
1 | P a g e  
 

                                     
http://www.em3e-4sw.eu/em3e/index.php 

 

 

Academic year 2018-2019 

Semester 4 

Final Master Thesis Report  

 

Topic 

Direct Sunlight for membrane distillation based on photothermal 

membranes 

 

Submitted By 
SWARNA, Sutapa Roy 

NANOMAT, Universidad de Zaragoza 

EM3E-4SW 

 

Supervisor  
Professor Reyes Mallada 

Universidad de Zaragoza 

 

Submitted To 

Professor André Ayral  

Ing. Vlastimil Fila 

Dra. María Pilar Pina 

6.09.2019 

 

Erasmus Mundus Master in Membrane Engineering for a 

Sustainable World (www.em3e.eu ) 

 (EM3E-4SW) 

 

http://www.em3e-4sw.eu/em3e/index.php
http://www.em3e.eu/


2 | P a g e  
 

 

 

“The EM3E4SW Master is an Education Programme supported by the European 

Commission, the European Membrane Society (EMS), the European Membrane House (EMH), 

and a large international network of industrial companies, research centres and universities” 

“The EM3E4SW education programme has been founded with support from the 

European Commission. This publication reflects the views only of the author, and the 

Commission cannot be held responsible for any use which may be made of information 

contained therein”. 

Acknowledgment:  

I would like to start by expressing my special and utmost gratitude to my supervisor Prof. Reyes 

Mallada. More than being just a teacher to me, she has been a mother figure to me who I really 

needed at times. She helped me in ways that I cannot even express in words. If she were not there, 

maybe I would not be able to even try to finish my report. She has only encouraged me and gave 

me strength I could not use it properly. I cannot say it enough to express how indebted I am to her. 

Thank you for your patience and support.   

I would like to extend my gratitude to the European Institute of Membranes in Montpellier and the 

partner universities involved in my formation during this master: University of Montpellier II, 

Universite –Toulouse III Paul Sabatier, University of Chemistry and Technology of Prague, 

University of Zaragoza. Also, I would like to thank the European Commission for the economic 

support and Prof. André Ayral to give me the extension and giving me the opportunity to try at 

least. I also thank Karin for the support. 

I would thank to my family, my friend Tasmia, Jessica, Sebastian, Jasmin to give me support and 

hope when I needed it the most. My psychologist Elizabeth, thank you. Thanks to all the people in 

the lab who helped me in every step. Thanks to everyone who helped me to live a little longer and 

better. 



3 | P a g e  
 

Contents 
Acknowledgment: ...................................................................................................................................... 2 

Table of Figures: ........................................................................................................................................ 4 

1. Introduction: ........................................................................................................................................ 6 

2. Objective: .......................................................................................................................................... 10 

3. Experimental Procedure: ................................................................................................................. 10 

3.1. Au-citrate synthesis: ....................................................................................................... 10 

3.2. Au-thiol synthesis:.......................................................................................................... 10 

3.3. Deposition of Nanoparticles: .......................................................................................... 11 

3.3.1. Filtration of the Au-citrate and Au-thiol on respective membranes: ...................... 12 

3.3.2. Hydrophobic nanoparticles on hydrophobic membrane: ........................................ 12 

3.3.3. Hydrophilic nanoparticles on hydrophilic membrane: ........................................... 12 

3.4. Batch run with membrane: ............................................................................................. 13 

3.5. Characterization Techniques: ......................................................................................... 13 

3.5.1. UV-Vis .................................................................................................................... 13 

3.5.2. DLS: ........................................................................................................................ 14 

3.5.3. TEM: ....................................................................................................................... 14 

3.6. Materials and Equipment: .............................................................................................. 14 

3.6.1. Equipment and instrument: ..................................................................................... 14 

3.6.2. Membrane and material: ......................................................................................... 14 

3.6.3. Module: ................................................................................................................... 15 

3.7. System Setup: Previous setup and the changes: ............................................................. 18 

4.  Result and Discussion: ....................................................................................................................... 19 

4.1. Characterization of the Au-citrate NPs and Au-thiol NPs: ................................................ 19 

4.2. Deposition of the Au-citrate and Au-thiol on the membrane: ........................................ 23 

4.3. Electrospun embrane characterization: .......................................................................... 24 

4.4. Membrane characterization: ........................................................................................... 25 

4.5. Temperature profile under visible light:......................................................................... 27 

4.6. Batch Experiment result: ................................................................................................ 32 

5. Conclusion: ....................................................................................................................................... 34 

6. Future Plans: ..................................................................................................................................... 34 

7. Bibliography: .................................................................................................................................... 35 



4 | P a g e  
 

#Appendix: ................................................................................................................................................ 37 

 

Table of Figures: 
Figure 1: Presentation of (a) Conventional Membrane distillation; (b) proposed membrane 

distillation with nanomaterials deposited (or coating) on membrane for localized heating [4] ....... 7 

Figure 2: Membrane module and separate parts of the module (the feed entrance, vapor outlet and 

thermocouple ports are not shown) ............................................................................................... 16 

Figure 3: Nanophotonics solar membrane distillation assisted by vacuum pump (connections and 

order) ............................................................................................................................................. 17 

Figure 4: (left) The dimensions of the first module made; (right); the proposal of 2nd module 

design ............................................................................................................................................ 18 

Figure 5: Au citrate nanoparticles: (left) TEM images (20 nm scale); (right) Particle size 

distribution from TEM images ...................................................................................................... 19 

Figure 6: Particle size distribution of Au-citrate from DLS:(upper left) Number vs Size; (upper 

right) Intensity vs Size; (bottom) Volume vs Size ........................................................................ 20 

Figure 7: Au-thiol nanoparticles: (left) TEM images (20 nm scale); (right) Particle size distribution 

from TEM images ......................................................................................................................... 21 

Figure 8: Particle size distribution of Au-thiol from DLS:(upper left) Number vs Size; (upper right) 

Intensity vs Size; (bottom) Volume vs Size .................................................................................. 21 

Figure 9: UV-Vis spectra for: (left) Au-citrate synthesis; (right) Au-thiol synthesis ................... 22 

Figure 10: Comparison between the UV-Vis spectra: Red Shift of Au-thiol ............................... 23 

Figure 11: Filtration-(a) Au-citrate on hydrophilic PVDF; (b) Au-thiol on Carbon paper; (c) Au-

thiol on Hydrophobic PVDF; Spin coating- (d) Au citrate on hydrophilic PVDF; (e) Au thiol on 

hydrophobic PP; Evaporation-(f) Au-thiol on PP; (g) Au-citrate on hydrophilic PVDF ............. 24 

Figure 12: (left) 10 wt% PVDF Electrospum membrane SEM image of the fibers; (middle) Fiber 

thickness distribution; (right) electrospun membrane from paper [25] .......................................... 25 

Figure 13: Contact angles for different membranes and nanoparticle deposited membranes ...... 26 

Figure 14: Temperature Profile for various combination of membranes and nanoparticles using 

UV 365 nm LED, White LED, 740 nm wavelength LED: Temperature vs distance of the LED 

source from the membrane (lowest and highest distance 1.9 and 5.7 cm respectively) ............... 28 



5 | P a g e  
 

Figure 15: Temperature profile for Carbon Paper: under UV 365 and White LED: Temperature 

vs distance of the LED source from the membrane ...................................................................... 30 

Figure 16: Temperature Profile of different membrane and nanoparticles combination under White 

LED: Temperature vs distance of the LED source from the membrane....................................... 31 

Figure 17: Batch experiment for different NPs and membrane combination ............................... 32 

 

Appendix: Figure 1:Different nanoparticles filtrated on different membranes in previous semester 

thesis work .................................................................................................................................... 37 

Appendix: Figure 2: (left) Breakage of PP 0.2 um membrane while spin coating of Au thiol as PP 

is not that compatible with chloroform; (middle) careful attachment of PP membrane on silicon 

wafer to avoid breakage and curling- spin coating varying spin time, spinning speed ................ 37 

Appendix: Figure 3: Filtration unit: (left) plastic one for water and ethanol filtration ; (right) Glass 

filtration unit for chloroform filtration .......................................................................................... 38 

Appendix: Figure 4: Water droplet holdup by (left side of the image): Hydrophobized Au-citrate 

by 1-octadecanethiol; (right side of the image) Au citrate on hydrophilic PVDF [(left image):30 

sec ; (right image): 3 minutes........................................................................................................ 38 

Appendix: Figure 5:SEM image: (left) Quintech Gas diffusion layer (carbon paper)[26]; (right) 

Spongelike PVDF membrane adds hydrophobicity [6] ................................................................ 39 

Appendix: Figure 6: System setup for measuring the temperature of NPs deposited on membrane 

produced by applying different LEDs of various wavelengths (the lid from first designed module; 

height 1.2 cm) ............................................................................................................................... 39 

Appendix: Figure 7: Temperature profile for various combination of membranes and nanoparticles 

using UV 365 nm LED, White LED, 740 nm wavelength LED: Temperature vs irradiation 

calculated using varying distance of the LED source from the membrane .................................. 40 

Appendix: Figure 8: Temperature profile for Carbon Paper under UV 365 and White LED: 

Temperature vs irradiation calculated using varying distance of the LED source from the 

membrane ...................................................................................................................................... 40 

Appendix: Figure 9: Temperature profile for different membrane and nanoparticles combination 

under White LED: Temperature vs irradiation calculated using varying distance of the LED source 

from the membrane ....................................................................................................................... 41 



6 | P a g e  
 

Appendix: Figure 10: The area inside the green circle still has carbon when installed to module 

exposed to White LED though Au-thiol does not cover the area but the same area for right image 

only has blank PVDF. It happened due to the smaller diameter of the filtration unit .................. 41 

Appendix: Figure 11: Super-hydrophobic Au thiol deposited on gas diffusion layer (carbon paper)

....................................................................................................................................................... 42 

Appendix: Figure 12: Dimensions of 2nd version of the module ................................................. 42 

 

 

 

 

1. Introduction:  

As the number of people will keep increasing in the world, the freshwater will be demanded than 

more than anything. Limited resource of freshwater underground, ground rivers will not be 

sufficient to meet the demand and urge to look for new options will be encouraged. 97.5% of water 

belongs to seas and only 0.79% of freshwater is recoverable from the remaining 2.5% is fresh 

water.[1] Membrane distillation (MD) can be appointed in desalination process to provide fresh 

water.  

MD defined as thermal membrane process where the driving force is the transmembrane vapor 

pressure difference and vapor–liquid interface equilibrium is established in the pore to facilitate 

the vapor transfer through the membrane pores to the comparatively colder distillate side.[2][3] In 

order to facilitate MD operation, high membrane hydrophobicity is considered one of the primary 

requirements as hydrophobicity provide a barrier to liquid water passage to the permeate side but 

promotes vapor transport through membrane.[4] Other requirements Lawson and Lloyd (1997) are: 

i) Porous membrane; ii) Non-wetted membrane by process liquid; iii) No capillary condensation 

inside the membrane pore; iv) No alteration of the vapor/liquid equilibrium of the different 

components in the process liquids by the membrane; v) one side of the membrane in direct contact 

with the process liquid etc.[5] 

Among the types of MD, there are four as follow: direct contact membrane distillation (DCMD), 

air gap membrane distillation (AGMD), sweeping gas membrane distillation (SGMD), vacuum 

membrane distillation (VMD).[1][6] Another one adds into these names nanophotonics-enabled 
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solar membrane distillation (NESMD), can be considered as a take on DCMD where local heating 

of a nanoparticle (NP)-infused membrane when it is illuminated by solar energy or photothermal 

energy.[7] Advantages such as MD is simple, absence of applied hydraulic pressure, achievable and 

inexpensive material and 100% theoretical salt rejection get weighed down by disadvantages like 

it consumes higher energy, has energy loss, temperature polarization, needs extra solar-thermal 

collector etc.[1][2][8][9] 

Temperature polarization refers the situation as the temperature at the membrane surface on the 

feed side (T1) may be significantly lower than the temperature of the bulk heated feed water (TF), 

and when the vapor will pass down to distillate side temperature at the membrane surface on the 

distillate side (T2) may be significantly higher than that of the bulk distillate (TD). 

 

Figure 1: Presentation of (a) Conventional Membrane distillation; (b) proposed membrane distillation 

with nanomaterials deposited (or coating) on membrane for localized heating [4] 

 So, if the water is only heated locally when it is in direct contact with the one surface of the 

membrane, TP can be minimized to quite some extent as the temperature will not get down at the 

vicinity of the membrane. And to get local heating, photothermal membrane (coating or deposited 

nanoparticles on membrane which gets heated under visible or solar light) can be employed which 

provides providing the thermal driving force for the MD process.[4]  

From recent past, there is a wave of appreciation for renewable energy. Among them, solar energy 

is considered one of the promising options as it is stated that per hour, sunlight strikes the earth 

surface with more energy than the summation of the energy consumed by human in a whole year. 

Additionally, solar energy surpassing renewable and fossil-based energy resources combined 

opens up a broad range application area.[10] Polytetrafluoroethylene (PTFE), polypropylene (PP) 
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and polyvinylidene fluoride (PVDF, good physical, chemical, and mechanical properties including 

lower surface energy)[6] are used for synthesizing MD membrane.[1] 

Literature Review: As metallic nanoparticles act as good optical absorber attributing to the surface 

plasmon resonance[11], different kinds of nanoparticle varying size, shape, synthesis process, 

operating module and/or system have been employed to test out and evaluate the performances. 

Though this work incorporated nanoparticles on the membrane, there are journal papers exploring 

other arrangements. Local steam generation using cold bulk liquid with dispersed i) silica core-Au 

nanoshells; ii) water-soluble N115 carbon black (CB) nanoparticles were tried out using high 

intensity of sunlight (solar light focused using 26.67 cm ×26.67 cm Fresnel lens, wavelength range: 

400-1300 nm) with power of 103 kW m-2 showed quite similar trend for both cases and produced 

2.5 g steam was generated in 4 minutes with 24% steam generation efficiency. Increment of 

temperature found out to be depended on the fluid volume (increment of nanoparticles).[11] Using 

quite similar nanoparticles mentioned aforementioned paper[11], photothermal modified 

hydrophobic commercial PVDF membranes depositing i) SiO2 core (120 nm) with Au nanoshells 

(20 nm thickness) and ii) unfunctionalized CB NPs on them varying coating density, were chosen 

as experimental membranes in direct contact solar membrane distillation system.  The membrane 

module with an effective area of 28.3 cm2 used a quartz window allowing irradiation of the 

membrane surface measured 1 sun unit (̴ 1.367 kWm-2) and the simulated sunlight is provided by 

six halogen tungsten lamps. The countercurrent feed and distillate flowrates were 8.5 cms-1 and 

7.76 cms-1 (Reynolds numbers of 470 and 309 respectively) though peristaltic pump. Low coating 

density of CB gives 0.22 gm-2s-1 whereas membrane with higher coating density CB achieved 0.42 

gm-2s-1 permeate flux expected due to high number of CB on the membrane with photothermal 

efficiency 74.6%. On the other hand, SiO2-Au core-nanoshells gives 0.25 gm-2s-1.[8] A double layer 

structure (DLS) consisting thermally insulating carbon foam supporting a photothermal exfoliated 

graphite layer exposed under solar simulator (Xe lamp, wavelength range: 200–1500 nm) with an 

optical filter and copper aperture. The water was kept on the bottom and open steam generation 

(evaporation of vapor from top) was presented for both 1 kWm-2 and 10 kWm-2. Evaporation rate 

0.28 gm-2s-1 at 64% photothermal efficiency for 1 kWm-2 and approximately 3.07 gm-2s-1 at 85% 

thermal efficiency were reported.[12] 300 W Xe lamp with UV-vis mirror module (wavelength 

range:300 to 600 nm) was focused on anodized alumina membrane and also azobenzene modified 

(2.5 cm diameter; 4.9 cm2 area). It shows the highest water permeation flux 0.007 gm-2s-1 for 
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anodized alumina membrane and even less for other two azobenzene modified membranes.[13] 

Flexible thin-film black gold membranes with multiscale structures of microscale funnel structures 

and varying metallic nanoscale gaps was studied to find the optimal taper angle with the goal to 

conduct efficient solar steam generation creating high surface plasmon dissipation losses for heat 

generation and the high light absorption in the metal structure. The system consisted floating 

multilayered (to reduce the optical loss by light transmission) black gold membrane peeled off by 

microporous substrate (3M Micropore Surgical Tape) on the surface of water under illumination 

source Xe arc lamp with air mass filter (wavelength range: 400-2500 nm). Evaporation rate 4.34 

gm-2s-1 with thermal efficiency 57% at an incident intensity of 20 kWm-2 was recorded.[14]  Bilayer 

membrane of a 25 µm electrospun photothermal nanocomposite coating of surface oxidized CB 

NPs embedded in polyvinyl alcohol (PVA) on top of a polydopamine layer aided commercial 

PVDF membrane was installed on a module under outdoor sunlight providing average solar 

intensity 0.7 kWm-2 (illumination through 3.3 ×6.8-cm quartz window). Small-scale NESMD 

module (8.1 cm×3.48 cm) had a flux of 0.06 g m-2 s-1 with 53.8% photothermal efficiency[7]. The 

journal paper which was followed to an extent for the module and system building used flat-sheet 

microporous hydrophobic PVDF membranes embedding Ag NPs (range: 25-35 nm, 15-25% 

loading) prepared by a nonsolvent-induced phase-inversion process was inspected for 

photothermal membrane distillation for seawater desalination. Effective membrane area 21.24 cm2 

was exposed under UV Hg lamp at 366 nm at 90ᵒ viewing angle and the experiment was carried 

under conditions as 5.5 × 10−6 m3s−1 by using a peristaltic pump; vacuum pressure of 20 mbar 

(0.59 in Hg) and initial feed temperature of 303 K, irradiance 23 kWm−2 giving average 

transmembrane flux for pure water following 4.08 gm-2s-1, 7.52 gm-2s-1, 8.94 gm-2s-1 for 15%, 20% 

and 25% Ag NPs loading in the PVDF membrane respectively. The experiment was also done for 

0.5 M NaCl solution to replicate condition similar to seawater to evaluate the membrane’s 

desalination performance giving highest 7.13 gm-2s-1 transmembrane flux for 25% Ag loading 

membrane.[9] There was another process to synthesis aqueous based Au NPs using Chloroauric 

acid (HAuCl4) and Poly (acrylic acid, sodium salt) using microwave heating. Though the synthesis 

time was really short and convenient, the NPs size was really small and they had random clusters 

of NPs. As it was the motive to have a homogeneous deposition on membrane, this synthesis 

process was not pursued further.   
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In this report, hydrophilic and hydrophobic PVDF membranes are used for respective Au NPs (Au-

citrate and Au-thiol) incorporation. Nanoparticles synthesis and characterization, different 

deposition techniques, system setup, temperature profile under different wavelength LEDs varying 

distance between LED and membrane, batch experiment with newly altered module and other 

different perspectives will be realized. 

2. Objective: 

 Synthesis of Au NPs and characterization 

 Experimenting with different ways of deposition of NPs on membrane  

o Hydrophobic NPs on hydrophobic membrane 

o Hydrophilic NPs on hydrophilic membrane and then hydrophobizing the surface 

 Set-up a membrane distillation unit correcting the previous model  

 Experimental results: Temperature profiles and batch experiment 

3. Experimental Procedure: 

3.1. Au-citrate synthesis: 

The citrate capped Au nanoparticles were synthesized via a modified version of Turkevich-Frens 

method described in the paper cited [15]. The procedure followed heating of 50 mL of aqueous 

solution (1.1 mM) of Chloroauric acid (HAuCl4, 50% Au basis) at 70 ᵒC under continuous stirring 

in water bath and then adding 5 mL of preheated sodium citrate aqueous solution (3.8 mM). The 

temperature of the mixture was maintained at 70 ᵒC until a red-wine color appeared. 10 minutes 

was given for the seeds to grow and creating citrate capping around Au nanoparticles. The aqueous 

suspension was allowed to cool down to room temperature and then, aluminium foil covered vial 

was kept in the refrigerator to avoid direct light interaction. 

3.2. Au-thiol synthesis: 

To change the citrate capping of the previously produced Au NPs to thiol ligand in order to give 

the Au NPs hydrophobicity, an elaborate procedure was followed. 15 ml of freshly produced Au-

citrate suspension synthesized following the procedure described in section 3.1. was taken for the 

ligand changing. 1-octadecanethiol (98%, 7 gm) is dissolved in hexane (95%, 30 ml) at high 

stirring mode. When it got fully dissolved, 15 ml of Au-citrate suspension was added to it. After 
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adding them together, they show two quite immiscible different layers in the vial. Upper one was 

a little opaque organic phase (hexane and 1-Octadecanethiol) and the bottom part was red wine 

color aqueous phase (Au-citrate NPs suspension). The vial was placed on a stirring plate and 

stirring mode was set for 45 minutes at room temperature ensuring that there was a homogeneous 

mixing between two layers to facilitate good contact. After 45 minutes it was noticed that still 

there were 2 layers but the color of the layers changed. The upper layer was the organic phase 

showing blue color consisting Au-thiol ligand after citrate capping was replaced by long carbon 

chained thiol group (-C18) and the plasmon changed from wine red to blue. The two layers were 

poured down in a separatory funnel in order to recover the different layers. It was given few 

minutes to settle down maintaining separate layers and in the meantime, the cap of the separatory 

flask was kept closed as hexane is volatile. The aqueous part on the bottom part was collected back 

in the vial and mixed with 1 gm 1-octadecanethiol and 15 ml hexane. The vial was placed on the 

stirring plate again to promote more replacement of citrate capping by thiol group for next 20 

minutes ensuring good mixing. The organic phase containing Au-thiol left in the separatory funnel 

was collected in falcon tubes (without any aqueous part as droplets). After 20 minutes, the same 

separating steps were followed as before to collect organic layer in falcon tubes and this time, the 

aqueous phase was discarded in designated place. Then, all the 6 falcon tubes with organic phase 

(consisting Au-thiol) were measured approximately of equal weight by adding acetone in order to 

make tubes eligible for centrifugation and sonicated before placing in the centrifuge. 3 cycles for 

15 minutes each were operated to remove unused 1-octadecanethiol and purify Au-thiol NPs for 

further storage. First 2 cycles at 11000 rpm for 15 minutes each and last cycle at 9000 rpm for 15 

minutes were carried on. After disposing remaining acetone from tubes, the Au-thiol NPs attached 

on the falcon tube’s wall was dispersed in final dispersion medium chloroform and sonicated 

before storing in a glass bottle. The glass bottle was wrapped with aluminium foil to avoid direct 

light interference and kept in the refrigerator.  

3.3. Deposition of Nanoparticles: 

Different deposition techniques for the case of hydrophilic Au-citrate NPs on hydrophilic PVDF 

and Au-thiol in hydrophobic Polypropylene (PP0.2µm) were tried such as spin coating and 

evaporation. For the evaporation, membranes were placed on the module shown later in the report 

and bottom 2 parts of the modules were screwed down to prevent leakage. The lid was kept open 

for 2-3 days to promote evaporation. In case of spin coating, there are two stages of the rotation 
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speed; first stage (rpm ranging 300-1000) is relatively lower to help the solution get coated on the 

membrane while spinning and second stage rotation rate (rpm ranging 1000-3000) is higher which 

helps to evaporate excess solvent. Different volumes of Au NPs suspended solution were also 

experimented with to have better coverage over the whole membrane. 

3.3.1. Filtration of the Au-citrate and Au-thiol on respective membranes: 

The filtration unit was used to deposit the NP solution on the top of the hydrophilic and 

hydrophobic membrane. As the unit was connected to vacuum pump, the solvent got sucked to the 

bottom part and NP created a filtered cake on membrane. The small particles can go directly to the 

bottom part of the unit sliding through the pores of the membranes while vacuum pump is working. 

As Au-citrate NPs are in an aqueous suspension, using filtration unit made by plastic, it is expected 

to be fine to carry on the filtration. But Au-thiol NPs are dispersed in chloroform which might not 

be compatible with plastic filtration unit. So to be in the safe side, Au-thiol NPs filtration was done 

using a glass filtration unit available in the lab connected to same vacuum pump. 

3.3.2. Hydrophobic nanoparticles on hydrophobic membrane: 

The Au NPs synthesized following the procedure described in section 3.2 imparts the quality of 

hydrophobicity due to the long carbon chain (-C18). To prepare a membrane for batch experiment 

in membrane distillation system under test, Au-thiol NPs dispersed in chloroform was deposited 

on hydrophobic carbon paper. The filtration unit chosen was made by glass as glass is compatible 

with the dispersion medium chloroform. The comparatively smoother side of the hydrophobic 

carbon paper and hydrophobic PVDF was placed on the filter medium. Vacuum pump was 

connected to the bottom part of the filtration unit to facilitate the deposition of the Au-thiol NPs 

as the suspension was poured down on the membrane from the top part of the unit. The distillate 

collected from the bottom was disposed in the designated place. 

3.3.3. Hydrophilic nanoparticles on hydrophilic membrane: 

The Au-citrate NPs synthesized following the description in section 3.1 is hydrophilic as it is well 

dispersed in the aqueous phase which is credited to the citrate capping (-OH) of the Au NPs. 

Hydrophilic PVDF membrane was selected as membrane choice and placed on the filtration unit 

where 10 ml Au-citrate NPs suspension was poured on it. Au-citrate NPs got deposited on the 

membrane surface. Then the goal was to hydrophobize this surface to hydrophobic surface by 

changing the nanoparticles’ citrate capping to thiol ligand. To achieve that the same compounds 
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mentioned in section 3.2 were taken in diluted concentration; 1-octadecanethiol (98%, 7 gm) 

completely dissolved in hexane (96%, 55 ml). Two ways were tried out to carry out the exchange 

and give those NPs hydrophobicity. One way was completely submerging one-quarter part of the 

Au-citrate NPs deposited hydrophilic PVDF into the 25 ml of the abovementioned solution. The 

membrane cut-out hold by a rod-clipper was suspended in one small glass beaker with 25 ml of 

the solution (enough volume to dip the membrane completely). The top of the glass beaker was 

covered with parafilm in a way so that no hexane can escape the beaker. Mild stirring mode was 

engaged to facilitate the interaction and maintain the mutual contact for 1 hour. Another way was 

to submerge one-quarter of the membrane in the flat glass petri dish containing 10 ml solution. 

The petri dish covered properly by parafilm placed on a shaker overnight and following morning. 

The latter procedure was repeated with the whole membrane. To check the role of concentration, 

same concentration as mentioned in section 3.2; 1-octadecanethiol (98%, 7 gm) and hexane (96%, 

29.30 ml, tuned for the change in purity) was also employed. 

3.4. Batch run with membrane: 

To evaluate the performance of the membrane with deposited Au-thiol NPs under the LED source, 

the membrane was placed in the designed place of the crafted module. The membrane surface was 

wetted with 5 ml distilled water to cover the whole exposed surface at one go (replicating flash) 

by a syringe. The visible light coming from the LED interacted with the Au-thiol NPs and with the 

produced heat, some portion of that available water turned into vapor. The vapor traveled through 

the membrane pores and condensed into water on the bottom part of the module when it got into 

the contact with the comparatively colder module wall. Simple black hydrophobic carbon paper 

and white hydrophobic PVDF membrane choice were decided on as choices for comparing the 

performances with.  

3.5. Characterization Techniques: 

3.5.1. UV-Vis: To characterize the synthesized Au NPs, UV-vis double beam 

spectrophotometer ranging wavelength 200-900 nm was used. As Au-thiol dispersed 

in solvent chloroform, plastic cuvette cannot be used as they are not compatible. Quartz 

cuvettes (quantity:2 pieces) were ordered from Teknokroma Analítica. As both of the 

NPs suspensions are of colors, it is better to be cautious that the sample in the cuvette 

is clean, not scratched and not too opaque otherwise the beam would not be able to pass 
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through. The NPs sample in respective solvent in a cuvette was mixed well and properly 

using plastic syringe (sucking in and out the sample from the cuvette) or ultrasound 

bath (sonication) to keep the NPs well dispersed in the cuvette and not settle down on 

the bottom.  

3.5.2. DLS: For the characterization of the NPs size, Dynamic Light Scattering (DLS) [BIC 

Particle Sizing Software] was used. For all the experiments, at least three runs were 

taken, and run was discarded when the standard deviation of the runs was too high 

which can be a hindrance for the results to be reproducible. The cuvettes were not 

scratched, clean. The sample were supposedly not aggregated or precipitated as the 

sonication procedure was done and the color was quite transparent (supporting 

dilution). Finally, to get rid of the bubbles before introducing in the equipment, the 

cuvette was tapped with finger or against the table. Count rate (preferably higher than 

400 kcps), baseline index (preferably near 10), correlation factor near base line, 

polydispersity were kept a track of.    

3.5.3. TEM: The sample grids for SEM and TEM session were prepared in the sample 

preparation laboratory, INA, UNIZAR. 

3.6. Materials and Equipment: 

3.6.1. Equipment and instrument: SEM (FEG INSPECT 50), TEM (FEI Tecnai T20), a 

particle size analyzer- DLS (90◦ fixed angle) at room temperature (Zeta Plus, 

Brookhaven Instruments Corporation, NY) was used for the characterization. UV–vis 

spectra were obtained on a UV–vis double beam spectrophotometer Jasco V-670 from 

wavelength 200-900 nm. Centrifuge Thermo Scientific HERAEUS Megafuge 16R 

(used in range 900-1100 rpm), TESTO 925 as thermometer to measure the temperature 

using K-type thermocouple, Balance PRACTUM1102-1S (capacity: 1100 g x 0.01 g 

and reproducibility: ± 0.01 g), LEDs (1 amp; white, UV-365 nm etc. at 95% intensity) 

with ISO-TECH (IPS 2010) power supply, for vapor distillation setup and for filtration 

STUART-RE3022C (ultimate vacuum 12 mbar abs.) were used. 

3.6.2. Membrane and material: Both Durapore hydrophilic and hydrophobic PVDF 

membranes (filters) were ordered from Sigma-Aldrich; pore size 0.1 µm, thickness 

approximately 90 µm, 47 mm dia, surface plain and white, maximum operating 

temperature 85 ºC. It was not stated if the membranes went through any surface 
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modification. As an alternative option to Carbon black nanoparticles and have a fixed 

basis to the behavior of nanoparticles synthesized, H2315 C2/H23 C2 Gas diffusion 

layers (Carbon Paper); size A4, 21×30 cm, no hydrophobic treatment, thickness 250 

µm was used. The raw materials needed for synthesis of Au-citrate and Au-thiol were 

provided by laboratory group NFP, INA, UNIZAR. All the compounds were available 

in the working lab and when finished, 1-octadecathiol and n-hexane were ordered from 

Sigma-Aldrich and Fisher scientific following necessary steps. 

3.6.3. Module: Quite similar as previous semester report though there would be some 

changes. The same material as before was used again but the height and the 

arrangement of the module parts were changed due to the need of lower distance 

between installed membrane in the module and solar simulator (here, LED was used). 

Polyoxymethylene (POM), known as Delrin; crystalline structure was used for the 

module’s body. It has a high melting point (̴ 175º). It is considerably chemically inert, 

has lower water absorption and mechanical stability as well. The thermal conductivity 

is 0.4 Wm-1K-1 which shows that it would be good for thermal insulation with the 

surrounding environment as the less amount of heat loss to surrounding is expected. 

1/16” plastic pipes were used for the connection. Connectors (as well as ferrule) were 

both plastics and stainless steel though the screws that tighten down the three parts 

together is made out of stainless steel. 
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Figure 2: Membrane module and separate parts of the module (the feed entrance, vapor outlet and 

thermocouple ports are not shown) 

In to concentrate sunlight on the membrane surface, Fresnel lens can be used which increases the 

irradiance up to factor of 25.[7] Here, in Figure 2, quartz window is used for focusing the light 

coming from LED and the thickness from the lid was cut down as much as possible keeping the 

necessary height to hold the window in place (resin was used to glue the window around the 

designed cavity). Following the expertise of the craftsman of this module, the module was built in 

3 different parts as he suggested it would be easier to put the membrane in place and O-rings were 

placed in certain places to give it proper sealing against leaking. The thermocouple port was placed 

as close as membrane so that the tip of the thermocouple could touch the surface of the membrane 

and temperature would get registered properly when sunlight simulation would be employed with 

LED. 
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Figure 3: Nanophotonics solar membrane distillation assisted by vacuum pump (connections and order) 

In Figure 3, the module is shown in complete connected system. The module was first built on 

thinking about using peristaltic pump and as the inlet flow rate would be a higher than the 

evaporated water, a recirculation connection was added to the system. Instead of peristaltic pump, 

syringe pump can be used as well (one or two syringes). As now for the batch experiment, 5 ml 

water taken by the help of plastic syringe flashed at one go on the top of membrane already placed 

in the module to cover the whole surface. A simple run was done to measure the least amount of 

water needed to cover the hydrophobic membrane surface (sample: carbon paper) and it rounded 

up to 5 ml. LED is used to simulate the sunlight in this system as previous semester, solar simulator 

was used but obtained temperature was quite low because of the lamp and membrane distance. In 

the previous semester, a model similar to condenser inserted into insulated flask having ice around 

it inside was placed on the balance to keep track of the condensate vapor. It was quite heavy 

altogether to be on the balance so to make it little better, it was replaced by silica bed. The balance 

connected to the laptop through a USB can register the weight change in excel when needed. 



18 | P a g e  
 

3.7. System Setup: Previous setup and the changes: 

 

Figure 4: (left) The dimensions of the first module made; (right); the proposal of 2nd module design 

The previous module (the first module built inspired by [9] )with designated height is shown above 

in Figure 4 (left) and it is evident that only from the module, approximately 65 mm is taken into 

account. While experimenting, the LED should always have a certain height placed over the quartz 

window so that the dome and the hexagonal part of the LED do not get broken. So, other than the 

height of the module itself, few more mm height is added due to LED holder. Altogether, the 

irradiance that was reaching the membrane surface was quite low than 1 sun unit (supposedly 1 

kWm-2) because of this distance. So, another module design was suggested with lower height 

possible to get as near as possible to 1 sun unit irradiance. Due to technical obligation and 

suggestion from the craftsman, second version of the module was built though it was taller than 

the calculated value needed for possible close proximity of 1 sun unit. The dimensions of the 

second version of the module are added in the appendix. Though it was expected to be as low as 

possible in height, certain height was given to accommodate the inlet and outlet ports. 

When second module design shown in Figure 4 (right) was proposed, it was made keeping in mind 

that this could be used for alternating arrangements meaning both hydrophilic and hydrophobic 

membranes. For hydrophilic membrane, the water or saline solution would be on the bottom part 

and for hydrophobic part as used, the water would be on the top part where vapor would make its 

way through the membrane to the bottom. That is why two ports are shown in the bottom side of 

the module in the figure. 
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4.  Result and Discussion: 

4.1. Characterization of the Au-citrate NPs and Au-thiol NPs: 

 

Figure 5: Au citrate nanoparticles: (left) TEM images (20 nm scale); (right) Particle size distribution 

from TEM images 

 

Following the procedure described in section 3.1, Au-citrate NPs were synthesized. To 

characterize the NPs, they were subjected to TEM and the result is presented above in the Figure 

5. Paricle size distribution shows quite a range of NPs size but maximum number of NPs are in 

range of 16.3 ± 12.3 nm (Count: 92). Theoratically, there would a thin layer of citrate around the 

Au NPs but it was quite difficult to point it out even in the highest magnification.  

 

 

16.3 ± 12.3 nm 

Mean dia: 1.2 nm 
Mean dia: 57.6 nm 
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Figure 6: Particle size distribution of Au-citrate from DLS:(upper left) Number vs Size; (upper right) 

Intensity vs Size; (bottom) Volume vs Size 

To see if the results coincide or not, it was again subjected to DLS maintaining the points stated in 

section 3.5 [Polydispersity: 0.23 (very high polydisperity); Count rate: 451.2; Baseline Index 

9.0(7.1-10); Dust-Filter: ON]. It showed completely different results in Figure 6 which cannot be 

relied on. The intensity vs size graph shows it was observed that the particle sizes are apparently 

picked three group size; comparatively small group ranging 1-1.4 nm (approx.), middle group in 

18-50 nm (approx. range) and bigger group ranging 97-160 nm approximately (agglomerates). 

From Figure 6, it can be misled that there are more numbers of bigger sized crystal which is not 

apparent in TEM particle size distribution. But in volume vs size graph, there is a hind that there 

could be bigger sized particles but they are really in a small amount. It could be a reason of having 

excess citrate in the synthesis process and the Au-citrate NPs synthesis was not centrifuged or 

purified.  As the particle size is big, the light scattering is more intense (as the intensity is 

proportional to diameter,d6) than smaller sized ones.[16] Though sonication was done to avoid 

aggregation and precipitation, if those are still present in the sample cuvette, it would show wrong 

size distribution.[17] As the Au-citrate suspension has red wine color, it is quite difficult to maintain 

both points- having higher count rates but not letting the cuvette sample to be opaque. If the sample 

is becomes too concentrated, particle sizing could be wrong multiple scattering or viscosity effects. 

Wrong pH, not enough sonication, not enough dilution time etc. can be an added factor to 

misleading particle sizing.[17] 

Mean dia: 1.1 nm 
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Figure 7: Au-thiol nanoparticles: (left) TEM images (20 nm scale); (right) Particle size distribution from 

TEM images 

In case of Au-thiol NPs characterization, same characterization techniques were employed. In 

Figure 7, TEM images can be seen and the particle size distribution also shows that the maximum 

number of particles are in 22.3 ± 3.9 nm range (count: 73). The size distribution of Au-citrate and 

Au-thiol from TEM suggests that Au-thiol NPs are slightly bigger in size than Au citrate.  

 

 

Figure 8: Particle size distribution of Au-thiol from DLS:(upper left) Number vs Size; (upper right) 

Intensity vs Size; (bottom) Volume vs Size 

22.3 ± 3.9 nm 

Mean dia: 17.8 nm Mean dia: 76.9 nm 

Mean dia: 27.1 nm 
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In Figure 8, the size distribution for the Au-thiol in DLS is presented [Polydispersity: 0.193 (high 

polydispersity); Count rate: 441.8; Baseline index: 9.4; Dust Filter: ON]. The same reasoning 

given for the intensity vs size graph for Au-citrate before holds ground for intensity vs size graph 

for Au-thiol. Bigger particles having bigger peaks do not imply that there are more large sized 

particles in the suspension. The number vs size (17.8 nm) and volume vs size (27.1 nm) is quite in 

agreement with TEM size distribution. Storing way beyond the shelf life of the NPs synthesis may 

also end up giving wring particle size distribution. Au-citrate dispersed in water and Au-thiol 

dispersed in chloroform have high shelf life (approx. 5 months). 

 

Figure 9: UV-Vis spectra for: (left) Au-citrate synthesis; (right) Au-thiol synthesis 

The absorbance spectra for Au-citrate and Au-thiol are shown in Figure 9. The Au-citrate shows 

absorbance peak at around 530 nm and Au-thiol gives peak at approximately 560 nm. The Au-

citrate peak is in agreement with other published work and it also supports the particle size found 

from TEM. [15][18][19][20] The Au-thiol shows two peaks- at 560 nm showing its gold part and at 280 

nm (approx.) is attributed to –SH part and also the long carbon chain 1-octadecanethiol. n—σ 

electron transition of octadecanethiol promotes this peak around 280 (though the peak was reported 

at 227[21] but this paper can support the peak it states the peak shape of 1-octadecanethiol is always 

similar like this). Electronic transitions between the bonding and antibonding π orbital; in 180–

260 nm range, the π –π* transitions appear in all the carbon materials.[22] Reproducibility of both 

Au-citrate and Au-thiol synthesis was good (almost same peak). 
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Figure 10: Comparison between the UV-Vis spectra: Red Shift of Au-thiol 

In Figure 10, the comparison between Au-citrate and Au-thiol has been shown and it is evident 

that Au-thiol red shifted from Au-citrate moving more towards infrared area which is corresponded 

by the Au-S bond.[21] Also the size of the Au-thiol is slightly bigger than Au-citrate that also 

supports the red shift as absorption peak depends on size and shape[19][20]. So, it can be said the 

size difference of those two types of NPs also has an effect on the position of the peak. 

4.2. Deposition of the Au-citrate and Au-thiol on the membrane: 

As the synthesis process already described in section 3.1 and 3.2, it is understandable that Au-

citrate is hydrophilic attributed to the –OH functional group on the other layer (dispersed media: 

water) and Au-citrate went through a complete conversion by replacing citrate capping with thiol 

chain. The chemisorption of thiols on gold is considered on the most prominent one as gold does 

not form a surface oxide unlike silver.[23] The sulfur from sulfydryl (SH) functional group creates 

a strong and robust covalent bonding with Au surface by forming gold thiolate bonding. As the 

thiolate–gold (RS–Au) bond strength is quite close to Au-Au bond strength, modification of Au 

bonding is possible for –SH group and this bonding is enough to keep the chain connected to the 

surface.[23][24] As the sulfur is bonded with the gold surface, the remaining alkyl chain (in this case 

–C18 chain) plays role as hydrophobic part using steric hindrance. [23] This is why Au-thiol can be 

dispersed in chloroform but not in water. 
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Figure 11: Filtration-(a) Au-citrate on hydrophilic PVDF; (b) Au-thiol on Carbon paper; (c) Au-thiol on 

Hydrophobic PVDF; Spin coating- (d) Au citrate on hydrophilic PVDF; (e) Au thiol on hydrophobic PP; 

Evaporation-(f) Au-thiol on PP; (g) Au-citrate on hydrophilic PVDF 

Figure 11 shows different nanoparticle suspensions deposited on different types of membrane with 

variable deposition technique; the caption names all the nanoparticles and membranes. Evident 

from the figure, the acceptable coverage was obtained by filtration and that is why, filtration 

technique was chosen as a way of depositing NPs on membrane. Though as mentioned before, 

because of the different chemical behavior, the filtration takes place in plastic and glass filtration 

unit for respective ones. 

If the Figure 11 (a) and (c) is examined closely, there are some lines evident from far also and the 

surface of PVDF (irrespective of hydrophilic and hydrophobic) is quite smooth whereas (b) Au-

thiol on carbon paper does not show any evident lines and the deposition is quite random and dense 

seen by naked eyes. It can be attributed the roughness of the carbon paper. It was observed that 

though the suspension color was of the Au-thiol NPs was showing blue color, as soon as the 

suspension was deposited on the hydrophobic carbon paper, it turned golden yellowish which 

resembles the color quite similar to the original color of the chloroauric acid (HAuCl4). The real 

reason behind that has to be examined. Unfortunately, any apparent reason was not found. 

4.3. Electrospun embrane characterization: 

The membrane preparation and production of electrospun membrane in the electrospinning were 

carried out following a journal paper.[25]  Even thermal post-treatment (putting in the oven 
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overnight pressed in between glass plates) of the PVDF electrospun nanofibrous membrane was 

done to ensure the mechanical integrity and less membrane pore wetting. 

 

Figure 12: (left) 10 wt% PVDF Electrospum membrane SEM image of the fibers; (middle) Fiber 

thickness distribution; (right) electrospun membrane from paper [25] 

It is reported in the journal paper that the fiber diameter of PVDF ENM  10 wt% PVDF/ 

Ru(phen)3/LiCl ENM 145 ± 12 nm (not particularly about 10 wt% PVDF+ LiCl).[25] But in our 

case, the fibers’ diameter is quite diverse and dispersed compared to the journal. The majority of 

the fiber diameter resided in the range of 114 ± 33 nm and also the non-uniformity of the fibers 

can also be observed in the right side photo. The electrospun membrane thickness (10 wt%) [5 hrs] 

was 25 ± 2 (reportedly up to 50 µm for 10 wt%) and (8.86 wt%) [8 hrs] was 55 ± 3 whereas 

commercial PVDF membrane thickness varies in range: 80-140 µm. As journal paper mentions 

the advantages of electrospun membrane, this option was also tried to have a variation in the 

membrane types. 

4.4. Membrane characterization: 

While discussing the NPs deposition membrane before it was mentioned that there is a clear pattern 

difference between carbon paper and PVDF. As the deposition technique is same, the only 

difference can be created because of the pattern and roughness of the mentioned membranes. 

Roughness quantity was not found for neither of these pattern but by physical examination, carbon 

paper seems way rougher than PVDF membrane. This attributes also to the contact angle 

measurements. Unfortunately, the contact angle was not taken by any equipment; it was done 

manually. So, it is quite possible that the value of the contact angles can be different. 

114±32 nm 
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Figure 13: Contact angles for different membranes and nanoparticle deposited membranes 

The drop size is also different (dropped using plastic dropper; assuming approximately 10 µl) as 

it was done manually. The images are treated with Imagej program with drop analysis-LB-ADSA. 

The measurement was not that precise to have an error bar. Just to show the comparison, the 

approximate and close contact angle is registered. As shown in Figure 13, the lowest contact angle 

is shown by Au-citrate on hydrophilic PVDF and it is understandable as the membrane itself is 

hydrophilic. Though normally metal imparts some hydrophobicity, it was not enough for making 

the hole membrane completely hydrophobic and it also might add to it that the deposition of Au-

citrate was not of enough quantity to create another complete hydrophobic layer. The water still 

seeped through the pores quite easily and zero-time water drop gives this higher contact angle than 

the original membrane. As expected, when the Au-citrate on hydrophilic PVDF was exchanged to 

thiol ligand, it showed higher hydrophobicity and it can hold water droplet a little more than the 

normal Au-citrate + hydrophilic PVDF (image in Appendix). It indicates that hydrophobization of 

already deposited Au-citrate on hydrophilic PVDF by 1-octadecanthiol was successful to some 

extent but not fully successful. The Au-citrate + hydrophilic PVDF was submerged in the excess 

amount of 1-octadecanethiol as described in section 3.3.3 and all time contact was maintained by 

oscillation plate. The time and the concentration of the 1-octadecanethiol and n-hexane solution 

was varied but the final result did not vary that much.  
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The other results are quite expected as the membranes are hydrophobic membrane but the exciting 

result was the creation of even more hydrophobic Au-thiol surface on hydrophobic PVDF and also 

super-hydrophobic Au-thiol on hydrophobic carbon paper. The roughness of the carbon paper 

promotes more hydrophobicity playing a role in increasing the apparent contact angle.[6] Also 

macroscopic porosity also promotes hydrophobicity. The apparent difference of the SEM image 

of Quintech carbon paper and commercial PVDF is shown in the Appendix. It is clear that carbon 

paper has nanofiber structure whereas PVDF has sponge-like structure. It was reported that the 

porosity of the carbon paper is approximately 80%[26] and PVDF has approximately 70% porosity 

supporting the higher hydrophobicity.  

4.5. Temperature profile under visible light: 

Temperature measurement setup under white LED is shown in the appendix. In all temperature 

profile figures, if a certain time is written then it means that the certain temperature was taken for 

that duration. And if nothing is written that means the temperature was taken for 1:45 minute. The 

time duration is color co-ordinated with related trend line. No further characterization technique 

was not applied to see how much Sulphur (with –C18 chain) covered the surface of the membrane 

when hydrophobization was carried out. It was mentioned before that sulfur and carbon chain 

shows absorption peak at lower 300 nm wavelength which is not covered by the acting White LED 

wavelength. So, it is assumed that the temperature profile of hydrophobized Au-citrate and 

hydrophilic membrane would be quite similar to only Au-citrate and hydrophilic PVDF.  
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Figure 14: Temperature Profile for various combination of membranes and nanoparticles using UV 365 

nm LED, White LED, 740 nm wavelength LED: Temperature vs distance of the LED source from the 

membrane (lowest and highest distance 1.9 and 5.7 cm respectively) 

More to this point, batch experiment was run on the hydrophobized membrane but it was not 

enough hydrophobic to hold up the water at top of it. Really soon, after the experiment started 

assisted by vacuum pump, all the went to the bottom part. That is why, the temperature profile and 

results of the batch experiment of hydrophobized Au-citrate + hydrophilic PVDF will not be shown 

and discussed. Figure 14 shows the temperature profile of blank membranes and also that of 

incorporated different NPs option on the available membranes. Expected result was obtained when 

the experiments of the blank membranes PVDF0.1µm and Polypropylene (PP0.2 µm) showed that the 

temperature rise was quite low compared to the membranes with NPs. Au-citrate NPs, commercial 

SiC, triangular shaped Ag NPs were taken into account. Latent heat of vaporization for the phase 

change from liquid to vapor Under plasmon resonance conditions, ten times more heat flux than 

that of Au NPs can be produced by Ag NPs.[9] SiC (powder form) had to be dispersed in ethanol 

solvent and that is why hydrophobic PP membrane was chosen for that. The other NPs were 

deposited on hydrophilic PVDF as the solvent of those NPs were water. Again, filtration unit was 

used to deposit the NPs on membrane. In case of Ag NP, not much NPs stayed on the top of 

membrane and that is why another layer of P25 TiO2 was deposited on PVDF before filtration of 

Ag NPs. As for the specific size and shape (absorption peak approximately 750 nm), it was 
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expected that it would excite well under available LED wavelength 740 nm but it shows the lowest 

temperature rise. Probable reason: a) change of triangular shape of Ag NPs; b) TiO2 does not cover 

that absorption range; c) very less amount of Ag NP stayed on the top of the membrane. For these 

reason, this Ag NP incorporation with membrane was not produced. SiC NP though showed 

modest temperature rise but there used to be some loose SiC NPs on the water as SiC was loosely 

attached to the membrane surface. At last, Au-citrate was deposited on hydrophilic PVDF 

membrane which showed good coverage (red wine color quite homogeneously all over the 

membrane). 5 ml and 10 ml was deposited on the PVDF membrane and the latter one showed 

dense color supporting good coverage. The temperature profile of these two membrane was done 

under white LED and UV 365 nm LED option. 10 ml Au-citrate showed the highest temperature 

profile under white LED. This is why, this option was chosen to be continued with. Even the PVDF 

membrane got deformed for both Au-citrate deposited membrane as the temperature rose really 

high than it can handle (rose higher than 123 ᵒC). Au NPs photothermal efficiency was studied 

with femtosecond transient absorption spectroscopy which showed that when metal nanostructure 

gets excited under illumination (photoexcitation), it produced heated electron gas that which cools 

really quickly like in ∼1 ps. Nanoparticle lattice cools down fast by exchanging energy with the 

surrounding medium within∼100 ps (due to phonon–phonon interactions). This fast excitation and 

exchange of energy results heating of the local surrounding environment. It only needs light 

radiation with a frequency strongly overlapping with the nanoparticle surface plasmon resonance 

absorption band (wavelength covering the range of the adsorption peak or range).[19] Those 

experiments showing temperature profile helped to decide on the future work which would include 

Au citrate (10 ml) deposited in hydrophilic membrane. But as one of the most basic trait of 

Membrane distillation is membrane has to be hydrophobic, hydrophobizing this membrane was 

tried keeping intact its temperature profile but to improve its hydrophilicity to hydrophobicity with 

1-octadecanethiol (described before). 
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Figure 15: Temperature profile for Carbon Paper: under UV 365 and White LED: Temperature vs 

distance of the LED source from the membrane 

As it was realized in the literature review part, much work has been done using Carbon black NPs 

or graphite layer. To evaluate the possibility of using gas diffusion layer (carbon paper layer) as 

convenient option for membrane distillation and to see where is stands on, temperature profile was 

taken and presented in Figure 15 (only with carbon paper). Under UV 365 LED, it showed lowest 

rise compared to the other options. The highest temperature was obtained the Au-thiol deposited 

on carbon paper under white LED. It was quite expected as both, carbon and Au-thiol would get 

excited by the applied illumination and would both add up to the temperature. But one 

inconsistency was observed as the blank experiment of temperature rising under White LED was 

done twice and it gave different profiles. The probable reason was thought as maybe the first try, 

the dome of LED had some crack and the temperature could not rise at first (as the temperature 

difference on the higher distance from membrane is more than 10 ᵒC) and the temperature rose in 

1:45 min for first try which on second try, reached quite quickly near that temperature (nearly 20 

sec or more). That first try experiment was done with different LED connection. All the other ones 

have been done with same LED connection and it was checked properly that it did not have any 

crack. Though, further or more experiment would help to have a concreate reason to decide on 

which one is the right profile. 
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Figure 16: Temperature Profile of different membrane and nanoparticles combination under White LED: 

Temperature vs distance of the LED source from the membrane 

Figure 16 shows the similar temperature profiles shown in Figure 13 but the difference is that those 

temperature profiles were overlapped with other membrane options shown in the onset. To have a 

basic idea how much the blank PVDF and blank carbon paper helps to rise the temperature, they 

were included in this graph. As Au-thiol deposited on carbon paper might work as a bilayer 

membrane option (6 ml Au-thiol chloroform was deposited), to compensate a little bit for blank 

PVDF hydrophobic membrane, 10 ml Au- thiol was deposited on the membrane. Also 10 ml 

volume was chosen to have a comparison with 10 ml Au-citrate solution deposited on hydrophilic 

membrane. One thing to clear: while filtration, some Au-citrate NPs goes along with the filtrate 

(has faint wine-pinkish color to it; goes through the membrane pore to bottom) but the filtrate after 

Au-thiol filtration does not show much color (original color darkish blue). This is only an 

observation by naked eye. To compare the values, further tests (concentration measurement 

including) should be done. Carbon paper + Au thiol and Hydrophobic PVDF+ Au thiol reached 

same temperature at the same time. Probable reason could be Au-thiol is taking the front sit and 

temperature rise is contributed mostly by Au-thiol. Au citrate gets to higher temperature than 

carbon paper only. A thin circle around the edges of PVDF membrane was not covered by Au-

thiol when filtrated and was exposed to the White LED as blank PVDF) during the experiment. 

From the profile trends, it can be said at least extra Au-thiol added to blank PVDF acted quite 

effectively to add to temperature rise compared to carbon paper. To explain this point, a picture is 
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added to the appendix. Carbon paper + Au thiol and Hydrophobic PVDF + Au thiol shows quite 

similar tend though latter one has more fluctuation added to it (temperature taken for different time 

range) 

The temperature profiles in terms of irradiance are included in the appendix. 

4.6. Batch Experiment result: 

As described before section 3.4, batch experiments were run and the results are presented in the 

Figure 17. The experiment was tried to do perform under same vacuum pressure (3-3.5 in Hg). 

This pressure chosen using carbon paper and hydrophobic PVDF as experiment basis.  

 

Figure 17: Batch experiment for different NPs and membrane combination 

It was decided after careful tuning to choose the maximum pressure which facilitates the process 

but does not intervene the experiment by drawing down the allotted water on the top of the 

hydrophobic membrane.  To check the performance of the electrospun membrane, it was also 

subjected to batch run. But it had a really thin thickness compared to the commercial ones. And 

under this vacuum pressure, it was unable to maintain its shape. It showed good hydrophobicity 

but due to low thickness, membrane got drawn towards bottom part taking a shape like upside hat. 

From the temperature profile it was observed that Au thiol + hydrophobic PVDF has better 

temperature form (worked under closed air) than blank carbon paper. But in the batch experiment, 

the carbon paper showed better temperature profile than every other option which is not in 
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agreement with the previous results shown. One reason could be that the carbon paper has a head 

start with higher stating temperature point (approximately 29 ºC for both runs) compared to others 

(the other experiments started at approximately 22 ºC). The reproducibility of blank carbon paper 

experiment is really good as it gave quite similar trend and assumed steady state. 

The hydrophobic PVDF showed its hydrophobicity and it let a very negligible amount of water 

from upper part to bottom side when the white LED was illuminated and placed on top of the 

module. Exposed membrane are in the module under LED is 11.34 cm2  under irradiance 0.71   

kWm-2.  

A problem was faced with the stability of the balance because of the vibration of the existing 

vacuum pump. While vacuum pump running, the loud vibration of that placed on the same table 

as the other parts of the system did not let register the weight difference in the silica gel bed. To 

get an approximate value of the flux, remaining water from 5 ml still remaining on the top of the 

membrane was collected and weighed. For pure water, the permeate flux for only carbon paper 

was 17.5 gm-2s-1 whereas with membrane area 21.24 cm2 and for 15% Ag NP loading in PVDF 

membrane [vacuum pressure of 20 mbar (0.59 in Hg) and initial feed temperature of 303 K, 

irradiance 23 kWm−2 giving average transmembrane flux for pure water following 4.08 gm-2s-1 [9] 

The higher vacuum pressure might have facilitate the vapor permeation and condensation. 

Photothermal effect of Au NP and Ag NP also could play a deciding factor. 

For Au thiol deposited on carbon paper gives 23.93 gm-2s-1. When a gas diffusion layer like the 

one in our experiment is compressed, the fiber to fiber contact increases and results into increase 

of effective thermal efficiency.[27] This might have helped to have higher temperature gain and 

transfer of the thermal effect for carbon paper. And also is it really hydrophobic and has higher 

porosity, vapor permeation though pore would have been helped. 

Au thiol on hydrophobic membrane gives 21.56 gm-2s-1 permeate flux. Though the temperature 

profile was quite similar to the abovementioned membrane, porosity and hydrophobicity were 

different. And also good coverage of Au-thiol NP could have been a help to increase the flux a 

little better.[8] As all the calculation was done manually, a large percentage of error is also expected.  
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5. Conclusion: 

Membrane distillation has always garnered attraction for one of the convincing and feasible ways 

for desalination and in today’s world, looking for alternative ways to improve existing system and 

achieve something helpful to mankind using renewable energy is always appreciated. Among all 

the available membrane distillation type, nanophotonics enabled solar membrane distillation was 

chosen to explore in this project. To use the most out of the surface plasmon resonance of the 

nanoparticles maintaining all the crucial requirements intact (hydrophobicity) was one of the goal 

in this project. Spin coating, simple evaporation and filtration were tried to find the best one which 

gives the high coverage of the hydrophobic (hydrophilic as well) and filtration showed the most 

promising result. Different nanoparticles with different membranes made combination and 

relatively best one was selected keeping in mind the hydrophobicity of the membrane, temperature 

profile and flux. Characterization of Au-citrate and Au-thiol was done using TEM and DLS, UV-

vis spectroscopy. Though carbon paper was hydrophobic at the first place, Au-thiol deposited on 

the carbon paper gives super-hydrophobicity which could be attributed to the roughness and fiber 

arrangement of the carbon paper. It also gives the highest flux rate 23.93 gm-2s-1 compared to other 

membrane arrangements. Exploring and testing out gas diffusion later (carbon paper) along Au-

citrate and Au-thiol incorporated membranes gave new insight which may be of help in near future. 

6.  Future Plans: 
Quartz window can be replaced by Fresnel lens in the existing module. Electrospun membrane 

fabricated more than 8 hours to get the desired thickness may add up another membrane option. 

Correct concentration measurement for the nanoparticles could be valuable to quantify the dosage 

or loading. The vacuum pump can be isolated from the system environment moving to other place 

connecting with longer connecting pipe. Another vacuum pump regulated by sustainable valve 

which does not weigh down the silica gel bed on the balance could be also another modification. 

Another way could be introduction of sweeping gas on the bottom part to take away the condensate 

and for that slight change in the port design in the module has to be done. Other compounds like 

silane compounds with varying concentration, contact time with the exchanging solution can be 

used to hydrophobize the hydrophilic surface other than 1-octadecanethiol. New nanoparticles can 

be explored as alternate option to broaden the coverage of solar spectrum (not only visible light). 
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Installing the existing module or improved and modified module under direct sunlight is one of 

the aspiring goals to reach. 
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#Appendix: 

 

Appendix: Figure 1:Different nanoparticles filtrated on different membranes in previous semester thesis 

work 

 

 

Appendix: Figure 2: (left) Breakage of PP 0.2 um membrane while spin coating of Au thiol as PP is not 

that compatible with chloroform; (middle) careful attachment of PP membrane on silicon wafer to avoid 

breakage and curling- spin coating varying spin time, spinning speed 
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Appendix: Figure 3: Filtration unit: (left) plastic one for water and ethanol filtration ; (right) Glass 

filtration unit for chloroform filtration  

 

 

Appendix: Figure 4: Water droplet holdup by (left side of the image): Hydrophobized Au-citrate by 1-

octadecanethiol; (right side of the image) Au citrate on hydrophilic PVDF [(left image):30 sec ; (right 

image): 3 minutes 
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Appendix: Figure 5:SEM image: (left) Quintech Gas diffusion layer (carbon paper)[26]; (right) 

Spongelike PVDF membrane adds hydrophobicity [6] 

 

 

 

Appendix: Figure 6: System setup for measuring the temperature of NPs deposited on membrane 

produced by applying different LEDs of various wavelengths (the lid from first designed module; height 

1.2 cm) 
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Appendix: Figure 7: Temperature profile for various combination of membranes and nanoparticles using 

UV 365 nm LED, White LED, 740 nm wavelength LED: Temperature vs irradiation calculated using 

varying distance of the LED source from the membrane 

 

 

Appendix: Figure 8: Temperature profile for Carbon Paper under UV 365 and White LED: Temperature 

vs irradiation calculated using varying distance of the LED source from the membrane 
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Appendix: Figure 9: Temperature profile for different membrane and nanoparticles combination under 

White LED: Temperature vs irradiation calculated using varying distance of the LED source from the 

membrane 

 

Appendix: Figure 10: The area inside the green circle still has carbon when installed to module exposed 

to White LED though Au-thiol does not cover the area but the same area for right image only has blank 

PVDF. It happened due to the smaller diameter of the filtration unit 
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Appendix: Figure 11: Super-hydrophobic Au thiol deposited on gas diffusion layer (carbon paper) 

  

 

Appendix: Figure 12: Dimensions of 2nd version of the module 


