
UNIVERSIDAD DE ZARAGOZA

MÁSTER EN MODELIZACIÓN E INVESTIGACIÓN
MATEMÁTICA, ESTADÍSTICA Y COMPUTACIÓN.

Trabajo de fin de máster:

Redes Neuronales Convolucionales.
Aspectos teóricos y aplicaciones en

aprendizaje supervisado.

Inés Aldea Blasco

Directores del trabajo: José Tomás Alcalá Nalvaiz y
Lidia Orellana Lozano

Septiembre 2019

Glosario

Accuracy: porcentaje de predicciones correctas respecto al total de clases posibles.

API (application programming interface): interfaz de programación de aplicaciones.

Backpropagation: algoritmo de retopropagación para el aprendizaje de una CNN.

Batch: lote.

Bias: sesgo.

Convolutional Neural Network (CNN): red neuronal convolucional.

Epoch: época, tiempo en el cual se procesa todo el conjunto de entrenamiento en la CNN.

Feature maps: capas de caracteŕısticas.

Feedforward: nombre de las redes que usan la propagación hacia delante.

Flattening: proceso que agrupa y cambia la forma de las matrices de salida de la última
capa de convolución por un único vector.

Forward o Forward propagation: proceso por el cual la red env́ıa la información de
entrada a través de sus capas en sentido de salida sin permitir retrocesos (propagación
hacia delante).

Frame: fotograma.

Fully connected: Parte de la arquitectura de la CNN que configura el modelo de red
neuronal normalmente llamada capas completamente conectadas en este ámbito.

Intranet: red informática privada interna de una institución, organización o empresa.

Loss function: función de pérdida.

Neural Network (NN): red neuronal.

One hot encoding: método utilizado en la codificación de las clases.

Padding: proceso que aumenta el tamaño de una matriz con la finalidad de que los
términos del exterior influyan de igual modo que los centrales.

Pooling: etapa de la capa de convolución que reduce el tamaño de matriz.

Stride: medida de definición del avance del filtro por la matriz en el producto de con-
volución. También es usado para definir el avance del entorno rectangular en la etapa de
pooling.

iii

Abstract

Over the last few years, the increase in the databases and the volumen of these have made
models proliferate naturally capable of processing and analyzing this data.

During this work, we will talk about one of these models: convolutional neural networks
(CNNs), which are currently booming. The increase of the data mentioned above together with
the technological improvements have facilitated and improved the performance of its construc-
tion, training and execution.

CNNs are a model of artificial intelligence corresponding to deep learning that is, they are
models capable of extracting for themselves the information necessary to, in the case of CNNs,
make a classification.

We will begin by detailing the architecture of the model defining the elements that configure
it by differentiating two parts; the first in charge of extracting the characteristics of the data
and, the second, more focused on the classification.

Throughout this part, we will specify the convolution layers that form the first part of the
architecture, defining the convolution product for the CNN context, the activation functions
and the pooling functions. In addition, we will see how the second part of the architecture is
composed of a neural network model, which is responsible for classification, and the process of
flattening responsible for linking both parts.

Once the model is defined, we will explain the learning process during which the parame-
ters of the model are modified thanks to the optimization of a loss function that measures the
error made by the network. This process will be carried out using the learning algorithm called
backpropagation optimized thanks to the stochastic gradient descent technique.

To finish the theoretical part of the work we will make a small comment about the evalua-
tion of the classification of these models focusing on the study of the confusion matrix.

With the purpose of greater knowledge of the model and reflecting the current state of the
art, we will comment on a small collection of articles where we will show different applications
as well as different data sets to which we can apply our networks.

Finally, we will use the knowledge acquired in the viability analysis of a project of automatic
management of room occupancy in the Efor company. This company, belonging to the integra
group and dedicated to providing services and technological solutions for the management,
communication and marketing of companies, facilitated the logistics with which to carry out
the study.

v

vi Abstract

The study was developed using the Tensorflow library, using Jupyter notebook and will
be presented following the real temporal evolution that has been undergoing as the work was
carried out in order to better understand the changes that have been made in the model and
how they have influenced the final result. During this part of the work, the preprocessing of the
data set will be shown, as well as the adjustment and validation of the selection of a network
architecture.

The analysis of the selected model come to the conclusion that carrying out the project for
the automatic management of room occupancy by applying the convolutional neural network
model is feasible because the network does yield good results in the evaluation of the model.

Resumen

En los últimos años el aumento de bases de datos y del volumen de estas han hecho que
proliferen de forma natural modelos capaces de hacer frente al procesamiento y análisis de estos
datos.

Durante el presente trabajo hablaremos de uno de estos modelos: las redes neuronales con-
volucionales (CNNs de ahora en adelante), que se encuentran actualmente en auge. El aumento
de los datos mencionado más arriba junto a las mejoras tecnológicas han facilitado y mejorado
el rendimiento de su construcción, entrenamiento y ejecución.

Las CNNs son un modelo de inteligencia artificial correspondiente al deep learning es decir,
son modelos capaces de extraer por ellos mismos la información necesaria para, en el caso de
las CNNs, realizar una clasificación.

Comenzaremos detallando la arquitectura del modelo definiendo los elementos que lo confi-
guran diferenciando dos partes; la primera encargada en la extracción de las caracteŕısticas de
los datos y, la segunda, más enfocada en la clasificación.

A lo largo de esta parte, especificaremos las capas de convolución que forman la primera
parte de la arquitectura, definiendo el producto de convolución para el contexto de las CNNs,
las funciones de activación y las funciones de pooling. Además, veremos cómo la segunda parte
de la arquitectura está formada por un modelo de red neuronal, que es el encargado de la cla-
sificación, y el proceso de flattening encargado de enlazar ambas partes.

Una vez definido el modelo explicaremos el proceso de aprendizaje durante el cual se modi-
fican los parámetros del modelo gracias a la optimización de una función de pérdida que mide el
error cometido por la red. Este proceso se llevará a cabo mediante el algoritmo de aprendizaje
llamado retropropagación optimizado gracias a la técnica del gradiente descendente estocástico.

Para finalizar la parte teórica del trabajo realizaremos un breve comentario acerca de la eva-
luación de la clasificación de estos modelos centrándonos en el estudio de la matriz de confusión.

Con la finalidad de un mayor conocimiento del modelo y de reflejar el estado actual del arte,
comentaremos una pequeña recopilación de art́ıculos donde mostraremos diferentes aplicaciones
aśı como diferentes conjuntos de datos a los que podemos aplicar nuestras redes.

Finalmente, emplearemos los conocimientos adquiridos en el estudio de la fase de viabilidad
de un proyecto de gestión autómata de la ocupación de salas en la empresa Efor. Esta empresa,
perteneciente al grupo integra y que se dedicada a dar servicios y soluciones tecnológicas para
la gestión, comunicación y marketing de las empresas, nos facilitó la loǵıstica con la que poder
llevar a cabo el estudio.

vii

viii Resumen

El estudio se ha desarrollado utilizando la libreŕıa Tensorflow mediante Jupyter notebook y
se presentará siguiendo la evolución temporal real que ha ido sufriendo conforme se iba reali-
zando el trabajo con el fin de poder comprender mejor los cambios que se han llevado a cabo en
el modelo y cómo han influido en el resultado final. Durante esta parte del trabajo se mostrará
el preprocesamiento del conjunto de datos, aśı como el ajuste y la validación de la selección de
una arquitectura de red.

El análisis del modelo seleccionado nos permite llegar a la conclusión de que realizar el
proyecto de la gestión autómata de la ocupación de salas aplicando el modelo de redes neuronales
convolucionales es factible ya que se alcanzan muy buenos resultados en la evaluación del
modelo.

Índice general

Glosario III

Abstract V

Resumen VII

1. Introducción 1

1.1. Entorno tecnológico . 3

1.2. Democratización de las redes neuronales convolucionales 4

1.3. Desarrollo del trabajo . 4

2. Redes Neuronales Convolucionales 7

2.1. Arquitectura de las redes neuronales convolucionales 8

2.1.1. Capas de convolución . 8

2.1.2. Capas de la red neuronal . 14

2.2. Aprendizaje . 16

2.2.1. Función de pérdida . 17

2.2.2. Retropropagación o Backpropagation . 18

2.2.3. Gradiente Estocástico Descendente (SGD) 20

2.2.4. Importancia de las funciones de activación en el aprendizaje 22

2.3. Evaluación de la clasificación de las CNNs . 24

2.3.1. Matriz de confusión . 24

2.3.2. Otras técnicas de validación . 26

2.4. Predicción de la clase . 27

3. Estado del arte 29

4. Gestión autómata de la ocupación de salas 37

4.1. Descripción y metodoloǵıa del proyecto . 37

4.2. Presentación del conjunto de datos y obtención de frames 38

4.3. Fase de viabilidad . 39

4.3.1. Estudio de la sala . 40

4.3.2. Estudio de los datos y obtención de los conjuntos del experimento 43

4.3.3. Creación, aplicación y evaluación de las CNNs 44

4.3.4. Validación del modelo seleccionado . 55

4.4. Conclusiones . 61

Anexos 63

A. Funciones definidas 65

B. Pretratamiento y estudio de los datos 73

ix

x Índice general

C. Diseño, resultados y ejecución de los modelos 85

Bibliograf́ıa 107

Caṕıtulo 1

Introducción

Hoy en d́ıa un término del que se suele hablar con frecuencia es el Big Data, que descri-
be conjuntos de datos o combinaciones de ellos que, por su volumen, variedad o complejidad
y velocidad de almacenamiento dificultan su procesamiento o análisis mediante técnicas con-
vencionales. Por tanto, un problema de Big Data es aquel que cumple las 3 V mencionadas,
volumen, variedad y velocidad. Este término ha generado una demanda en el procesamiento de
estos datos de forma autómata e inteligente, cuestión que la inteligencia artificial (IA) es capaz
de solventar.

La IA se puede interpretar como la incorporación de la inteligencia humana a las máquinas.
Son sistemas capaces de entender, aprender o incluso razonar gracias a una serie de algoritmos
o reglas estipuladas que nos lleva a pensar en ese comportamiento “inteligente”.

La clave de la IA para solucionar un problema de las 3 V es el aprendizaje mediante algo-
ritmos que lo permiten. Para entender lo que hacen estos algoritmos podemos compararlos con
nuestros propios métodos de aprendizaje. En el aprendizaje supervisado, por ejemplo, premia-
remos aquellas conductas que queremos que se repitan, lo que aumenta la probabilidad de que
aparezcan y sancionamos las que no, para que tiendan a desaparecer.

Este aprendizaje supervisado es el que trataremos a lo largo de este trabajo, el cual requiere
cierta intervención humana para hacer saber al algoritmo lo que está bien y lo que está mal.
Para ello contaremos con un conjunto de entrenamiento con el que el algoritmo es capaz de
obtener patrones y a través de nuestra participación, aprender. El término que hace referencia
a desarrollar estas técnicas o algoritmos de aprendizaje de la IA es el Machine Learning.

En nuestro caso hablaremos de un tipo de técnicas de Machine Learning llamadas Deep Lear-
ning. El Deep Learning intenta incorporar la percepción humana a las máquinas siendo capaces
de descubrir automáticamente las caracteŕısticas que se usan para la clasificación. Técnicas
como las redes neuronales o las redes neuronales convolucionales imitan el comportamiento
del sistema nervioso humano mediante capas de unidades de procesamiento que llamaremos
neuronas. Estas semejanzas permiten que dentro de un sistema global haya neuronas que se
especialicen permitiendo una mejora en el aprendizaje.

1

2 Caṕıtulo 1. Introducción

Figura 1.1: Diagrama que muestra la relación entre los términos de la inteligencia artificial.

Durante este trabajo hablaremos de las redes neuronales convolucionales (CNN). Actual-
mente, el uso más generalizado de este tipo de redes está en el tratamiento y clasificación de
imágenes, por eso nos centraremos en él, sin embargo no es el único uso de estas redes como se
mostrará en algún ejemplo más adelante.

Aśı como hemos adaptado el concepto de aprendizaje a la CNN, debemos adaptar el con-
cepto de imagen ya que para un ordenador una imagen no es lo mismo que para nosotros.

Para una máquina, una imagen es una aplicación I : C ⊂ R2 → [0, 1] de manera que, a
cada ṕıxel de la imagen, le asignamos un número que corresponde con el color dentro de una
escala de grises, donde el 0 es el negro y el 1 es el blanco, en el caso que tengamos una imagen
en blanco y negro. Si la imagen es en color, la imagen de nuestra aplicación seŕıa un vector de
longitud tres, correspondiente al color rojo, verde y al azul de la imagen. Esto se debe a que las
imágenes utilizan la codificación del color RGB (red, green, blue), ya que es posible representar
un color mediante la mezcla de los tres colores primarios. En este último caso diremos que la
imagen tiene tres canales correspondientes a esos tres colores.

Figura 1.2: Diferencia entre la forma en la que nosotros vemos una imagen en blanco y negro
(izquierda) y la forma en la que las máquinas “ven” la misma imagen (derecha).

De esta manera, al utilizar imágenes como entradas a nuestra red neuronal convolucional en
realidad hablaremos y trataremos con matrices de ṕıxeles o simplemente matrices. Si la matriz
es en blanco y negro tendremos una matriz con las dimensiones de la imagen m×n y en el caso
de que la matriz sea a color, tendremos una matriz para los tres canales, por tanto estaremos

Redes Neuronales Convolucionales - Inés Aldea Blasco 3

tratando con una matriz de tamaño m× n× 3. Hablaremos entonces de tres dimensiones, alto,
ancho y profundo. Como consecuencia, las imágenes en blanco y negro tendrán profundidad uno.

A continuación se muestra una pequeña linea de tiempo con los eventos más importantes
para la evolución que han ido teniendo las CNN.

Figura 1.3: Linea de tiempo de la Evolución de las CNN.

1.1. Entorno tecnológico

Los principales entornos de trabajo más extendidos para la programación de las redes neu-
ronales convolucionales son:

• Tensorflow (ver [23]): libreŕıa de deep learning desarrollada por Google basada en C++
con interfaces de programación en Python capaz de construir y entrenar redes.

• Theano (ver [24]): libreŕıa programada en Python y compilador de optimización para
manipular y evaluar expresiones matemáticas, especialmente las de valor matricial. Este
paquete ofrece valores de tiempo muy buenos a la hora del entrenamiento por su optimi-
zación.

• Keras (ver [13]): API de alto nivel escrito en Python capaz de ejecutarse tanto sobre
Tensorflow como sobre Theano diseñado especialmente para experimentar de forma rápida
y sencilla.

4 Caṕıtulo 1. Introducción

Para emplear estos paquetes utilizaremos Jupyter Notebook (ver [12]), aplicación web de
código abierto que posibilita crear documentos o cuadernos que permiten incorporar elementos
de código con texto narrativo con el que podremos facilitar la explicación y documentación de
nuestras observaciones. Esta herramienta que permite visualizar datos, hacer simulación numé-
rica, modelado estad́ıstico, transformación de datos, aprendizaje automático,... es una de las
más usadas en la actualidad. Grandes empresas como IBM o Microsoft utilizan esta herramienta
como elemento base en sus aplicaciones o plataformas.

Jupyter Notebook cuenta con un núcleo que se encarga de ejecutar el código, en nuestro caso
para código en Pyhton, aunque Jupyter también soporta otros lenguajes como R, scala o Ju-
lia. Otra caracteŕıstica de esta aplicación web es la capacidad de mostrar resultados utilizando
medios enriquecidos como Latex, PNG, HTML, ... y adjuntos al código que los generó.

La facilidad de introducir notación matemática dentro de las celdas, la edición de texto
enriquecido que permite no limitarnos al texto sin formato en los comentarios o el resaltado
automático de sintaxis y sangŕıa facilitan el uso y aportan limpieza a los cuadernos.

1.2. Democratización de las redes neuronales convolucionales

Grandes empresas de hoy en d́ıa han apostado por acercar estas técnicas de redes neu-
ronales convolucionales a personas que no tienen grandes conocimientos sobre ellas ni sobre
programación. Para ello han generado plataformas de servicios cognitivos a través de las cuales
las máquinas son capaces de procesar información, aprender, resolver problemas,...

Dos ejemplos de esto son Watson de IBM (Ver [11]) y Azure de Microsoft (ver [17]) que se
encargan de entrenar modelos, mantenerlos y actualizarlos. Unos de los servicios cognitivos que
ofrecen es la visión por ordenador, donde tienen gran relevancia las redes convolucionales que
vamos a estudiar. Con estas herramientas los únicos conocimientos que debemos saber son la
manera de introducir los datos y la interpretación de los resultados.

Otra de las importantes ventajas que ofrecen estas plataformas son los corpus (bancos de
imágenes, textos, conjuntos de datos estructurados) de los que disponen y que ponen al servicio
de los usuarios. Estos grandes conjuntos de información, con los que hacen dif́ıcil la competen-
cia, suponen grandes ventajas a la hora de entrenar los modelos como veremos más adelante.

Google es otra de las empresas que destaca por el desarrollo de TensorFlow y por la construc-
ción de GoogLeNet (ver [22, págs 4-8]). Aunque es cierto que no es tan automático el disfrute de
estas herramientas, aportan grandes ventajas en el uso de las redes neuronales convolucionales
y en su investigación.

De esta manera, estos servicios cognitivos hacen de la IA un servicio que se ofrece para sa-
tisfacer ciertas necesidades capacitándola de un valor económico con el que poder comercializar.

1.3. Desarrollo del trabajo

El presente trabajo está dividido en tres grandes caṕıtulos junto con una pequeña introduc-
ción al tema que hemos realizado a lo largo de este.

El primer caṕıtulo tras la introducción consta de una recopilación y explicación detallada
donde se recoge la teoŕıa básica de las CNNs. En esta teoŕıa encontramos fundamentalmente
información sobre las partes de la arquitectura de las redes y, los algoritmos de aprendizaje y

Redes Neuronales Convolucionales - Inés Aldea Blasco 5

su optimización. Asimismo, también se aportan una serie de referencias donde poder ampliar
la información si se desea.

Durante el segundo caṕıtulo, se presentan una serie de art́ıculos en los cuales se exponen
alguna de las posibles aplicaciones de las redes, aśı como una muestra de los diferentes tipos de
datos de entrada y algún ejemplo del pretratamiento de estos.

Finalmente, en el último caṕıtulo, se aplicarán los conocimientos adquiridos en la creación
del trabajo para resolver un problema real sobre la gestión de salas en la empresa Efor. Veremos
además, como esta técnica es realmente eficaz alcanzando muy buenos resultados.

Caṕıtulo 2

Redes Neuronales Convolucionales

Como ya hemos mencionado en la introducción, las redes neuronales convolucionales son
una técnica del Deep Learning que, además, incorpora redes neuronales en su estructura. Esta
técnica es la que desarrollaremos a lo largo del presente trabajo desde una perspectiva tanto
teórica como práctica.

Una red neuronal artificial es un modelo matemático que emula de manera simplificada el
funcionamiento de las neuronas cuya función principal es recibir, procesar y transmitir infor-
mación. Se denomina arquitectura de una red neuronal a la estructura o patrón de conexión
de la red. Esta estructura tendrá un elemento esencial al que hemos llamado neurona la cuál
se organizará en capas. Veremos como si nos abstraemos de la inspiración biológica, las redes
neuronales se pueden ver como una serie de operaciones matemáticas sobre una lista de números
que da como resultado otra lista de números.

Las redes neuronales convolucionales son redes neuronales que utilizan la convolución en
lugar de la multiplicación usual de matrices en al menos una de sus capas. Su arquitectura
se puede dividir en dos partes diferenciadas: las capas de convolución que son las encargadas
de extraer los patrones y las caracteŕısticas de los datos que introducimos a la red, y la capas
formadas por la red neuronal que son las encargadas de utilizar la información obtenida para
clasificar.

Figura 2.1: Ejemplo de una estructura de red neuronal convolucional.

De este modo, las CNN son clasificadores, su propósito es asignar a un elemento de entrada
una categoŕıa o clase conocida gracias a la información que ella misma adquiere mediante un
algoritmo. Para alcanzar este objetivo, se han de llevar a cabo las siguientes fases.

7

8 Caṕıtulo 2. Redes Neuronales Convolucionales

Se comienza fijando las caracteŕısticas del modelo, en nuestro caso, el diseño de la arqui-
tectura de nuestra red. Durante la fase de entrenamiento, se contará con un conjunto de datos
similares a los que se quieren predecir, clasificados de forma correcta, con el fin de ir modifican-
do el valor de los parámetros del modelo para que pueda desarrollar correctamente su función.
Terminado el entrenamiento, se procede a la validación del modelo con el conjunto de valida-
ción, un conjunto similar al de entrenamiento pero formado por datos diferentes y en menor
cantidad que junto con el conjunto de entrenamiento formarán el conjunto de datos inicial. La
finalidad de esta fase es estimar la precisión de la clasificación con datos que no hayan sido
utilizados para el entrenamiento. Si aceptamos la precisión de la red, ya puede ser utilizada
para realizar la tarea para la que fue definida, si por el contrario no lo hacemos, tendremos que
cambiar las caracteŕısticas del clasificador y volver a realizar todo el proceso o, realizar otro
entrenamiento cambiando el conjunto de entrenamiento o aumentando el número de iteraciones.

Durante la parte teórica de este trabajo seguiremos este esquema: explicaremos la arquitec-
tura, tanto el proceso que se realiza como las caracteŕısticas de esta; el algoritmo por el cual la
CNN va aprendiendo y, finalmente, el estudio de la precisión de la red.

2.1. Arquitectura de las redes neuronales convolucionales

El diseño de una red neuronal convolucional no es una tarea fácil. La elección del número de
capas, los tipos o las conexiones no sigue un patrón definido, ni existe un proceso espećıfico que
ayude a la definición. Se utiliza la “prueba y error” como el método heuŕıstico para ir probando
alternativas y comprobando que funcionan.

Para abordar este problema lo que se suele hacer es utilizar aquellas redes que han de-
mostrado una alta capacidad de aprendizaje llegando a buenas tasas de exactitud. Algunas de
estas redes son AlexNet, GoogleNet, VGG o la ResNet pudiendo encontrar un resumen de sus
caracteŕısticas en [14].

La arquitectura de una red se estructura en la concatenación de una serie de capas, llamando
capa de entrada a la capa que incorpora nuestros datos a la red, la capa de salida donde se
obtienen los resultados y una serie de capas intermedias a las que llamaremos capas ocultas.

En estas capas podemos distinguir dos partes diferenciadas. Las primeras capas de la ar-
quitectura son las capas de convolución, que son las encargadas de detectar e identificar carac-
teŕısticas o patrones del conjunto de datos que introducimos en la red neuronal convolucional.
Después seguirán las capas que forman una red neuronal que se encargan de clasificar los datos
utilizando la información extráıda en las capas anteriores.

A continuación vamos a explicar las caracteŕısticas de estas capas donde he seguido los
siguientes textos [2], [10] y [8] fundamentalmente.

2.1.1. Capas de convolución

Las capas de convolución son las que hacen convolucional a una red neuronal. Durante las
primeras capas de convolución se detectan patrones simples como ĺıneas, figuras geométricas
simples como ćırculos o bordes. Al realizar la concatenación de varias de estas capas y, por
tanto, aumentar la profundidad de la arquitectura, la red es capaz de mezclar esta información
para ir aprendiendo conceptos cada vez más complejos.

Redes Neuronales Convolucionales - Inés Aldea Blasco 9

Una capa de convolución está formada por tres etapas. La primera, donde se realiza la
operación de la convolución, una segunda donde se aplica una función de activación y por
último, la aplicación del pooling. No obstante las dos últimas son optativas en el diseño de la
arquitectura.

Convolución

La convolución es un operador matemático que transforma dos funciones f y g en una
tercera donde se representa la magnitud en la que se superponen g y una versión trasladada de
f . Se denota f ∗ g y generalmente se define como:

(f ∗ g)(x) =

∫
D
f(x-t)g(t)dt.

Sin embargo, el producto de convolución en el ámbito de las CNNs no sigue la definición
mencionada anteriormente. Se utiliza la siguiente variación de la convolución que definiremos
para dimensión dos:

(f ? g)(x1, x2) =

∫ ∞
−∞

∫ ∞
−∞

f(x1 + t1, x2 + t2)g(t1, t2) dt1dt2.

Podemos comprobar como efectivamente la definición formulada es una convolución realizando
el cambio de variable t = −y.

(f ? g)(x1, x2) =

∫ ∞
−∞

∫ ∞
−∞

f(x1 + t1, x2 + t2)g(t1, t2) dt1dt2 =

=

∫ ∞
−∞

∫ ∞
−∞

f(x1 − y1, x2 − y2)g(−y1,−y2) dy1dy2 = (f ∗ h)(x1, x2).

Considerando h = g(−t).

Por lo general, las entradas a nuestras redes neuronales serán datos discretos, lo que nos
llevará a usar la definición discreta de la convolución:

(f ? g)(x1, x2) =
∞∑
−∞

∞∑
−∞

f(x1 + t1, x2 + t2)g(t1, t2).

Una vez definido el producto que usaremos en las capas de convolución, vamos a explicar
el proceso que se sigue en ellas. Este proceso consiste en multiplicar una matriz de pequeñas
dimensiones a la que llamaremos filtro o Kernel por submatrices de la que llamaremos matriz
de entrada a la capa o simplemente matriz mediante la convolución discreta que acabamos de
definir,

C1(i, j) = (I ? K)(i, j) =

m−1∑
m=0

n−1∑
n=0

I(i+m, j + n)K(m,n),

donde, adaptando la definición a nuestro entorno, I es una submatriz de la matriz de entrada
y K es la matriz del filtro, ambas de dimensiones m× n.

Durante el proceso de convolución, el filtro va recorriendo la matriz para hacer el producto
de convolución que hemos definido. Para regular este movimiento se define el stride que es la
medida que define el avance del filtro por la matriz.

10 Caṕıtulo 2. Redes Neuronales Convolucionales

Veamos un pequeño ejemplo para aclarar y visualizar como se transforma la entrada al
convolucionar con el filtro. Supongamos que queremos convolucionar la matriz de letras con el

filtro

 1 0 −1
0 0 0
−1 0 1

 y stride=1, la operación se realiza como sigue:

Haciendo el cálculo un poco más detallado de un elemento de la matriz resultante tenemos,

C1(1, 2) =
2∑

m=0

2∑
n=0

I(1 +m, 2 + n)K(m,n) = I(1, 2)K(0, 0) + I(2, 2)K(1, 0) + I(3, 2)K(2, 0)+

+I(1, 3)K(0, 1)+I(2, 3)K(1, 1)+I(3, 3)K(2, 1)+I(1, 4)K(0, 2)+I(2, 4)K(1, 2)+I(3, 4)K(2, 2) =

= h · 1 +m · 0 + r · (−1) + i · 0 + n · 0 + s · 0 + j · (−1) + o · 0 + t · 1.

Podemos aplicar el mismo filtro a la entrada pero esta vez modificando la forma en la que
el filtro recorre la imagen con un stride=2 para ver como influye en el producto.

Observamos que el producto de convolución reduce la dimensión de la matriz que convolu-
cionamos. Ese cambio está influido por el tamaño del filtro y por el stride que se aplica en la
convolución. Supongamos que la dimensión de la matriz que convolucionamos es I1 × I2 y la
del filtro es m× n, la dimensión resultante al hacer la multiplicación por el filtro es:

I1 −m
stride

+ 1× I2 − n
stride

+ 1. (2.1)

En ocasiones, esta reducción del tamaño en la matriz de entrada puede generar desventajas
como la limitación de la profundidad de la arquitectura en las capas convolucionales. Otra de

Redes Neuronales Convolucionales - Inés Aldea Blasco 11

las desventajas está relacionada, a su vez, con la definición del producto de convolución porque
los elementos de los bordes de las matrices influyen en menor medida que los situados en las
zonas centrales, esto puede producir un efecto de perdida de información dependiendo de la
estructura de los datos.

Si se desea solventar, se utiliza el método conocido como padding. Consiste en aumentar el
tamaño de la matriz para que el Kernel pueda acceder a los elementos de los bordes de las matri-
ces y mantener esa información. Estos elementos añadidos pueden tomar diferentes valores; cero,
los valores del borde opuesto o la extensión de los valores del propio borde son algunos ejemplos.

Si evadimos la abstracción matemática de este concepto, la convolución tan solo es la apli-
cación de un filtro a la imagen como cualquier filtro determinado que aplicamos cuando las
retocamos. Como ya hemos dicho, mediante estos filtros la CNN extrae la información sobre
ciertas caracteŕısticas de las matrices para luego aprender de estas.

Mediante la herramienta GIMP (ver [5]), que es un programa de edición de imágenes digita-
les, podemos ver las transformaciones de los filtros en las imágenes ya que nos permite aplicarlos
introduciendo la matriz con la que queremos convolucionar.

Estos son algunos ejemplos de cómo cambia la imagen al convolucionar con los siguientes
filtros:

• Filtro para la detección de bordes.  0 1 0
1 −4 1
0 1 0



Figura 2.2: Cambio de una imagen al convolucionar por un filtro que detecta los bordes.

• Filtro para un mayor enfoque.  0 −1 0
−1 5 −1
0 −1 0



Figura 2.3: Cambio de una imagen al convolucionar por un filtro que provoca un mayor enfoque.

12 Caṕıtulo 2. Redes Neuronales Convolucionales

Función de activación

Tras la etapa de convolución, a cada elemento de la matriz resultante al que llamaremos
neurona, se le aplica una función de activación. Esta etapa sirve para detectar las caracte-
ŕısticas dando lugar a las matrices llamadas feature maps o mapas de caracteŕısticas. Estas
funciones deciden como modificar la información antes de seguir procesándola. De manera si-
milar a nuestras neuronas que se activan si se debe seguir transmitiendo el impulso nervioso,
las neuronas artificiales se activan o no gracias a estas funciones para seguir transmitiendo la
información si se activan, o cero en caso contrario.

Una aplicación importante de estas funciones es aportar la no linealidad si nuestro conjunto
de datos lo requiere ya que el producto de convolución es lineal. Una de las más utilizadas es
la función de activación ReLU (Rectified Linear Unit) que puede definirse por,

φ(x) = máx(0, x),

siendo x el valor de la neurona tras la convolución. Podemos observar como la función de acti-
vación solo hace que se activen las neuronas en el caso de salidas positivas.

Otra función bastante utilizada, para la capa de salida de la red neuronal, es la función
Softmax. Esta función calcula la distribución de probabilidades del elemento de entrada sobre
n clases diferentes,

φi(x) =
ex∑n
j=1 e

xj
para i = 1, ..., n con x ∈ Rn.

Como nos devuelve un vector de cantidades comprendidas en (0,1] se utiliza para estimar la
probabilidad de pertenecer a las clases que queremos clasificar.

Estas son otras funciones que pueden ser utilizadas como funciones de activación:

• Función sigmoide (Sigmoid Function):

φ(x) =
1

1 + e−x
.

Toma el valor real de entrada y genera otro entre 0 y 1.

• Función tangente hiperbólica (Hiperbolic Tangent Function):

φ(x) =
ex − e−x

ex + e−x
.

Esta función es similar a la función sigmoide con las diferencias de que los valores reales
los convierte al rango [-1,1] y su salida está centrada en el 0.

• Función ELU (Exponential Linear Unit):

φ(x) =

{
x si x > 0,
a(ex − 1) en otro caso.

Es similar a la función ReLU, pero en las entradas negativas se vuelve suave hasta que su
salida es igual a −a y puede producir salidas negativas.

Durante la sección de Aprendizaje explicaremos en profundidad la importancia de estas
funciones y sus caracteŕısticas particulares.

Redes Neuronales Convolucionales - Inés Aldea Blasco 13

Pooling

La etapa de pooling consiste en reemplazar la salida de la capa de convolución por un resu-
men estad́ıstico de las salidas cercanas reduciendo su dimensión.

Durante esta etapa se define un entorno rectangular que recorre la matriz de entrada de
manera similar a la del filtro para luego aplicar el resumen estad́ıstico deseado. Hay diferentes
formas de realizar esta operación, aunque la más utilizada es la max pooling que consiste en
calcular el máximo de los valores del entorno definido. Otras de las opciones utilizadas son sum
pooling que consiste en la suma de los datos del entorno definido, average pooling con la media
de los datos del entorno, una media ponderada basada en la distancia con el ṕıxel central o la
norma L2.

Para definir el proceso se debe detallar las dimensiones del entorno rectangular y el stride
con el que se mueve, en este caso, el entorno rectangular. Tras este proceso la dimensión de la
salida sigue la fórmula (2.1) pero en vez de calcularse con las dimensiones del filtro serán las
dimensiones del entorno definido.

Si queremos, por ejemplo, aplicar a la siguiente matriz la etapa de pooling utilizando max
pooling de dimensiones 2× 2 y stride=2, obtenemos como resultado:

Si nos fijamos, el pooling realizado con las caracteŕısticas del ejemplo reduce las dimensiones
de la entrada a la mitad.

Esta etapa mantiene las caracteŕısticas obtenidas en las etapas anteriores aunque puede
modificar su lugar, de manera que, gracias a este proceso, se captura la invarianza espacial de
los datos, es decir, por ejemplo, la posición o un pequeño cambio en la forma de un objeto no
confunden a la red o hace que pierda información importante.

Las capas de convolución son la concatenación de estas etapas, con la aclaración que en
capa de convolución no solo se utiliza un único filtro sino que se aplican varios de ellos a la vez,
ocasionando que en cada capa, paralelamente, se realicen las etapas con las mismas caracteŕıs-
ticas a excepción de los elementos del filtro, haciendo que la arquitectura tenga apariencia de
red.

14 Caṕıtulo 2. Redes Neuronales Convolucionales

Figura 2.4: Transformación de una imagen en dos capas de convolución según las dimensiones
y caracteŕısticas de dichas capas.

Aparentemente podemos pensar que el producto de convolución funciona de manera dife-
rente a la definición planteada si el filtro utilizado y la matriz con la que se convoluciona no
tiene profundidad 1, sin embargo, lo que ocurre es que cada elemento de la matriz resultante es
influido por la suma de las convoluciones de las matrices con las que se realiza la convolución
en ese mismo lugar tal y como las hemos definido. Hay ocasiones en las que se añade a esa
suma un término llamado bias o sesgo para poder modificar los valores de entrada a la función
de activación. De esta manera podremos formular el producto de una matriz I con dimensión
I1 × I2 × p y un filtro K de a× b× p como

C(i, j) =

p∑
q=1

Cq(i, j) + b.

Observamos que la matriz resultante del producto de convolución tiene profundidad uno. Para
el resto de dimensiones se respetará la fórmula de las dimensiones (2.1).

Tras las capas convolucionales, se debe “aplanar” la salida de la última capa oculta de esta
parte convolucional para que deje de ser tridimensional y aśı poder enlazarla con la red neuro-
nal. Esta transformación se realiza gracias al proceso llamado flattening el cual extrae cada
una de las ĺıneas de ṕıxeles de cada matriz y las alinea.

(
20 15
100 75

)
−−−−−−−−−−→
Flattening


20
15
100
75


2.1.2. Capas de la red neuronal

Después de las capas de convolución se utilizan capas completamente conectadas (fully con-
nected) que forman una red neuronal convencional. Estas capas serán las encargadas de utilizar
la información adquirida durante las capas de convolución para clasificar la información de
nuestro conjunto de datos.

Redes Neuronales Convolucionales - Inés Aldea Blasco 15

Cada elemento del vector obtenido con el proceso de flattening formará la entrada a nuestra
red neuronal. Como consecuencia, tendremos tantas entradas como longitud de ese vector.

La labor de la neurona consiste en, dado un conjunto de entradas {xi}ni=1, calcular una
suma ponderada con una serie de pesos {ωi}ni=1 que reflejan las conexiones entre las neuronas.
Estos pesos determinan el efecto de la entrada en la neurona. Del mismo modo que hab́ıamos
añadido un sesgo tras el proceso de convolución, podemos añadirlo en esta suma ponderada de
manera que este valor ωn+1 no estará influido por ninguna neurona.

Otra forma de ver esta suma ponderada es verla como un producto de matrices donde W
es una matriz de dimensión 1 × n con los pesos y x de dimensión n × 1 con las entradas a la
red neuronal.

Finalmente, se aplica una función de activación φ que, del mismo modo que en las capas de
convolución, se encarga de transmitir la información si se activa o cero en caso contrario. Estas
funciones de activación pueden ser las mismas que los ejemplos mostrados en la explicación de
las capas de convolución y su resultado establecerá el valor de salida de la neurona.

Figura 2.5: Estructura de una neurona

Cada capa oculta de la red neuronal está formada por un conjunto de neuronas. Cada una
de estas tiene conexiones con todas las neuronas de la capa anterior por las cuales le llega la
información ({xi}ni=1) y conexiones con todas las neuronas de la capa posterior a las que enviará
la salida producida de manera que no permitiremos conexiones hacia atrás.

La capa de salida, la última capa de la red neuronal, está formada por neuronas que reciben
la información procesada y la devuelven al exterior. La finalidad de la red neuronal de clasificar
es finalmente ejecutada en esta capa, de tal forma que, con los procesos realizados, se selecciona
como candidata una de todas las clases para clasificar.

Figura 2.6: Unión de la red neuronal con la red neuronal convolucional

16 Caṕıtulo 2. Redes Neuronales Convolucionales

En pocas palabras, la CNN va transformando en cada capa la matriz de entrada y propa-
gando los resultados hacia las capas posteriores a lo largo de nuestra red para ir obteniendo más
información hasta llegar a la capa de salida donde se realizará una predicción. Esta forma de
propagación en la que solo se transmite desde la capa de entrada a la de salida, sin conexiones
hacia atrás, se llama forward.

Si se desea hacer una idea visual, tanto de la propagación como de todo el desarrollo de
una CNN, se puede visitar http://scs.ryerson.ca/~aharley/vis/conv/flat.html. En es-
ta página web se muestra un red neuronal convolucional que toma como entrada una imagen
con un número que nosotros mismos le dibujamos y cuya finalidad es predecir el número dando
además no solo la primera opción de predicción sino también la segunda con mayor probabilidad.

Figura 2.7: Captura de pantalla de la CNN de la página web.

Como vemos, esta CNN tiene una arquitectura de 2 capas de convolución, 2 ocultas de
fully connected y una capa de salida, donde se iluminan con mayor intensidad los números que
tienen más probabilidades de ser el dibujado. Además, una de las ventajas de la interactividad
de la web es la visualización de los elementos que van influyendo en el siguiente paso si ponemos
nuestro cursor encima.

Para que la predicción de la CNN sea correcta deberemos enseñarle la relación entre la
entrada y la salida en función de la predicción que ella misma hace. Este proceso de aprendizaje
se realiza durante la ya mencionada fase de entrenamiento.

2.2. Aprendizaje

La forma de enseñar a las CNNs es modificar sus parámetros hasta alcanzar la precisión
deseada o, aceptar la precisión que se alcanza. Los parámetros de este tipo de redes son: los
filtros de las capas de convolución, los pesos de la red neuronal integrada y los sesgos utilizados
en los productos; aśı pues, modificándolos, iremos cambiando la información que la red extrae
de los datos de entrada hasta fijar los parámetros que le permitan distinguir los datos de entrada
entre las clases deseadas.

Como hemos visto, los pesos de la parte de red neuronal se pueden agrupar y ser tratados
como una matriz, asimismo cada elemento del filtro se puede ver como un elemento indepen-
diente. De esta manera, todos los parámetros de la red pueden ser tratados de forma similar

http://scs.ryerson.ca/~aharley/vis/conv/flat.html

Redes Neuronales Convolucionales - Inés Aldea Blasco 17

aunque organizados de diferente manera en la arquitectura. De ahora en adelante, si hablamos
de pesos en forma genérica haremos referencia a todos los parámetros de la red como elementos
independientes, es decir, a cada elemento del filtro, a los pesos de la parte neuronal convencional
y a los sesgos.

El razonamiento anterior nos permite igualar en cierta manera las dos partes diferenciadas
en la arquitectura. Igualmente, estas similitudes residen en la forma de definir las operaciones en
las diferentes capas. Tanto la convolución como la suma ponderada son productos de matrices
con la adición de un sesgo, pero la organización en las matrices de filtros (de menor tamaño
que las matrices de entrada) de los pesos de la parte convolucional supone una reducción en el
número de parámetros. Además, cada elemento del filtro es usado en todas las posiciones de la
matriz de entrada (a excepción de algunos elementos del borde dependiendo de las decisiones
del diseño de la convolución) dando como resultado que, en lugar de aprender un conjunto
aislado de parámetros para cada ubicación, aprendamos un conjunto.

El proceso de aprendizaje, es decir del proceso de actualización de pesos que generalmente se
inicializan de forma aleatoria viene dada, en ĺıneas generales, por la optimización de la función
de pérdida L. Esta función L mide el error cometido por la red durante su proceso de apren-
dizaje y nos muestra el progreso de aprendizaje o retroceso. Durante la fase de entrenamiento,
se minimizará esta función con la ayuda de optimizadores mientras la red va reajustando los
pesos. Reiteraremos este proceso para un determinado número de iteraciones de forma que en
cada una de ellas se minimiza la función de pérdida.

Durante este trabajo nos centraremos en el algoritmo de aprendizaje de retropropagación
o backpropagation optimizado gracias a la técnica del gradiente descendente estocástico o Sto-
chastic Gradient Descent.

A lo largo del proceso de aprendizaje utilizaremos el conjunto de entrenamiento {z1, z2, ..., zt},
con t el número de observaciones que tendremos en cuenta. Este conjunto está formado por pa-
rejas de elementos, zi = (Ii, yi), con Ii la matriz de entrada a la CNN e yi el valor real de la
clase a la que pertenece Ii para i ∈ {1, ..., t}.

2.2.1. Función de pérdida

Las funciones de pérdida L son funciones que miden el error que comete una red durante
el algoritmo de aprendizaje; miden la distancia entre el valor real yi y la predicción de la red
ŷi. Su evaluación depende de los pesos asignados ya que influyen en la predicción de la red
L = L(θ; {zi}ti=1) donde θ es el conjunto de valores de los pesos de la red en esa evaluación.

Si L disminuye después de cada iteración podemos decir que la red está aprendiendo gra-
dualmente de los errores anteriores. Una red con función de pérdida mı́nima debeŕıa devolver
una predicción cercana al valor real.

Ejemplos de diferentes funciones de pérdida son:

• Error cuadrado medio:

L(θ; {zi}ti=1) =
1

t

t∑
i=1

(yi − ŷi)2

• Error medio absoluto:

L(θ; {zi}ti=1) =
1

t

t∑
i=1

|yi − ŷi|

18 Caṕıtulo 2. Redes Neuronales Convolucionales

• Norma L1:

L(θ; {zi}ti=1) =
t∑
i=1

|yi − ŷi|

• Norma L2:

L(θ; {zi}ti=1) =
t∑
i=1

(yi − ŷi)2

• Entroṕıa Cruzada o Cross Entropy :

L(θ; {zi}ti=1) =
1

t

t∑
i=1

yiLog(ŷi) + (1− yi)Log(1− ŷi)

Notar que el verdadero valor de la predicción de una entrada yi es una clase, es decir una
etiqueta, pero estas se codifican numéricamente para poder realizar estas evaluaciones y calcular
el error obtenido.

2.2.2. Retropropagación o Backpropagation

El algoritmo de retropropagación estima la contribución de cada peso al valor del error
tomando la derivada de la función de pérdida. Es el método utilizado para minimizar la función
de pérdida y a su vez el cálculo de la actualización de los pesos.

Con el fin de modelar el algoritmo de la retropropagación introduciremos la siguiente nota-
ción.

◦ nc: Número de capas de convolución.

◦ nn: Número de capas de la red neuronal.

◦ N = nc + nn: Número de capas totales de la cnn.

◦ φn: Función de activación en la capa n, con n ∈ N .

◦ ψn: Función de pooling en la capa n, para n ∈ {1, ..., nc}.

◦ ŷn: Salida de la capa n de la red neuronal (n ∈ {nc + 1, ..., nc + nn}).

◦ Cnr : Matriz de salida tras el proceso de convolución con el filtro r en la capa n con
dimensiones mn × nnc y aplicación de la función de activación a todos sus elementos.

◦ Snr : Matriz de salida tras el proceso de pool en la capa n con dimensiones mn
s × nns .

◦ F : Función que realiza el proceso de flattening.

Parámetros de la red θ

◦ Kn,r
m,n,p: r filtros de la capa n de tamaño m× n× p con n ∈ {1, ..., nc}.

◦ Wn: Matriz de pesos de la capa n cuyo número de neuronas es αn con n ∈ {nc+1, ..., nc+
nn}.

◦ bnr : Sesgo r utilizado en la capa n, con n ∈ {1, ..., nc}.

◦ bn: Vector de sesgos utilizados en la capa n de la red neuronal (n ∈ {nc + 1, ..., nc + nn})
cuya longitud es αn.

Redes Neuronales Convolucionales - Inés Aldea Blasco 19

Esta notación está inspirada en [28], donde se muestra el algoritmo de la retropropagación
para una arquitectura espećıfica de CNN. En el presente trabajo haremos una generalización
del mismo.

Antes de comenzar a explicar el método de la retropropagación, comenzaremos haciendo
una pequeña modelización del proceso de predicción de las CNN de forward del que hemos
estado hablando a lo largo de este trabajo con la notación anteriormente formulada.

Pseudocódigo de feedforward (CNN)

1: for 1:nc do
2: Cnr = φn(

∑p
q=1 S

n−1
q ? Kn,r

m,n,q + bnr) Etapa de convolución y función de activación
3: Snr = ψn(Cnr) Etapa de pooling
4: end for
5: F ({Snc

r }r) = ŷnc Flattening
6: for nc + 1 : N do
7: ŷn = φn(Wnŷn−1 + bn) Capas completamente conectadas
8: end for

ŷN Predicción de la red neuronal convolucional

Notar que la capa 0 corresponde a la matriz de entrada a la CNN de dimensionesm0 × n0 × r0.

El objetivo del algoritmo de retropropagación es minimizar la función de pérdida, para ello
se utiliza el cálculo diferencial por medio de la regla de la cadena con el motivo de percibir
el cambio de la función de pérdida respecto a los parámetros de la red. De esta forma iremos
transmitiendo la señal desde la capa de salida de la CNN a la de entrada, al contrario que se
trasmite cuando la CNN hace una predicción.

De forma genérica obtendremos,

Pesos de las nn

∇Wn(i,j)L =
∂L

∂Wn(i, j)
=

∂L
∂ŷn(i)

· ∂ŷn(i)

∂(Wnŷn−1 + bnr)(i)
· ∂(Wnŷn−1 + bnr)(i)

∂Wn(i, j)

∀i ∈ {1, ..., αn}, ∀j ∈ {1, ..., αn−1}
Sesgos de las nn

∇bn(i)L =
∂L

∂bn(i)
=

∂L
∂ŷn(i)

· ∂ŷn(i)

∂(Wnŷn−1 + bn)(i)
· ∂(Wnŷn−1 + bn)(i)

∂bn(i)

∀i ∈ {1, ..., αn}
Filtros de la cnn

∇Kn,r
m,n,p(u,v)

L =
∂L

∂Kn,r
m,n,p(u, v)

=

=

ms−1∑
i=0

ns−1∑
j=0

∂L
∂Snr (i, j)

mc−1∑
i′=0

nc−1∑
j′=0

∂Snr (i, j)

∂Cnr (i′, j′)
· ∂C

n
r (i′, j′)

∂inc(i′, j′)
· ∂inc(i

′, j′)

∂Kn,r
m,n,p(u, v)

∀u ∈ {1, ...,m},∀v ∈ {1, ..., n}
Sesgos de la cnn

∇bnrL =
∂L
∂bnr

=

ms−1∑
i=0

ns−1∑
j=0

∂L
∂Snr (i, j)

mc−1∑
i′=0

nc−1∑
j′=0

∂Snr (i, j)

∂Cnr (i′, j′)
· ∂C

n
r (i′, j′)

∂inc(i′, j′)
· ∂inc(i

′, j′)

∂bnr

20 Caṕıtulo 2. Redes Neuronales Convolucionales

Con inc(i
′, j′) =

∑p
q=1 S

n−1
q ? Kn,r

m,n,q + bnr

El método de optimizar buscando los puntos cŕıticos y, entre ellos, obtener el mı́nimo, es
muy costoso por la cantidad de parámetros de la red. Por este motivo, el algoritmo de pro-
pagación se ayuda de optimizadores como el Gradiente Estocástico Descendente (Stochastic
Gradient Descent).

2.2.3. Gradiente Estocástico Descendente (SGD)

Aplicar optimizadores al método de retropropagación ayuda a encontrar el mı́nimo de una
función de pérdida de forma más rápida ya que resuelven de forma numérica el sistema de
ecuaciones no lineales de la sección anterior. El optimizador SGD pertenece a la familia de los
optimizadores que utilizan la técnica del gradiente descendente, buscan el mı́nimo actualizando
los parámetros en la dirección opuesta al gradiente.

El motivo anterior conlleva a la necesidad de reiteraciones, ya que es muy probable que no
se alcance el mı́nimo a la primera. Como consecuencia, se hace necesaria la definición de varios
conceptos correlados que pueden inducir a error:

• Una época o epoch es el tiempo en el que se procesa todo el conjunto de entrenamiento.

• El tamaño del lote o batch size es el número de elementos del conjunto de entrenamiento
utilizado en cada proceso de aprendizaje.

• Una iteración es el tiempo en el que se procesa un lote tras el cual se actualizarán los
parámetros.

La relación entre estos tres conceptos es la siguiente. Para cada una de las épocas definidas
en la CNN se ha de cumplir,

tamaño del lote × iteraciones ≥ tamaño del conjunto de entrenamiento.

Por este motivo tan solo es necesaria la definición de un elemento más a parte del número de
épocas porque el otro queda uńıvocamente determinado.

El método del gradiente estocástico descendente utiliza un único elemento escogido al azar
de entre todo el conjunto de entrenamiento para actualizar los pesos en la iteración k+ 1 como
sigue,

θk+1 = θk − η∇θL(θk; zi), para un i ∈ {1, ..., t},

con η el parámetro de aprendizaje, que nos indica la magnitud de cambio en la dirección opuesta
al gradiente. Dicho parámetro no tiene porque ser constante a lo largo de todas las iteraciones.
Este elemento escogido al azar indicará el orden en el cual los elementos serán predichos por la
CNN.

No se puede calcular anaĺıticamente la tasa de aprendizaje óptima para un modelo dado un
conjunto de entrenamiento. Se sabe que si el parámetro es muy pequeño podemos tener una
convergencia muy lenta y si es muy grande puede no converger o diverger como se muestra en
la siguiente figura.

Redes Neuronales Convolucionales - Inés Aldea Blasco 21

Figura 2.8: Cambio en la convergencia respecto al tamaño el parámetro de aprendizaje.

Las condiciones necesarias para que el SGD converja siendo ηk el parámetro de aprendizaje
de la iteración k son:

∞∑
k=1

ηk =∞ y
∞∑
k=1

η2k <∞.

En la práctica se suele usar el valor predeterminado 0.1 o 0.01.

Como podemos ver en [26], la idea del SGD se puede relacionar con la teoŕıa de Herbert Rob-
bins y Sutton Monro, quienes hicieron un estudio detallado del método de búsqueda de ráıces en
el algoritmo de Robbins-Monro en lo que forma parte de la teoŕıa “A stochastic approximation
method”. Esta relación surge de que se puede considerar equivalente el problema de obtener el
mı́nimo de la función de pérdida con el de encontrar el cero del gradiente de dicha función. De
esta forma podemos aplicar al SGD resultados como las condiciones de convergencia presentadas
anteriormente. Si se desea ampliar la información sobre esto se puede consultar la referencia [25].

Dentro de la familia de los optimizadores que emplean la técnica del gradiente descendente
también se incluyen por ejemplo el mini-batch gradient descent, que actualiza los parámetros
tras procesar un lote completo del conjunto de entrenamiento pero no cada elemento como el
SGD o el Batch gradient descent que los actualiza tras procesar todo el conjunto de entrena-
miento, lo que aporta más varianza en el gradiente. Otros ejemplos junto con su formulación
los encontramos en [20].

Figura 2.9: Esquema del proceso de aprendizaje de retropropagación durante una iteración para
la observación i escogida al azar con el optimizador SGD.

22 Caṕıtulo 2. Redes Neuronales Convolucionales

2.2.4. Importancia de las funciones de activación en el aprendizaje

A simple vista puede parecer que la elección de las funciones de activación es superflua pero
no es aśı. Como hemos visto, durante el proceso de retropropagación debido al uso de la regla
de la cadena, se calculan los gradientes de las funciones de activación. Estos gradientes influyen
mucho en el proceso de aprendizaje dado que pueden provocar que una red aprenda de forma
lenta o incluso deje de aprender.

De igual modo que en [16], vamos a realizar un estudio de las ventajas y desventajas de las
funciones de activación presentadas anteriormente y su intervención en el proceso de aprendi-
zaje.

• Función sigmoide, φ(x) =
1

1 + e−x
.

Figura 2.10: Función sigmoide y su derivada.

Una de las ventajas que presenta esta función es la facilidad de su derivada, ya que se
puede escribir en términos de ella misma, φ′(x) = φ(x)(1− φ(x)) .

La función sigmoide toma un valor real y genera un valor en el intervalo (0, 1). Debido
a su forma y al dominio de definición tan grande, se puede considerar que, para valores
muy grandes o muy pequeños de los pesos la salida es casi binaria, lo que implica que el
gradiente en estos puntos es prácticamente nulo. De esta forma se puede inicializar una
neurona de tal manera que no se active o que nunca aprenda. En estos extremos, se cumple
también que, grandes cambios en la entrada corresponden a cambios pequeños en la salida.

• Función tangente hiperbólica, φ(x) =
ex − e−x

ex + e−x
.

Figura 2.11: Función Tanh y su derivada.

La tangente hiperbólica es similar a la función sigmoide, toma un número real trans-
formándolo esta vez en el rango [−1, 1], centrando la salida en el 0 y con una derivada
φ′(x) = 1− φ2(x) más pronunciada.

Redes Neuronales Convolucionales - Inés Aldea Blasco 23

La función sigmoidea y la tangente hiperbólica tienen el problema conocido por“vanishing
gradient problem” o “gradiente de fuga”. Este problema es causado porque los gradientes
se encuentran en el intervalo (0,0.25) para la función sigmoidea y (0,1) para la tangente
hiperbólica. El efecto de multiplicar n veces en el proceso de aprendizaje, siendo n el
número de capas que usan estas funciones de activación, produce un decrecimiento ex-
ponencial del gradiente lo que provoca que la red aprenda de forma lenta. Ir alternando
estas funciones con otras de activación hace que este problema pueda desaparecer.

• Función ReLU, φ(x) = max(0, x).

Figura 2.12: Función ReLU y su derivada.

La función ReLU ofrece las ventajas de la no linealidad de las funciones anteriores con un
mayor rendimiento y menos coste computacional por la forma de su derivada. Presenta
el inconveniente de restringir su uso a las capas intermedias de la red por su rango de
definición en la salida [0,∞).

Esta función de activación hace que la información se propague a través de la red si la
entrada es mayor o igual a cero. Para el resto de entradas el valor del gradiente será 0 aśı
que los pesos puede que no se ajusten durante la fase de aprendizaje. Esto significa que
estas neuronas pueden dejar de responder a las variaciones en el error porque el gradiente
es cero, problema conocido como “dying ReLU problem”.

Notar que esta función no es derivable aunque definiremos su derivada para el cero obte-
niendo,

φ′(x) =

{
1 si x > 0,
0 si x ≤ 0.

De esta manera podemos aplicar la regla de la cadena sin ofrecer problema ni oponernos
al trasfondo del aprendizaje. Si la entrada de la función de activación es cero, esta función
no se activa y no env́ıa información (env́ıa cero), luego no influirá en el error esta neurona
aśı que la propagación hacia atrás se puede tomar como cero.

• Función ELU, φ(x) =

{
x si x > 0,
a(ex − 1) en otro caso.

Figura 2.13: Función ELU y su derivada para a=1.

24 Caṕıtulo 2. Redes Neuronales Convolucionales

Esta función es bastante usada ya que tiende a converger el coste a cero más rápido y con
resultados más precisos. Puede producir salidas negativas para entradas negativas y está
indicada para capas ocultas por su rango de salida. Su principal diferencia con la ReLU
es la suavidad hasta alcanzar el valor -a.

En el caso de las capas convolucionales, por su configuración, estas apreciaciones pueden
cambiar ligeramente. La razón es el algoritmo de retropropagación, ya que se modifican los
parámetros a través de varias neuronas, al contrario que las capas de la red neuronal que se
hace mediante una única neurona. Es decir, en las capas convolucionales, que una neurona no
se active no implica necesariamente que esos pesos no se modifiquen.

2.3. Evaluación de la clasificación de las CNNs

El conjunto de validación tiene la finalidad de testear la CNN con un conjunto que no ha
sido utilizado para el aprendizaje. De esta manera tendremos una representación más fiel de
como clasifica nuestra red y evitar el sobreajuste.

Como hemos mencionado anteriormente, el conjunto de validación tiene las mismas ca-
racteŕısticas que el de entrenamiento ya que ambos componen la base de datos con la que
construiremos nuestro modelo. Esta partición se suele hacer entorno a un 80 % de los datos
para entrenar y el 20 % para validar.

Haremos una predicción de este conjunto de activación con la red entrenada para aplicar
técnicas que nos miden la buena clasificación del modelo, haciendo un estudio de los resultados
de esas predicciones. En este trabajo le daremos mayor importancia a las matrices de confusión.

2.3.1. Matriz de confusión

La matriz de confusión permite visualizar el rendimiento del modelo. Aunque normal-
mente en forma de tabla, la matriz de predicción representa el número de predicciones de cada
clase (filas) en función de las instancias en la clase real (columnas) o viceversa.

Figura 2.14: Esquema de una matriz de confusión para n clases.

Con la información ordenada de esta manera, se ve de forma sencilla que el número de indi-
viduos bien clasificados se sitúan en la diagonal de la matriz y fuera los que se han clasificado
de forma errónea.

Redes Neuronales Convolucionales - Inés Aldea Blasco 25

La matriz de confusión tiene especial relevancia si el número de clases a clasificar es dos
ya que nos permite hace un análisis más detallado sobre la calidad de la clasificación de la
red. Comúnmente se usa la terminoloǵıa de renombrar las clases como positiva y negativa si la
matriz de confusión solo tiene dos clases y aśı hablar de falsos positivos o falsos negativos para
los individuos mal clasificados.

Figura 2.15: Esquema de una matriz de confusión para 2 clases.

El análisis consiste en el cálculo de los siguientes conceptos.

• Tasa de bien clasificados (accuracy): porcentaje de los individuos bien clasificados respecto
al total de predicciones.

ACC =
TP + TN

TP + FP + FN + TN

• Tasa de mal clasificados (TMC): porcentaje de los individuos mal clasificados respecto al
total de predicciones.

TMC =
FP + FN

TP + FP + FN + TN

• Sensibilidad (TPR): porcentaje de los individuos correctamente clasificados como positivos
respecto al total de individuos positivos (tasa de verdaderos positivos).

TPR =
TP

TP + FN

• Especificidad (TNR): porcentaje de los individuos correctamente clasificados como nega-
tivos respecto al total de individuos negativos (tasa de verdaderos negativos).

TNR =
TN

FP + TN

• Precisión (PPV): porcentaje de los individuos correctamente clasificados como positivos
respecto al total de individuos clasificados como positivos.

PPV =
TP

TP + FP

• Tasa de falsos positivos (FPR): porcentaje de individuos negativos que se han clasificado
como positivos.

FPR =
FP

FP + TN

26 Caṕıtulo 2. Redes Neuronales Convolucionales

• Tasa de falsos negativos (FNR): porcentaje de individuos positivos que han sido clasifica-
dos como negativos.

FNR =
FN

FN + TP

Un buen clasificador debeŕıa tener los valores de la tasa de bien clasificados, sensibilidad,
especificidad y precisión próximos a 1 o lo mayor posible y la tasa de mal clasificados, de falsos
positivos y falsos negativos lo más cercana a 0 o lo más pequeña posible. No siempre se podrán
obtener los valores de lo que seŕıa un perfecto clasificador porque a nuestros datos no lo permi-
ten o no queremos complicar tanto el modelo por algún motivo como puede ser la rapidez de
ejecución.

El análisis de nuestro clasificador consistirá en observar aquellos porcentajes de los conceptos
mencionados y ver si nuestro modelo está en un ratio de resultados que aceptemos, como por
ejemplo que la tasa de bien clasificados sea por lo menos del 80 %, si no es aśı deberemos cambiar
la arquitectura del modelo y volver a entrenar el modelo para volver a hacer la validación.

2.3.2. Otras técnicas de validación

Otras técnicas que se pueden emplear para la evaluación de la clasificación de nuestra red
son:

• Tasa de error nula (null error rate): frecuencia con la que se equivocaŕıa si siempre se
predijera la clase mayoritaria.

• Kappa de Cohen: Es una media que compara lo bien que cataloga el clasificador en
comparación de una asignación de las clases al azar.

• Curva ROC: Gráfico utilizado solo en el caso de tener dos clases donde se representa la
tasa de falsos positivos (eje x) frente a la tasa de verdaderos positivos (eje y) en función de
un valor de decisión creciente. Calculando el área bajo la curva (AUC) nos podemos hacer
idea de lo buen clasificador que es nuestro modelo teniendo en cuenta que un clasificador
que no se equivoca nunca tendŕıa un AUC=1.

En función del resultado de estas técnicas, se finalizarán la construcción y aprendizaje del
modelo o se modificarán con el fin de conseguir resultados satisfactorios, tal y como se refleja
en el siguiente esquema:

Figura 2.16: Esquema del proceso de construcción de una CNN.

Redes Neuronales Convolucionales - Inés Aldea Blasco 27

2.4. Predicción de la clase

Tras la validación de nuestro modelo, la CNN estará lista para usarse y poder realizar la
finalidad para la que se construyó.

Tanto las predicciones que se realizan a lo largo del proceso de construcción de la CNN
como las predicciones de los datos nuevos se resumen en una serie de operaciones dentro de la
red, como hemos visto, gracias a las definiciones de los algoritmos utilizados. En nuestro caso
particular, la entrada a la red será una imagen codificada en forma de matriz con la que reali-
zaremos operaciones (sumas y productos) y obtendremos un valor que corresponderá a una clase.

Como ya mencionamos sin detenimiento, estos valores que obtenemos son codificaciones
numéricas de las etiquetas de las clases de nuestro problema. Codificaciones habituales son el
uso del 0 y 1 en el caso de tener dos clases o la codificación one hot encoding. Esta última
codificación es la más utilizada para problemas multiclase, es decir, problemas con más de dos
clases en la predicción. Consiste en la asignación de un vector de longitud igual al número
total de clases cuyo único elemento distinto de cero tiene valor 1 y cuyo lugar corresponde con
una de las clases a clasificar. Estas codificaciones basadas en 0s y 1s independientemente del
número de clases nos permiten definir el algoritmo del modelo, fundamentalmente las funciones
de activación, como lo hemos hecho.

Caṕıtulo 3

Estado del arte

La aplicación más conocida de las CNNs es la visión por ordenador, donde el conjunto de
entrada son una serie de imágenes y la red realiza una tarea tras la extracción de patrones de
estas. Sin embargo, las imágenes no son el único formato de datos con los que las CNNs pueden
trabajar, los textos o las series temporales son ejemplos de esto. Pero no solo eso, si nuestros
datos se pueden codificar de manera que concuerden con la forma de entrada, es muy probable
que las redes puedan sacar patrones y aprender de ellos para poder llevar a cabo una labor.
Aunque esta tarea resulta complicada porque se añade esa complejidad de codificar los datos
de manera eficiente para poder sacar información de estos. Como curiosidad, en relación a esto
último, se puede ver el art́ıculo [3] donde se codifican los ficheros ejecutables binarios en imáge-
nes en escala de grises para poder introducirlos a una red y con esto detectar códigos maliciosos.

Vamos a ver algunos ejemplos de forma detallada de las aplicaciones de las CNNs a imagen,
texto y series temporales con la exposición de varios art́ıculos:

• Ayuda en el diagnóstico de enfermedades.

Una de las aplicaciones importantes de las CNNs es la ayuda en el diagnóstico de en-
fermedades. Este tipo de redes extraen patrones de los datos recogidos por las pruebas
médicas que en algún caso, por su volumen, hace dif́ıcil su análisis manual.

Un ejemplo de la obtención de gran cantidad de datos es la resonancia magnética, que
proporciona imágenes tridimensionales que posibilitan la detección de las lesiones de ma-
teria blanca. Estas lesiones son células desmielinizadas que se encuentran en la materia
blanca del cerebro. Este ejemplo es el que se recoge en el art́ıculo [4], donde se aplican las
CNNs para la detección de estas lesiones.

Aunque en este caso los datos que se han de estudiar están en forma de imagen, y por
tanto ya tenemos nuestros datos en forma de matriz, se realiza un preprocesamiento por
dos motivos principales: mejorar la imagen y adaptarla a la entrada de la CNN construida.
Para este preprocesamiento se realizan varios procesos.

Primero se extrae el cráneo de las imágenes obtenidas en la resonancia magnética, proceso
que está explicado en [1] en el apartado C Skull Stripping. Una vez tenemos solo la imagen
del cerebro sin el recubrimiento del cráneo la mejoramos. Esta mejora principalmente se
aplica para aumentar el contraste en la imagen y que aśı sea más fácil la clasificación
de las células para saber si están desmielinizadas. En este art́ıculo que estamos presen-
tando se aplica el algoritmo de comparación de histogramas que se puede consultar en

29

30 Caṕıtulo 3. Estado del arte

[7, págs 88-108]. Finalmente para adaptar la imagen a la entrada de la CNN entrena-
da se utiliza el algoritmo SLICO que se encarga de hacer una segmentación del cerebro
agrupando los ṕıxeles en función de algún requisito, que en nuestro caso es el color. Esta
agrupación se llamará superṕıxel. Para más información del algoritmo SLICO se puede
consultar [18]. Finalmente, la entrada a nuestra red serán estos superṕıxeles y sus vecinos.

Figura 3.1: Antes y después de los procesos indicados en el tratamiento de la imagen. Imágenes
tomadas del art́ıculo [4].

He elegido este art́ıculo a parte de su aplicación con el fin de mostrar que el uso de imá-
genes en las CNNs también puede requerir un tratamiento de estas previo. Aunque la
imagen para el ordenador sea como una matriz de números y no necesite esa adaptación
hay veces que es necesario recortarla o mejorarla. Estos tratamientos previos de las imá-
genes pueden mejorar y simplificar la tarea de clasificación para resultar más sencilla.

El art́ıculo presenta la red que mejor resultados da para su finalidad, clasificar los super-
ṕıxeles en dañados y no dañados entendiendo por dañados aquellos que representaŕıan
lesiones blancas, después de realizar experimentos para su diseño. La arquitectura del
modelo seleccionado, presentada en el cuadro 3.1, ha sido la que mejor resultado obtuvo
comprando los resultados de sensibilidad, especificidad, tasa de bien clasificados y falsos
positivos por imagen. La red destacada se compone de las siguientes caracteŕısticas:

Redes Neuronales Convolucionales - Inés Aldea Blasco 31

Arquitectura de la CNN

Convolución con 20 filtros de 5 × 5
Función de activación ReLu

Maxpooling 2 × 2

Convolución con 50 filtros de 5 × 5
Función de activación ReLu

Maxpooling 2 × 2

Flattening

Capa completamente conexa de 500 neuronas & ReLu

Capa de salida 2 neuronas & Softmax

Cuadro 3.1: Arquitectura de la CNN utilizada en el experimento.

Destacamos que después de la segunda capa de convolución se aplica Dropout del 50 %.
Esta técnica consiste en bloquear un porcentaje de neuronas de una capa que se indica al
azar, en este caso el 50 % de ellas, para que no actualicen sus pesos y como consecuencia
no aprendan. Esta técnica evita el sobreajuste de los datos previniendo que la red se
adapte mucho a los datos del conjunto de entrenamiento.

El conjunto de datos con el que se cuenta tiene la información de 91 pacientes de los cua-
les, una vez determinada la arquitectura de la CNN, se han usado 76 para el conjunto de
entrenamiento y 15 para el conjunto de validación seleccionados al azar. La red resultante
detectó el 78.79 % de las lesiones de materia blanca con solo un 0.005 de falsos positivos
por imagen y con una especificidad de 98.77 % y tasa de bien clasificados de 98.73 %.

• Análisis de texto.

Como ya hemos mencionado las CNNs no se aplican únicamente a imágenes. En el art́ıculo
[15] se aplican para análisis de texto como clasificadores de la satisfacción o sentimiento
recogido en el texto. Es decir, en nuestro caso, clasifica si en el texto que se le introduce
se expresa un sentimiento positivo o uno negativo.

Este tipo de redes se propone para estudios de este tipo ya que, gracias a sus capas de
convolución, son capaces de agrupar y extraer información global. Esta caracteŕıstica pre-
tende mejorar los métodos convencionales como la máquina de vector soporte (SVM) o
Näıve Bayes que analizan el texto palabra por palabra perdiendo información al clasificar
la palabra principal sin tener en cuenta al resto.

Para hacer una clasificación con las redes estudiadas necesitaremos un preprocesamiento
de los datos que nos transforme el texto en una matriz con su información en la que cada
fila será un vector que representa a cada una de las palabras. Si el texto cuenta con s
palabras y el vector que codifica las palabras tiene dimensión d, el texto se sustituirá por
una matriz de dimensiones s× d. Uno de los métodos más conocidos para este preproce-
samiento es el método Word2vec, que se explica de forma detallada en [6].

32 Caṕıtulo 3. Estado del arte

Tras este proceso, tendremos una matriz de palabras que formará la entrada a la red. Una
vez tenemos los datos en forma de matriz se aplicarán los procesos que hemos descrito a lo
largo de este trabajo aunque con una pequeña modificación ya que en este caso se utiliza
la convolución y pooling conocidos como convolución 1D (1-dimensional) o pooling 1D.
La diferencia entre la 1D y la 2D (que es la presentada en el caṕıtulo 2 de este trabajo)
es la dimensionalidad de los datos de la entrada junto con su adaptación del producto de
convolución, como se desliza el filtro a través de la matriz resultante y el entorno en el
que hacemos el pooling.

Figura 3.2: Forma en la que el filtro recorre la matriz en la que hemos codificado el texto.

Podemos observar en los casos 1-dimensionales como el filtro solo se mueve en una direc-
ción a diferencia de los filtros en el caso 2D. Por tanto, para definir estos filtros 1D, nos
bastará con definir su altura ya que el número de columnas será igual al número de colum-
nas del conjunto de entrada. Esta construcción nos hace poder agrupar n palabras (que
será la dimensión del filtro) para obtener patrones de los conjuntos de palabras mediante
la convolución. No tendŕıa sentido el movimiento del filtro en sentido horizontal, ya que
no nos podemos olvidar que las filas representan la codificación de palabras completas
y por tanto no obtendŕıamos la relación entre ellas. Como resultado de este proceso de
convolución obtenemos una matriz cuyas dimensiones son:

(no filas de la matriz − no de filas del filtro+ 1)× no filtros aplicados.

La convolución genera en la matriz resultante, para cada columna, los resultados de convo-
lucionar con el mismo filtro. El proceso de pooling se aplica en estas columnas, definiéndose
ahora el entorno como un número de elementos contiguos a los que aplicarle los resúmenes
estad́ısticos que mencionamos en la parte teórica y aśı reducir dimensiones.

Redes Neuronales Convolucionales - Inés Aldea Blasco 33

Un ejemplo de arquitectura y funcionamiento de red para texto seŕıa:

Figura 3.3: Ejemplo de una estructura de red neuronal convolucional aplicada a textos.

En el art́ıculo se hace un experimento con dos conjuntos de datos: el conjunto MR, que
consta de una colección de reseñas de peĺıculas y el conjunto STS, una colección de tweets
reales. Se consigue para los conjuntos de validación de los datos mencionados una tasa de
bien clasificados de 74.5 % y 68 % respectivamente, obteniendo un porcentaje mayor que
para los clasificadores convencionales.

Si se desea tener mayor información de este proceso a parte de [15] se puede consultar
[27] que cuenta con un estudio más extenso y es donde se ha obtenido la figura 3.3.

• Predicción en series temporales.

En el art́ıculo [9] se proponen, para predecir la velocidad y la dirección del viento, las
técnicas de clasificación de las 1D CNNs con un conjunto de datos del viento en forma
de series temporales, es decir, secuencias de datos medidos en el tiempo (en intervalos
regulares) y ordenados cronológicamente.

El conjunto de datos utilizado para el experimento está formado por series temporales
para la dirección y la velocidad del viento, medidas en dos lugares diferentes, Stuttgart
(Alemania) y Holanda, con intervalos de tiempo mensuales. Las muestras de este conjunto
tendrán múltiples entradas, en concreto una para cada elemento que queremos predecir.
Es decir, para un valor de tiempo ti tendremos dos mediciones, la respectiva a la velocidad
y la de la dirección en cada entrada.

Para definir la longitud de la entrada aśı como el valor de la clase de esta se definen dos
escalares, Ws y WB. Por un lado, Ws que define las Ws + 1 medidas consecutivas que for-
marán la entrada a la red a partir de un cierto tiempo tj que se irá moviendo para obtener
diferentes muestras. Como consecuencia la entrada de la red estará formada por las medi-
ciones de la velocidad y la dirección del viento en los valores del tiempo {tj , tj+1, ..., tj+Ws}.

34 Caṕıtulo 3. Estado del arte

Por otra parte, WB definen las WB + 1 medidas consecutivas tras el último valor de la
entrada, es decir tras tj+Ws , de la misma manera que se definen los valores la entrada. El
conjunto definido por WB sirve para calcular el valor real de la predicción (su clase) de
la entrada como veremos a continuación y para definir el intervalo de tiempo para el que
se hará la predicción.

Figura 3.4: Matriz de entrada a la CNN de las series temporales y forma de recorrer el filtro en
dicha matriz.

La forma de predecir de estas redes consiste en fragmentar R en varios segmentos o inter-
valos donde incluiremos el extremo inferior y excluiremos el superior. Esta fragmentación
se basa en la media µ y la desviación estándar σ del conjunto completo de los datos
calculado para la velocidad y la dirección por separado. En este estudio se definen los
ĺımites de los intervalos de la misma forma para ambas caracteŕısticas, dando lugar a las
11 clases con las que clasificará la CNN. Como resultado, la CNN predice clasificando la
entrada en una de las siguientes clases:

Clase Rango inferior Rango superior

1 µ− k1σ µ+ k1σ
2 µ+ k1σ µ+ k2σ
3 µ+ k2σ µ+ k3σ
4 µ+ k3σ µ+ k4σ
5 µ+ k4σ µ+ k5σ
6 µ+ k5σ ∞
7 µ− k2σ µ− k1σ
8 µ− k3σ µ− k2σ
9 µ− k4σ µ− k3σ
10 µ− k5σ µ− k4σ
11 −∞ µ− k5σ

Cuadro 3.2: Definición de las clases utilizadas.

Redes Neuronales Convolucionales - Inés Aldea Blasco 35

Donde se toman los valores de k1, k2, k3, k4 y k5 como 0′15, 0′45, 0′65, 0′95 y 1′25 respec-
tivamente. Notar que aunque se definan de la misma forma para clasificar la velocidad y
la dirección, los valores de µ y σ cambian y por tanto los valores de los intervalos serán
distintos.

Una vez definidas las clases, la forma de calcular la etiqueta de las muestras es ordenar
los WB + 1 valores en estos intervalos y calcular el intervalo con mayor número de ellos.
Este intervalo será la clase o etiqueta que le asignemos a la muestra. Notar que en cada
arquitectura que se presentan se entrena y se estudia los resultados para la velocidad y
la dirección por separado cambiando únicamente los valores de las etiquetas, las entradas
serán exactamente las mismas para ambos casos.

En este art́ıculo se proponen dos arquitecturas de 1D CNN, una simple (1DS) donde
la entrada es la que hemos mencionado anteriormente y una múltiple (1DM) donde la
entrada se duplica de varias formas para obtener 5 entradas diferentes y con ello se extrae
información diferente en 5 grupos de convolución aislados hasta que se conectan tras
el proceso de flattening. La duplicación de la información consiste en, para un grupo de
convolución, introducir los datos como en 1DS, para el segunda comenzando con el primer
valor de la muestra e incrementando el valor de ti en dos, para el tercero la duplicación
se hace de forma análoga a la segunda pero comenzado con el segundo valor. La entrada
al cuarto y al quinto grupo es definido de forma similar al del segundo y tercero pero
realizando un incremento de tres. El esquema resultante de las arquitecturas utilizadas es
el siguiente.

Figura 3.5: Estructuras propuestas de las CNN (a la izquierda la estructura simple y a la derecha
la estructura múltiple).

Las caracteŕısticas de las partes convolucionales son las mismas que en el caso simple y
la función de activación utilizada durante todo momento es la ELU con a = 30. Además,
después de cada una de las capas de convolución se realiza un dropout del 20 % de las
neuronas y la técnica de Batch Normalization que reduce la covarianza de los datos nor-
malizándolos de manera que optimiza y acelera el entrenamiento de la red.

36 Caṕıtulo 3. Estado del arte

Algunos de los resultados obtenidos en el estudio son los siguientes, no obstante, se recalca
en él que los resultados podŕıan mejorar añadiendo más capas en las arquitecturas aunque
requiere de recursos de hardware y unidades de procesamiento gráfico (GPU) mejores a los
utilizados. Para mayor detalle del proceso y más información de los resultados, consultar
el propio art́ıculo [9].

Stuttgart Holanda

Caracteŕıstica peor accuracy mejor accuracy peor accuracy mejor accuracy

velocidad 85.4 % 90.2 % 90 % 95.2 %
dirección 89.8 % 95.1 % 91.3 % 94.7 %

Cuadro 3.3: Resultados para la arquitectura 1DS CNN.

Stuttgart Holanda

Caracteŕıstica peor accuracy mejor accuracy peor accuracy mejor accuracy

velocidad 92.0 % 96.8 % 93.6 % 99.7 %
dirección 97.5 % 98.8 % 97.6 % 99.4 %

Cuadro 3.4: Resultados para la arquitectura 1DM CNN.

Estudios de este tipo son importantes, por ejemplo como se comenta en el art́ıculo, para
la instalación de aerogeneradores cuya potencia depende de la velocidad y dirección del
tiempo.

Estos son algunos ejemplos en las aplicaciones de las CNNs, pero no son los únicos. Se ha
elegido un ejemplo que resulte representativo para los principales tipos de datos con los que
se trabaja hoy en d́ıa en las CNNs y que, igualmente, contuviese alguna caracteŕıstica especial
como el tratamiento de las imágenes, la codificación de los datos iniciales o arquitecturas di-
ferentes a las simples que se han mostrado en la teoŕıa permitiendo varios grupos de capas de
convolución aislados.

Los estudios relacionados con las técnicas de las CNNs han experimentado en estos últimos
años un aumento, bien por los resultados que proporcionan, o bien por las mejoras en tecnoloǵıa
que hacen que disminuya el tiempo computacional de las múltiples operaciones que se realizan
en estas “cajas negras”, proliferando sus aplicaciones.

Caṕıtulo 4

Gestión autómata de la ocupación
de salas

Durante el desarrollo de este caṕıtulo se va a llevar a cabo el estudio del problema de ges-
tión de salas en la empresa Efor mediante la implementación de CNNs poniendo en práctica la
teoŕıa mencionada a lo largo del trabajo. Efor es una empresa aragonesa que forma parte del
grupo integra dedicada a dar servicios y soluciones tecnológicas para la gestión, comunicación
y marketing de las empresas. El tratamiento de este problema de una manera autómata y con
herramientas actualmente emergentes y en crecimiento hace efectivo su eslogan “la innovación
es necesaria”.

4.1. Descripción y metodoloǵıa del proyecto

Efor cuenta con una serie de salas para la atención de clientes, reuniones, formación,... Estas
salas se pueden reservar mediante una intranet en la cual aparecen tanto los horarios disponi-
bles como las franjas de horas en la que están las salas ocupadas. La problemática a resolver
comienza aqúı.

En alguna ocasión, la reserva de salas se programa de manera periódica, de modo que, si por
algún motivo no se puede llevar a cabo la finalidad por la que fue reservada, la sala figura como
ocupada pero no se usa. Salvo que la sala se deje libre de manera análoga a la que se reservó,
aparecerá como ocupada y nadie podrá emplearla. La anulación de una visita de clientes o el
cambio del horario y reserva de otra sala si anteriormente se dispońıa de una, también pueden
dar lugar al problema anterior.

El principal motivo del presente trabajo es la automatización del conocimiento de la ocupa-
ción de las salas sin la necesidad de molestar ni desplazarnos al asegurarnos nosotros de manera
presencial si la sala está vaćıa y la podemos emplear. Para llevarlo a cabo, contamos con una
serie de v́ıdeos, de los cuales sacaremos frames para poder trabajar con estas imágenes y apli-
carles las CNNs para obtener de la imagen la información de si la sala está vaćıa o está ocupada.
Estos controles se podŕıan realizar de manera reiterada en intervalos de tiempo homogéneos de
cuarto de hora empezando a las 8:00, horario en el que la empresa abre, o implementar una
aplicación para que el control solo se realizase si es necesario.

El proyecto se realiza siguiendo el siguiente diagrama de fases. Como se muestra, el proyecto
distinguirá principalmente dos fases, la primera donde se realiza un estudio de viabilidad con las
herramientas propuestas y una segunda donde se pondrá en marcha las conclusiones obtenidas
para la resolución del problema.

37

38 Caṕıtulo 4. Gestión autómata de la ocupación de salas

Figura 4.1: Diagrama usual de fases de un proyecto de empresa.

En el estudio de viabilidad afrontaremos el estudio de la aplicación de CNNs a este proyecto.
Aplicaremos de manera directa una arquitectura diseñada de CNN con las caracteŕısticas que
hemos estado mencionando a lo largo de la parte teórica del trabajo. Para ello se realizará un
preprocesamiento de la imagen para fragmentarla con el fin de que la entrada de la red definida
sean fragmentos de la propia imagen que queremos predecir. La parte práctica del presente
trabajo fin de máster (TFM) corresponde a esta primera fase.

Una vez se ha experimentado con la técnica anterior y se ha visto que es factible abordar
este experimento con ella, se pondŕıa en marcha la ejecución. Durante esta fase se adaptaŕıa
el modelo seleccionado a las diferentes salas de la empresa, entrenando, para ello, el modelo
seleccionado en las diferentes salas, generando aśı un modelo entrenado por sala.

Con la finalidad de enlazar estos modelos, se haŕıa otra red la cual fuese capaz de adjudicar
el modelo correspondiente en función de la imagen de la sala. Esta red tomaŕıa el fragmento
de imagen donde aparece el número de cámara de vigilancia, asignando a cada uno de esos
números el modelo de la sala correspondiente teniendo en cuenta que contamos con una cámara
diferente por sala.

Tras un pequeño seguimiento sobre la implantación de estas redes, el proyecto global de la
gestión autómata llegaŕıa a su fin.

4.2. Presentación del conjunto de datos y obtención de frames

Para este estudio se han usado una serie de v́ıdeos de la red de seguridad de Efor propor-
cionados por la propia empresa con el formato de tipo .asf (Advanced Streaming Format). Los
v́ıdeos extráıdos son 3 en diferentes horas y d́ıas para tener muestras con diferentes alteraciones
de luz en la sala:

Sala Dı́a Hora de grabación Duración (min) Ocupación Uso

Boole 4/07/2019 15:30 30 vaćıa Entrenamiento
Boole 5/07/2019 9:30 30 ocupada Entrenamiento
Boole 23/07/2019 13:00 20 ocupada Validación

Cuadro 4.1: Información sobre los v́ıdeos.

Redes Neuronales Convolucionales - Inés Aldea Blasco 39

Para obtener los frames con los que trabajaremos de estos v́ıdeos se ha utilizado el código
mostrado en el cuaderno “Obtención de frames” adjuntado en el anexo B. Notar que la ocupa-
ción del v́ıdeo no hace referencia a los frames que podemos obtener, ya que los v́ıdeos ocupados
tienen fragmentos grabados en los que no tenemos personas, bien porque se han grabado los
fragmentos de entrada y salida a la sala o bien, porque hemos salido de la sala para tener
muestras de la sala sin personas en otro contexto.

Los frames extráıdos son imágenes (en formato .jpg) de tamaño 1920 × 1080 obtenidas
aproximadamente con una tasa de 15 frames por segundo en cada v́ıdeo. Supone un volumen
grande del conjunto de datos con los que desarrollaremos el proyecto, pero no debemos olvidar
la peculiaridad de que muchos de los frames son muy similares por obtenerlos en intervalos tan
próximos lo que supone llevar especial cuidado a la hora de tomar el subconjunto de frames
con los que entrenaremos el modelo.

En alguna ocasión necesitaremos hacer un tratamiento previo en las imágenes para reducir
tamaño y resolución para que las imágenes sean más ligeras y los entrenamientos de los modelos
sean más rápidos. Esto no supone un impedimento en las predicciones ya que introduciremos
las imágenes de una manera análoga a lo que nuestros modelos de redes harán con las imágenes.

4.3. Fase de viabilidad

La fase de viabilidad es la que toma mayor relevancia por ser un punto de inflexión. Gracias
a los estudios realizados durante esta fase se obtienen una serie de resultados y conclusiones
con los que se conocerá si se pone en marcha el proyecto o por el contrario, este no es factible
o en nuestro caso, la técnica propuesta no es capaz de solventar el problema, por resultados o
por eficiencia de los modelos.

En esta fase se diseñará una red personalizada para nuestro problema experimentando con
diferentes modelos y documentando tanto los experimentos como las conclusiones que nos lle-
van a seleccionar o descartar las redes. Por consiguiente, diseñaremos redes que sean capaces
de clasificar dos clases, ocupada y vaćıa, que hacen referencia al estado de la sala, afrontando
de esta manera el problema como uno de clasificación biclase.

Asimismo se realizará un preprocesamiento de los datos ya que el método empleado para
introducir la información al modelo será fragmentando las imágenes de la salas generando ven-
tajas que comentaremos más adelante.

De esta manera, la argumentación a seguir será la siguiente; si la red predice todos los tro-
zos de la imagen como la clase vaćıa, la sala estará vaćıa y, si hay al menos un fragmento que
pertenezca a la clase ocupada, esté será el estado que tendrá la sala.

El esquema de esta fase experimental sigue la evolución temporal real realizada. Comien-
za con un análisis y pretratamiento de los datos con los que se prueban varias arquitecturas
modificando elementos que vaŕıan el número de parámetros del modelo como son el número
de capas, filtros y neuronas hasta encontrar una arquitectura sencilla que aportase buenos re-
sultados con los que comenzar a ajustar ese modelo. Durante este proceso de ajuste se pone
especial relevancia en el conjunto de entrenamiento con el que aprende la red, el número de
épocas, la mejora del modelo con nuevas inicializaciones y el ajuste de la predicción final a
través de la modificación del valor de corte en la función de activación de la última capa. Una
vez seleccionado el modelo final, realizaremos un estudio de la evaluación de su clasificación
más apropiado según la casúıstica del proyecto y la argumentación seguida para clasificar.

40 Caṕıtulo 4. Gestión autómata de la ocupación de salas

Señalar que los experimentos mostrados a continuación se han realizado con un ordenador
con procesador Intel(R) Core (TM) i5-7200U CPU @ 2.50GHz 2.71 GHz, una memoria RAM
de 8.00 GB y un sistema operativo de 64 bits.

4.3.1. Estudio de la sala

Para acotar el experimento, aplicaremos esta técnica a una de las salas, la sala Boole. Co-
menzamos estudiando la sala tanto con los frames obtenidos con los v́ıdeos como de forma
presencial.

La sala Boole tiene la siguiente distribución donde nos encontramos igualmente los objetos
con los que cuenta la sala que con la posición de la cámara de donde hemos obtenido los datos.

Figura 4.2: Distribución de la sala Boole.

Debido al tamaño de las imágenes adquiridas en los v́ıdeos, aśı como lograr una pequeña
optimización en los tiempos de ejecución y prevenir falsos negativos cuando la sala esté vaćıa,
se ha optado porque la entrada de la red definida sean fragmentos de los frames y no estos
completos. De esta manera, se logra optimizar los tiempos de ejecución ya que el tamaño de las
imágenes se estará reducido significativamente y se eliminan fragmentos que contienen espacios
donde no vamos a encontrar personas, como son los fragmentos del techo, consiguiendo además,
evitar falsos negativos.

El estudio de la sala en la que se aplicará la red es importante puesto que, dependiendo
de la perspectiva, localización de la cámara de seguridad, luz o tamaño de la sala puede pro-
ducir la necesidad de aplicar alguna mejora a la imagen. En nuestro caso, el motivo esencial
del estudio de la sala radica en aplicar uno u otro mallado a la imagen para segmentarla evi-
tando la perdida de información y ayudando, en la medida de lo posible, a mejorar la predicción.

Para la realización de este estudio se ha de tener en cuenta la forma en la que las imágenes
se leen con Python en los cuadernos de jupyter, ya que la función que segmenta la imagen se ha
programado de manera que los fragmentos de imagen que queden fuera de un mallado regular
se pierdan. Este mallado comenzará definiéndose en la parte superior izquierda de la lectura de
la imagen pudiendo provocar pérdida de información en la parte derecha e inferior de esta.

Se comenzó proponiendo un mallado compuesto por cuadrados llevando cuidado con el
tamaño de estos porque si son muy pequeños nos pueden llevar a confusión. Un ejemplo de
un mallado demasiado pequeño es cortar la siguiente imagen que forma parte de los frames

Redes Neuronales Convolucionales - Inés Aldea Blasco 41

obtenidos con un mallado de 65 × 65. El mallado nos representa los trozos extráıdos donde los
rectángulos pintados nos indican la pérdida de información.

Figura 4.3: Mallado de la sala Boole de dimensiones 65 × 65.

Como vemos la pérdida de información es mı́nima, sin embargo se plantea otro problema,
ya que los siguientes fragmentos pertenecientes al mallado anterior seŕıan dif́ıciles de clasificar,
incluso para el ojo humano, en relación a si pertenecen a fragmentos de sala vaćıa o trozos de
las personas de la imagen.

Figura 4.4: Fragmentos del mallado que pueden provocar error.

Con esta información se propuso un mallado de dimensiones 120 × 120. Este mallado era
lo suficientemente grande como para solventar el efecto anterior y además nos ofrece la ventaja
de no tener pérdida de información en los laterales.

Figura 4.5: Mallado de la sala Boole de dimensiones 120 × 120.

Al realizar experimentos con este mallado se observaba que para mejorar las predicciones se

42 Caṕıtulo 4. Gestión autómata de la ocupación de salas

deb́ıa complicar más la arquitectura, lo que supońıa un aumento en el tiempo de entrenamiento
del modelo pero no mejoraba significativamente las predicciones en cada paso.

El siguiente paso fue ver como la red estaba prediciendo para mejorar el mallado. Ejemplos
de imágenes de las predicciones que obteńıamos eran:

Figura 4.6: Imágenes de predicciones de una red con dos capas convolucionales y dos capas
completamente conectadas.

Como veremos en profundidad más adelante, las zonas verdes son aquellas que la red pre-
dice como fragmentos de sala vaćıa y los rojos de sala ocupada. Se puede ver en las imágenes
anteriores como hay zonas de la sala vaćıa que nos la predice como ocupada, produciéndose un
falso negativo y zonas de la sala ocupada, como son trozos de la mesa y sillas, que predice como
si estuviese ocupada.

Para mejorar estas predicciones, se observó que la figura de las personas se asemeja más a un
rectángulo, introduciendo de esta manera más información en cada iteración de entrenamiento
resultando más fácil la distinción de los fragmentos y reduciendo los falsos negativos. Finalmen-
te, haciendo pruebas con varios mallados rectangulares, se opto por uno de dimensiones 120 ×
240. De esta forma, los fragmentos de las imágenes seŕıan los resultantes de romper la imagen
por el siguiente mallado:

Figura 4.7: Imágenes del mallado finalmente seleccionado de dimensiones 120 × 240.

El código empleado para la realización de este estudio se puede ver en el cuaderno “Estudio
de la sala” del anexo B.

Redes Neuronales Convolucionales - Inés Aldea Blasco 43

4.3.2. Estudio de los datos y obtención de los conjuntos del experimento

Tras escoger el mallado con el que cortar la imagen, tenemos que formar los conjuntos con
los que el modelo de la red trabajará. En nuestro caso, se realizará cada experimento con dos
conjuntos de datos, el conjunto de entrenamiento y el conjunto de validación. Por la forma en
la que la red está programada junto con la lectura de los datos, cada uno de estos conjuntos
estará dividido en dos carpetas, una por cada clase de clasificación, que en nuestro caso serán
dos (vaćıa y ocupada).

Figura 4.8: Estructura de los datos utilizada.

Para obtener estos conjuntos, se comenzó con la elección manual del los frames para cada
uno de ellos. Esta selección manual condicionó las imágenes que posteriormente formaban los
conjuntos. Para solventar esto, se opto por seleccionar de manera aleatoria las imágenes para
cada uno de los conjuntos.

Tras obtener el número de los frames que pertenecen a los diversos conjuntos, se procedió
a guardarlos en distintas carpetas para proceder a la inspección visual y selección manual de
cada uno de los fragmentos de esas imágenes que finalmente śı perteneceŕıan a los conjuntos
finales. Se puede consultar el código utilizado para este proceso en el cuaderno “Preparación de
los conjuntos de entrenamiento y validación” del anexo B.

La selección manual fue variando a lo largo de las diferentes experimentaciones. Se comenzó
seleccionando sin mucho detalle pero se observó modificando los conjuntos del modelo, que
conforme se estudiaba un poco la selección de estos conjuntos, la red daba mejores resultados.
Por tanto, se hizo teniendo en cuenta que aproximadamente más del 70 % del fragmento de la
imagen tuviese elementos representativos de la clase a la que iba a representar (en el caso de
entrenamiento) siendo un poco menos estrictos en el caso de los conjuntos de validación. La
selección realizada es debida a que nos interesa que la red aprenda con un buen conjunto de en-
trenamiento, pero a la hora de validar el modelo, con el conjunto de validación, queremos poner
al ĺımite la red para ver si la clasificación de esta se adapta mucho al conjunto de entrenamiento.

44 Caṕıtulo 4. Gestión autómata de la ocupación de salas

(a) ocupada(b) ocupada(c) ocupada (d) vaćıa (e) vaćıa (f) vaćıa

Figura 4.9: Ejemplos de imágenes del conjunto de entrenamiento y sus etiquetas.

Finalmente se seleccionó un conjunto de entrenamiento con 1000 elementos para cada una
de las dos clases que configuran nuestro proyecto y un conjunto de validación de 200 por clase, lo
que forma un total de 2000 imágenes de entrenamiento y 400 para una primera validación inicial.

4.3.3. Creación, aplicación y evaluación de las CNNs

En esta parte correspondiente de la fase de viabilidad se diseñan los modelos que queremos
aplicar para resolver nuestro problema, de los cuales seleccionaremos el modelo que nos dé
mejores resultados. Con este fin, se han ido diseñando diferentes arquitecturas, entrenando y
validando los modelos ayudándonos de los cuadernos “Diseño, entrenamiento y primeros resul-
tas de la CNN” y “carga del modelo y clasificación” adjuntos en el anexo C.

Notar que el primer criterio para seleccionar un modelo es tener una tasa de bien clasifi-
cados superior al 70 % de manera que aquellos modelos que no lo superen los descartaremos
de ser nuestro modelo final automáticamente sin la necesidad de estudiar ninguna otra métrica
del modelo. Otra de las caracteŕısticas de la arquitectura que fijamos al comienzo de los ex-
perimentos, por ser una clasificación biclase, es usar como capa de salida una única neurona
con la función de activación sigmoide. De esta manera, se predice la clase ocupada si el valor
resultante de la red es menor que 0.5 y vaćıa si es mayor.

Se comenzó diseñando arquitecturas de red para el caso del mallado compuesto por cuadra-
dos. Durante estos experimentos la principal caracteŕıstica de la arquitectura que obtuvimos
es la dimensión de los filtros. Estos no deb́ıan ser muy grandes ya que el tamaño de nuestras
imágenes es pequeño porque la entrada son fragmentos de la imagen original obtenida. Otra
información que pudimos deducir de los experimentos es que las etapas de pooling no supońıan
una gran mejora en la clasificación por tener imágenes tan pequeñas, lo que hizo agilizar nues-
tros modelos al eliminar estas fases.

Enseguida se pudo ver, como comentamos durante el estudio de la sala, que las predicciones
se pod́ıan mejorar no solo cambiando la arquitectura de nuestros modelos, sino cambiando la
forma en la que introducimos la información, es decir cambiando el mallado pasando a estar
compuesto por rectángulos. Para probar nuevos modelos en esta ĺınea se aplicó la arquitectura
del mejor modelo conseguido hasta el momento a un nuevo conjunto de datos con fragmentos
de imágenes en secciones rectangulares obtenidos de los mismos frames con los que se hab́ıan
obtenido los buenos resultados de la red. La arquitectura usada para esta comparación fue:

Redes Neuronales Convolucionales - Inés Aldea Blasco 45

Arquitectura de la CNN

Convolución con 6 filtros de 3 × 3
Función de activación ELU

Convolución con 6 filtros de 3 × 3
Función de activación ELU

Flattening

Capa completamente conexa de 512 neuronas & Sigmoide

Capa completamente conexa de 256 neuronas & Sigmoide

Capa de salida 1 neurona & Sigmoide

Cuadro 4.2: Arquitectura de la CNN usada para comparar la entrada en cuadrados y en rec-
tángulos.

Al usar los mismos frames en ambos casos para la obtención de los fragmentos de imagen con
los que la red iba a trabajar, las caracteŕısticas del experimento quedan ligeramente modificadas
para las distintas entradas viniendo resumidas en el siguiente cuadro. La reducción del volumen
de elementos en la entrada rectangular es debida al aumento del tamaño de los fragmentos de
la imagen.

Tipo mallado dimensiones no de elementos de entrenamiento no de elementos de validación

Cuadrado 120 × 120 2002 178

Rectángulo 120 × 240 1000 102

Cuadro 4.3: Cuadro resumen de la adaptación del mismo modelo para dos mallados distintos.

Tras hacer la adaptación y el entrenamiento para 20 épocas en estos dos conjuntos de datos,
los primeros resultados obtenidos para cada experimento vienen resumidos en el cuadro 4.4.
Destacamos el aumento de parámetros del modelo al cambiar la entrada, es decir, una mayor
complejidad del modelo empleado pero un tiempo de entrenamiento muy similar.

Tipo mallado no parámetros
Tiempo de

entrenamiento

ACC de la
última iteración
(entrenamiento)

ACC de la
última iteración

(validación)
Cuadrado 41469427 37 min 50 seg 0.8328 0.7472

Rectángulo 84231667 37 min 3 seg 0.8093 0.7647

Cuadro 4.4: Cuadro resumen comparativo de los resultados con la misma arquitectura.

Realizamos un estudio sobre la evolución de ambos modelos para cada experimento en
función de la función de pérdida y de la tasa de bien clasificados o accuracy con respecto a las
épocas. Para el modelo cuyas entradas son fragmentos cuadrados de los frames obtenemos las
siguientes variaciones:

46 Caṕıtulo 4. Gestión autómata de la ocupación de salas

Figura 4.10: Variación de error y tasa de bien clasificados del modelo con entrada en cuadrados.

La evolución del modelo es bastante lineal salvo un pequeño pico en la época 16. Debe-
mos destacar, además, lo ocurrido en la última época. Parece que la tendencia del conjunto
de validación es aumentar el error de clasificación (aumenta la función de pérdida) y dismi-
nuir la tasa de bien clasificados al contrario de lo ocurrido con la tendencia del conjunto de
entrenamiento; se debe a que el aumento en las épocas de entrenamiento puede producir un
sobreajuste respecto al conjunto de entrenamiento, es decir, se adapta muy bien a ese conjunto
y como consecuencia, si las nuevas imágenes no son muy parecidas al conjunto de entrenamien-
to, el modelo las clasificará mal. Hecho muy importante en nuestro caso particular ya que un
pequeño cambio en la posición de las sillas al dejar la sala vaćıa nos daŕıa una mala clasificación.

Con estos resultados deducimos que, para este caso particular del mallado de la imagen
en cuadrados, no se necesitan más épocas ya que no va a aprender más el modelo sino que,
se producirán sobreajustes. Para solucionarlo, se podŕıa modificar el conjunto de datos con el
que entrenar para hacerlo más heterogéneo, seguir modificando la arquitectura de la red (nue-
vos pesos, funciones de activación,...) o, como en nuestro caso, estudiar otro mallado para las
imágenes. Seguiremos la evolución del experimento en esta última ĺınea (por la mejoŕıa de esos
modelos en los resultados que iremos mostrando a continuación).

Haciendo el mismo estudio gráfico en el caso del mallado rectangular, los resultados de la
variación en el modelo son:

Redes Neuronales Convolucionales - Inés Aldea Blasco 47

Figura 4.11: Variación de error y tasa de bien clasificados del modelo con entrada rectangular.

Al contrario que en el caso anterior, la evolución es más inestable lo que nos lleva a pensar
en aumentar el número de épocas para los siguientes entrenamientos y aśı dejar que el modelo
se estabilice. Destacar, en la época 12, un pequeño aumento en la función de error produce una
disminución en la tasa de bien clasificados notable por lo que nos interesa esa estabilidad del
modelo.

Observamos además, como en las últimas épocas, la tendencia de la función de error es
decreciente y la tasa de bien clasificados es creciente lo que lleva a pensar que estos modelos
pueden seguir entrenando sin producir sobreajustes. Este modelo de red podrá entrenar durante
más épocas consiguiendo mejores resultados en las clasificaciones.

Tras hacer las anaĺıticas de los modelos, también podemos hacer un estudio visual de la
predicción de las clases en las imágenes. Con este pequeño análisis podemos ver las zonas pro-
blemáticas donde las redes fallan pudiendo aśı cambiar el conjunto de entrenamiento reforzando
estas zonas. Las imágenes de este estudio se obtienen modificando los canales de color de la
imagen a estudiar, dejando solo el canal verde o rojo haciendo cero al resto de valores. El color
dependerá de la clase con la que la red clasifica el fragmento de imagen, siendo rojo si la clase
predicha es ocupada y verde en caso contrario originándonos una idea rápida de la clasificación
del modelo.

Tomamos dos frames del v́ıdeo ocupado que no forman parte del conjunto de entrenamiento
ni validación para hacer este estudio visual en ambos modelos.

48 Caṕıtulo 4. Gestión autómata de la ocupación de salas

Figura 4.12: Estudio visual de las clases predichas por los modelos. Las imágenes superiores
corresponden al modelo con entrada en forma de cuadrados y las inferiores al modelo con
entrada rectangular.

Puede parecer que las primeras imágenes son mejores que las segundas, pero no debemos ol-
vidar que es un modelo que se hab́ıa hecho para mejorar la clasificación para trozos de imágenes
cuadradas y que en el caso rectangular admite más épocas de entrenamiento, lo que nos permite
mejorar mucho las clasificaciones adaptando el modelo al nuevo tipo de datos. Esta percepción
es debida a que en la zona rectangular hay más área pintada de rojo y asociamos el rojo a
elementos erróneos. La dificultad del diseño y ajuste de este tipo de redes reside en este punto;
hay veces que malos resultados se puede mejorar notablemente produciendo un pequeño cambio.

Las apreciaciones que no debemos pasar por alto para comparar las predicciones en estas
imágenes son:

• Hay una persona que pasa desapercibida en la clasificación de ambos modelos.

• Las zonas de error aproximadamente son las mismas; las zonas de borde de la mesa junto
con las zonas de sillas. En esta comparación debemos considerara que estas zonas se evitan
más fácilmente con el mallado rectangular ya que se puede aportar más información en
cada iteración sin correr el peligro de tener un sobreajuste.

Con estos resultados no podemos distinguir sin incertidumbre cual es mejor aunque, parece
que la clasificación del modelo del mallado rectangular es preferible ya que, la clasificación para
nuevos elementos (tasa de bien clasificados en el conjunto de validación) es mejor en sentido
anaĺıtico.

Debemos recalcar que la asignación de los pesos iniciales es aleatoria, lo que puede mejorar
notablemente el modelo. Para ello, podemos entrenar varias veces los modelo y observar los
resultados para poder ver en media si efectivamente se avanzaŕıa y se mejoraŕıa con una arqui-
tectura o con otra, obteniendo cierta información sobre la dependencia de la inicialización de
los pesos en nuestros modelos.

Redes Neuronales Convolucionales - Inés Aldea Blasco 49

Para observar este fenómeno, se ha evaluado varias veces el modelo anterior para el mallado
formado por rectángulos con el mismo conjunto de datos. Una muestra de los resultados de
estas evaluaciones son:

Identificador
de inicialización

no parámetros
Tiempo de

entrenamiento

ACC de la
última iteración
(entrenamiento)

ACC de la
última iteración

(validación)
i1 84231667 37 min 3 seg 0.8093 0.7647

i2 84231667 38 min 47 seg 0.7737 0.7255

i3 84231667 38 min 30 seg 0.7871 0.6961

i4 84231667 1h 14 min 8 seg 0.8153 0.7451

Cuadro 4.5: Cuadro resumen del efecto de la aleatoriedad de los pesos iniciales.

En la cuarta ejecución, el aumento del tiempo de entrenamiento es debido a que se ejecutó
con el portátil sin conectar a la luz, lo que conlleva un menor rendimiento al depender de la
bateŕıa. La agilidad de este tipo de modelos dependen en gran medida de la potencia y el ren-
dimiento del ordenador.

La variabilidad de los valores de la tasa de bien clasificados no es alta. Por este motivo, se
puede pensar que un modelo con estas caracteŕısticas alcanzaŕıa aproximadamente una tasa de
bien clasificados del 79.6 % para el conjunto de entrenamiento y un 73.2 % para el de validación.

Con la ayuda de estas conclusiones, se optó por fijar esta arquitectura para el mallado
rectangular por el buen comportamiento que parećıa tener. Para lograr una mejora en la clasi-
ficación se pasó a adaptar el conjunto de entrenamiento a la entrada de la red, como se mostró
en la parte final de la obtención de los conjuntos del experimento, siendo más estrictos a la
hora de coger los fragmentos de la red etiquetados como clase ocupada y generando al azar los
frames utilizados. De esta manera se probó la arquitectura anterior con los nuevos conjuntos
de datos formados.

Para proceder a este estudio con una arquitectura de red ya fijada se pasó a fijar semillas
para poder reproducir los resultados e ir ajustando el modelo. Hasta el momento, este hecho no
era relevante ya que la asignación aleatoria de los pesos del modelo nos daba un conocimiento
general del comportamiento del modelo y pod́ıamos observar, como en el estudio del cuadro
4.5, si la tasa de bien clasificados vaŕıa significativamente o no. Esta aleatoriedad nos aportaba
información de la robustez modelo y, además, los modelos pod́ıan guardarse si se descargaban
los pesos y se era conocedor de la arquitectura. Ahora, necesitamos poder reproducir el entrena-
miento de la red con el fin de ajustar el modelo. Por esta razón las semillas toman importancia
en este punto del experimento.

Con este pequeño cambio en el conjunto de entrenamiento podemos ver como los resultados
tienen mejoras bastante significativas. Para el conjunto de entrenamiento se clasifica bien un
90 % de los datos y para el de validación un 87 % en comparación con 80.93 % y 76.47 % obtenidos
anteriormente.

50 Caṕıtulo 4. Gestión autómata de la ocupación de salas

Figura 4.13: Comparación del estudio visual de las clases predichas por el mismo modelo cam-
biando únicamente los conjuntos con los que trabaja la red. Las imágenes superiores correspon-
den a las predicciones hechas anteriormente y las inferiores al modelo con los nuevos conjuntos.

Hacemos un estudio más en profundidad de los resultados obtenidos. Por un lado, pode-
mos calcular la matriz de confusión del modelo sobre el conjunto de validación. Esta matriz
presentada no toma exactamente la misma forma que la nombrada en la teoŕıa porque ha sido
normalizada de manera que todos sus elementos suman uno. Teniendo en cuenta que cada fila
representa el 0.5 de los datos por la normalización observamos que, en los elementos etiquetados
como vaćıos, la predicción de clasificación acertada por la red es casi del 100 % de los elementos
(representaŕıa alrededor del 98.5 %). Sin embargo, para el caso de los elementos etiquetados co-
mo ocupados la precisión no es tan buena. Según se muestra en el estudio visual anteriormente
mostrado de este modelo, aún sigue clasificando mal el trozo de imagen de la persona donde ya
fallaba, error bastante importante.

Figura 4.14: Matriz de confusión normalizada para el modelo de 20 épocas.

Redes Neuronales Convolucionales - Inés Aldea Blasco 51

Por otro lado, podemos calcular la evolución del modelo respecto a las épocas. Se observa el
mismo efecto que ya hemos comentado con anterioridad, a partir de este momento parece que
la tendencia de las variaciones va a producir un sobreajuste.

Figura 4.15: Variación de error y tasa de bien clasificados del modelo fijado con 20 épocas.

Como teńıamos fijada la semilla, podemos reproducir el resultado para un número de épocas
mayor y ver si se produce ese fenómeno o se estabilizan las variaciones de la función de pérdida
y de accuracy con la finalidad de fijar el número de épocas óptimo para el modelo. Repetimos
el experimento con 30 épocas.

Figura 4.16: Variación de error y tasa de bien clasificados del modelo fijado con 30 épocas.

En este último gráfico se observa como esa variación de la última época del modelo entre-
nado en 20 épocas se acaba estabilizando produciendo, en varias épocas más, una mejora en
la accuracy y reduciendo la función de pérdida. A partir de la época 26 (contando desde 1) el
modelo estabiliza los resultados pudiendo producir otro desajuste pasada la época 30.

52 Caṕıtulo 4. Gestión autómata de la ocupación de salas

Aprovechamos esta estabilidad para estudiar el modelo en uno de estos puntos. El número
de épocas elegido para realizar un estudio sobre la mejora del modelo es de 27 ya que queda en
un punto central de la estabilidad donde no tiene grandes desequilibrios en su entorno.

Tras fijar este parámetro y entrenar nuevamente el modelo, calculamos la matriz de confu-
sión para el conjunto de validación.

Figura 4.17: Matriz de confusión normalizada para el modelo de 27 épocas.

La matriz de confusión para los datos del conjunto de validación es realmente buena. Se
observa que la predicción de la clasificación de los elementos etiquetados como vaćıa es correcta
en el 100 % de los casos y para los datos etiquetados como ocupada del 91 %.

Figura 4.18: Estudio visual de las clases predichas por el modelo de 27 épocas.

El estudio del modelo con 27 épocas dio muy buenos resultados para el conjunto de valida-
ción sin embrago, si hacemos un estudio visual de un frame que no pertenece a ninguno de los
dos conjuntos (entrenamiento y validación), como hemos visto en la figura 4.18, no se obtiene
una buena clasificación ya que en la imagen de la sala vaćıa hay un fragmento clasificado como
ocupado, lo que conlleva una mala predicción el estado de la sala. Como consecuencia, debemos
seguir ajustando un modelo que solucione nuestro problema.

Redes Neuronales Convolucionales - Inés Aldea Blasco 53

Seguimos estudiamos el modelo para otras de las épocas donde el modelo estabilizaba su
variación, obteniendo peores resultados al modelo anterior salvo para 29 épocas. Para este
modelo, la matriz de confusión para el conjunto de validación mejoró ya que hab́ıa un mayor
porcentaje de aciertos en la clase ocupada manteniéndose los buenos resultados para la clase
vaćıa.

Figura 4.19: Matriz de confusión para el modelo de 29 épocas.

Con este modelo conseguimos el objetivo que queremos, todos los fragmentos de un frame
que no ha sido utilizado en el modelo de sala vaćıa son clasificados bien. Pero este modelo
presenta un problema, si predecimos un frame del v́ıdeo empleado para la validación del modelo
en profundidad vemos como la predicción con la sala vaćıa no funciona bien.

Figura 4.20: Estudio visual de las clases predichas por el modelo de 29 épocas. En el caso de la
derecha para un frame del v́ıdeo utilizado para el diseño y entrenamiento del modelo y en el de
la izquierda un frame del v́ıdeo utilizado solo para la validación y estudio del comportamiento
del modelo.

Llegados a este punto, como la función de perdida alcanzada en la última época del mo-
delo es de 0.1057 para el conjunto de entrenamiento y 0.1202 para el conjunto de validación
decidimos reducir este error para encontrar un modelo mejor. Para ello cambiamos la semilla
y volvemos a inicializar los pesos con la intención de que el modelo mejore globalmente fijando
las épocas en 30.

54 Caṕıtulo 4. Gestión autómata de la ocupación de salas

Figura 4.21: Evolución del modelo con 30 épocas con la nueva inicialización de los pesos.

La variación a lo largo de las épocas de este modelo es casi inexistente alcanzando el valor
de 0.0516 para la función de pérdida del conjunto de entrenamiento y 0.0898 para el conjunto
de validación. De este modo conseguimos reducir la función de pérdida obteniendo además una
tasa de bien clasificados del 98.85 % para el conjunto de entrenamiento y 97.25 % para el con-
junto de validación.

Figura 4.22: Matrices de confusión del modelo inicial con 30 épocas (izquierda) y el de 30 épocas
con la nueva inicialización de los pesos (derecha).

Al aumentar la complejidad del modelo con una época más y cambiando los pesos iniciales,
mejoramos el modelo respecto al de 29 épocas aumentando la tasa de bien clasificados de la
clase ocupada y manteniendo los buenos resultados de la vaćıa. Si comparamos los modelos de
30 épocas con las dos inicializaciones de los pesos mediante la matriz de confusión observamos
como el modelo con los pesos antiguos mejora la clasificación de la etiqueta ocupada pero no
mantiene los buenos resultados de la vaćıa. Podŕıamos mejorar el modelo de 30 épocas antiguo
para obtener una mejor clasificación en ocupada pero por la casúıstica de nuestro proyecto es
más fácil ajustar la clase vaćıa ya que a excepción del cambio de posición de las sillas, la clase
es más homogénea y tiene menos variabilidad en los fragmentos. Con estos buenos resultados
obtenidos, el modelo de 30 épocas con la nueva inicialización de los pesos es con el que nos
quedaremos.

Redes Neuronales Convolucionales - Inés Aldea Blasco 55

4.3.4. Validación del modelo seleccionado

Tras hacer una pequeña primera validación del modelo con la matriz de confusión sobre el
conjunto de validación que representaba aproximadamente el 20 % de los datos usados para el
diseño del modelo, se procedió a hacer un estudio más a fondo para analizar los buenos resul-
tados del modelo.

Se procedió ha hacer un estudio visual de algunos frames como hab́ıamos hecho con algunos
de los modelos del apartado anterior para valorar las zonas de error en la predicción de la
clasificación.

Figura 4.23: Estudio visual de las predicciones de la clasificación del modelo seleccionado.

Las predicciones realizadas en frames con la sala vaćıa de la clasificación es correcta en
todos los casos. En frames de la sala ocupada observamos como la red predice bastante bien la
clase ocupada a excepción de fragmentos realizados con el letrero de la cámara de vigilancia,
que no debe preocuparnos porque podŕıamos recortar la imagen como hemos hecho con la zona
del techo, y un fragmento en la imagen central por la posición de las sillas.

Una vez realizado este pequeño estudio, realizamos otro estudio visual, pero esta vez con los
frames del v́ıdeo utilizado para la validación. Este v́ıdeo presenta otra disposición de las sillas
diferente a los usados para el entrenamiento y validación, aśı como nuevas personas que hasta
este momento la red no ha visto. Si comenzamos con algún frame de la sala vaćıa veremos como
la predicción es errónea.

Figura 4.24: Estudio visual de las predicciones de un frame de la sala vaćıa del v́ıdeo de vali-
dación.

Este efecto es producido por los datos con los que contamos. Aunque tengamos muchas
imágenes, las posiciones, por ejemplo del v́ıdeo de la sala vaćıa, no vaŕıan ya que la sala está

56 Caṕıtulo 4. Gestión autómata de la ocupación de salas

completamente vaćıa durante todo el v́ıdeo. Eso implica que el modelo pueda dar pequeños
fallos en este aspecto. Para evitarlo, cambiamos la forma en la que la red predice. En vez de
utilizar el razonamiento de si es menor que 0.5, la clasificación será ocupada y en caso contra-
rio vaćıa, disminuiremos ese punto de corte al valor de 0.2. De esta manera conseguimos que
las predicciones realizadas como ocupada sean reales evitando el efecto de las sillas ya que las
predicciones de la red en estos casos oscilaba el valor de 0.4.

La selección de este nuevo punto de corte se ha realizado ayudándonos del cálculo de la
curva ROC para valores a partir de 0.1 hasta 0.6 con una distancia entre ellos de 0.1 sobre
las predicciones de un conjunto de 929 elementos seleccionados aleatoriamente sobre los frag-
mentos de los frames extráıdos del v́ıdeo utilizado para la validación. En la selección de este
conjunto se ha optado por no lograr un equilibrio en el número de clases para que el estudio
sea más realista ya que en las predicciones de las imágenes, por lo general, hay mayor número
de elementos clasificados como “vaćıa” que como “ocupada”.

Notar que se debe calcular la curva ROC sobre un valor de decisión creciente, por ese motivo
los valores representados se invierten para su cálculo. Para ver el código de su construcción se
puede consultar el cuaderno “Análisis de la curva ROC” del anexo C.

Figura 4.25: Curva ROC y ampliación del extremos superior izquierdo.

Se puede observar que el mejor valor de corte, que corresponde con el punto de menor dis-
tancia a la esquina superior izquierda del gráfico, es el que toma un valor de 0.2. Estimación
que, como hemos mencionado anteriormente, hemos escogido para cambiar la predicción de
nuestro modelo.

Volvemos a hacer el mismo estudio visual de la figura 4.23 para ver el efecto que tiene este
cambio en las predicciones realizadas.

Como vemos en la siguiente figura, estas predicciones quedan ligeramente modificadas mejo-
rando la clasificación de los fragmentos problemáticos que hab́ıamos mencionado anteriormente.
Al ser más estrictos a la hora de clasificar un fragmento como “ocupada” se necesitará mayor
porcentaje de elementos representativos que no hagan a la red clasificarlo como “vaćıa”. Este
efecto se puede ver en la imagen inferior central donde ahora el área pintada de rojo es menor.

Redes Neuronales Convolucionales - Inés Aldea Blasco 57

Figura 4.26: Estudio visual de las predicciones de la clasificación del modelo seleccionado.

Este impacto también se puede ver en las matrices de confusión (con mayor facilidad en las
matrices sin normalizar). Como en el conjunto de validación hab́ıamos sido menos estrictos a la
hora de etiquetar los fragmentos de la clase ocupada, la tasa de bien clasificados disminuirá en el
caso de utilizar el valor de corte de 0.2. Se deduce de este estudio que el número de fragmentos
etiquetados como ocupados que perdeŕıamos por el cambio del valor de corte como vemos no
es muy relevante.

Figura 4.27: Matrices de confusión sin normalizar para el modelo seleccionado. La matriz de la
izquierda se consigue con un valor de corte de 0.2 y la derecha de 0.5.

A continuación realizamos un estudio visual para un pequeño conjunto de frames del v́ıdeo
de validación. Estos serán los que nos sirvan para evaluar de una forma más realista la calidad
del modelo.

58 Caṕıtulo 4. Gestión autómata de la ocupación de salas

Figura 4.28: Estudio visual de un pequeño conjunto de frames del v́ıdeo de validación.

La clasificación del modelo elegido es muy buena. El frame de la sala vaćıa está correctamen-
te clasificado y, en el caso de los frames que corresponden con la sala ocupada, las predicciones
de dichas zonas ocupadas son bastante exactas incluso para momentos como la entrada a la
sala que suele conducir a error.

Gracias a la finalidad de construcción de nuestro modelo nos interesa la clasificación de la
imagen completa del frame, por tanto evaluaremos el modelo desde este punto de vista. Por
este motivo, calcularemos la matriz de confusión para la clasificación de las imágenes completas
y no de sus fragmentos.

La construcción de esta nueva matriz se basa en la idea de clasificación que hemos llevado a
lo largo del experimento. Recordamos que el proceso que sigue una imagen para ser clasificada
es el siguiente:

1. La imagen es troceada eliminando la cabecera de esta.

2. Los fragmentos con clasificados por el modelo de red seleccionado.

3. Se realiza la clasificación de la imagen global. Si hay al menos un fragmento que el modelo
haya predicho como ocupada, el estado de la sala será ocupado. En caso contrario la sala
estará vaćıa.

Este último punto del proceso será el principal para crear la nueva matriz de confusión que
aplicaremos al v́ıdeo de validación.

Igualmente, nos aprovecharemos de la estructura del v́ıdeo de validación. En este v́ıdeo, la
sala comienza vaćıa hasta el momento que un grupo de personas entran y se mantienen en ella
hasta el final; lo que nos hace poder trasladar esta información a los frames. Podemos seleccionar
un número de frame que nos sirva de referencia de tal manera que los frames que ocurran antes
tengan la etiqueta vaćıa y a los frames de después les corresponda la ocupada. Debemos tener
en cuenta que durante el proceso de extracción de los frames del v́ıdeo se guardaron mediante
una enumeración.

Por la cantidad de frames extráıda por segundo de los v́ıdeos se hace dif́ıcil esa elección
de un único frame, por tanto cogemos una sucesión que sirvan de transición entre una y otra
clase. Esta sucesión consta de 15 frames que correspondeŕıan al intervalo de un segundo de v́ıdeo.

Redes Neuronales Convolucionales - Inés Aldea Blasco 59

Tras la clasificación de la imagen global y comparándola de este modo con su etiqueta real,
podemos generar la matriz de confusión que buscábamos aplicada a un segundo conjunto de
validación extráıdo de los frames del v́ıdeo de validación. Esta matriz se ha creado con 1800
de esos frames generados aleatoriamente de entre todos los del v́ıdeo, imponiendo que si hay
algún frames que pertenezca a la sucesión de transición se clasifique como erróneo.

Esta imposición, aunque nos empeore los resultados de la clasificación del modelo, nos per-
mitirá hacer un estudio distinguiendo los frames erróneos por clasificación de aquellos que
muestran momentos problemáticos como entradas y salidas de la sala. Para mayor detalle de
la construcción y del estudio de esta matriz de confusión se puede ver el cuaderno “Estudio del
modelo seleccionado” del anexo C.

Figura 4.29: Matriz de confusión aplicado a un conjunto aleatorio de 1800 frames del v́ıdeo de
validación.

Podemos ver que los resultados de la evaluación del modelo en la matriz de confusión son
muy buenos, solo se confunde en 5 de los 1800 frames. Para terminar de obtener información del
rendimiento del modelo podemos analizar los conceptos definidos en la parte teórica extráıdos
de la matriz. Estos resultados son:

• Tasa de bien clasificados (accuracy), 99.72 %

• Tasa de mal clasificados, 0.28 %

• Sensibilidad, 99.55 %

• Especificidad, 99.82 %

• Precisión, 99.70 %

60 Caṕıtulo 4. Gestión autómata de la ocupación de salas

• Tasa de falsos positivos, 0.18 %

• Tasa de falsos negativos, 0.45 %

Son muy buenos resultados ya que, como dijimos en teoŕıa, están próximos a los de un mo-
delo óptimo. La accuracy, sensibilidad, especificidad y precisión están muy próximas al 100 % y
el resto al 0 %. Destacamos también que la tasa de falsos negativos es más alta que la de falsos
positivos como cabŕıa esperar porque, como vimos a lo largo del experimento, las imágenes con
cambios en las posiciones de las sillas pod́ıa producir errores en la predicción de la clasificación.

Gracias a la forma del código podemos hacer un estudio de los 5 frames mal clasificados.
Estos son:

no frame clase de clasificación errónea

5251 ocupada

5382 ocupada

6325 vaćıa

6337 vaćıa

6341 vaćıa

Cuadro 4.6: Cuadro de los 5 frames mal clasificados durante la prueba de la matriz de confusión
del estudio de validación del modelo global.

Procedemos a hacer un estudio visual de estos elementos para ver el porqué de la mala
clasificación. De esta manera podremos saber cuántos de estos frames se han clasificado mal
por la red y cuántos lo han hecho por formar parte de esos elementos de transición entre una
clase y otra en el v́ıdeo.

Comenzamos con los frames clasificados erróneamente como “ocupada”.

(a) frame 5251 (b) frame 5381

Figura 4.30: Imágenes mal clasificadas como ocupadas

El intervalo de tiempo transcurrido entre ambas imágenes es de 8 segundos. Del mismo
modo, si nos fijamos en la figura 4.28, contemplamos como se clasificó un frame de un entorno
de tiempo similar al de estos por la red de manera correcta. Este efecto puede ser consecuencia
de los pequeños cambios de luz de momentos puntuales que hacen que vaŕıe la clasificación.

En el caso de los frames mal clasificados como vaćıos podemos repetir este mismo estudio.

Redes Neuronales Convolucionales - Inés Aldea Blasco 61

(a) frame 6325 (b) frame 6337

(c) frame 6341

Figura 4.31: Imágenes mal clasificadas como vaćıas

Tan solo uno de estos frames, el número 6325 de todos los erróneamente clasificados, pertene-
ce a la sucesión de transición. A este frame se le asignó una mala clasificación por la imposición
que hicimos al construir la matriz de confusión. No obstante, podemos observar como la puerta
no está del todo cerrada, efecto que requiere de detenimiento. Es por esto, que se tomaron este
tipo de frames como elementos de transición. Podŕıamos pensar, en esta situación, que hubiese
clasificado bien la sala ya que no hay nadie dentro y por tanto está vaćıa.

Las dos siguientes clasificaciones erróneas ya no pertenecen a los elementos de transición
pero son situaciones dif́ıciles de clasificar para la red, los momentos de entrada y salida. Hasta
que la persona no está totalmente dentro de la sala, la red no es capaz de diferenciar que la
sala está ocupada. Para comprobar este efecto podemos comparar estas dos imágenes con la
imagen central superior de la figura 4.28, donde la red śı que es capaz de clasificar bien el
fragmento correspondiente a entrar en la sala. Para solucionar este efecto bastaŕıa con tener
más elementos de entrada y salida en los v́ıdeos de las salas y entrenar con ellos la red del modelo.

En resumen, estas clasificaciones erróneas obtenidas son bastante comprensibles ya que, los
errores se pueden atribuir en gran medida a la sucesión de transición que hemos fijado para
decir que esos fragmentos se consideran como sala ocupada.

4.4. Conclusiones

Para concluir la fase de viabilidad, que corresponde a este TFM, podemos afirmar tras los
experimentos realizados que, es posible llevar a cabo el proyecto bajo la aplicación de las téc-
nicas de las CNNs expuestas en las notas teóricas.

Esta afirmación se deriva de que los principales problemas encontrados han sido las pocas
configuraciones distintas de las sillas en los v́ıdeos de la sala donde se realizaron las pruebas
y los momentos de entrada y salida. Ambos problemas remediables si extraemos de la actual
fuente de datos, es decir, del sistema de seguridad que dispone la empresa en las salas, una

62 Caṕıtulo 4. Gestión autómata de la ocupación de salas

mayor muestra para reforzar el entrenamiento en estos aspectos.

Además el modelo finalmente seleccionado, ha obtenido resultados muy buenos con los con-
juntos de datos con lo que contábamos. Para hacernos una idea, según estos resultados, si se
quisiese poner un piloto en la puerta de la sala el cual se iluminase de verde si la sala está vaćıa
o de rojo si la sala está ocupada automáticamente, apenas se equivocaŕıa en 20 segundos al
seleccionar el color de la luz para un intervalo de tiempo de aproximadamente 2 horas. Durante
estos segundos (no necesariamente seguidos) se podŕıa ver el error en el cambio de color, ya que
se puede ser consciente si alguien está entrando o no en la sala. De esta manera se lograŕıa un
gran grado de fiabilidad del estado de la sala.

Finalmente, este estudio no solo sirve para gestionar las salas sino que, también, se pueden
extraer datos con los que poder hacer un estudio estad́ıstico sobre el buen o mal uso de las salas
en la empresa.

Como resultado de esta prueba de viabilidad, se ha pasado a planificar la puesta en produc-
ción del modelo dentro de Efor.

Anexos

63

Anexo A

Funciones definidas

Los códigos mostrados a continuación son las funciones necesarias que se han programado
para que resultase más fácil la programación del proyecto omitiendo de esta manera código
repetitivo. Estas funciones están programadas en ficheros de Python, que serán cargados en los
cuadernos de Python del proyecto que se mostrarán en los siguientes anexos. De esta manera
podremos hacer uso de estas funciones a lo largo del código programado.

Las funciones son:

1. Función mallado.

2. Función mallado numerado.

3. Función corte de imágenes.

4. Función de cambio de color.

5. Función de lista a imagen.

6. Función de guardado.

7. Función cálculo de la matriz de confusión.

Notar que para las funciones mallado y mallado numerado se ha utilizado la estructura de
una respuesta encontrada en [19] y la función para dibujar la matriz de confusión se inspira en
el código de la documentación que podemos encontrar en [21].

65

1

Función mallado
mallado.py

� �
1 #!/usr/bin/env python

2 # coding: utf -8

3

4 # In[2]:

5

6 get_ipython () . run_line_magic (’pylab’ , ’’)
7 from PIL import Image

8 import matplotlib

9 import matplotlib . pyplot as plt

10 import pickle

11 import matplotlib . ticker as plticker

12

13 #************** Función mallado **************

14 #

15 #Función que superpone a la imagen introducida un mallado.

16 #

17 #Argumentos:

18 # img ---> imagen.

19 # myIntervalx ---> dimensión del rectángulo del mallado (Inicializado por defecto a 100)

en el eje x.

20 # myIntervaly ---> dimensión del rectángulo del mallado (Inicializado por defecto a 100)

en el eje y.

21 # my_dpi ---> resolución de la figura (Inicializado por defecto a 100).

22 #

23 #Devuelve una figura con el mallado pintado sobre la imagen.

24

25

26 def mallado (img , myIntervalx=10 0. , myIntervaly=10 0. , my_dpi=10 0.) :
27 fig=plt . figure (figsize=(float (img . size [0]) /my_dpi , float (img . size [1]) /my_dpi) , dpi=

my_dpi)
28 ax=fig . add_subplot (111)
29 fig . subplots_adjust (left=0 , right=1 , bottom=0 , top=1)
30 loc = plticker . MultipleLocator (base=myIntervalx)
31 loc1 = plticker . MultipleLocator (base=myIntervaly)
32 ax . xaxis . set_major_locator (loc)
33 ax . yaxis . set_major_locator (loc1)
34 ax . grid (which=’both’ , b=bool , axis=’both’ , linestyle=’-’ , linewidth=2)
35 ax . imshow (img)
36 return fig� �

2

Función mallado numerado
mallado num.py

� �
1 #!/usr/bin/env python

2 # coding: utf -8

3

4 # In[2]:

5

6 get_ipython () . run_line_magic (’pylab’ , ’’)
7 from PIL import Image

8 import matplotlib

9 import matplotlib . pyplot as plt

10 import pickle

11 import matplotlib . ticker as plticker

12

13 #************** Función mallado_num **************

14 #

15 #Función que superpone a la imagen introducida un mallado que además enumera.

16 #

17 #Argumentos:

18 # img ---> imagen.

19 # myIntervalx ---> dimensión del rectángulo del mallado (Inicializado por defecto a 100)

en el eje x.

20 # myIntervaly ---> dimensión del rectángulo del mallado (Inicializado por defecto a 100)

en el eje y.

21 # my_dpi ---> resolución de la figura (Inicializado por defecto a 100).

22 #

23 #Devuelve una figura con el mallado pintado sobre la imagen y enumerado.

24

25

26 def mallado num (img , myIntervalx=10 0. , myIntervaly=10 0. , my_dpi=10 0.) :
27 fig=plt . figure (figsize=(float (img . size [0]) /my_dpi , float (img . size [1]) /my_dpi) , dpi=

my_dpi)
28 ax=fig . add_subplot (111)
29 fig . subplots_adjust (left=0 , right=1 , bottom=0 , top=1)
30 loc = plticker . MultipleLocator (base=myIntervalx)
31 loc1 = plticker . MultipleLocator (base=myIntervaly)
32 ax . xaxis . set_major_locator (loc)
33 ax . yaxis . set_major_locator (loc1)
34 ax . grid (which=’both’ , b=bool , axis=’both’ , linestyle=’-’ , linewidth=2)
35 ax . imshow (img)
36 nx=abs (int (float (ax . get_xlim () [1] - ax . get_xlim () [0]) /float (myIntervalx)))
37 ny=abs (int (float (ax . get_ylim () [1] - ax . get_ylim () [0]) /float (myIntervaly)))
38 for j in range (ny) :
39 y=myIntervaly/2+j∗ myIntervaly
40 for i in range (nx) :
41 x=myIntervalx/ 2 .+float (i) ∗ myIntervalx
42 ax . text (x , y , ’{:d}’ . format (i+j∗ nx) , color=’g’ , ha=’center ’ , va=’center ’)
43 return fig� �

3

Función corte de imágenes
gridcrop.py

� �
1

2

3 #!/usr/bin/env python

4 # coding: utf -8

5

6 # In[2]:

7

8 get_ipython () . run_line_magic (’pylab’ , ’’)
9 import numpy as np

10 from PIL import Image

11 import matplotlib

12 import matplotlib . pyplot as plt

13 import pickle

14 import matplotlib . ticker as plticker

15

16 #************** Función gridcrop **************

17 #

18 #Función que corta la imagen según el mallado introducido.

19 #

20 #Argumentos:

21 # image ---> imagen.

22 # dimx ---> dimensión del rectángulo en el eje x.

23 # dimy ---> dimensión del rectángulo en el eje y.

24 #

25 #Devuelve una lista con todos los trozos de la imagen.

26

27

28 def gridcrop(image , dimx , dimy) :
29 nx=int (image . size [0] /dimx)
30 ny=int (image . size [1] /dimy)
31 trocitos=[]
32 for j in range (0 , ny) :
33 for i in range (0 , nx) :
34 trocitos=trocitos+[image . crop ((i∗ dimx , j∗ dimy , dimx+i∗ dimx , dimy+j∗ dimy))]
35 return trocitos� �

4

Función de cambio de color
colors.py

� �
1

2 #!/usr/bin/env python

3 # coding: utf -8

4

5 # In[2]:

6

7 get_ipython () . run_line_magic (’pylab’ , ’’)
8 import numpy as np

9 from PIL import Image

10 import matplotlib

11 import matplotlib . pyplot as plt

12 import pickle

13 import matplotlib . ticker as plticker

14

15 #************** Funciones change_color **************

16 #

17 #Funciones que anulan dos de los tres canales de una imagen en formato rgb.

18 #

19 #Argumentos:

20 # change_list ---> ı́ndices de los elementos que queremos cambiar .

21 # S ---> lista con imágenes.

22 #

23 #Devuelve la misma lista con el color de las imágenes modificado.

24

25 def change colorred(change_list , S) :
26 for i in change_list :
27 foto=S [i] . copy ()
28 data=foto . getdata ()
29 r = [(d [0] , 0 , 0) for d in data] #se cambian los colores salvo el verde

30 S [i] . putdata (r)
31 return S

32

33 def change colorgreen(change_list , S) :
34 for i in change_list :
35 data=S [i] . getdata ()
36 r = [(0 , d [0] , 0) for d in data] #se cambian los colores salvo el verde

37 S [i] . putdata (r)
38 return S

39

40 def change colorblue (change_list , S) :
41 for i in change_list :
42 foto=S [i] . copy ()
43 data=foto . getdata ()
44 r = [(0 , 0 , d [0]) for d in data] #se cambian los colores salvo el verde

45 S [i] . putdata (r)
46 return S� �

5

Función de lista a imagen
list2img.py

� �
1 #!/usr/bin/env python

2 # coding: utf -8

3

4 # In[2]:

5

6 import cv2

7 get_ipython () . run_line_magic (’pylab’ , ’’)
8 import numpy as np

9 from PIL import Image

10 import matplotlib

11 import matplotlib . pyplot as plt

12 import pickle

13 import matplotlib . ticker as plticker

14

15 #************** Función list2img **************

16 #

17 #Función que reconstruye una imagen desde un array donde están sus fragmentos.

18 #

19 #Argumentos:

20 # S ---> lista con imágenes.

21 # dim_x ---> número de fragmentos horizontales.

22 # dim_y ---> número de fragmentos verticales.

23 #

24 #Devuelve la imagen reconstruida.

25

26 def list2img (S , dim_x , dim_y) :
27 foo=S [0]
28 for i in range (1 , dim_x) :
29 foo=np . concatenate ((foo , S [i]) , axis=1)
30 bar=foo

31 for i in range (1 , dim_y) :
32 foo=S [dim_x∗ i]
33 for j in range (1 , dim_x) :
34 foo=np . concatenate ((foo , S [dim_x∗ i+j]) , axis=1)
35 bar=np . concatenate ((bar , foo) , axis=0)
36 b , g , r = cv2 . split (bar)
37 rgb_img = cv2 . merge ([r , g , b])
38 return rgb_img� �

6

Función de guardado
Save.py

� �
1 #!/usr/bin/env python

2 # coding: utf -8

3

4 # In[]:

5

6 import cv2

7 get_ipython () . run_line_magic (’pylab’ , ’’)
8 import numpy as np

9 from PIL import Image

10

11 #************** Función guardar **************

12 #

13 #Función que guarda las imágenes de un array independientemente con un nombre

predefinido.

14 #

15 #Argumentos:

16 # lis ---> lista de imágenes que queremos guardar.

17 # name ---> nombre con el que quremos guardar las imágenes.

18

19

20 def guardar (lis , name) :
21 for i in range (0 , len (lis)) :
22 m=lis [i]
23 m . save (name+str (i)+’.jpg’)� �

7

Función cálculo de la matriz de confusión
PlotConfusionMatrix num.py

� �
1 #!/usr/bin/env python

2 # coding: utf -8

3

4 # In[]:

5

6

7 import itertools

8 from sklearn . metrics import confusion_matrix

9 import matplotlib . pyplot as plt

10 import numpy as np

11

12 #************** Función que dibuja la matriz de confusión **************

13 #

14 #Función que calcula y dibuja la matriz de confusión de forma visual.

15 #

16 #Argumentos:

17 # y_real ---> etiquetas reales del conjunto de datos.

18 # y_pred ---> etiquetas predichas por el modelo del conjunto de datos.

19 # Classes ---> nombre de las clases del modelo.

20 # Normalize --> Booleano que nos indica si se normaliza o no la matriz de confusión. Por

defecto no se realiza la normalización .

21 # Title ---> Tı́tulo de la figura resultante. Por defecto será ’Matriz de Confusión ’.

22 # cmap ---> Definición de los colores de la matriz de confusión. Por defecto será en

escala de azules.

23

24

25 def plot_confusion_matrix (y_real , y_pred , Classes , Normalize=False , Title=’Matriz de

Confusión ’ , cmap=plt . cm . Blues) :
26 Confusion_Matrix=confusion_matrix (y_real , y_pred)
27 plt . imshow (Confusion_Matrix , interpolation=’nearest ’ , cmap=cmap)
28 plt . title (Title)
29 plt . colorbar ()
30 tick_marks=np . arange (len (Classes))
31 plt . xticks (tick_marks , Classes , rotation=45)
32 plt . yticks (tick_marks , Classes)
33 if Normalize :
34 Confusion_Matrix=Confusion_Matrix . astype (’float’) /Confusion_Matrix . sum () #(axis

=1)[:,np.newaxis]

35 print (’Matriz de confusion normalizada ’)
36 else :
37 print (’Matriz de confusion sin normalizar ’)
38 thresh=Confusion_Matrix . max () / 2 .
39 for i , j in itertools . product (range (Confusion_Matrix . shape [0]) , range (Confusion_Matrix

. shape [1])) :
40 plt . text (j , i , Confusion_Matrix [i , j] , horizontalalignment=’center ’ ,
41 color=’white’ if Confusion_Matrix [i , j] > thresh else ’black’)
42 plt . tight_layout ()
43 plt . ylabel (’Valores Reales ’)
44 plt . xlabel (’Valores Predichos ’)� �

Anexo B

Pretratamiento y estudio de los
datos

En este anexo se presentan los cuadernos de Jupyter con el código empleado en el pretrata-
miento de los datos cedidos por Efor y en el posterior estudio de estos. Se adjuntan los siguientes
cuadernos:

• Obtención de frames. Se extraen las imágenes de los v́ıdeos que se utilizarán para el
diseño y estudio del modelo.

• Estudio de la sala. Se realiza el estudio de la sala sobre como fragmentar de forma
óptima la imagen sin pérdida de información.

• Preparación de los conjuntos de entrenamiento y validación. Se generan de ma-
nera aleatoria los frames con los que entrenaremos y haremos una primera validación del
modelo. También se fragmentan las imágenes y se guardan en carpetas para una inspección
y selección manual posterior para formar los conjuntos.

73

Obtención de frames

In [1]: import cv2

%pylab

import numpy as np

from PIL import Image

import matplotlib

import matplotlib.pyplot as plt

import pickle

import matplotlib.ticker as plticker

Using matplotlib backend: Qt5Agg

Populating the interactive namespace from numpy and matplotlib

Proceso de lectura de los frames del vídeo y guardado de las imágenes de la sala ocupada.

In [2]: %cd C:\Users\ialdea\Documents\TFM\Caso Practico\data\sala ocupada

In [3]: vidcap = cv2.VideoCapture('videosalaocupada.asf')

success,image = vidcap.read()

count = 0

success = True

while success:

cv2.imwrite("frame%d.jpg" % count, image)

success,image = vidcap.read()

count += 1

Proceso de lectura de los frames del vídeo y guardado de las imágenes de la sala vacía.

In [4]: %cd C:\Users\ialdea\Documents\TFM\Caso Practico\data\sala vacía

In [5]: vidcap = cv2.VideoCapture('videosalavacia.asf')

success,image = vidcap.read()

count = 0

success = True

while success:

cv2.imwrite("frame%d.jpg" % count, image)

success,image = vidcap.read()

count += 1

1

Proceso de lectura de los frames del vídeo y guardado de las imágenes del vídeo de validación.

In [6]: %cd C:\Users\ialdea\Documents\TFM\Caso Practico\data\sala validacion

In [7]: vidcap = cv2.VideoCapture('vídeo validación.asf')

success,image = vidcap.read()

count = 0

success = True

while success:

cv2.imwrite("frame%d.jpg" % count, image)

success,image = vidcap.read()

count += 1

2

Estudio de la sala

In [1]: import cv2

%pylab

import numpy as np

from PIL import Image

import matplotlib

import matplotlib.pyplot as plt

import pickle

import matplotlib.ticker as plticker

Using matplotlib backend: Qt5Agg

Populating the interactive namespace from numpy and matplotlib

In [2]: #CARGA DE LAS FUNCIONES DEFINIDAS

%cd C:\Users\ialdea\TFM

%run colors.py

%run gridcrop.py

%run list2img.py

%run mallado.py

%run mallado_num.py

Mallado cuadrado

In [3]: %cd C:\Users\ialdea\Documents\TFM\Caso Practico\data\sala ocupada

In [4]: #Definición de las dimensiones del mallado

rectangle_x=120

rectangle_y=120

In [5]: frame0=Image.open('frame0.jpg')

dim_x=int(frame0.size[0]/rectangle_x)

dim_y=int(frame0.size[1]/rectangle_y)

In [6]: mallado(frame0,rectangle_x,rectangle_y)

1

Out[6]:

In [7]: frame1=Image.open('frame3721.jpg')

mallado(frame1,120,120)

Out[7]:

Estudio de mallados más pequeños.

2

In [8]: frame2=Image.open('frame9069.jpg')

mallado(frame2,65,65)

Out[8]:

In [9]: mallado_num(frame2,65,65)

Out[9]:

3

Los siguientes fragmentos de la imagen anterior pueden conducir a error en las redes.

In [10]: P=gridcrop(frame2,65,65)

lis_error=[300,258,129,398]

foo=P[136]

for i in lis_error:

foo=np.concatenate((foo,P[i]),axis=1)

b,g,r = cv2.split(foo)

rgb_img = cv2.merge([r,g,b])

cv2.imshow('fragmentos problemáticos',rgb_img)

Mallado Rectangular

In [11]: mallado(frame1,120,240)

Out[11]:

Estructura del mallado rectangular finalmente utilizado eliminando la cabecera de las fotos
para no inducir a error.

In [12]: %cd C:\Users\ialdea\Documents\TFM\Caso Practico\data\sala ocupada

frame=Image.open('frame3721.jpg')

foo=gridcrop(frame,120,120)

bar=list2img(foo[16:144],dim_x,dim_y-1)

%cd C:\Users\ialdea\Documents\TFM\Caso Practico\data\pausa

cv2.imwrite('img.jpg',bar)

img=Image.open('img.jpg')

mallado(img,120,240)

4

Out[12]:

In [13]: close('all')

5

Preparación de los conjuntos de entrenamiento y validación

In [1]: import cv2

%pylab

import numpy as np

from PIL import Image

import matplotlib

import matplotlib.pyplot as plt

import pickle

import matplotlib.ticker as plticker

import random

Using matplotlib backend: Qt5Agg

Populating the interactive namespace from numpy and matplotlib

In [2]: #CARGA DE LAS FUNCIONES DEFINIDAS

%cd C:\Users\ialdea\TFM

%run gridcrop.py

%run Save.py

%run list2img.py

Selección de los frames para el entrenamiento y la validación

In [3]: random.seed(0)

n=1200

#Frames del vídeo de la sala ocupada donde está la sala ocupada

bussy = [random.randint(3526,24525) for _ in range(n)]

m=300

#Frames del vídeo de la sala ocupada donde está la sala vacía

a = [random.randint(0,3526) for _ in range(m)]

p=300

#Frames del vídeo de la sala ocupada donde está la sala vacía

b= [random.randint(24526,27006) for _ in range(p)]

q=600

#Frames del vídeo de la sala vacía

c=[random.randint(0,26994) for _ in range(q)]

In [4]: lis_bussy_train=bussy[0:1000]

lis_bussy_val=bussy[1000:len(bussy)]

lis_empty_train0=a[0:250]+b[0:250]

lis_empty_train1=c[0:500]

1

lis_empty_val0=a[250:len(a)]+b[250:len(b)]

lis_empty_val1=c[500:len(c)]

Guardado de los frames seleccionados y fragmentados en carpetas

Definición de las dimensiones para el corte de las imágenes

In [5]: #Tamaño de la primera fila que vamos a quitar

quitx=120

quity=120

#Tamaño del mallado con el que cortamos las imágenes

rectangle_x=120

rectangle_y=240

#Dimensiones de los frames

dim_img_x=1920

dim_img_y=1080

#Número de trozos de imágenes resultantes

dim_x=int(dim_img_x/quitx)

dim_y=int(dim_img_y/quity)

Frames del conjunto de entrenamiento con la sala ocupada.

In [6]: for i in lis_bussy_train:

%cd C:\Users\ialdea\Documents\TFM\Caso Practico\data\sala ocupada

frame=Image.open('frame'+str(i)+'.jpg')

foo=gridcrop(frame,120,120)

bar=list2img(foo[16:144],dim_x,dim_y-1)

%cd C:\Users\ialdea\Documents\TFM\Caso Practico\data\pausa

cv2.imwrite('img.jpg',bar)

img=Image.open('img.jpg')

foo=gridcrop(img,120,240)

%cd C:\Users\ialdea\Documents\TFM\Caso Practico\data\selección de ocupada

guardar(foo,'nb'+str(i)+'_')

Frames del conjunto de entrenamiento con la sala vacía.

In [7]: for i in lis_empty_train0:

%cd C:\Users\ialdea\Documents\TFM\Caso Practico\data\sala ocupada

frame=Image.open('frame'+str(i)+'.jpg')

foo=gridcrop(frame,120,120)

bar=list2img(foo[16:144],dim_x,dim_y-1)

%cd C:\Users\ialdea\Documents\TFM\Caso Practico\data\pausa

cv2.imwrite('img.jpg',bar)

img=Image.open('img.jpg')

foo=gridcrop(img,120,240)

%cd C:\Users\ialdea\Documents\TFM\Caso Practico\data\selección de vacía

guardar(foo,'nb'+str(i)+'_')

for i in lis_empty_train1:

%cd C:\Users\ialdea\Documents\TFM\Caso Practico\data\sala vacía

2

frame=Image.open('frame'+str(i)+'.jpg')

foo=gridcrop(frame,120,120)

bar=list2img(foo[16:144],dim_x,dim_y-1)

%cd C:\Users\ialdea\Documents\TFM\Caso Practico\data\pausa

cv2.imwrite('img.jpg',bar)

img=Image.open('img.jpg')

foo=gridcrop(img,120,240)

%cd C:\Users\ialdea\Documents\TFM\Caso Practico\data\selección de vacía

guardar(foo,'ne'+str(i)+'_')

Frames del conjunto de validación con la sala ocupada.

In [8]: for i in lis_bussy_val:

%cd C:\Users\ialdea\Documents\TFM\Caso Practico\data\sala ocupada

frame=Image.open('frame'+str(i)+'.jpg')

foo=gridcrop(frame,120,120)

bar=list2img(foo[16:144],dim_x,dim_y-1)

%cd C:\Users\ialdea\Documents\TFM\Caso Practico\data\pausa

cv2.imwrite('img.jpg',bar)

img=Image.open('img.jpg')

foo=gridcrop(img,120,240)

%cd C:\Users\ialdea\Documents\TFM\Caso Practico\data\selección de ocupada val

guardar(foo,'nb'+str(i)+'_')

Frames del conjunto de validación con la sala vacía.

In [9]: for i in lis_empty_val0:

%cd C:\Users\ialdea\Documents\TFM\Caso Practico\data\sala ocupada

frame=Image.open('frame'+str(i)+'.jpg')

foo=gridcrop(frame,120,120)

bar=list2img(foo[16:144],dim_x,dim_y-1)

%cd C:\Users\ialdea\Documents\TFM\Caso Practico\data\pausa

cv2.imwrite('img.jpg',bar)

img=Image.open('img.jpg')

foo=gridcrop(img,120,240)

%cd C:\Users\ialdea\Documents\TFM\Caso Practico\data\selección de vacía val

guardar(foo,'nb'+str(i)+'_')

for i in lis_empty_val1:

%cd C:\Users\ialdea\Documents\TFM\Caso Practico\data\sala vacía

frame=Image.open('frame'+str(i)+'.jpg')

foo=gridcrop(frame,120,120)

bar=list2img(foo[16:144],dim_x,dim_y-1)

%cd C:\Users\ialdea\Documents\TFM\Caso Practico\data\pausa

cv2.imwrite('img.jpg',bar)

img=Image.open('img.jpg')

foo=gridcrop(img,120,240)

%cd C:\Users\ialdea\Documents\TFM\Caso Practico\data\selección de vacía val

guardar(foo,'ne'+str(i)+'_')

3

84 Anexo B. Pretratamiento y estudio de los datos

Anexo C

Diseño, resultados y ejecución de los
modelos

En este anexo queda recogido el código base usado para diseñar, usar y validar los modelos
de CNN empleados en el proyecto del trabajo. Se adjuntan los siguientes cuadernos:

• Diseño, entrenamiento y primeros resultados de la CNN. Cuaderno principal del
experimento donde se programan los modelos. Se muestra el código utilizado tomando de
ejemplo el modelo de red finalmente seleccionado. Aparecen las definiciones del modelo,
la lectura de los conjuntos, el entrenamiento de la red y una pequeña validación inicial.

• Carga del modelo y clasificación. Se muestra la forma en la que se cargan los modelos
guardados y se usan para predecir las imágenes junto con un previo tratamiento de estas
para que tengan la misma forma de entrada a la red que hemos modelado. Al final del
cuaderno se muestra el código necesario para realizar el estudio visual aunque lo que
verdaderamente nos interesa en un futuro es el código que nos dice si la sala está ocupada
o vaćıa, ya que la visualización de la imagen nos sirve principalmente para el ver los fallos
del modelo.

• Análisis de la curva ROC. Código necesario para el cálculo de la curva ROC sobre
nuevas predicciones.

• Estudio del modelo seleccionado. Se amplia el estudio de validación con el cálculo de
los conceptos definidos a partir de la matriz de confusión del estudio de la clasificación de
la imagen global en vez de en los fragmentos.

Las ĺıneas de código de estos cuadernos han sido escritas con la ayuda de la documentación
de Keras y los ejemplos de esta que podemos encontrar en [13].

85

Diseño, entrenamiento y estudio de la CNN

In [1]: from scipy import*
%pylab
from numpy.fft import*
from PIL import Image
import numpy as np
import cv2
import matplotlib.pyplot as plt
import matplotlib.ticker as plticker
from sklearn.metrics import confusion_matrix

Using matplotlib backend: Qt5Agg
Populating the interactive namespace from numpy and matplotlib

In [2]: import tensorflow as tf
import tensorflow
from tensorflow import keras
from keras.preprocessing.image import ImageDataGenerator
from keras.models import Sequential
from keras.layers import Convolution2D, MaxPooling2D
from keras.layers import Activation, Dropout, Flatten, Dense
from keras.optimizers import SGD
from keras import initializers
from keras.utils import to_categorical
from keras import models
import numpy as np
import matplotlib.pyplot as plt
import pickle
from keras.models import model_from_json

Using TensorFlow backend.

In [3]: #CARGAMOS LAS FUNCIONES DEFINIDAS
%cd C:\Users\ialdea\TFM
%run gridcrop.py
%run Save.py
%run list2img.py
%run PlotConfusionMatrix.py

1

Definición de los conjuntos

In [4]: train_datagen = ImageDataGenerator(rescale=1./255)
test_datagen = ImageDataGenerator(rescale=1./255)

In [5]: #Tamaño de las imágenes de entrada a la red
img_width=120
img_height=240

In [6]: #Conjunto de entrenamiento
train_generator = train_datagen.flow_from_directory(

"C://Users//ialdea//Documents//TFM//Caso Practico//data//train definitivo",
target_size=(img_width, img_height),
batch_size=20,
class_mode='binary')

Found 2000 images belonging to 2 classes.

In [7]: #Conjunto test
validation_generator = test_datagen.flow_from_directory(

"C://Users//ialdea//Documents//TFM//Caso Practico//data//validation definitivo",
target_size=(img_width, img_height),
batch_size=20,
shuffle=False,
class_mode='binary')

Found 400 images belonging to 2 classes.

In [8]: #Codificación de etiquetas
train_generator.class_indices

Out[8]: {'ocupada': 0, 'vacía': 1}

Información del modelo

In [9]: #******INFORMACIÓN DEL MODELO********
#
número de imágenes que se consideran para el entrenamiento
train_samples = 2000
número de imágenes se utilizan en la validación
validation_samples = 400
número de veces que se ejecutará la red
sobre el conjunto de entrenamiento antes
de empezar con la validación
epoch = 30

2

Diseño del modelo

In [10]: # ** DISEÑO DE LA ARQUITECTURA **
#
from numpy.random import seed
seed(2)
from tensorflow import set_random_seed
set_random_seed(2)
init=initializers.glorot_uniform(seed=1)
model = Sequential()

#CAPAS DE CONVOLUCIÓN
model.add(Convolution2D(6, (3, 3), padding='valid', use_bias=True,

kernel_initializer=init, bias_initializer='zeros',
input_shape = (img_width, img_height,3), data_format="channels_last"))

model.add(Activation('elu'))

model.add(Convolution2D(6, (3, 3),padding='valid', use_bias=True,
kernel_initializer=init,bias_initializer='zeros',
input_shape = (img_width, img_height,3), data_format="channels_last"))

model.add(Activation('elu'))

#FLATTENING
model.add(Flatten())

#FULL CONNECTION
model.add(Dense(512,activation='sigmoid'))
model.add(Dense(256,activation='sigmoid'))
model.add(Dense(1,activation='sigmoid'))

** FIN DEL MODELO **

In [11]: #*****CARACTERÍSTICAS DEL APRENDIZAJE************
#
#Antes de compilar el modelo hay que configurar el proceso de aprendizaje,
#la función de perdida, el optimizador y medida para la cnn
model.compile(loss='binary_crossentropy',

optimizer='sgd',
metrics=['accuracy'])

#Modelo resultante
print(model.summary())

3

Layer (type) Output Shape Param #
===
conv2d_1 (Conv2D) (None, 118, 238, 6) 168

activation_1 (Activation) (None, 118, 238, 6) 0

conv2d_2 (Conv2D) (None, 116, 236, 6) 330

activation_2 (Activation) (None, 116, 236, 6) 0

flatten_1 (Flatten) (None, 164256) 0

dense_1 (Dense) (None, 512) 84099584

dense_2 (Dense) (None, 256) 131328

dense_3 (Dense) (None, 1) 257
===
Total params: 84,231,667
Trainable params: 84,231,667
Non-trainable params: 0

None

Entrenamiento del modelo

In [12]: #****ENTRENAMIENTO DEL MODELO*******
from time import time
start_time=time()
train_model=model.fit_generator(

train_generator,
samples_per_epoch=train_samples,
nb_epoch=epoch,
validation_data=validation_generator,
nb_val_samples=validation_samples,
#steps_per_epoch=32/2,
verbose=1)

end_time=time()-start_time
hours=int(end_time/3600)
minutes=(end_time-hours*3600)/60
seconds=end_time%60
print('El tiempo de entrenamiento es:',hours, 'horas ',int(minutes),

'minutos y' ,seconds,' segundos')

4

Epoch 1/30
100/100 [==============================] - 536s 5s/step -

loss: 0.6584 - acc: 0.6265 - val_loss: 0.6294 - val_acc: 0.6850
Epoch 2/30
100/100 [==============================] - 350s 3s/step -

loss: 0.6224 - acc: 0.6785 - val_loss: 0.5995 - val_acc: 0.7025
Epoch 3/30
100/100 [==============================] - 299s 3s/step -

loss: 0.5964 - acc: 0.6950 - val_loss: 0.5720 - val_acc: 0.7250
Epoch 4/30
100/100 [==============================] - 296s 3s/step -

loss: 0.5695 - acc: 0.7165 - val_loss: 0.5631 - val_acc: 0.7000
Epoch 5/30
100/100 [==============================] - 305s 3s/step -

loss: 0.5501 - acc: 0.7280 - val_loss: 0.5468 - val_acc: 0.7300
Epoch 6/30
100/100 [==============================] - 308s 3s/step -

loss: 0.5275 - acc: 0.7425 - val_loss: 0.5328 - val_acc: 0.7375
Epoch 7/30
100/100 [==============================] - 306s 3s/step -

loss: 0.5154 - acc: 0.7470 - val_loss: 0.5234 - val_acc: 0.7250
Epoch 8/30
100/100 [==============================] - 312s 3s/step -

loss: 0.4953 - acc: 0.7510 - val_loss: 0.5003 - val_acc: 0.7450
Epoch 9/30
100/100 [==============================] - 297s 3s/step -

loss: 0.4717 - acc: 0.7755 - val_loss: 0.4747 - val_acc: 0.7825
Epoch 10/30
100/100 [==============================] - 321s 3s/step -

loss: 0.4374 - acc: 0.8095 - val_loss: 0.4641 - val_acc: 0.7825
Epoch 11/30
100/100 [==============================] - 353s 4s/step -

loss: 0.4229 - acc: 0.8070 - val_loss: 0.3929 - val_acc: 0.8425
Epoch 12/30
100/100 [==============================] - 318s 3s/step -

loss: 0.3791 - acc: 0.8370 - val_loss: 0.4204 - val_acc: 0.7725
Epoch 13/30
100/100 [==============================] - 319s 3s/step -

loss: 0.3625 - acc: 0.8490 - val_loss: 0.3711 - val_acc: 0.8375
Epoch 14/30
100/100 [==============================] - 299s 3s/step -

loss: 0.3132 - acc: 0.8745 - val_loss: 0.3288 - val_acc: 0.8525
Epoch 15/30
100/100 [==============================] - 331s 3s/step -

loss: 0.3082 - acc: 0.8705 - val_loss: 0.2817 - val_acc: 0.9025
Epoch 16/30
100/100 [==============================] - 335s 3s/step -

loss: 0.2595 - acc: 0.9040 - val_loss: 0.2486 - val_acc: 0.9275

5

Epoch 17/30
100/100 [==============================] - 318s 3s/step -

loss: 0.2273 - acc: 0.9190 - val_loss: 0.3585 - val_acc: 0.8325
Epoch 18/30
100/100 [==============================] - 321s 3s/step -

loss: 0.2181 - acc: 0.9245 - val_loss: 0.2037 - val_acc: 0.9425
Epoch 19/30
100/100 [==============================] - 327s 3s/step -

loss: 0.2016 - acc: 0.9305 - val_loss: 0.1867 - val_acc: 0.9475
Epoch 20/30
100/100 [==============================] - 328s 3s/step -

loss: 0.1686 - acc: 0.9425 - val_loss: 0.1650 - val_acc: 0.9625
Epoch 21/30
100/100 [==============================] - 317s 3s/step -

loss: 0.1584 - acc: 0.9495 - val_loss: 0.1912 - val_acc: 0.9275
Epoch 22/30
100/100 [==============================] - 345s 3s/step -

loss: 0.1298 - acc: 0.9635 - val_loss: 0.1549 - val_acc: 0.9575
Epoch 23/30
100/100 [==============================] - 334s 3s/step -

loss: 0.1223 - acc: 0.9625 - val_loss: 0.1414 - val_acc: 0.9550
Epoch 24/30
100/100 [==============================] - 310s 3s/step -

loss: 0.1147 - acc: 0.9670 - val_loss: 0.1197 - val_acc: 0.9725
Epoch 25/30
100/100 [==============================] - 301s 3s/step -

loss: 0.1137 - acc: 0.9690 - val_loss: 0.1479 - val_acc: 0.9575
Epoch 26/30
100/100 [==============================] - 307s 3s/step -

loss: 0.0815 - acc: 0.9805 - val_loss: 0.1505 - val_acc: 0.9500
Epoch 27/30
100/100 [==============================] - 329s 3s/step -

loss: 0.0685 - acc: 0.9845 - val_loss: 0.1427 - val_acc: 0.9525
Epoch 28/30
100/100 [==============================] - 326s 3s/step -

loss: 0.0774 - acc: 0.9800 - val_loss: 0.1004 - val_acc: 0.9700
Epoch 29/30
100/100 [==============================] - 336s 3s/step -

loss: 0.0745 - acc: 0.9770 - val_loss: 0.0885 - val_acc: 0.9775
Epoch 30/30
100/100 [==============================] - 337s 3s/step -

loss: 0.0516 - acc: 0.9885 - val_loss: 0.0898 - val_acc: 0.9725

El tiempo de entrenamiento es: 2 horas 43 minutos y 40.3520245552063 segundos

6

Análisis de los resultados del entrenamiento

Estudio gráfico de la función de pérdida y de la tasa de bien clasificados a lo largo de las
épocas:

In [13]: plt.subplot(311)
plt.plot(train_model.epoch,train_model.history['loss'],marker='o',linestyle='--',

color='b',label='Conjunto entrenamiento')
plt.plot(train_model.epoch,train_model.history['val_loss'],marker='o',linestyle='--',

color='g',label='Conjunto de validación')
plt.xlabel('Épocas')
plt.ylabel('Función de pérdida')
plt.title('Comparación de la función de pérdida \n
en el conjunto de entrenamiento y de validación')
plt.legend(loc='best')
plt.subplot(313)
plt.plot(train_model.epoch,train_model.history['acc'],marker='o',linestyle='--',

color='b',label='Conjunto entrenamiento')
plt.plot(train_model.epoch,train_model.history['val_acc'],marker='o',linestyle='--',

color='g',label='Conjunto de validación')
plt.xlabel('Épocas')
plt.ylabel('Accuracy')
plt.title('Comparación de la tasa de bien clasificados \n
en el conjunto de entrenamiento y de validación')
plt.legend(loc='best')

Out[13]: <matplotlib.legend.Legend at 0x181964e6f60>

Cálculo de la matriz de confusión de la red:

In [14]: validation_generator = test_datagen.flow_from_directory(
"C://Users//ialdea//Documents//TFM//Caso Practico//data//validation definitivo",

target_size=(img_width, img_height),
batch_size=1,
shuffle=False,
class_mode='binary')

validation_generator.reset()
nb_samples=len(validation_generator.filenames)
predictions=model.predict_generator(validation_generator,steps=nb_samples,

verbose=1,workers=1)

Found 400 images belonging to 2 classes.
400/400 [==============================] - 19s 48ms/step

In [15]: labels_predictions=[0] * len(predictions)
for i in range (0,len(predictions)):

if predictions[i]<0.5:
labels_predictions[i]=0

7

else:
labels_predictions[i]=1

In [16]: plot_confusion_matrix(validation_generator.classes, labels_predictions,
['ocupada','vacía'],Normalize=True)

Matriz de confusion normalizada

Guardado del modelo

In [17]: %cd C:\Users\ialdea\TFM

#Guardado del modelo en JSON
#
model_json=model.to_json()
with open ("CNNModel_11.json","w") as json_file:

json_file.write(model_json)

#Guardado de los pesos del modelo en HDF5
#
model.save_weights("CNNModel_11.h5")

C:\Users\ialdea\TFM

8

Carga del modelo y clasificación

In [1]: import tensorflow as tf

import tensorflow

from tensorflow import keras

from keras.preprocessing.image import ImageDataGenerator

from keras.models import Sequential

from keras.layers import Convolution2D, MaxPooling2D

from keras.layers import Activation, Dropout, Flatten, Dense

from keras.optimizers import SGD

from keras.utils import to_categorical

from keras import models

from keras.models import model_from_json

import numpy as np

import matplotlib

import matplotlib.ticker as plticker

import matplotlib.pyplot as plt

import pickle

from PIL import Image

import cv2

%matplotlib inline

%pylab

Using TensorFlow backend.

Using matplotlib backend: Qt5Agg

Populating the interactive namespace from numpy and matplotlib

In [2]: #CARGA DE LAS FUNCIONES
%cd C:\Users\ialdea\TFM

%run colors.py

%run gridcrop.py

%run list2img.py

%run Save.py

1

Carga el modelo

In [3]: #CARGA DEL MODELO
#cargar json y crear el modelo
json_file=open('CNNModel_11.json','r')

loaded_model_json=json_file.read()

json_file.close()

first_model=model_from_json(loaded_model_json)

#cargar pesos del modelo guardado
first_model.load_weights("CNNModel_11.h5")

Definición de las características de aprendizaje

Se vuelve a definir las características de aprendizaje del modelo que se entrenó.

In [4]: #*****CARACTERÍSTICAS DEL APRENDIZAJE************
#
first_model.compile(loss='binary_crossentropy',

optimizer='sgd',

metrics=['accuracy'])

Definición y adaptación del frame a predecir

In [5]: #NÚMERO DE FRAME A PREDECIR
nframe=6337#12722#1358#6307#18494
#DEFINICIÓN DE DIMESIONES (EN PÍXELES)
quitx=120

quity=120

img_dimx=1920

img_dimy=1080

dim_x=int(img_dimx/quitx)

dim_y=int(img_dimy/quity)

#GUARDADO DE LA IMAGEN EN UNA CARPETA AUXILIAR
#%cd C:\Users\ialdea\Documents\TFM\Caso Practico\data\sala ocupada
#%cd C:\Users\ialdea\Documents\TFM\Caso Practico\data\sala vacía
%cd C:\Users\ialdea\Documents\TFM\Caso Practico\data\sala validacion

#%cd C:\Users\ialdea\Documents\TFM\Caso Practico\data\sala watson
frame=Image.open('frame'+str(nframe)+'.jpg')

foo=gridcrop(frame,120,120)

bar=list2img(foo[16:144],dim_x,dim_y-1)

%cd C:\Users\ialdea\Documents\TFM\Caso Practico\data\pausa2

cv2.imwrite('img.jpg',bar)

img=Image.open('img.jpg')

foo=gridcrop(img,120,240)

%cd C:\Users\ialdea\Documents\TFM\Caso Practico\data\pruebas2\all_classes

guardar(foo,'n')

2

Lectura de los datos

In [6]: img_width=120

img_height=240

test_datagen = ImageDataGenerator(rescale=1./255)

imgroom = test_datagen.flow_from_directory(

"C:/Users/ialdea/Documents/TFM/Caso Practico/data/pruebas2",

target_size=(img_width, img_height),

batch_size=1,

shuffle=False,

class_mode='binary')

nb_samples=len(imgroom.filenames)

Found 64 images belonging to 1 classes.

Predicción

In [7]: #Predicción
imgroom.reset()

predictions0=first_model.predict_generator(imgroom,steps=nb_samples,

verbose=1,workers=1)

predictions=[0] * len(imgroom.filenames)

for i in range (0,len(imgroom.filenames)):

bar=imgroom.filenames.index('all_classes\\n'+str(i)+'.jpg')

predictions[i]=predictions0[bar][0]

ocup=[]

vac=[]

for i in range (0,len(predictions0)):

foo=[i]

if predictions[i]<0.2:

ocup=ocup+foo

else:

vac=vac+foo

if len(ocup)>=1:

print('La sala está ocupada')

else:

print('La sala está vacía')

Out[7]: 64/64 [==============================] - 3s 52ms/step

La sala está vacía

3

Estudio visual de la predicción

In [8]: #Estudio visual de la predicción
#%cd C:\Users\ialdea\Documents\TFM\Caso Practico\data\sala ocupada
#%cd C:\Users\ialdea\Documents\TFM\Caso Practico\data\sala vacía
%cd C:\Users\ialdea\Documents\TFM\Caso Practico\data\sala validacion

#%cd C:\Users\ialdea\Documents\TFM\Caso Practico\data\sala watson
frame=Image.open('frame'+str(nframe)+'.jpg')

dim_x=int(frame.size[0]/120)

dim_y=int(frame.size[1]/120)

foo=gridcrop(frame,120,120)

foo1=list2img(foo[0:16],dim_x,1)

bar=list2img(foo[16:144],dim_x,dim_y-1)

%cd C:\Users\ialdea\Documents\TFM\Caso Practico\data\pausa2

cv2.imwrite('img.jpg',bar)

img=Image.open('img.jpg')

dim_xx=int(img.size[0]/120)

dim_yy=int(img.size[1]/240)

foo=gridcrop(img,120,240)

foo=change_colorgreen(vac,foo)

foo=change_colorred(ocup,foo)

img_predict=list2img(foo,dim_xx,dim_yy)

img_predict=np.concatenate((foo1,img_predict),axis=0)

%cd C:\Users\ialdea\Documents\TFM\Caso Practico\data\prediccion

cv2.imwrite('newprediction.jpg',img_predict)

Out[8]: True

4

Análisis de la curva ROC

In [1]: import tensorflow as tf

import tensorflow

from tensorflow import keras

from keras.preprocessing.image import ImageDataGenerator

from keras import models

from keras.models import model_from_json

import numpy as np

import matplotlib

import matplotlib.ticker as plticker

import matplotlib.pyplot as plt

import pickle

from PIL import Image

import cv2

import itertools

from sklearn.metrics import confusion_matrix

import sklearn.metrics as metrics

%matplotlib inline

%pylab

Using TensorFlow backend.

Using matplotlib backend: Qt5Agg

Populating the interactive namespace from numpy and matplotlib

In [2]: #CARGA DE LAS FUNCIONES
%cd C:\Users\ialdea\TFM

%run colors.py

%run gridcrop.py

%run list2img.py

%run Save.py

1

Carga el modelo

In [3]: #CARGA DEL MODELO
#cargar json y crear el modelo
json_file=open('CNNModel_11.json','r')

loaded_model_json=json_file.read()

json_file.close()

first_model=model_from_json(loaded_model_json)

#cargar pesos del modelo guardado
first_model.load_weights("CNNModel_11.h5")

Definición de las características de aprendizaje

In [4]: #*****CARACTERÍSTICAS DEL APRENDIZAJE************
#
first_model.compile(loss='binary_crossentropy',

optimizer='sgd',

metrics=['accuracy'])

Cálculo de las predicciones y curva ROC

In [5]: img_width=120

img_height=240

test_datagen = ImageDataGenerator(rescale=1./255)

validation_generator = test_datagen.flow_from_directory(

"C:\\Users\\ialdea\\Documents\\TFM\\Caso Practico\\data\\roc",

target_size=(img_width, img_height),

batch_size=1,

shuffle=False,

class_mode='binary')

validation_generator.reset()

nb_samples=len(validation_generator.filenames)

predictions=first_model.predict_generator(validation_generator,steps=nb_samples,

verbose=1,workers=1)

Found 929 images belonging to 2 classes.

929/929 [==============================] - 45s 48ms/step

In [6]: number=6

numberimages=929

a=np.arange(number)

fpr=[0] * len(a)

tpr=[0] * len(a)

d={}

for i in a:

d['labels_predictions{0}'.format(i+1)]=[0] * len(predictions)

value=(i+1)/10

for j in range (0,len(predictions)):

2

if predictions[j]<value:

d['labels_predictions'+str(i+1)][j]=0

else:

d['labels_predictions'+str(i+1)][j]=1

_, fp, _,tp=confusion_matrix(validation_generator.classes,

d['labels_predictions'+str(i+1)]).ravel()

fpr[i]=fp/numberimages

tpr[i]=tp/numberimages

tpr=[1]+tpr+[0]

fpr=[1]+fpr+[0]

tpr=tpr[::-1]

fpr=fpr[::-1]

roc_auc=metrics.auc(fpr, tpr)

plt.title('Curva ROC')

plt.plot(fpr, tpr, 'b', label = 'AUC = %0.2f' % roc_auc)

plt.legend(loc = 'lower right')

plt.plot([0, 1], [0, 1],'r--')

plt.xlim([0, 1])

plt.ylim([0, 1])

plt.plot(fpr,tpr,'o')

plt.ylabel('Tasa de Verdaderos Positivos')

plt.xlabel('Tasa de Falsos Positivos')

grid()

plt.show()

3

Estudio del modelo seleccionado

In [1]: import tensorflow as tf

import tensorflow

from tensorflow import keras

from keras.preprocessing.image import ImageDataGenerator

from keras.models import Sequential

from keras.layers import Convolution2D, MaxPooling2D

from keras.layers import Activation, Dropout, Flatten, Dense

from keras.optimizers import SGD

from keras.utils import to_categorical

from keras import models

import numpy as np

%matplotlib inline

import matplotlib.pyplot as plt

import pickle

from PIL import Image

from keras.models import model_from_json

import random

import itertools

Using TensorFlow backend.

In [2]: #CARGA DE LAS FUNCIONES
%cd C:\Users\ialdea\TFM

%run PlotConfusionMatrix.py

%run gridcrop.py

%run list2img.py

%run save.py

Carga del modelo y definición de características

In [3]: #CARGA DEL MODELO
json_file=open('CNNModel_11.json','r')

loaded_model_json=json_file.read()

json_file.close()

1

first_model=model_from_json(loaded_model_json)

#cargar pesos al nuevo modelo
first_model.load_weights("CNNModel_11.h5")

#
#*****CARACTERÍSTICAS DEL APRENDIZAJE************
#
first_model.compile(loss='binary_crossentropy',

optimizer='sgd',

metrics=['accuracy'])

Matriz de confusión

In [4]: #SELECCIÓN DE LOS FRAMES DE VALIDACIÓN DEL VÍDEO DE VALIDACIÓN
from time import time

start_time=time()

random.seed(0)

n=1800

test = [random.randint(0,18001) for _ in range(n)]

vac=test.copy()

#
#*****PREDICCIÓN*****
#
#def de las dimensiones
quitx=120

quity=120

rectangle_x=120

rectangle_y=240

img_dimx=1920

img_dimy=1080

dim_x=int(img_dimx/quitx)

dim_y=int(img_dimy/quity)

test_datagen = ImageDataGenerator(rescale=1./255)

#
ocup=[]

for j in test:

#lectura del frame seleccionado y adaptación a la entrada de la red
%cd C:\Users\ialdea\Documents\TFM\Caso Practico\data\sala validacion

frame=Image.open('frame'+str(j)+'.jpg')

foo=gridcrop(frame,120,120)

bar=list2img(foo[16:144],dim_x,dim_y-1)

%cd C:\Users\ialdea\Documents\TFM\Caso Practico\data\pausa

cv2.imwrite('img.jpg',bar)

img=Image.open('img.jpg')

foo=gridcrop(img,120,240)

%cd C:\Users\ialdea\Documents\TFM\Caso Practico\data\pruebas\all_classes

guardar(foo,'n')

#creacion del conjunto de prediccion
imgroom = test_datagen.flow_from_directory(

2

"C:/Users/ialdea/Documents/TFM/Caso Practico/data/pruebas",

target_size=(rectangle_x, rectangle_y),

batch_size=1,

shuffle=False,

class_mode='binary')

nb_samples=len(imgroom.filenames)

#predicción con el modelo cargado
imgroom.reset()

predictions0=first_model.predict_generator(imgroom,steps=nb_samples,

verbose=1,workers=1)

predictions=[0] * len(imgroom.filenames)

for i in range (0,len(imgroom.filenames)):

bar=imgroom.filenames.index('all_classes\\n'+str(i)+'.jpg')

predictions[i]=predictions0[bar][0]

if predictions[i]<0.2:

ocup=ocup+[j]

break

for i in ocup:

vac.remove(i)

countvacg=0

countvacb=0

countocupg=0

countocupb=0

for i in vac:

if i <=6319:

countvacg += 1

else:

countvacb += 1

print ('El frame mal clasificado como vacía es el '+str(i))

for i in ocup:

if i >=6334:

countocupg += 1

else:

countocupb += 1

print ('El frame mal clasificado como ocupada es el '+str(i))

Title='Matriz de confusión'

cmap=plt.cm.Blues

Classes=['ocupada','vacía']

Confusion_Matrix=array([[countocupg,countocupb],[countvacb,countvacg]])

plt.imshow(Confusion_Matrix,interpolation='nearest',cmap=cmap)

plt.title(Title)

plt.colorbar()

tick_marks=np.arange(len(Classes))

plt.xticks(tick_marks,Classes,rotation=45)

plt.yticks(tick_marks, Classes)

thresh=Confusion_Matrix.max()/2.

3

for i,j in itertools.product(range(Confusion_Matrix.shape[0]),

range(Confusion_Matrix.shape[1])):

plt.text(j,i,Confusion_Matrix[i,j],horizontalalignment='center',

color='white' if Confusion_Matrix[i,j] > thresh else 'black')

plt.tight_layout()

plt.ylabel('Valores Reales')

plt.xlabel('Valores Predichos')

end_time=time()-start_time

hours=int(end_time/3600)

minutes=(end_time-hours*3600)/60

seconds=end_time%60

print('El tiempo de ejecución es:',hours, 'horas ',int(minutes),

'minutos y' ,seconds,' segundos')

El frame mal clasificado como vacía es el 6341

El frame mal clasificado como vacía es el 6325

El frame mal clasificado como vacía es el 6337

El frame mal clasificado como ocupada es el 5251

El frame mal clasificado como ocupada es el 5382

El tiempo de entrenamiento es: 1 horas 52 minutos y 12.464517593383789 segundos

In [5]: #POSITIVO--VACÍA, NEGATIVO--OCUPADA
IndPositivReal=countvacg+countvacb

IndNegativReal=countocupg+countocupb

IndPositivFake=countvacg+countocupb

IndNegativFake=countocupg+countvacb

#TASA DE BIEN CLASIFICADOS
ACC=(countocupg+countvacg)/n

#TASA DE MAL CLASIFICADOS
TMC=(countvacb+countocupb)/n

#SENSIBILIDAD
TPR=countvacg/(IndPositivReal)

#ESPECIFICIDAD
TNR=countocupg/(IndNegativReal)

#PRECISIÓN
PPV=countvacg/IndPositivFake

#TASA DE FALSOS POSITIVOS
FPR=countocupb/IndNegativReal

#TASA DE FALSOS NEGATIVOS
FNR=countvacb/IndPositivReal

#Resultados
print('Los resultados obtenidos a partir de la matriz de confusión:')

print('Tasa de bien clasificados, '+str(ACC*100)+'%')

print('Tasa de mal clasificados, '+str(TMC*100)+'%')

print('Sensibilidad, '+str(TPR*100)+'%')

print('Especificidad, '+str(TNR*100)+'%')

4

print('Precisión, '+str(PPV*100)+'%')

print('Tasa de falsos positivos, '+str(FPR*100)+'%')

print('Tasa de falsos negativos, '+str(FNR*100)+'%')

Los resultados obtenidos a partir de la matriz de confusión:

Tasa de bien clasificados, 99.72222222222223%

Tasa de mal clasificados, 0.2777777777777778%

Sensibilidad, 99.55223880597015%

Especificidad, 99.82300884955752%

Precisión, 99.70104633781763%

Tasa de falsos positivos, 0.17699115044247787%

Tasa de falsos negativos, 0.44776119402985076%

5

106 Anexo C. Diseño, resultados y ejecución de los modelos

Bibliograf́ıa

[1] Benson, C.C.; Lajish, V.L.; Rajamani, Kumar. A novel skull stripping and en-
hancement algorithm for the improved brain tumor segmentation using mathematical
morphology, Int J Image Graph Signal Process, vol. 8, no. 7, p. 59–66, 2016, dis-
ponible en https://www.researchgate.net/profile/Benson_C_C3/publication/

305515800_A_Novel_Skull_Stripping_and_Enhancement_Algorithm_for_the_

Improved_Brain_Tumor_Segmentation_using_Mathematical_Morphology/links/

57985e2708aeb0ffcd06ef63.pdf.

[2] Billah, Mohammad Ehtasham. Classifying Microscopic Images for Acute Lymphoblas-
tic Leukemia (ALL) using Bayesian Convolutional Neural Networks, 2018, disponible en
http://www.diva-portal.org/smash/get/diva2:1233518/FULLTEXT01.pdf.

[3] Cui, Zhihua et al. Malicious code detection based on CNNs and multi-objective algo-
rithm, Journal of Parallel and Distributed Computing, vol. 129, p. 50–58, 2019.

[4] Diniz, Pedro Henrique Bandeira et al. Detection of white matter lesion regions in
MRI using SLIC0 and convolutional neural network, Computer methods and programs in
biomedicine, vol. 167, p. 49–63, 2018.

[5] GIMP, GIMP-GNU Image manipulation program, https://www.gimp.org/.

[6] Goldberg, Yoav ; Levy, Omer. word2vec Explained: deriving Mikolov et al.’s negative-
sampling word-embedding method, arXiv preprint arXiv:1402.3722, 2014, disponible en
https://arxiv.org/pdf/1402.3722.pdf.

[7] Gonzalez, Rafael C.; Woods, Richard E. Digital Image Processing, 2.a ed., Prenti-
ce Hall, disponible en http://web.ipac.caltech.edu/staff/fmasci/home/astro_refs/

Digital_Image_Processing_2ndEd.pdf

[8] Goodfellow, Ian ; Bengio, Yoshua ; Courville, Aaron. Deep learning, MIT press,
2016.

[9] Harbola, Shubhi ; Coors, Volker. One dimensional convolutional neural network
architectures for wind prediction, Energy Conversion and Management, vol. 195, p. 70–75,
2019.

[10] Haykin, Simon S., et al. Neural networks and learning machines, 3.a ed., Pearson edu-
cation Upper Saddle River, 2009.

[11] IBM, Watson IBM, https://www.ibm.com/watson.

[12] Jupyter Notebook, The Jupyter Notebook, https://jupyter-notebook.

readthedocs.io/en/stable/.

[13] Keras, Keras:The Python Deep Learning Library, https://keras.io.

107

https://www.researchgate.net/profile/Benson_C_C3/publication/305515800_A_Novel_Skull_Stripping_and_Enhancement_Algorithm_for_the_Improved_Brain_Tumor_Segmentation_using_Mathematical_Morphology/links/57985e2708aeb0ffcd06ef63.pdf
https://www.researchgate.net/profile/Benson_C_C3/publication/305515800_A_Novel_Skull_Stripping_and_Enhancement_Algorithm_for_the_Improved_Brain_Tumor_Segmentation_using_Mathematical_Morphology/links/57985e2708aeb0ffcd06ef63.pdf
https://www.researchgate.net/profile/Benson_C_C3/publication/305515800_A_Novel_Skull_Stripping_and_Enhancement_Algorithm_for_the_Improved_Brain_Tumor_Segmentation_using_Mathematical_Morphology/links/57985e2708aeb0ffcd06ef63.pdf
https://www.researchgate.net/profile/Benson_C_C3/publication/305515800_A_Novel_Skull_Stripping_and_Enhancement_Algorithm_for_the_Improved_Brain_Tumor_Segmentation_using_Mathematical_Morphology/links/57985e2708aeb0ffcd06ef63.pdf
http://www.diva-portal.org/smash/get/diva2:1233518/FULLTEXT01.pdf
https://www.gimp.org/
https://arxiv.org/pdf/1402.3722.pdf
http://web.ipac.caltech.edu/staff/fmasci/home/astro_refs/Digital_Image_Processing_2ndEd.pdf
http://web.ipac.caltech.edu/staff/fmasci/home/astro_refs/Digital_Image_Processing_2ndEd.pdf
https://www.ibm.com/watson
https://jupyter-notebook.readthedocs.io/en/stable/
https://jupyter-notebook.readthedocs.io/en/stable/
https://keras.io

108 Bibliograf́ıa

[14] Koustubh, ResNet,AlexNet,VGGNet,Inception: Understanding various ar-
chitectures of Convolutional Networks, https://cv-tricks.com/cnn/

understand-resnet-alexnet-vgg-inception/.

[15] Liao, Shiyang, et al. CNN for situations understanding based on sentiment analysis of
twitter data, Procedia computer science, vol. 111, p. 376–381, 2017, disponible en https:

//www.sciencedirect.com/science/article/pii/S1877050917312103.

[16] Machine Learning Cheatsheet, Activation fuction, https://ml-cheatsheet.

readthedocs.io/en/latest/activation_functions.html.

[17] Microsoft Azure, Cognitive Services, https://azure.microsoft.com/es-es/

services/cognitive-services/.

[18] Muñoz Fernández, Álvaro. Implementación del algoritmo SLICO en EspIN,
ETSI Informatica, 2018, disponible en http://oa.upm.es/52471/1/TFG_ALVARO_MUNOZ_

FERNANDEZ.pdf.

[19] Rstopup, Dibujar las ĺıneas de la cuadŕıcula sobre una imagen en matplotlib,
https://rstopup.com/dibujar-las-lineas-de-la-cuadricula-sobre-una-imagen-en-matplotlib.html.

[20] Ruder, Sebastian. An overview of gradient descent optimization algorithms, arXiv pre-
print arXiv:1609.04747, 2016, disponible en, https://arxiv.org/pdf/1609.04747.pdf.

[21] Scikit-learn, Confusion matrix, https://scikit-learn.org/stable/auto_examples/
model_selection/plot_confusion_matrix.html.

[22] Szegedy, Christian, et al. Going Deeper with Convolutions, Computer Vision and
Pattern Recognition (CVPR), disponible en, http://arxiv.org/abs/1409.4842

[23] TensorFlow, An end-to-end open source machine learning platform, https://www.

tensorflow.org/.

[24] Theano, Theano, http://deeplearning.net/software/theano/.

[25] Toulis, Panos; Horel, Thibaut; Airoldi, Edoardo M. Stable robbins-monro ap-
proximations through stochastic proximal updates, arXiv preprint arXiv:1510.00967, 2015,
disponible en https://arxiv.org/pdf/1510.00967.pdf.

[26] Wikipedia, Stochastic gradient descent, https://en.wikipedia.org/wiki/Stochastic_
gradient_descent.

[27] Zhang, Ye; Wallace, Byron. A sensitivity analysis of (and practitioners’ guide to)
convolutional neural networks for sentence classification, arXiv preprint arXiv:1510.03820,
2015, disponible en https://arxiv.org/pdf/1510.03820.pdf.

[28] Zhang, Zhifei. Derivation of Backpropagation in Convolutional Neural Network (CNN),
University of Tennessee, Knoxville, TN, 2016.

https://cv-tricks.com/cnn/understand-resnet-alexnet-vgg-inception/
https://cv-tricks.com/cnn/understand-resnet-alexnet-vgg-inception/
https://www.sciencedirect.com/science/article/pii/S1877050917312103
https://www.sciencedirect.com/science/article/pii/S1877050917312103
https://ml-cheatsheet.readthedocs.io/en/latest/activation_functions.html
https://ml-cheatsheet.readthedocs.io/en/latest/activation_functions.html
https://azure.microsoft.com/es-es/services/cognitive-services/
https://azure.microsoft.com/es-es/services/cognitive-services/
http://oa.upm.es/52471/1/TFG_ALVARO_MUNOZ_FERNANDEZ.pdf
http://oa.upm.es/52471/1/TFG_ALVARO_MUNOZ_FERNANDEZ.pdf
https://rstopup.com/dibujar-las-lineas-de-la-cuadricula-sobre-una-imagen-en-matplotlib.html
https://arxiv.org/pdf/1609.04747.pdf
https://scikit-learn.org/stable/auto_examples/model_selection/plot_confusion_matrix.html
https://scikit-learn.org/stable/auto_examples/model_selection/plot_confusion_matrix.html
http://arxiv.org/abs/1409.4842
https://www.tensorflow.org/
https://www.tensorflow.org/
http://deeplearning.net/software/theano/
https://arxiv.org/pdf/1510.00967.pdf
https://en.wikipedia.org/wiki/Stochastic_gradient_descent
https://en.wikipedia.org/wiki/Stochastic_gradient_descent
https://arxiv.org/pdf/1510.03820.pdf

	Glosario
	Abstract
	Resumen
	Introducción
	Entorno tecnológico
	Democratización de las redes neuronales convolucionales
	Desarrollo del trabajo

	Redes Neuronales Convolucionales
	Arquitectura de las redes neuronales convolucionales
	Capas de convolución
	Capas de la red neuronal

	Aprendizaje
	Función de pérdida
	Retropropagación o Backpropagation
	Gradiente Estocástico Descendente (SGD)
	Importancia de las funciones de activación en el aprendizaje

	Evaluación de la clasificación de las CNNs
	Matriz de confusión
	Otras técnicas de validación

	Predicción de la clase

	Estado del arte
	Gestión autómata de la ocupación de salas
	Descripción y metodología del proyecto
	Presentación del conjunto de datos y obtención de frames
	Fase de viabilidad
	Estudio de la sala
	Estudio de los datos y obtención de los conjuntos del experimento
	Creación, aplicación y evaluación de las CNNs
	Validación del modelo seleccionado

	Conclusiones

	Anexos
	Funciones definidas
	Pretratamiento y estudio de los datos
	Diseño, resultados y ejecución de los modelos
	Bibliografía

