) (lNome, 512) 84099584
dense_2 (Dense) (lNome, 256) 131328
dense_3 (Dense) (Nome, 1) 2057

Total params: 84,231,667
Trainable params: 84,231,667
Non-trainable params: O

Entrenamiento del modelo

In [12]: ##**xENTRENAMIENTO DEL MODELQ*#*#*%x*

from time import time

start_time=time ()

train_model=model.fit_generator(
train_generator,
samples_per_epoch=train_samples,
nb_epoch=epoch,
validation_data=validation_generator,
nb_val_samples=validation_samples,
#steps_per_epoch=32/2,
verbose=1)

end_time=time()-start_time

hours=int (end_time/3600)

minutes=(end_time-hours*3600)/60

seconds=end_time’60

print ('E1l tiempo de entrenamiento es:',hours, 'horas

'minutos y' ,seconds,' segundos')

',int (minutes),

Epoch 1/30
100/100 [

loss:

Epoch 2/30

.6584

acc:

.6265

1 - 536s bs/step
val_loss: 0.6294 -

100/100 [

loss:

Epoch 3/30
100/100 [

.6224

acc:

.6785

1 - 350s 3s/step
val_loss: 0.5995 -

loss:

Epoch 4/30

.5964

acc:

.6950

1 - 299s 3s/step
val_loss: 0.5720 -

100/100 [

1 - 296s 3s/step

loss:

Epoch 5/30

.5695

acc:

.7165

val_loss: 0.5631 -

100/100 [

loss:

Epoch 6/30

.5501

acc:

100/100 [

] - 305s 3s/step
val_loss: 0.5468 -

===] - 308s 3s/step

loss:

Epoch 7/30

.5275

acc:

val_loss: 0.5328 -

100/100 [

loss:

Epoch 8/30
100/100 [

.5154

acc:

. 7470

1 - 306s 3s/step
val_loss: 0.5234 -

loss:

Epoch 9/30

.4953

acc:

.7510

1 - 312s 3s/step
val_loss: 0.5003 -

100/100 [

loss:

Epoch 10/30

L4717

acc:

.7755

1 - 297s 3s/step
val_loss: 0.4747 -

100/100 [

loss:

Epoch 11/30

.4374

acc:

.8095

] - 321s 3s/step
val_loss: 0.4641 -

100/100 [

] - 353s 4s/step

loss:

Epoch 12/30

.4229

acc:

.8070

val_loss: 0.3929 -

100/100 [

loss:

Epoch 13/30
100/100 [

.3791

acc:

.8370

1 - 318s 3s/step
val_loss: 0.4204 -

loss:

Epoch 14/30

.3625

acc:

.8490

1 - 319s 3s/step
val_loss: 0.3711 -

100/100 [

loss:

Epoch 15/30

.3132

acc:

.8745

1 - 299s 3s/step
val_loss: 0.3288 -

100/100 [

] - 331s 3s/step

loss:

Epoch 16/30

.3082

acc:

.8705

val_loss: 0.2817 -

100/100 [

loss:

.25956

acc:

.9040

] - 335s 3s/step
val_loss: 0.2486 -

val_acc:

val_acc:

val_acc:

val_acc:

val_acc:

val_acc:

val_acc:

val_acc:

val_acc:

val_acc:

val_acc:

val_acc:

val_acc:

val_acc:

val_acc:

val_acc:

.6850

.7025

.7250

.7000

.7300

.7375

. 7250

. 7450

. 7825

. 7825

.8425

L7725

.8375

.8525

.9025

.9275

Epoch 17/30
100/100 [

loss:

Epoch 18/30

0.2273 - acc: 0.

1 - 318s 3s/step -

9190 - val_loss: 0.3585 - val_acc: 0.8325

100/100 [

loss:

Epoch 19/30
100/100 [

0.2181 - acc: O.

1 - 321s 3s/step -

9245 - val_loss: 0.2037 - val_acc: 0.9425

loss:

Epoch 20/30

0.2016 - acc: O.

1 - 327s 3s/step -

9305 - val_loss: 0.1867 - val_acc: 0.9475

100/100 [

loss:

Epoch 21/30

0.1686 - acc: O.

1 - 328s 3s/step -

9425 - val_loss: 0.1650 - val_acc: 0.9625

100/100 [

loss:

Epoch 22/30

0.1584 - acc: 0.

100/100 [

] - 317s 3s/step -

9495 - val_loss: 0.1912 - val_acc: 0.9275

loss:

Epoch 23/30

0.1298 - acc: 0.

] - 345s 3s/step -

9635 - val_loss: 0.1549 - val_acc: 0.9575

100/100 [

loss:

Epoch 24/30
100/100 [

0.1223 - acc: O.

1 - 334s 3s/step -

9625 - val_loss: 0.1414 - val_acc: 0.9550

loss:

Epoch 25/30

0.1147 - acc: O.

1 - 310s 3s/step -

9670 - val_loss: 0.1197 - val_acc: 0.9725

100/100 [

loss:

Epoch 26/30

0.1137 - acc: O.

1 - 301s 3s/step -

9690 - val_loss: 0.1479 - val_acc: 0.9575

100/100 [

loss:

Epoch 27/30

0.0815 - acc: 0.

] - 307s 3s/step -

9805 - val_loss: 0.1505 - val_acc: 0.9500

100/100 [

] - 329s 3s/step -

loss: 0.0685 - acc: 0.9845 - val_loss: 0.1427 - val_acc: 0.952

Epoch 28/30

100/100 [

loss:

Epoch 29/30
100/100 [

1 - 326s 3s/step -

0.0774 - acc: 0.9800 - val_loss: 0.1004 - wval_acc: 0.9700

loss:

Epoch 30/30

1 - 336s 3s/step -

0.0745 - acc: 0.9770 - val_loss: 0.0885 - val_acc: 0.9775

100/100 [

loss:

El tiempo de

1 - 337s 3s/step -

0.0516 - acc: 0.9885 - val_loss: 0.0898 - val_acc: 0.9725

entrenamiento es:

2 horas

43 minutos y 40.3520245552063

5

segundos

Analisis de los resultados del entrenamiento

Estudio grafico de la funcién de pérdida y de la tasa de bien clasificados a lo largo de las

épocas:

In [13]: plt
plt
plt
plt
plt

plt
en

plt.
plt.

plt
plt

plt
plt
plt

en

plt.

.subplot(311)

.plot(train_model.epoch,train_model.history['loss'],marker='0',linestyle="'--",
color='b',label='Conjunto entrenamiento')

.plot(train_model.epoch,train_model.history['val_loss'],marker='o',linestyle='--",
color='g',label='Conjunto de validacidn')

.xlabel('Epocas')

.ylabel('Funcidén de pérdida')

.title('Comparacidén de la funcién de pérdida \n

el conjunto de entrenamiento y de validacidn')

legend(loc="'best"')

subplot (313)

.plot(train_model.epoch,train_model.history['acc'] ,marker='o',linestyle='--",
color='b',label='Conjunto entrenamiento')

.plot(train_model.epoch,train_model.history['val_acc'],marker='o',linestyle="'--",
color="'g',label='Conjunto de validacidn')

.xlabel('Epocas')

.ylabel('Accuracy')

.title('Comparacidén de la tasa de bien clasificados \n

el conjunto de entrenamiento y de validacién')

legend(loc="'best"')

Out[13]: <matplotlib.legend.Legend at 0x181964e6£60>

Calculo de la matriz de confusion de la red:

In [14]: validation_generator = test_datagen.flow_from_directory(

"C://Users//ialdea//Documents//TFM//Caso Practico//data//validation definitivo",
target_size=(img_width, img_height),
batch_size=1,
shuffle=False,
class_mode='binary')

validation_generator.reset ()
nb_samples=len(validation_generator.filenames)
predictions=model.predict_generator(validation_generator,steps=nb_samples,

verbose=1,workers=1)

Found 400 images belonging to 2 classes.

400/400 [

1 - 19s 48ms/step

In [15]: labels_predictions=[0] * len(predictions)

for

i in range (0,len(predictions)):
if predictions[i]<0.5:
labels_predictions[i]=0

else:
labels_predictions[i]=1

In [16]: plot_confusion_matrix(validation_generator.classes, labels_predictions,
['ocupada','vacia'] ,Normalize=True)

Matriz de confusion normalizada

Guardado del modelo
In [17]: %cd C:\Users\ialdea\TFM

#Guardado del modelo en JSON

#

model_json=model.to_json()

with open ("CNNModel_11.json","w") as json_file:
json_file.write(model_json)

#Guardado de los pesos del modelo en HDF5
#
model.save_weights("CNNModel_11.h5")

C:\Users\ialdea\TFM

In [1]: import
import

Carga del modelo y clasificacién

tensorflow as tf
tensorflow

from tensorflow import keras

from keras.preprocessing.image import ImageDataGenerator
from keras.models import Sequential

from keras.layers import Convolution2D, MaxPooling2D

from keras.layers import Activation, Dropout, Flatten, Dense
from keras.optimizers import SGD

from keras.utils import to_categorical

from keras import models

from keras.models import model_from_json

import
import
import
import
import

numpy as np
matplotlib

matplotlib.ticker as plticker
matplotlib.pyplot as plt
pickle

from PIL import Image

import

cv2

Jmatplotlib inline

Jpylab

Using TensorFlow backend.

Using matplotlib backend: QtbAgg

Populating the

In [2]: #CARGA

interactive namespace from numpy and matplotlib

DE LAS FUNCIONES

Jcd C:\Users\ialdea\TFM
Jrun colors.py

Jrun gridcrop.py

Jrun list2img.py

Jrun Save.py

Carga el modelo

In [3]: #CARGA DEL MODELO
#cargar json y crear el modelo
json_file=open('CNNModel_11.json','r"')
loaded_model_json=json_file.read()
json_file.close()
first_model=model_from_json(loaded_model_json)
#cargar pesos del modelo guardado
first_model.load_weights("CNNModel_11.h5")

Definicion de las caracteristicas de aprendizaje

Se vuelve a definir las caracteristicas de aprendizaje del modelo que se entrené.

In [4]: #x**%*CARACTERISTICAS DEL APRENDIZAJE**#¥*¥¥4k¥ %%
#
first_model.compile(loss='binary_crossentropy',
optimizer='sgd',
metrics=['accuracy'])

Definicion y adaptacion del frame a predecir

In [5]1: #NUMERO DE FRAME A PREDECIR
nframe=6337#12722#1358#6307#18494
#DEFINICION DE DIMESIONES (EN PIXELES)
quitx=120
quity=120
img_dimx=1920
img_dimy=1080
dim_x=int (img_dimx/quitx)
dim_y=int (img_dimy/quity)
#GUARDADO DE LA IMAGEN EN UNA CARPETA AUXILIAR
#lcd C:\Users\ialdea\Documents\TFM\Caso Practico\datal\sala ocupada
#lcd C:\Users\taldea\Documents\TFM\Caso Practico\datalsala vacia
%cd C:\Users\ialdea\Documents\TFM\Caso Practico\data\sala validacion
#/cd C:\Users\ialdea\Documents\TFM\Caso Practico\data\sala watson
frame=Image.open('frame'+str(nframe)+'.jpg')
foo=gridcrop(frame,120,120)
bar=list2img(foo[16:144],dim_x,dim_y-1)
Jcd C:\Users\ialdea\Documents\TFM\Caso Practico\data\pausa2
cv2.imwrite('img.jpg' ,bar)
img=Image.open('img.jpg"')
foo=gridcrop(img,120,240)
Jcd C:\Users\ialdea\Documents\TFM\Caso Practico\data\pruebas2\all_classes
guardar (foo, 'n')

Lectura de los datos

In [6]: img_width=120

img_height=240

test_datagen = ImageDataGenerator(rescale=1./255)

imgroom = test_datagen.flow_from_directory(
"C:/Users/ialdea/Documents/TFM/Caso Practico/data/pruebas2",
target_size=(img_width, img_height),
batch_size=1,
shuffle=False,
class_mode="'binary')

nb_samples=len(imgroom.filenames)

Found 64 images belonging to 1 classes.

Predicciéon

In [7]: #Prediccion

imgroom.reset ()

predictionsO=first_model.predict_generator(imgroom,steps=nb_samples,
verbose=1,workers=1)

predictions=[0] * len(imgroom.filenames)

for i in range (0,len(imgroom.filenames)):
bar=imgroom.filenames.index('all_classes\\n'+str(i)+'.jpg")
predictions[i]=predictionsO[bar] [0]

ocup=[]

vac=[]

for i in range (0,len(predictions0)):
foo=[i]

if predictions[i]<0.2:
ocup=ocup+foo
else:
vac=vac+foo
if len(ocup)>=1:
print('La sala estd ocupada')
else:
print('La sala estd vacia')

Out[7]: 64/64 [] - 3s 52ms/step

La sala esta vacia

Estudio visual de la prediccién

In [8]: #Estudio visual de la prediccion
#/cd C:\Users\ialdea\Documents\TFM\Caso Practico\data\sala ocupada
#/cd C:\Users\ialdea\Documents\TFM\Caso Practico\data\sala vactia
Jcd C:\Users\ialdea\Documents\TFM\Caso Practico\data\sala validacion
#/cd C:\Users\ialdea\Documents\TFM\Caso Practico\data\sala watson
frame=Image.open('frame'+str(nframe)+'.jpg')
dim_x=int (frame.size[0]/120)
dim_y=int (frame.size[1]/120)
foo=gridcrop(frame,120,120)
fool=1list2img(foo[0:16],dim_x,1)
bar=1ist2img(foo[16:144] ,dim_x,dim_y-1)
%cd C:\Users\ialdea\Documents\TFM\Caso Practico\data\pausa2
cv2.imwrite('img. jpg',bar)
img=Image.open('img.jpg')
dim_xx=int (img.size [0]/120)
dim_yy=int (img.size[1]/240)
foo=gridcrop(img,120,240)
foo=change_colorgreen(vac,foo)
foo=change_colorred(ocup,foo)
img_predict=list2img(foo,dim_xx,dim_yy)
img_predict=np.concatenate((fool,img_predict),axis=0)
%cd C:\Users\ialdea\Documents\TFM\Caso Practico\data\prediccion
cv2.imwrite('newprediction.jpg',img_predict)

Out[8]: True

In [1]:

Anaélisis de la curva ROC

import tensorflow as tf
import tensorflow

from tensorflow import keras

from keras.preprocessing.image import ImageDataGenerator
from keras import models

from keras.models import model_from_json

import numpy as np

import matplotlib

import matplotlib.ticker as plticker
import matplotlib.pyplot as plt
import pickle

from PIL import Image

import cv2

import itertools

from sklearn.metrics import confusion_matrix
import sklearn.metrics as metrics
Jmatplotlib inline

Jipylab

Using TensorFlow backend.

Using matplotlib backend: QtbAgg
Populating the interactive namespace from numpy and matplotlib

In [2]:

#CARGA DE LAS FUNCIONES
Jcd C:\Users\ialdea\TFM
Jrun colors.py

Jrun gridcrop.py

Jrun list2img.py

Jrun Save.py

Carga el modelo

In [3]: #CARGA DEL MODELO
#cargar json y crear el modelo
json_file=open('CNNModel_11.json','r"')
loaded_model_json=json_file.read()
json_file.close()
first_model=model_from_json(loaded_model_json)
#cargar pesos del modelo guardado
first_model.load_weights("CNNModel_11.h5")

Definicidn de las caracteristicas de aprendizaje

In [4]: #xxxxxCARACTERISTICAS DEL APRENDIZAJE+#%%%%¥kkk%%%
#
first_model.compile(loss='binary_crossentropy',
optimizer='sgd',
metrics=['accuracy'])

Célculo de las predicciones y curva ROC

In [5]: img_width=120
img_height=240
test_datagen = ImageDataGenerator (rescale=1./255)
validation_generator = test_datagen.flow_from_directory(
"C:\\Users\\ialdea\\Documents\\TFM\\Caso Practico\\data\\roc",
target_size=(img_width, img_height),
batch_size=1,
shuffle=False,
class_mode='binary')
validation_generator.reset ()
nb_samples=len(validation_generator.filenames)
predictions=first_model.predict_generator(validation_generator,steps=nb_samples,
verbose=1,workers=1)

Found 929 images belonging to 2 classes.
929/929 [1 - 45s 48ms/step

In [6]: number=6

numberimages=929

a=np.arange (number)

fpr=[0] * len(a)

tpr=[0] * len(a)

d={}

for i in a:
d['labels_predictions{0}"'.format(i+1)]=[0] * len(predictions)
value=(i+1)/10
for j in range (0,len(predictions)):

2

if predictions[jl<value:
d['labels_predictions'+str(i+1)][j1=0
else:
d['labels_predictions'+str(i+1)][jl=1

_, fp, _,tp=confusion_matrix(validation_generator.classes,
d['labels_predictions'+str(i+1)]) .ravel()
fpr[i]=fp/numberimages
tpr[i]=tp/numberimages

tpr=[1]+tpr+[0]

fpr=[1]+fpr+[0]

tpr=tpr[::-1]

fpr=fpr[::-1]

roc_auc=metrics.auc(fpr, tpr)

plt.title('Curva ROC')

plt.plot(fpr, tpr, 'b', label = 'AUC = J0.2f' 7 roc_auc)

plt.legend(loc = 'lower right')

plt.plot ([0, 1], [0, 1],'T--")

plt.x1lim([0, 11)

plt.ylim([0, 11)

plt.plot(fpr,tpr,'o")

plt.ylabel('Tasa de Verdaderos Positivos')

plt.xlabel('Tasa de Falsos Positivos')

grid()

plt.show()

In [1]:

Estudio del modelo seleccionado

import tensorflow as tf
import tensorflow

from
from
from
from
from
from

from
from

tensorflow import keras

keras
keras

keras
keras

.preprocessing.image import ImageDataGenerator
.models import Sequential

keras.
keras.
keras.

layers import Convolution2D, MaxPooling2D
layers import Activation, Dropout, Flatten, Dense
optimizers import SGD

.utils import to_categorical

import models

import numpy as np

Jmatplotlib inline

import matplotlib.pyplot as plt

import pickle

from PIL import Image

from keras.models import model_from_json

import random
import itertools

Using TensorFlow backend.

In [2]:

#CARGA DE LAS FUNCIONES
Jcd C:\Users\ialdea\TFM
PlotConfusionMatrix.py
gridcrop.py
list2img.py

save.py

s%run
%run
%run
%run

Carga del modelo y definicion de caracteristicas

In [3]:

#CARGA DEL MODELO
json_file=open('CNNModel_11.json','r"')
loaded_model_json=json_file.read()
json_file.close()

first_model=model_from_json(loaded_model_json)

#cargar pesos al nuevo modelo

first_model.load_weights("CNNModel_11.h5")

#

#x*x%%CARACTERISTICAS DEL APRENDIZAJEx*¥¥¥¥4 4K ¥ %%

#

first_model.compile(loss='binary_crossentropy',
optimizer='sgd',
metrics=['accuracy'])

Matriz de confusion

In [4]: #SELECCION DE LOS FRAMES DE VALIDACION DEL VIDEO DE VALIDACION
from time import time
start_time=time ()
random. seed (0)
n=1800
test = [random.randint(0,18001) for
vac=test.copy ()

#
#4x %% *PREDICCION* 4% %
#
#def de las dimensiones
quitx=120
quity=120
rectangle_x=120
rectangle_y=240
img_dimx=1920
img_dimy=1080
dim_x=int (img_dimx/quitx)
dim_y=int (img_dimy/quity)
test_datagen = ImageDataGenerator(rescale=1./255)
#
ocup=[]
for j in test:
#lectura del frame seleccionado y adaptacidn a la entrada de la red
%cd C:\Users\ialdea\Documents\TFM\Caso Practico\data\sala validacion
frame=Image.open('frame'+str(j)+'.jpg"')
foo=gridcrop(frame,120,120)
bar=1ist2img(foo[16:144] ,dim_x,dim_y-1)
%cd C:\Users\ialdea\Documents\TFM\Caso Practico\data\pausa
cv2.imwrite('img. jpg',bar)
img=Image.open('img.jpg"')
foo=gridcrop(img,120,240)
%cd C:\Users\ialdea\Documents\TFM\Caso Practico\data\pruebas\all_classes
guardar(foo, 'n')
#creacion del conjunto de prediccion
imgroom = test_datagen.flow_from_directory(

in range(n)]

"C:/Users/ialdea/Documents/TFM/Caso Practico/data/pruebas",
target_size=(rectangle_x, rectangle_y),
batch_size=1,
shuffle=False,
class_mode='binary')
nb_samples=len(imgroom.filenames)
#prediccion con el modelo cargado
imgroom.reset ()
predictionsO=first_model.predict_generator (imgroom,steps=nb_samples,
verbose=1,workers=1)
predictions=[0] * len(imgroom.filenames)
for i in range (0,len(imgroom.filenames)):
bar=imgroom.filenames.index('all_classes\\n'+str(i)+'.jpg"')
predictions[i]=predictionsO[bar] [0]
if predictions[i]<0.2:
ocup=ocup+[j]
break

for i in ocup:
vac.remove (i)
countvacg=0
countvacb=0
countocupg=0
countocupb=0
for i in vac:
if i <=6319:
countvacg += 1
else:
countvacb += 1
print ('El frame mal clasificado como vacia es el '+str(i))

for i in ocup:
if 1 >=6334:
countocupg += 1
else:
countocupb += 1
print ('El frame mal clasificado como ocupada es el '+str(i))
Title='Matriz de confusién'
cmap=plt.cm.Blues
Classes=['ocupada', 'vacia']
Confusion_Matrix=array([[countocupg,countocupb], [countvacb,countvacgl]l)
plt.imshow(Confusion_Matrix,interpolation='nearest',cmap=cmap)
plt.title(Title)
plt.colorbar()
tick_marks=np.arange(len(Classes))
plt.xticks(tick_marks,Classes,rotation=45)
plt.yticks(tick_marks, Classes)
thresh=Confusion_Matrix.max()/2.

El
El
E1l
El
El
El

In

frame
frame
frame
frame
frame
tiemp

[5]:

for

plt
plt
plt
end_

mal
mal
mal
mal
mal
o de

i,j in itertools.product(range(Confusion_Matrix.shape[0]),

range (Confusion_Matrix.shape[1])):
plt.text(j,i,Confusion_Matrix[i,j],horizontalalignment='center’,
color='white' if Confusion_Matrix[i,j] > thresh else 'black')

.tight_layout ()
.ylabel('Valores Reales')
.xlabel('Valores Predichos')

time=time () -start_time
hours=int (end_time/3600)
minutes=(end_time-hours*3600) /60
seconds=end_time%60
print('ELl tiempo de ejecucidn es:',hours, 'horas ',int(minutes),
'minutos y' ,seconds,' segundos')

clasificado
clasificado
clasificado
clasificado
clasificado

entrenamiento es:

como
como
como
como
como

vacia es el 6341
vacia es el 6325
vacia es el 6337
ocupada es el 5251
ocupada es el 5382
1 horas 52 minutos y 12.464517593383789 segundos

#POSITIVO--VACIA, NEGATIVO--0CUPADA
IndPositivReal=countvacg+countvacb

IndNegativReal=countocupg+countocupb
IndPositivFake=countvacg+countocupb
IndNegativFake=countocupg+countvach

#TASA DE BIEN CLASIFICADOS
ACC=(countocupg+countvacg)/n
#TASA DE MAL CLASIFICADOS
TMC=(countvacb+countocupb) /n
#SENSIBILIDAD
TPR=countvacg/(IndPositivReal)
#ESPECIFICIDAD
TNR=countocupg/ (IndNegativReal)
#PRECISION
PPV=countvacg/IndPositivFake
#TASA DE FALSOS POSITIVOS
FPR=countocupb/IndNegativReal
#TASA DE FALSOS NEGATIVOS
FNR=countvacb/IndPositivReal
#Resultados
print('Los resultados obtenidos a partir de la matriz de confusidn:')
print('Tasa de bien clasificados, '+str(ACC*100)+'%"')

print('Tasa de mal clasificados, '+str(TMC*100)+'%"')
print('Sensibilidad, '+str(TPR*100)+'%")

print ('Especificidad, '+str(TNR*x100)+'%')

print('Precisidén, '+str(PPV*100)+'%")
print('Tasa de falsos positivos, '+str(FPR*100)+'}%")
print('Tasa de falsos negativos, '+str(FNR*100)+'%")

Los resultados obtenidos a partir de la matriz de confusién:
Tasa de bien clasificados, 99.72222222222223%

Tasa de mal clasificados, 0.2777777777777778%

Sensibilidad, 99.55223880597015%

Especificidad, 99.82300884955752%

Precisién, 99.70104633781763%

Tasa de falsos positivos, 0.17699115044247787Y%

Tasa de falsos negativos, 0.44776119402985076%

106 Anexo C. Diseno, resultados y ejecucion de los modelos

Bibliografia

1]

[13]

BEensoN, C.C.; LAJisH, V.L.; RAJAMANI, KUMAR. A nowvel skull stripping and en-
hancement algorithm for the improved brain tumor segmentation using mathematical
morphology, Int J Image Graph Signal Process, vol. 8 mno. 7, p. 59-66, 2016, dis-
ponible en https://www.researchgate.net/profile/Benson_C_C3/publication/
305515800_A_Novel_Skull_Stripping_and_Enhancement_Algorithm_for_the_
Improved_Brain_Tumor_Segmentation_using_Mathematical_Morphology/links/
57985e2708aeb0ffcd06ef63.pdf.

BiLLAH, MOHAMMAD EHTASHAM. Classifying Microscopic Images for Acute Lymphoblas-
tic Leukemia (ALL) using Bayesian Convolutional Neural Networks, 2018, disponible en
http://www.diva-portal.org/smash/get/diva2:1233518/FULLTEXTO1. pdf.

Cul, ZHIHUA ET AL. Malicious code detection based on CNNs and multi-objective algo-
rithm, Journal of Parallel and Distributed Computing, vol. 129, p. 50-58, 2019.

DiNiz, PEDRO HENRIQUE BANDEIRA ET AL. Detection of white matter lesion regions in

MRI using SLICO and convolutional neural network, Computer methods and programs in
biomedicine, vol. 167, p. 49-63, 2018.

GIMP, GIMP-GNU Image manipulation program, https://www.gimp.org/.

GOLDBERG, YOAV ; LEVY, OMER. word2vec Explained: deriving Mikolov et al.’s negative-
sampling word-embedding method, arXiv preprint arXiv:1402.3722, 2014, disponible en
https://arxiv.org/pdf/1402.3722.pdf.

GoONzALEZ, RAFAEL C.; WoobDs, RICHARD E. Digital Image Processing, 2.% ed., Prenti-
ce Hall, disponible en http://web.ipac.caltech.edu/staff/fmasci/home/astro_refs/
Digital_Image_Processing_2ndEd.pdf

GOODFELLOW, IAN ; BENGIO, YOSHUA ; COURVILLE, AARON. Deep learning, MIT press,
2016.

HARBOLA, SHUBHI ; COORS, VOLKER. One dimensional convolutional neural network
architectures for wind prediction, Energy Conversion and Management, vol. 195, p. 70-75,

2019.

HAYKIN, SIMON S., ET AL. Neural networks and learning machines, 3.* ed., Pearson edu-
cation Upper Saddle River, 2009.

IBM, Watson IBM, https://www.ibm.com/watson.

JUPYTER NOTEBOOK, The Jupyter Notebook, https://jupyter-notebook.
readthedocs.io/en/stable/.

KERAS, Keras:The Python Deep Learning Library, https://keras.io.

107

https://www.researchgate.net/profile/Benson_C_C3/publication/305515800_A_Novel_Skull_Stripping_and_Enhancement_Algorithm_for_the_Improved_Brain_Tumor_Segmentation_using_Mathematical_Morphology/links/57985e2708aeb0ffcd06ef63.pdf
https://www.researchgate.net/profile/Benson_C_C3/publication/305515800_A_Novel_Skull_Stripping_and_Enhancement_Algorithm_for_the_Improved_Brain_Tumor_Segmentation_using_Mathematical_Morphology/links/57985e2708aeb0ffcd06ef63.pdf
https://www.researchgate.net/profile/Benson_C_C3/publication/305515800_A_Novel_Skull_Stripping_and_Enhancement_Algorithm_for_the_Improved_Brain_Tumor_Segmentation_using_Mathematical_Morphology/links/57985e2708aeb0ffcd06ef63.pdf
https://www.researchgate.net/profile/Benson_C_C3/publication/305515800_A_Novel_Skull_Stripping_and_Enhancement_Algorithm_for_the_Improved_Brain_Tumor_Segmentation_using_Mathematical_Morphology/links/57985e2708aeb0ffcd06ef63.pdf
http://www.diva-portal.org/smash/get/diva2:1233518/FULLTEXT01.pdf
https://www.gimp.org/
https://arxiv.org/pdf/1402.3722.pdf
http://web.ipac.caltech.edu/staff/fmasci/home/astro_refs/Digital_Image_Processing_2ndEd.pdf
http://web.ipac.caltech.edu/staff/fmasci/home/astro_refs/Digital_Image_Processing_2ndEd.pdf
https://www.ibm.com/watson
https://jupyter-notebook.readthedocs.io/en/stable/
https://jupyter-notebook.readthedocs.io/en/stable/
https://keras.io

108 Bibliografia

[14] KOUSTUBH, ResNet, AlexNet, VGGNet, Inception: Understanding Various ar-
chitectures of Convolutional Networks, https://cv-tricks.com/cnn/
understand-resnet-alexnet-vgg-inception/.

[15] LI1AO, SHIYANG, ET AL. CNN for situations understanding based on sentiment analysis of
twitter data, Procedia computer science, vol. 111, p. 376-381, 2017, disponible en https:
//www.sciencedirect.com/science/article/pii/S1877050917312103.

[16] MACHINE LEARNING CHEATSHEET, Activation fuction, https://ml-cheatsheet.
readthedocs.io/en/latest/activation_functions.html.

[17] MICROSOFT AZURE, Cognitive Services, https://azure.microsoft.com/es-es/
services/cognitive-services/.

[18] MUNOz FERNANDEZ, ALvARO. Implementacién del algoritmo SLICO en EsplN,
ETSL Informatica, 2018, disponible en http://oa.upm.es/52471/1/TFG_ALVARO_MUNOZ_
FERNANDEZ . pdf.

[19] RsToprup, Dibujar las lineas de la cuadricula sobre wuna imagen en matplotlib,
https://rstopup.com/dibujar-las-lineas-de-la-cuadricula-sobre-una-imagen-en-matplotlib.html.

[20] RUDER, SEBASTIAN. An overview of gradient descent optimization algorithms, arXiv pre-
print arXiv:1609.04747, 2016, disponible en, https://arxiv.org/pdf/1609.04747 .pdf.

[21] ScIKIT-LEARN, Confusion matriz, https://scikit-learn.org/stable/auto_examples/
model_selection/plot_confusion_matrix.html.

[22] SZEGEDY, CHRISTIAN, ET AL. Going Deeper with Convolutions, Computer Vision and
Pattern Recognition (CVPR), disponible en, http://arxiv.org/abs/1409.4842

[23] TENSORFLOW, An end-to-end open source machine learning platform, https://wuw.
tensorflow.org/.

[24] THEANO, Theano, http://deeplearning.net/software/theano/.

[25] TouLis, PANOs; HOREL, THIBAUT; AIROLDI, EDOARDO M. Stable robbins-monro ap-
proximations through stochastic prorimal updates, arXiv preprint arXiv:1510.00967, 2015,
disponible en https://arxiv.org/pdf/1510.00967 .pdf.

[26] WIKIPEDIA, Stochastic gradient descent, https://en.wikipedia.org/wiki/Stochastic_
gradient_descent.

[27] ZHANG, YE; WALLACE, BYRON. A sensitivity analysis of (and practitioners’ guide to)
convolutional neural networks for sentence classification, arXiv preprint arXiv:1510.03820,
2015, disponible en https://arxiv.org/pdf/1510.03820.pdf.

[28] ZHANG, ZHIFEL Derivation of Backpropagation in Convolutional Neural Network (CNN),
University of Tennessee, Knoxville, TN, 2016.

https://cv-tricks.com/cnn/understand-resnet-alexnet-vgg-inception/
https://cv-tricks.com/cnn/understand-resnet-alexnet-vgg-inception/
https://www.sciencedirect.com/science/article/pii/S1877050917312103
https://www.sciencedirect.com/science/article/pii/S1877050917312103
https://ml-cheatsheet.readthedocs.io/en/latest/activation_functions.html
https://ml-cheatsheet.readthedocs.io/en/latest/activation_functions.html
https://azure.microsoft.com/es-es/services/cognitive-services/
https://azure.microsoft.com/es-es/services/cognitive-services/
http://oa.upm.es/52471/1/TFG_ALVARO_MUNOZ_FERNANDEZ.pdf
http://oa.upm.es/52471/1/TFG_ALVARO_MUNOZ_FERNANDEZ.pdf
https://rstopup.com/dibujar-las-lineas-de-la-cuadricula-sobre-una-imagen-en-matplotlib.html
https://arxiv.org/pdf/1609.04747.pdf
https://scikit-learn.org/stable/auto_examples/model_selection/plot_confusion_matrix.html
https://scikit-learn.org/stable/auto_examples/model_selection/plot_confusion_matrix.html
http://arxiv.org/abs/1409.4842
https://www.tensorflow.org/
https://www.tensorflow.org/
http://deeplearning.net/software/theano/
https://arxiv.org/pdf/1510.00967.pdf
https://en.wikipedia.org/wiki/Stochastic_gradient_descent
https://en.wikipedia.org/wiki/Stochastic_gradient_descent
https://arxiv.org/pdf/1510.03820.pdf

	Glosario
	Abstract
	Resumen
	Introducción
	Entorno tecnológico
	Democratización de las redes neuronales convolucionales
	Desarrollo del trabajo

	Redes Neuronales Convolucionales
	Arquitectura de las redes neuronales convolucionales
	Capas de convolución
	Capas de la red neuronal

	Aprendizaje
	Función de pérdida
	Retropropagación o Backpropagation
	Gradiente Estocástico Descendente (SGD)
	Importancia de las funciones de activación en el aprendizaje

	Evaluación de la clasificación de las CNNs
	Matriz de confusión
	Otras técnicas de validación

	Predicción de la clase

	Estado del arte
	Gestión autómata de la ocupación de salas
	Descripción y metodología del proyecto
	Presentación del conjunto de datos y obtención de frames
	Fase de viabilidad
	Estudio de la sala
	Estudio de los datos y obtención de los conjuntos del experimento
	Creación, aplicación y evaluación de las CNNs
	Validación del modelo seleccionado

	Conclusiones

	Anexos
	Funciones definidas
	Pretratamiento y estudio de los datos
	Diseño, resultados y ejecución de los modelos
	Bibliografía

