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1 INTRODUCCIÓN 
 

1.1 PLANTEAMIENTO  DEL  PROYECTO 
 

En el presente documento se recoge el estudio teórico del apantallamiento 

magnético sobre un sistema de carga de vehículos eléctricos por inducción mediante el 

programa de cálculo de elementos finitos Comsol Multiphysics V4.2. El correcto 

apantallamiento del sistema es parte esencial del estudio, ya que con un correcto 

apantallamiento se controla la transferencia de potencia y el cumplimiento de la 

normativa sobre los campos magnéticos que afectan al ser humano. El programa de 

cálculo de elementos finitos permite realizar una aproximación del sistema de carga real 

y poder contemplar como el campo magnético creado por el propio sistema se ve 

alterado según los materiales que introduzcamos en el mismo. El objetivo final de este 

estudio de apantallamiento es comprobar si el sistema cumple la normativa vigente 

sobre campos magnéticos que afectan al ser humano y comprobar como se puede 

apantallar dicho campo de la forma más sencilla y económica posible, manteniendo a su 

vez las mejores condiciones de trabajo y transferencia de potencia.  

 

Este proyecto está centrado en el cálculo y distribución del campo magnético 

creado por el sistema de carga con sus diferentes variantes y distribuciones espaciales. 

  

El objetivo principal es encontrar la situación correcta en la cual el sistema de 

carga sea capaz de transferir la mayor cantidad de potencia posible (buscar el caso de 

menores pérdidas) y evitar que el campo magnético salga fuera del sistema y pueda 

afectar a personas o elementos del entorno. Para ello sabemos que por normativa el 

campo magnético al que una persona puede estar sometida es de 10 microteslas.  

 

1.2 PETICIONARIO 
 

Como peticionario de dicho proyecto figura:  

 

Sr. Don Juan Luis Villa Gazulla  

 

Área de ingeniería eléctrica de la Escuela de Ingeniería y Arquitectura de 

Zaragoza (EINA), en colaboración con el Centro de Investigación de Recursos y 

Consumos Energéticos (CIRCE). 
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1.3 ANTECEDENTES 
 

El proyecto nace de la necesidad de contrastar la información y resultados 

teóricos del programa de elementos finitos en 2D FEMM con un modelo en 3D como el 

creado con Comsol Multiphysics V4.2. y a su vez comparar ambos dos con los valores 

reales medidos en el sistema de carga por inducción real instalado en los laboratorios 

del CIRCE. El mayor interés reside en la distribución de campo magnético creado por el 

sistema y la forma posible de como aislarlo del entorno para que no afecte fuera del 

mismo y que la perdida de potencia sea la menor posible.  

 

1.4 DESCRIPCIÓN 
 

1.4.1  COMPOSICIÓN  DEL  SISTEMA 

 

El sistema de carga de vehículos eléctricos por inducción instalado en el CIRCE 

consiste en dos bobinas cuadradas en disposición horizontal acopladas magnéticamente 

en resonancia, las cuales suministran 30 KV de potencia cuando trabajan a una 

frecuencia de 18000 Hz. La bobina principal, que consta de 5 espiras, es la que recibe la 

alimentación de la red, absorbe 441 A de la misma a potencia nominal y transfiere dicha 

potencia mediante campos magnéticos a la bobina secundaria. Dicha bobina secundaria, 

de 13 espiras, posee una corriente inducida de 141 A desfasada 90º (π/2) debido a la 

corriente que circula por la bobina primaria. Este sistema crea unos campos magnéticos 

muy altos los cuales han de ser controlados mediante un apantallamiento concreto que 

permita mantener la mayor transferencia de potencia posible y que además evite que 

dicho campo magnético salga al exterior y afecte al entorno.  

 

El sistema se estudia teóricamente desde cuatro puntos de vista distintos:  

 

- Las dos bobinas trabajando en condiciones nominales.  

- Las dos bobinas con unas láminas de ferrita contiguas, que aumentan el efecto 

del campo magnético.  

- Las dos bobinas con unas chapas de aluminio que eviten que el campo 

magnético salga a un exterior.  

- Las dos bobinas con las láminas de ferrita y las chapas de aluminio, para 

comprobar si el efecto de la ferrita con el aluminio se compensan entre si y la 

transferencia de potencia resulta óptima.  

 

El sistema de carga por inducción magnética real se encuentra aislado mediante 

una jaula de Faraday cuadrada de 2,5 metros de lado formando un cubo entorno al 

sistema. Dicho sistema se encuentra en el centro del cubo a una altura de 1 metro del 

suelo. Como el sistema trabaja a alta frecuencia se puede dar el problema del efecto 
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pelicular (skin effect) en los materiales conductores. El efecto pelicular causa que a 

grandes frecuencias la corriente se desplace únicamente por la superficie del sistema 

hasta una determinada profundidad, ignorando la sección completa del mismo, lo que 

acarrea un mayor calentamiento de los conductores con sus correspondientes pérdidas 

en forma de disipación de calor. Las bobinas que conforman este sistema están 

compuestas de hilo de Litz en vez de cobre estándar. El hilo de Litz no es más que una 

agrupación de N hilos de cobre con una envolvente, la cual conforma el cable. En el 

caso de estas bobinas, están compuestas de aproximadamente 500 hilos, los cuales, al 

tener muy poca sección, dejan que la corriente circule a través de toda su sección, con lo 

que consiguen crear un sistema de circulación de corriente homogéneo y por toda la 

sección del conductor, evitando así el efecto pelicular y consiguiendo así menor 

calentamiento del sistema y menores pérdidas por efecto Joule.   

 

Por otro lado, las ferritas y las chapas de aluminio no se encuentran instaladas en 

el sistema real ya que es necesario comprobar y calcular teóricamente cuales serían las 

condiciones y especificaciones exactas, además de ver la distribución del campo 

magnético que acontecería con dichos materiales al añadirlos al sistema. Por ello es por 

lo que se han realizado los estudios con el programa Comsol Multiphysiscs.  

 

1.4.2  EL  PROGRAMA 

 

Comsol Multiphysics V4.2 es un potente programa informático que realiza 

cálculos y simulaciones sobre sistemas físicos bajo unas condiciones concretas. Es 

capaz de simular casi cualquier cosa, ya que dispone de librerías de todo tipo que le 

permiten abarcar la mayoría de los estudios relacionados con ingenierías, física y 

química. Es compatible con la mayoría de los principales programas de calculo y diseño 

(AutoCAD, Solidworks, MathLab…) y permite la importación y exportación de 

información de un programa a otro. Es un programa en constante evolución por lo que 

es necesario especificar siempre con versión se trabaja, ya que algunos archivos de 

diferentes versiones no son compatibles entre si o en determinada versión se ha 

subsanado o corregido algún error que aparecía en otra. Es capaz de diseñar en 3D, 

además de en 2D simétrico, 2D estándar y 1D, lo que le hace un programa muy 

interesante y utilizado por distintos centros de investigación y universidades, dado su 

amplio rango de aplicaciones.   

El método de cálculo utilizado por el programa es el cálculo mediante elementos 

finitos a la vez que aplica unas ecuaciones concretas para poder obtener los resultados 

en función a las condiciones establecidas de estudio. El sistema de cálculo por 

elementos finitos consiste en tomar el elemento o sistema a estudiar y llenarlo de 

triángulos o tetraedros (si estamos hablando de un sistema en 3D para cubrir un 

volumen) y a través de los puntos de unión que crea un triángulo con otro poder tomar 

referencias de cálculo y trazar grados de libertad que permitan establecer ecuaciones 
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para poder calcular según las condiciones y físicas aplicadas. Este sistema de cálculo 

tiene el inconveniente de que cuanto más complejo es el sistema a analizar, mayor 

cantidad de triángulos o tetraedros ha de introducir en el mismo para aproximarse lo 

más posible a una solución certera, lo que requiere un PC potente y no convencional.  
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2 DESARROLLO 
 

2.1 DESARROLLO  FISICO   
 

Los datos necesarios para crear el sistema físico en Comsol Multiphysics fueron 

facilitados por el director de proyecto. Como datos esenciales resultan la sección de 

ambas bobinas, la separación entre ellas y la distancia a la que se encuentran las ferritas 

y las chapas de aluminio, además de las dimensiones propias que deben tener cada una 

de ellas. Como estas últimas no están colocadas en el sistema real, sus dimensiones 

aproximadas se obtuvieron de un diseño en 2D creado en el programa de cálculo de 

elementos finitos FEMM. La distribución de ambas bobinas se sabe que es en torno a un 

rectángulo de 30 cm x 40 cm, siendo la espira central de cada bobina la que coincide 

con este rectángulo y todas las demás están o más hacia dentro o más hacia fuera de 

dicho rectángulo.  

Así pues, como la distribución de las espiras no es exactamente conocida, lo 

primero y necesario es plantear un boceto en papel en el cual a base de realizar 

proporciones se pueda conocer la distancia a la que se encuentran cada una de las 

espiras respecto al rectángulo dado. Otro detalle desconocido es el hueco de separación 

que hay entre una espira y otra, ya que la bobina se reparte de forma cuadrada y 

horizontal pero siempre hay una separación existente entre vuelta y vuelta de cable. 

Como el sistema real no mantiene una medida concreta y precisa, se optó por utilizar 

una distancia de 1 mm de separación entre espira y espira de las bobinas. Se sabe 

también que el radio de curvatura de la espira central en torno al rectángulo de 

referencia es de 10 cm. Lo realmente complejo a realizar era el concepto de crear una 

espira que diera 5 vueltas o 13 vueltas respetivamente, ya que los radios de giro hacia 

dentro del rectángulo de referencia o hacia fuera para dar otra vuelta son totalmente 

desconocidos por lo que se optó por crear espiras cerradas sobre si mismas distribuidas 

en torno a ese rectángulo de referencia, todas a proporción de la espira central en cada 

caso. A efectos del campo magnético creado por la bobina, es exactamente igual el 

campo creado por una bobina de 5 espiras por la que circula una corriente de 441 

Amperios que 5 bobinas de una espira cada una (5 conductores concéntricos) por los 

que en cada uno de ellos circula una corriente de 441 Amperios, por ello, se optó por el 

diseño más sencillo.   

Para todas las medidas del sistema se utilizaron parámetros establecidos en el 

propio programa Comsol Multiphysics lo que permite definir un parámetro (por 

ejemplo: Diametro1) y asignarle a dicho parámetro un valor numérico, de forma que si 

fuera necesario modificar el modelo, porque se ha cambiado el conductor, se ha variado 

alguna distancia de separación o se desean realizar diversas comprobaciones, con solo 

cambiar el valor numérico del parámetro resulta suficiente.  
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Los parámetros definidos en Comsol Multiphysics se pueden encontrar en la 

pestaña Global Definitions en el nodo Parameters. Todas las pestañas y nodos se 

pueden encontrar a mano izquierda en la ventana principal del programa distribuidos en 

forma de un árbol y ramas sucesorias, lo que se denomina Model Builder. Los 

parámetros utilizados para crear este modelo son los siguientes: 

 

 Los parámetros aparecen con una breve descripción de la medida a la que hacen 

referencia. Los acompañados por “F” son los relacionados con la ferrita y los 

acompañados por “Al” hacen referencia a las medidas del aluminio. El término “Lado” 

es el radio que toma dicho conductor para girar 90º y describir el rectángulo. Los que 

llevan doble numeración (por ejemplo, lado11) son referidos a la bobina secundaria. 

Como son conductores concéntricos rectangulares y cerrados, es necesario dejar un 

mínimo de espacio sin cerrar (un hueco de aire) para poder alimentar con la corriente 

necesaria para simular el sistema. Este parámetro es AireCobre, que es un hueco de 1 

cm que poseen todos los conductores para poder acoplar en el las fuentes de corriente.  
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  La corriente que circula por el secundario en el sistema real es una corriente 

inducida debido a la corriente de alimentación que circula por el primario. Como el 

programa no puede simular el concepto de corriente inducida es necesario mantener 

dicho hueco también en la bobina secundaria y alimentar a través de él con fuentes de 

corriente equivalentes a la corriente que circularía por la bobina en condiciones 

nominales de funcionamiento real. Así pues, el diseño final de las dos bobinas es el 

siguiente:  

 

Figura 1: Diseño completo de las bobinas con los huecos de alimentación. 

 El programa Comsol Multiphysics es capaz de importar diseños ya realizados en 

AutoCAD o Solidworks, o directamente trabajar con el sistema de diseño que posee el 

mismo. Utilizando esta última opción se han creado tanto las bobinas como las piezas 

de ferrita y las chapas de aluminio. El modo de funcionamiento para diseñar es muy 

similar al que utiliza Solidworks: Hay que establecer un plano de trabajo (work plane) 

en el eje que nos interese y en el dibujar lo que queramos con las diferentes figuras y 

operaciones binarias que presenta el programa. Posteriormente, lo dibujado en ese plano 

se puede alargar una distancia (extrude) se puede girar respecto a un eje (revolve) y 

diversas funciones mas. El método de trabajo fue crear todo el sistema por simetría. Se 

comenzó a trabajar con el plano vertical situado en el origen y una vez que se tenía 

medio diseño del conjunto se hizo el restante por medio de reflejar el plano sobre si 

mismo (mirror) para que la pieza se reflejara por simetría de si misma. De esta forma se 

consigue diseñar más rápido y con menos planos de trabajo. El desarrollo figura en la 

sección Model 1 en el nodo Geometry 1. Fueron necesarios 101 planos de trabajo para 
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lograr diseñar el modelo completo, aparte de las uniones de los elementos y los reflejos 

de los mismos para simplificar el desarrollo. A continuación se presenta el proceso 

descrito en 3 figuras:  

 

Figura 2: Se coloca un plano de trabajo y se dibuja en él lo que se desea. 

 En el caso de la figura 2 se ha dibujado el perfil de la pieza de ferrita. Para ello 

se ha añadido el plano de trabajo con la función Add work plane que figura al hacer clic 

con el botón derecho del ratón sobre el nodo Geometry 1. Dentro del plano de trabajo se 

permiten añadir figuras simples (cuadrado, circulo, polígonos…) y unirlos entre si con 

operaciones booleanas.  

 

Figura 3: Se selecciona los elementos a alargar y en cuanta profundidad 

 En el siguiente paso representado en la figura 3, se decide que elementos se 

quieren manipular del plano. En este caso lo que se desea es darle profundidad a esa 

pieza de ferrita en el sentido que marca la flecha, de forma que se selecciona el 

elemento del plano y se aplica la opción Extrude disponible en nodo del plano de 

trabajo.  
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Figura 4: Se completa el diseño con los parámetros introducidos. 

 Por ultimo, una vez que se han decidido los elementos a alargar y la distancia, se 

construye el modelo utilizando el botón Build selected que completa la acción solicitada 

con los parámetros introducidos y queda tal como se aprecia en la figura 4. En este caso 

se ha creado el perfil de la pieza de ferrita y se ha alargado hasta una profundidad que 

alcanza el último conductor del devanado por completo.  

 Como se puede observar, el proceso de diseño físico es sencillo, pero requiere 

mucha precisión y sobre todo el uso exhaustivo de los parámetros ya que para introducir 

todas las medidas, distancias y dimensiones es mucho mejor hacer uso de estos. El 

motivo es sencillo: Con parámetros podemos variar en cualquier momento cualquier 

dimensión del sistema únicamente cambiando el valor del parámetro y haciendo clic 

izquierdo en el botón Build all que reconstruye todo el sistema con los parámetros 

introducidos. Si no se utilizan parámetros y se introducen valores directamente, sería 

imposible el poder variar cualquier magnitud, ya fuera diámetro de los conductores, 

separaciones, profundidades… Para ello, todas las distancias introducidas en el diseño 

están reflejadas con ecuaciones con los parámetros, de forma que en vez de aparecer el 

valor numérico, aparece una serie de operaciones con dichos parámetros (por ejemplo: 

L/2+2*(Diametro1+Gap1)+Diametro1/2). De forma que al estar las operaciones con 

parámetros, cualquier variación en los mismos permite un cambio en el diseño. Esta es 

la mejor forma de diseñar el sistema físico 

 Siguiendo este procedimiento durante todo el proceso y uniendo y espejando las 

distintas partes de los elementos que lo componen, el resultado final de las bobinas con 

las piezas de ferrita y las chapas de aluminio es el representado en la figura 5: 
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Figura 5: Bobinas con ferrita y chapa de aluminio. 

 Lo último para añadir al sistema físico es el equivalente a la jaula de Faraday 

que aísla al sistema real. Para ello se introdujo un cubo de 2,5 metros de lado y se 

desplazo su origen para cumplir que la bobina principal esté separada del suelo 1 metro. 

Una vez que todos los elementos físicos están implementados, es necesario que haya 

unión entre ellos. Para ello basta con seleccionar el icono al final del nodo de geometría 

y seleccionar formar unión (form union). Cuando se añade un elemento físico que 

engloba a otros, es necesario utilizar la opción Wireframe rendering situada en la 

ventana Graphics, que es donde aparece el diseño. Aplicar esta función implica el ver 

únicamente las aristas de los cuerpos y todo lo demás transparente, de forma que se 

puede apreciar lo que hay en el interior del cubo. El resultado final del conjunto total 

con jaula es el mostrado en la figura 6:  

 

Figura 6: Sistema completo con Jaula de Faraday. 
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2.2 MATERIALES 
 

Una vez que todo el desarrollo físico esta completo, es necesario añadir materiales 

al modelo desde la librería de materiales del programa. Al añadir materiales lo que se 

consigue es que el programa comprenda lo que es cada uno de los elementos físicos que 

se le han diseñado y las condiciones que tiene que presentar cada uno de ellos a la hora 

de simular el sistema original.  

La forma de añadir materiales al modelo es muy sencilla y se define en pocos 

pasos. El programa Comsol Multiphysics trabaja con cuatro niveles o rangos de escala: 

Dominio (Domain), Frontera (Boundary), Arista (Edge) y Punto (Point). Dominio 

afecta a lo que es un cuerpo y todo lo que hay dentro del mismo. Frontera afectaría 

únicamente a la superficie del cuerpo seleccionado. Arista solo tomaría las aristas del 

cuerpo o las aristas ficticias que crea el programa para definir según que cuerpos (como 

por ejemplo, un conductor cilíndrico, para el programa tiene cuatro aristas que lo 

recorren en toda su longitud). Punto únicamente tomaría un punto concreto del cuerpo, 

los cuales pueden estar distribuidos de forma automática por el programa o pueden ser 

definidos por el usuario. De esta forma, para cada nivel de selección disponible se puede 

definir un tipo de material, teniendo en cuenta lo descrito anteriormente.  

Los materiales se añaden simplemente haciendo clic derecho sobre el desplegable 

Materials que permite abrir la librería con la opción Open Material Browser. En ella se 

puede encontrar una amplia selección de materiales definidos por el programa con todos 

los parámetros introducidos y desglosados por categorías según el material que se 

busque (materiales para AC/DC, química, físicas, calentamientos, motores, 

radiofrecuencia…) Se selecciona el material y se añade al sistema con la opción Add 

material to model que aparece al hacer clic derecho sobre el material deseado. Por 

defecto, el primer material introducido al sistema afecta a todos y cada uno de los 

cuerpos. Conforme se añaden todos los materiales resulta necesario definir conjuntos de 

cuerpos o elementos que compartan un material. Esto se puede hacer desde el nodo 

Definitions (Situado bajo el nodo Model 1) haciendo clic derecho sobre el y añadiendo 

Selections – Explicit de forma que se puede hacer una selección de diferentes cuerpos 

del diseño y agruparlos todos bajo un nombre (por ejemplo, seleccionar todos los 

conductores de las bobinas y llamarlos “Conductores”). Se pueden seleccionar según el 

rango que se desee explicado anteriormente (Dominio, Frontera, Arista o Punto). De 

esta forma, al añadir materiales al diseño, basta con seleccionar el conjunto que se ha 

definido como agrupación y que a ese conjunto le corresponda un determinado material 

Por ejemplo: se selecciona el material cobre de la librería y en el podemos elegir el nivel 

de geometría al que afecta (Dominio, Frontera, Arista o Punto) y bajo este seleccionar la 

agrupación definida con anterioridad. De esta forma los materiales añadidos desde la 

librería son: cobre, aire y aluminio. Como la ferrita no existe como material de librería 

es necesario establecer sus parámetros desde cero. Para ello, en vez de abrir la librería 
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de materiales, se selecciona add material con el cual podemos definir un material a 

través de las siguientes características básicas: Conductividad eléctrica, permitividad 

relativa y permeabilidad relativa. La ferrita se considera un material con conductividad 

nula y permeabilidad en torno a las 2000 unidades, por lo que con introducir dichos 

valores es suficiente para dejar definido el material.  

En el caso de los conductores de las bobinas es necesario establecer un Dominio 

que afecte a todo su interior y que lo defina como cobre y otra Frontera que defina toda 

su superficie también como cobre, para poder hacer circular toda la corriente que se 

desea por toda la sección de los conductores (tanto de primario como de secundario). En 

la figura 7 se puede apreciar la selección de material (en este caso, aluminio), el nivel de 

geometría al que afecta (Geometric entity level) y la selección a la que afecta este 

material. Como se ha definido una selección de las dos chapas de aluminio como 

“aluminio”, se selecciona esa agrupación desde el desplegable y afecta únicamente a esa 

selección. Como se aprecia en la ventana de graphics las dos chapas de aluminio 

aparecen resaltadas en azul, lo que indica que esos son los únicos cuerpos del sistema 

que se consideran aluminio. Este procedimiento se hace con todos los demás cuerpos 

hasta tener todos definidos con un material.  

 

Figura 7: Ejemplo de selección de materiales. 

 En el caso del cubo que representa la Jaula de Faraday también es necesario 

definirlo como un volumen de aire, por lo que se establece un Dominio de aire que 

afecta a todo su volumen interior, a excepción de los otros elementos ya definidos con 

otro material.  
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2.3 FISICAS 
 

Bajo un punto de vista subjetivo, las físicas son lo más importante a implantar en 

el modelo diseñado. Estas tienen que aproximarse lo mayor posible a la realidad y hacer 

que se cumplan las mismas condiciones que se cumplirían en un caso real a estudiar. En 

Comsol Multiphysics hay gran diversidad de físicas y estudios predefinidos, pero resulta 

totalmente necesario saber exactamente que física hay que aplicar y en que caso es 

necesario para que la simulación tenga sentido y sea comparable con el caso real. El 

propio programa se descompone en módulos según sea lo que queramos analizar 

(campos eléctricos, campos magnéticos, radiofrecuencia, química, mecánica, 

motores…) y en cada uno de estos módulos se pueden encontrar varios de los estudios 

más habituales del determinado campo.  

En este caso lo que hay que analizar son campos magnéticos producidos por la 

circulación de corriente en conductores, por ello, el módulo de estudio más adecuado es 

el módulo AC/DC (AC/DC module). Dentro de él se pueden encontrar diversas físicas a 

aplicar, cada una de ellas con una ecuación fundamental básica como referencia, las 

cuales se aplican al modelo diseñado según sea la ecuación que rige las físicas. Para 

todos los estudios realizados sobre el sistema se han empleado tres físicas diferentes: 

Campos eléctricos y magnéticos (electric and magnetic fields), que aplican la ley de 

Ampere con la correspondiente conservación de la corriente. Campos magnéticos 

(magnetic fields), que aplican aislamiento magnético a los elementos seleccionados 

además de la ley de Ampere para los elementos conductores y circuitos eléctricos 

(electrical circuits), que permiten añadir excitaciones de corriente y tensión al sistema 

por medio de un sistema de unión por nodos, además de poder añadir los típicos 

elementos pasivos de circuitos. Para trabajar a altas frecuencias es necesario utilizar las 

físicas de campos magnéticos, ya que son las que permiten añadir un sistema de 

conexión por nodos para conectar las excitaciones. Las físicas como la de campos 

eléctricos y magnéticos permiten establecer una entrada y una referencia de corriente, lo 

que no es valido para corriente alterna de alta frecuencia según el programa, además que 

por defecto no aplican aislamiento magnético al sistema y por ello el desarrollo sería 

mucho más complejo. 

Para añadir las físicas al sistema se puede hacer de diversas formas. Las más 

comunes es añadirlas con el asistente de inicio del modelo o sino haciendo clic derecho 

en el nodo del modelo (Model 1) y seleccionando añadir físicas (add physics). De la 

lista que aparece según el módulo de estudio elegido para el modelo, se selecciona la 

que más interese. Para que la física sea efectiva hay que seleccionar muy bien los 

elementos a los que afecta su ecuación principal y definir robustamente las condiciones 

de frontera para evitar fallos o errores de cálculo. Cuando se aplica la ley de Ampere 

basta con seleccionar los materiales conductores afectados con una circulación de 

corriente la cual se ha de conservar por principio físico. Una vez seleccionados el 
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programa genera unos subnodos correspondientes a la física en consecuencia con lo 

aplicable al modelo y los dominios a los que afecta. Cuando se aplica aislamiento 

magnético, basta con seleccionar la frontera en la que queremos que el campo 

magnético no vaya más allá. Esta opción es ideal para el efecto de la jaula de Faraday 

planteada en el modelo, ya que si se define esta misma con este concepto de aislamiento 

magnético, actúa como lo haría una jaula de Faraday real, evitando que el campo 

magnético se escape al exterior.  

Dado que cada física interactúa con el modelo de una forma u otra, a veces es 

necesario aplicar a las físicas el concepto de elementos finitos o no. El nodo de 

elementos finitos le indica al sistema diseñado que a partir de la frontera que se definen 

los elementos finitos las dimensiones del entorno tienden a infinito. Es decir, se 

establece una zona a partir de la cual se considera que hay un espacio infinito que rodea 

al modelo a estudiar, lo que hace que el programa calcule únicamente lo que hay 

encerrado en un espacio definido (finito) y desprecie todo lo demás que esta fuera de 

determinado espacio. Comsol Multiphysics es más particular que otros programas de 

elementos finitos y no define la frontera de elementos finitos como una superficie, sino 

que necesita establecer ese concepto en una progresión a lo largo de dos superficies. En 

otras palabras, la jaula de Faraday que limita el sistema es a partir de la cual se empieza 

a establecer dichos elementos finitos, pero no se establecen si no hay un recorrido que le 

indique al programa que en un tramo dado se tiende desde la jaula hacia infinito. Dicho 

recorrido necesario se consigue dándole un grosor a la jaula de Faraday. El grosor 

tomado ha sido de 500 mm. De esta forma se crean dos cubos concéntricos, uno de 2,5 

m y el otro de 3 m tal y como se puede apreciar en la figura 8: 

 

Figura 8: Cubo con grosor para aplicar elementos finitos. 
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De esta forma, el grosor establecido entre las superficies paralelas del cubo le 

permite al programa establecer que desde la superficie interior hacia la exterior las 

distancias de separación tienden a infinito y por lo tanto solo analizará y calculará los 

elementos que se encuentren dentro del cubo de 2,5 m.  

 Así pues, para las físicas aplicadas, resulta necesario añadir elementos finitos a 

la de campos eléctricos y magnéticos, ya que la ley de Ampere se aplica solo a los 

conductores de las bobinas pero el campo creado por ambas dos podría salir más allá de 

los limites de la jaula de Faraday, ya que no aplica aislamiento magnético. Por tanto, 

como hay que definir un límite robusto y libre de errores, es necesario aplicar este 

sistema. Por el contrario, para las físicas de campos magnéticos no es necesario aplicar 

elementos finitos, ya que es posible aplicar lo comentado anteriormente de aislamiento 

magnético a la propia jaula de Faraday, lo que aísla por completo el sistema respecto al 

exterior y sus fronteras quedan perfectamente definidas.  

 

2.4 MALLADO 
 

El mallado es otra parte fundamental del programa totalmente necesaria para 

poder ejecutar los cálculos. Mallar consiste en tomar todos los elementos que 

conforman el sistema a analizar por el programa y cubrirlos con una serie de triángulos 

entrelazados por los vértices que se distribuyen por toda su superficie. Si el sistema 

diseñado es un sistema en 3D, en vez de distribuir triángulos se distribuyen tetraedros, 

los cuales van llenando el volumen de todos y cada uno de los elementos del sistema. 

Este mallado le sirve al programa como referencia de cálculo, ya que todos los puntos y 

aristas que conforman la distribución de dichos triángulos o tetraedros le sirven al 

programa como referencia para poder calcular las ecuaciones impuestas por las físicas. 

El mallado puede hacerse automático o el usuario puede decidir su tamaño desde un 

rango establecido por el programa que va desde extremadamente grande (extremely 

coarse) a extremadamente fino (extremely fine), conformando una escala de 9 rangos 

diferentes. Otra opción es definir el mallado de forma manual, para lo cual hay que 

introducir diversos parámetros solicitados por el programa. Esta última opción no es 

muy recomendable, ya que tiene tendencia a dar errores generalmente porque los datos 

no están bien introducidos o no corresponden correctamente con el modelo.   

El mallado puede hacerse uniforme por todo el sistema a analizar o puede 

separarse por partes y definir para cada elemento o grupo de elementos del sistema un 

mallado específico. Para ello es necesario añadir en cada caso el correspondiente nodo 

de tamaño relacionado con el mallado del elemento o elementos del sistema en cuestión 

haciendo clic derecho en el nodo de mallado (mesh) y seleccionando tamaño (size). Para 

definir el mallado por elementos se puede hacer manualmente o utilizar el mismo 

sistema de agrupaciones comentado anteriormente. Se puede elegir distinto tipo de 



MEMORIA DESCRIPTIVA Septiembre 2012 

 

 18 

 

mallado seleccionando la opción más operaciones (more operations) en el menú del 

nodo de mallado. A continuación se muestran figuras de algunos de los elementos del 

sistema mallados con diferentes rangos: 

 

Figura 9: Sistema con mallado extremadamente grande. 

  Como se puede apreciar en la figura 9, en las zonas planas y homogéneas, el 

mallado se reparte de forma automática pero se dispersa mucho más que en las zonas 

donde hay giros o curvaturas, en las que hay mayor concentración de mallado, como se 

puede apreciar en los extremos de las chapas de aluminio. El mallado consta en este 

caso de 22428 elementos. 

 

Figura 10: Sistema con mallado normal. 

 En la figura 10 se puede observar como el mallado ha aumentado de forma 

general, concentrándose todavía más en los extremos y curvas y en la parte plana y 

homogénea se comienza a ver un aumento del número de elementos a lo largo de la 

superficie. El mallado consta  en este caso de 33980 elementos.  
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Figura 11: Sistema con mallado extremadamente fino. 

 La figura 11 muestra el mallado más fino posible, en el cual vemos una 

distribución uniforme por las zonas homogéneas y una concentración excesiva en las 

esquinas y extremos de las chapas. En este ultimo caso, el mallado consta de 8745450 

elementos.  

 Como se puede apreciar gracias a esta comparación, conforme más fino se hace 

el mallado en el sistema, más aumenta el número de elementos que lo conforma. Por 

ello, para modelos complejos en 3D, es necesario crear y distribuir diferentes tamaños 

de mallado por cada uno de los elementos del modelo y poder especificar la precisión 

que queremos en cada uno de ellos. Hay que tener en cuenta que cuantos más elementos 

se dispongan en la malla, mayor precisión se obtiene en la solución, pero por el 

contrario, mayor cantidad de grados de libertad se toman como cálculo para la solución 

y según que PC se esté utilizando para el cálculo, un mallado muy fino será totalmente 

inviable e imposible de calcular. Es necesario destacar que en los modelos 3D se 

generan tetraedros por todo el volumen del elemento mallado, por lo que no solo son los 

triángulos que se ven por la superficie del mismo, sino que hay tetraedros en el interior 

del mismo, que aunque no estén a la vista, conforman parte del grupo de elementos 

totales. También hay que tener en cuenta que es necesario mallar todo el aire que afecta 

al modelo, por lo que el número de elementos totales de la malla puede ascender a gran 

valor si no se selecciona el mallado por partes.  
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2.5 ESTUDIOS  Y  SOLUCIONES 
 

Los estudios (study) añadidos al programa permiten analizar el sistema gracias a 

todos los nodos definidos anteriormente. El nodo de materiales aporta las características 

físicas de cada elemento, el nodo de físicas implementa las condiciones a cumplir y las 

ecuaciones que se han de analizar en el sistema y el mallado proporciona al programa 

puntos de referencia a partir de los cuales desarrollar los cálculos. Con el nodo de 

estudios se puede definir como se desea que se calcule el sistema y en que condiciones 

(a tiempo dependiente, estacionario, variable…). Para los cálculos en corriente continua 

se utiliza un estudio estacionario (stationary). El estudio concluye cuando las 

iteraciones que realiza el programa llegan a un error menor de 10
-3

. Dichas iteraciones 

se muestran en una gráfica que evoluciona a lo largo del tiempo. Para los cálculos en 

corriente alterna se utiliza un estudio de dominio de la frecuencia (frecuency domain). 

Con este estudio se puede definir la frecuencia con la que se desea que el sistema trabaje 

y también se pueden implantar sistemas con incremento de frecuencia definiendo la 

frecuencia inicial, la final y el incremento de la misma a lo largo del tiempo (steps).  

Para añadir un estudio al sistema basta con hacerlo desde el asistente de inicio o 

hacer clic derecho en el nodo estudio (study) que figura en el Model Builder a la 

izquierda de la ventana principal y dentro de él seleccionar pasos de estudio (study 

steps). Un estudio puede estar formado por un solo paso o por una sucesión de los 

mismos. De esta forma, se pueden enlazar estudios dependientes del tiempo con 

estudios estacionarios o estudios dependientes de la frecuencia. Para ejecutar el estudio 

basta con dar al botón calcular (calculate) para que comiencen las iteraciones. Lo 

primero que hace el programa es evitar elementos que alteran la forma del sistema, 

posteriormente calcula los grados de libertad con los que trabajar y por ultimo 

comienzan las iteraciones. Cuando el error es mínimo se considera que se ha obtenido 

solución y que el resultado es válido. Hay que tener en cuenta que el resultado será más 

preciso cuanto más fina sea la malla impuesta en el sistema. 

En el nodo resultados (results), también conocido como zona de postprocesado, se 

pueden manipular el aspecto visual de la solución final, se pueden calcular otros valores 

que vengan determinados por el valor principal calculado y se puede cambiar todo tipo 

de colores, acabados, efectos y rangos de valores. Hay que tener en cuenta también que 

el programa puede dar soluciones espaciales (como la distribución de campo magnético) 

pero para ello necesita planos en los que plasmar dichas soluciones. Es decir, no puede 

trazar esferas, líneas o formas que describan en el espacio el valor del campo. Si que se 

puede utilizar elementos que muestren espacialmente como actúa una distribución, 

como flechas o conos, pero estos no pueden aportar un valor de la magnitud calculada. 

En este mismo nodo de resultados se pueden exportar (export) a otro formato (como 

Mathlab) y hacer informes con los datos obtenidos (report). 
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3 CALCULOS 
 

3.1 PLANTEAMIENTO  DE  LOS  CALCULOS 
 

Aunque el objetivo principal es comprobar y controlar la distribución de campo 

magnético en el espacio y su efecto en el entorno, se solicitó también calcular tres 

valores fundamentales que afectan directamente a dicho campo magnético. Estos son: 

Inductancia de la bobina primaria L1, inductancia de la bobina secundaria L2, y 

coeficiente de inducción mutua M12. Como se tienen referencias teóricas (las obtenidas 

en el modelo 2D de FEMM y los cálculos en Mathlab realizados por el director de 

proyecto) y medidas precisas del sistema real (el propio sistema montado en CIRCE), se 

pueden contrastar los resultados obtenidos en Comsol Multiphysics del modelo 3D con 

los obtenidos en 2D y el modelo real en funcionamiento.  

Los cálculos se han realizado en modelos separados para simplificar el modelo 

físico lo más posible y ceñirlo al calculo deseado. De esta forma, si por ejemplo solo se 

ha de calcular la inductancia de una de las bobinas, se suprime todo lo demás del 

entorno y con ello se simplifica mucho más el mallado, lo que aumenta mucho más la 

velocidad de cálculo. En total se han realizado 9 archivos con modificaciones del 

modelo completo para realizar todos los cálculos y comprobaciones necesarias. Así 

pues, los archivos que contienen dichos cálculos son los siguientes: 

- Calculo L1 con c.c. 

- Calculo L2 con c.c. 

- Calculo M12 

- MF producido por primario. 

- MF producido por secundario. 

- MF producido por ambas bobinas. 

- MF de bobinas + chapas Al 

- MF de bobinas + ferritas 

- MF sistema completo (bobinas + chapas Al + ferritas) 

Con estos archivos es mucho más sencillo acceder al resultado deseado con solo 

abrir el que interese en cada momento. Existe la posibilidad de realizar todos los 

cálculos en un archivo, pero tiene la desventaja de que el modelo físico no se puede 

simplificar y por lo tanto el mallado afecta a todos los elementos independientemente de 

que el calculo afecte en ellos o no. Además siempre es necesario cambiar la 

configuración para obtener un resultado u otro, y si se aplica todo en conjunto, puede 

resultar más complejo que si se hiciera por separado. Si todo ello se encontrara en un 

solo archivo, otro problema adicional sería el gran tamaño del archivo (en megas) y la 

cantidad de memoria que requeriría para los cálculos, que sería mucho mayor que 

cotejar cada caso por separado. 
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3.2 CÁLCULO  DE  LA  INDUCTANCIA  L1  
 

El cálculo de la inductancia de primario L1, al igual que el de la inductancia L2 es 

necesario hacerlo con las físicas de campos eléctricos y magnéticos (electric and 

magnetic fields) ya que es la única física que una vez realizados los cálculos es capaz de 

obtener las magnitudes eléctricas de resistencia, capacitancia e inductancia de un 

circuito eléctrico. La desventaja es que solo es aplicable corriente continua para realizar 

estos cálculos, ya que esta física no se puede poner a trabajar en altas frecuencias. Por 

ello, el cálculo de ambas inductancias no es tan preciso como se desearía, aparte de que 

depende mucho el mallado introducido en el sistema.   

El proceso de cálculo es sencillo. Del modelo completo diseñado se deja 

únicamente la bobina principal y todo lo demás se elimina para agilizar los cálculos y 

disminuir el mallado. Como se aplica la Ley de Ampere gracias a las físicas de los 

campos eléctricos y magnéticos, es necesario aplicar lo antes mencionado en el apartado 

2.3 de elementos finitos, dándole un cierto grosor al cubo que representa la jaula de 

Faraday y la distancia necesaria para que la frontera del sistema tienda a infinito. Como 

la excitación ha de ser en continua, se pone para cada conductor un terminal de corriente 

y otro de referencia, y se hace circular por ellos la corriente de funcionamiento nominal 

del sistema real (441 A). El modelo queda de la siguiente manera: 

 

Figura 12: Modelo para cálculo de L1 

 Se realizó el cálculo con un mallado “más fino” (finer) uniforme por todo el 

sistema. El estudio aplicado es estacionario (stationary) debido a que el cálculo es con 

corriente continua y esta no tiene variación con el tiempo. Una vez que se obtienen 

resultados, los valores eléctricos se pueden obtener desde el nodo resultados (results) en 
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el subnodo valores derivados (derived values) y dentro del mismo seleccionando 

evaluación global (global evaluation). De esta forma se obtiene un valor de inductancia 

de la bobina primaria de 15,1936 microHenrios. El valor difiere un poco del real, pero 

hay que tener en cuenta que es una simulación en 3D que requiere una estación de 

trabajo y dicha inductancia solo se puede obtener al aplicar corriente continua, no 

alterna, por lo que el cálculo no es tan preciso como se desearía. Aun así, la diferencia 

es de aproximadamente un 10% (19,3 µH es el valor real medido). Dicho modelo, 

cálculos y resultados se pueden encontrar en el archivo “Calculo L1 con c.c.” 

 

Valor de inductancia de primario 

 

15,1936 µH 

 

3.3 CÁLCULO  DE  LA  INDUCTANCIA  L2  
 

El proceso de cálculo para la inductancia de la bobina secundaria es idéntico al 

utilizado para la bobina primaria. Las físicas utilizadas y el mallado son los mismos. Lo 

único que difiere es el modelo, que presenta únicamente la bobina secundaria y elimina 

todo lo demás del entorno, simplificando de nuevo cálculos y mallado. Se mantienen las 

distancias originales respecto al suelo de la jaula de Faraday, únicamente se suprimen 

los elementos que no interesan para este cálculo en concreto. El modelo de cálculo 

queda como aparece en la figura 13:  

 

Figura 13: Modelo para calculo de L2 
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 De nuevo, las condiciones de cálculo y la forma de obtener los resultados es 

idéntica al modelo anterior. El valor de inductancia de la bobina secundaria es 113,4104 

microHenrios. De nuevo el valor vuelve a diferir levemente del real, aparentemente por 

los motivos anteriormente descritos. Dicho modelo, cálculos y resultados se pueden 

encontrar en el archivo “Calculo L2 con c.c.” 

 

Valor de inductancia de secundario 

 

113,4104 µH 

 

3.4 CÁLCULO  DE  INDUCCIÓN  MUTUA  M1 2  
 

El cálculo de inducción mutua es un valor clave para conocer la transferencia de 

potencia que se da entre ambas bobinas. Se entiende por inducción mutua M12 el flujo 

magnético que crea la bobina de primario y llega a la bobina de secundario. En otras 

palabras, el flujo que le aporta una bobina a otra. Como ambas bobinas están acopladas 

y en resonancia, el coeficiente de inducción mutua es una constante, ya que es igual el 

flujo que influye el primario sobre el secundario, que el secundario sobre el primario. 

De ahí se obtiene que M12 = M21 = M.  

El procedimiento para el cálculo es quizá el más complejo de todos los que hay 

que realizar. En el modelo se tienen ambas bobinas, la de primario y la de secundario, y 

todo lo demás se elimina para simplificar cálculos y agilizar el proceso. La física a 

aplicar es la de campos magnéticos (magnetic fields). Como la propia física permite 

aplicar aislamiento magnético, no es necesario aplicar elementos finitos sobre este 

modelo. De forma que se aplica el aislamiento magnético a la jaula de Faraday y el 

sistema queda definido para su estudio. Para poder realizar el cálculo correctamente, 

hay que excitar la bobina primaria con la corriente nominal y la secundaria mantenerla 

sin excitación, para ver únicamente el flujo que produce la bobina primaria y llega a la 

secundaria. El flujo a calcular es el flujo magnético que atraviesa una superficie dada, 

en webers. De forma que, como no hay ninguna superficie definida en el sistema, 

resulta necesario plantear un rectángulo de 30x40 cm (que es el tamaño de referencia 

central) y darle un grosor mínimo (de 1 cm por ejemplo) y una separación mínima 

respecto a los conductores (1 cm también) para que una vez realizado el cálculo y 

obtenidos los resultados, se pueda calcular el flujo que atraviesa esa superficie para 

obtener los webers que llegarían a la bobina secundaria excitando únicamente con el 

primario. En las figuras 14 y 15 se muestra el diseño del modelo, una detallando ambas 

bobinas y el rectángulo introducido para utilizarlo como superficie de referencia y una 

vista general del conjunto. 
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Figura 14: Detalle del modelo con el rectángulo añadido. 

 

Figura 15: Modelo completo para el cálculo de M12 

 Para el cálculo de la inducción mutua es necesario poner al sistema en las 

condiciones nominales de trabajo del sistema de carga real. Para ello, es necesario 

utilizar el nodo de circuitos eléctricos (electric circuit) dentro de las físicas, el cual 

permite añadir excitaciones y elementos típicos de circuitería. Para establecer una 

comunicación entre ambos nodos de físicas, es necesario establecer un código de 
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conexiones mediante nodos que permita al programa entender donde va cada elemento y 

que orden llevan. Para ello, lo primero que hay que hacer es establecer unos puertos 

(lumped port) en el propio sistema. Para añadirlos, se selecciona desde la física de 

campos magnéticos (magnetic fields) haciendo clic derecho sobre ella la opción lumped 

port. En esta opción se define una zona no conductora que se halle entre dos elementos 

conductores y cuya distancia de separación sea mucho menor a la longitud de onda que 

va a circular por el mismo. Esta selección se realiza mediante las fronteras del sistema, 

por lo que el conductor aparece descompuesto con cuatro fronteras (una por cada cuarto 

de círculo que forma el conductor). Así pues, se seleccionan las fronteras que 

conforman el espacio de alimentación dejado en cada conductor, haciendo un puerto de 

conexión por conductor. No se pueden dejar de forma uniforme porque el programa solo 

puede aplicar la opción de puerto uniforme para modelos de 2D o modelos que posean 

solo 2 elementos de puerto (no 4 como este caso). Así pues es necesario ponerlo en 

modo definido por el usuario (user defined) y poner la anchura total del puerto, que es la 

anchura de la zona no conductora, la altura total, que es el diámetro del conductor y el 

sentido en el que el puerto debe ir orientado. Se selecciona que van a ser terminales de 

tipo circuito (terminal: circuit), para poder establecer conexión con el nodo de circuitos 

eléctricos. A cada puerto se le asigna un número de puerto por defecto, que será el 

número de referencia para hacer conexión con el resto del circuito. 

 Una vez tenidos los puertos de alimentación definidos, se pueden añadir las 

fuentes de corriente desde las físicas de circuitos eléctricos. Para ello, se hace clic 

derecho sobre el nodo circuitos eléctricos (electrical circuit) y se selecciona fuente de 

corriente (current source). Así aparece un nodo secundario que representa la fuente de 

corriente, la cual se puede seleccionar como fuente de corriente continua, alterna o 

senoidal. Se selecciona corriente alterna y se introduce el valor de la corriente eficaz, ya 

que cuando el programa trabaja con valores alternos o senoidales, el valor de las fuentes 

ha de ser el valor eficaz (no el valor de pico), es decir, dividir entre raíz de dos para 

todos los valores de excitación. Para los elementos del circuito eléctrico es necesario 

definir los puntos de conexión. Por defecto en esta física siempre aparece el terminal 0 

que es el terminal de referencia o masa. Estos terminales se definen en la ventana de 

ajustes (settings) de cada una de las fuentes. Así pues, para las fuentes de corriente 

alterna es necesario introducir como primer valor en los nodos de conexión el número 

de referencia que tenga el puerto definido anteriormente en la física de campos 

magnéticos. Así el programa entiende que la fuente de corriente esta conectada al puerto 

y a masa.  

Para que el programa sea capaz de realizar los cálculos, es necesario que se 

cumpla la ley de Ohm, por ello, es necesario añadir una resistencia genérica desde el 

propio nodo de circuitos eléctricos. La resistencia introducida es únicamente simbólica, 

y para que no afectara en escala a los posibles cálculos se introdujo de 1 Ω de valor. La 

conexión de la misma se hace también numéricamente por nodos de conexión, con lo 

que se colocan valores numéricos que representen que la resistencia esta entre el 
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generador de corriente y el dispositivo siguiente a conectar, el cual es un elemento 

ficticio que permite relacionar el sistema con el sistema de cálculo de elementos finitos 

llamado External I vs U. Este último dispositivo tendrá conexión con uno de los 

extremos de la resistencia y con la referencia, de forma que así se consigue cerrar el 

circuito y se puede suministrar corriente al sistema. Que el sistema este cerrado de esta 

forma no implica que no pase corriente por la bobina, ya que este circuito añadido se 

conecta con el puerto de alimentación de cada espira de la bobina, por lo que la 

corriente fluye tanto por el circuito ficticio como por la bobina principal a alimentar.  

 Para el cálculo correcto de este sistema el estudio empleado es en dominio de la 

frecuencia (frecuency domain) en el cual se define la frecuencia a la que se desea 

trabajar (los 18000 Hz) y se ajustan los parámetros de iteración para que calcule más 

rápido y sin error desde el nodo estudio 1 (study 1) seleccionando el subnodo 

configuración de la solución (solver configurations) y dentro de él, solucionador 1 

(solver 1). Una vez en el, se accede al solucionador estacionario 1 (stationary solver 1) 

y dentro de él se selecciona el nodo iterativo 1 (iterative 1) dentro del cual se modifica 

en la ventana de ajustes (settings) se elige de solucionador (solver) BICGStab y la 

condición previa de cálculo (preconditioning) se selecciona derecha (right) en vez del 

que aparece por defecto (left). El programa calculara con las físicas introducidas y los 

parámetros establecidos el campo magnético en Teslas que se genera producido por la 

bobina principal, que es la única bobina excitada. En principio este valor no nos interesa 

a priori, pero es necesario que lo calcule para poder trabajar con la superficie que se ha 

introducido bajo el secundario para poder calcular la densidad de flujo magnético que la 

atraviesa. Así pues, para calcular dicho valor, se selecciona el nodo resultados (results) 

y desde dentro de él, se seleccionan valores derivados (derived values), se hace clic 

derecho sobre él y se selecciona integración (integration). Con esta integración 

elegimos la superficie en la cual queremos integrar el valor de campo magnético para 

poder calcular el flujo que la atraviesa en Webers. Aquí entra en acción el rectángulo 

introducido en el sistema, cuya superficie es la que hay que integrar para calcular dicho 

valor. El resultado es directo y se obtiene 2,8333*10
-4

 Wb. A continuación se desea 

pasar dicho valor a Henrios para poder comprobarlo con los valores reales y los 

calculados con el FEMM de forma que es necesario aplicar la siguiente fórmula:  

    
   

 
 

 Siendo   el flujo magnético en Webers que genera la bobina principal sobre la 

bobina secundaria, N el número de espiras de secundario e I la corriente que circula por 

el primario. De esta forma se obtiene: 

    
              

   
           

 El valor real medido es de 8,68   , en este caso es comprensible que salga un 

poco menos, ya que la inductancia de las bobinas también sale menor a la real y al tener 
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menos inductancia, la inducción mutua también ha de ser levemente menor, por lo que 

los cálculos mantienen una coherencia lógica. Todo el proceso descrito se puede 

encontrar en el archivo “Calculo M12 (8,352microH)”. En el mismo se encuentran 

todos los parámetros de fuentes de corriente, resistencias, módulos de adaptación y 

puertos de alimentación para la bobina secundaria por si interesa hacer el cálculo 

inverso (M21) u otro tipo de comprobación. Para activar unos y desactivar otros basta 

con hacer clic derecho sobre el que interese y seleccionar activar (enable) o desactivar 

(disable). 

 

3.5 CÁLCULO  DE  CAMPOS  MAGNÉTICOS 
 

El cálculo de los campos magnéticos es la parte que más minuciosamente se ha 

tratado y se ha analizado de diversas formas. Primeramente se ha analizado el campo 

magnético creado por la bobina de primario, posteriormente el creado por la bobina de 

secundario y finalmente con ambas bobinas. Para seguir haciendo pruebas y comprobar 

la distribución de campo magnético según los elementos introducidos en el sistema y 

manteniendo las dos bobinas trabajando en condiciones nominales, se calcula el campo 

magnético introduciendo únicamente ferrita en el sistema, luego las chapas de aluminio 

y al final ambos elementos a la vez. A continuación se muestra cada uno de los modelos 

y el campo magnético obtenido.  

 

3.5.1  CAMPO  MAGNÉTICO  CREADO  POR  PRIMARIO 

 

Para analizar el campo magnético creado por la bobina primaria se eliminan 

todos los elementos del sistema excepto la bobina primaria. El sistema en cuestión se 

mantiene encerrado en la jaula de Faraday en las mismas condiciones y a la misma 

distancia. La física aplicada es la de campos magnéticos, por lo que se vuelve a aplicar 

aislamiento magnético a la jaula y el sistema queda completamente definido. Se definen 

los puertos de la forma descrita anteriormente en el apartado 3.4, pero en este caso 

como solo esta la bobina de primario, se selecciona en los propios puertos (lumped 

ports) tipo de terminal: corriente (terminal type: current) y se define en ellos mismos la 

corriente que ha de circular por el sistema, los 441 amperios, de forma que no es 

necesario añadir circuitos externos y el modelo queda más simplificado. El mallado se 

hace homogéneo en todo el sistema con el rango “más fino” (finer). El estudio se realiza 

en dominio de la frecuencia, a 18000 Hz y se aplican de nuevo los ajustes de la solución 

y el configurador como en el apartado 3.4. Una vez obtenidos los resultados se puede 

representar el campo magnético creado por medio de láminas dispuestas a diferente 

altura del sistema. El punto de referencia es a media altura, que servirá para comprobar 

los valores de los diferentes sistemas de estudio en un mismo punto. De esta forma, el 
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resultado principal obtenido se muestra en las sucesivas figuras 16 y 17. El campo 

magnético obtenido en el centro de la lámina trazada es de 13,7699 mT. Se observa que 

la distribución es concéntrica respecto a la bobina y la escala de colores representa el 

máximo y el mínimo obtenido en el sistema. La mayor concentración de campo se da en 

el centro y disminuye conforme se aleja del contorno de la bobina. En que hay ya una 

cierta separación de la misma, el campo magnético tiende a cero en toda la periferia 

hasta la propia jaula de Faraday. Si se desplaza la lámina que representa el campo 

magnético se observa que conforme se aproxima a la bobina el campo aumenta 

enormemente, ya que este varía en función del cuadrado de la distancia de separación. 

Por ello, un mínimo cambio en la distancia de medición del campo magnético puede dar 

una variación sustancial del valor del mismo.  

 

Figura 16: Campo magnético producido por la bobina de primario. 

 

Figura 17: Detalle del campo magnético sobre la bobina de primario. 
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 Como valores máximos y mínimos captados por el programa en este 

planteamiento son 14,471 mT y 0,0608 mT respectivamente. La altura del plano se 

puede variar desde la ventana de ajustes del plano (settings) en la sección datos del 

plano (plane data – point) y variar los parámetros x, y, z respectivamente. Estos planos 

representan el campo magnético que se obtiene a distintas distancias en paralelo a las 

bobinas. Si cambiamos el plano poniendo sus puntos en el origen y la normal 

cambiándola de eje, podemos obtener el campo que aparece perpendicular a los 

conductores, el cual es de gran magnitud e interesa conocerlo para ver su distribución y 

sus valores máximos, para ver como es posible que cumpla normativa. 

 De esta forma si se plantea un plano perpendicular, el programa toma unos 

valores máximos de 124,25 mT y es necesario manipular el rango de escalas para 

apreciar correctamente como se distribuye el campo por todo el espacio. Si se establece 

un rango de valores entre 1 y 20 mT se puede apreciar la distribución planteada en la 

figura 18: 

 

Figura 18: Distribución de campo magnético de la bobina de primario (1-20 mT) 

Todas las zonas sombreadas en rojo oscuro implican que superan el máximo valor 

definido de 20 mT. Si se modifica la escala y se implanta un rango de 1 a 50 mT para 

ver donde se obtienen los valores máximos, se obtiene la figura 19, en la cual se puede 

observar que la mayor concentración de campo magnético reside en el entorno de los 

conductores. Todas las zonas sombreadas en rojo oscuro superan los 50 mT, que 

justamente son la periferia de los conductores. Conforme aumenta la distancia de 

separación, el campo disminuye fuertemente. Toda esta información, cálculos y 

resultados se puede encontrar en el archivo “MF producido por primario” 
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Figura 19: Distribución de campo magnético de la bobina de primario (1-50 mT) 

  

3.5.2  CAMPO  MAGNÉTICO  CREADO  POR  SECUNDARIO 

 

Para calcular el campo magnético creado por la bobina secundaria se eliminan 

todos los elementos del entorno excepto la bobina secundaria. Se mantienen las mismas 

dimensiones y las mismas distancias. El proceso de mallado y físicas se aplica 

exactamente igual que en el caso del campo magnético creado por primario, con la 

excepción de que en este modelo resulta necesario añadir la física de circuitos 

eléctricos, ya que la corriente de secundario va en 90º de desfase respecto a la de 

primario y la única forma de añadir dicho desfase es ponerlo de referencia en la fuente 

de corriente. Por ello, al añadir las fuentes de corriente como se comentó anteriormente 

(en el cálculo de M12) y el circuito de alimentación, en la propia ventana de cada fuente 

se introduce el desfase correspondiente en radianes. Una vez realizados los cálculos, se 

ajusta la lámina de resultados a la mitad de altura, como en el caso anterior, para poder 

comparar los valores. El resultado principal se muestra en las figuras 20 y 21. El valor 

de campo magnético que figura en el medio de la lámina es de 5,9511 mT. La 

distribución espacial es del mismo tipo que en el caso de la bobina primaria, con mayor 

concentración en el centro de los devanados debido a la superposición de los 

conductores paralelos dos a dos. Si se establece de nuevo un cambio de plano y se 

observa la distribución de campo perpendicular a los conductores se puede observar que 

el programa calcula un máximo de 54,457 mT. Si se modifica la escala para poder 

observar su distribución y se define entre 1 y 20 mT, se puede observar en la figura 22 

como el valor del campo magnético es superior a 20 mT en las zonas periféricas de los 

conductores que están sombreadas en color rojo oscuro. Si se plantea otra escala, como 

de 1 a 40 mT, queda de manifiesto en la figura 23 que los valores máximos de campo 

quedan presentes en los contornos de los conductores.  
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Figura 20: Campo magnético producido por la bobina de secundario. 

 Como se puede observar en el rango de valores, el programa capta como valor 

máximo 6,5288 mT y como valor mínimo 0.0258 mT.  

 

 

Figura 21: Detalle del campo magnético sobre la bobina de secundario. 
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Figura 22: Distribución de campo magnético de la bobina de secundario (1-20 mT) 

 

Figura 23: Distribución de campo magnético de la bobina de secundario (1-40 mT) 

Toda esta información, cálculos y resultados se puede encontrar en el archivo 

“MF producido por secundario” 
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3.5.3  CAMPO  MAGNÉTICO  PRODUCIDO  POR  AMBAS  BOBINAS 

 

Para calcular el campo magnético que genera el sistema con ambas bobinas 

funcionando en condiciones nominales se crea un modelo que contenga únicamente 

ambas bobinas y todos los demás elementos se eliminan. De esta forma se simplifica el 

mallado y se agilizan los cálculos. Para el análisis y estudio de ambas bobinas conjuntas 

se utilizan las mismas físicas, mallado y planteamiento que en los dos casos anteriores. 

Se aplica la física de campos magnéticos y se aplica aislamiento magnético a la jaula de 

Faraday para definir las fronteras del sistema. Se utiliza la física de circuitos eléctricos 

para añadir las excitaciones a ambas bobinas. Se define una fuente de corriente por cada 

conductor, las de primario alimentando a 441 A sin desfase y las de secundario 

alimentando a 141 A y un desfase de 90º. Se diseña el mismo circuito de alimentación 

explicado en el apartado 3.5.2 con las resistencias, los elementos de cierre y los puertos 

de alimentación en cada conductor definidos de forma manual y considerados parte del 

circuito. Una vez realizados los cálculos y obtenido los resultados, se coloca el plano 

paralelo a los conductores exactamente a media altura entre ambos, en el mismo punto 

de referencia que para los anteriores cálculos. El resultado obtenido se muestra en la 

figura 24: 

 

Figura 24: Campo magnético producido por ambas bobinas. 

Como se puede apreciar, el rango de valores calculado por el programa muestra 

16,269 mT de máximo y 0,0644 mT de mínimo. En el centro del sistema se obtiene un 

valor de 15,1679 mT. Como se puede observar en la figura 25, la distribución es más 

homogénea en el hueco central de las espiras que en los dos casos anteriores, debido a la 

acumulación de campo producido por ambas bobinas.  
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Figura 25: Detalle del campo magnético producido por ambas bobinas. 

Si a continuación analizamos el campo magnético que se crea de forma 

perpendicular a los conductores, cambiando de nuevo el plano de coordenadas, 

obtenemos un valor máximo de 151,08 mT. Resulta necesario cambiar el rango de 

escala para mostrar debidamente la distribución de campo magnético en el espacio. Si se 

introduce un rango de escala entre 1 y 20 mT se obtiene lo que aparece en la figura 26: 

 

Figura 26: Distribución de campo magnético producido por ambas bobinas (1-20 mT) 
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 Como se muestra en la figura 26, todas las partes sombreadas en rojo oscuro 

superan los 20 mT. Si se establece un nuevo rango de valores, entre 1 y 50 mT, se 

obtiene la figura 27: 

 

Figura 27: Distribución de campo magnético producido por ambas bobinas (1-50 mT) 

Como se puede apreciar en la figura, los mayores valores de campo magnético 

se concentran en torno a los conductores, como ocurría anteriormente. Ahora bien, 

como ya se dispone de ambas bobinas funcionando en condiciones nominales, es 

necesario hacerse la siguiente pregunta: ¿Cumplen normativa tal y como están 

distribuidas en el espacio? Para ello es necesario comprobar la distribución máxima de 

campo magnético considerando el máximo permitido por reglamento de 10 µT. Es 

evidente que no se va a cumplir, ya que comprobando las figuras 26 y 27 se aprecia la 

distribución en mT y su efecto en el espacio resulta bastante notorio, por lo que si se 

comprueba la misma magnitud en µT, este campo magnético se va a extender por toda 

la jaula casi de forma homogénea. Dicha distribución se muestra en la figura 28. Como 

se puede ver, el sistema no cumple normativa, ya que toda el área sombreada en rojo 

oscuro implica un valor superior a 10 µT, que es el valor que como máximo se puede 

permitir. De esta forma, resulta necesario buscar un sistema que aísle y concentre el 

campo magnético en el espacio existente entre las bobinas y que no salga más allá de la 

bobina de secundario. Por ello es necesario comprobar como afecta la ferrita al sistema, 

comprobar el apantallamiento del aluminio y ambos elementos a la vez, para ver si se 

puede evitar que el campo se expanda tan bruscamente y quede concentrado en el 

espacio del sistema.  
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Figura 28: Distribución de campo magnético producido por ambas bobinas para normativa (Máx. 10 µT) 

Toda esta información, cálculos y resultados se puede encontrar en el archivo 

“MF producido por ambas bobinas” 

 

3.5.4  CAMPO  MAGNÉTICO  PRODUCIDO  POR  AMBAS  BOBINAS  CON  

FERRITA 

 

Para el estudio de este sistema se mantienen las dos bobinas alimentadas a 

condiciones nominales, utilizando las mismas físicas y estudios que en el apartado 

anterior, y se añaden las placas de ferrita que aparecen en el modelo completo, para ver 

como afectan al campo magnético visto anteriormente. El mallado es necesario 

cambiarlo y definirlo por partes para especificar la precisión que se desea en cada parte 

del sistema. Por ello, se deja en la mayoría de los elementos un mallado grueso (coarse) 

o extremadamente grueso (extremely coarse), y se define en el espacio circundante a las 

bobinas un mallado más fino (finer) para tener una buena precisión en la distribución de 

campo magnético, que es lo que realmente es necesario conocer con exactitud. La ferrita 

actúa como un amplificador, aumentando el efecto del campo magnético en el espacio 

intermedio entre ambas bobinas y concentrándolo en torno a los conductores, evitando 

que se expanda tanto hacia el centro del sistema. Para este modelo es necesario cambiar 

la jaula de Faraday que rodea al sistema, ya que al introducir elementos nuevos como 

las piezas de ferrita, los cálculos se complican bastante más que en los casos anteriores 

y es necesario buscar una forma de reducir variables para que un ordenador 

convencional pueda calcularlo. Por ello, en vez de encerrar el sistema en una jaula 
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cuadrada, se ha colocado una jaula esférica. El simple hecho de que sea esférica permite 

eliminar las aristas que tenía la jaula cuadrada y con ello disminuir sustancialmente el 

mallado, de forma que los grados de libertad también disminuyen. La jaula esférica 

necesita de un grosor para poder crear el sistema uniforme, pero no por ello es necesario 

aplicar elementos finitos al sistema. Con aplicar aislamiento magnético a la esfera 

interior es suficiente. La esfera exterior únicamente sirve para dar robustez y formar la 

unión del modelo. Con todo ello, el campo magnético que crea el sistema es el mostrado 

en la figura 29.  

 

Figura 29: Campo magnético producido por ambas bobinas afectado por la ferrita. 

 Como se puede apreciar en la figura 29, el campo magnético máximo calculado 

por el programa es de 2,8184 mT, dando en el centro del sistema un valor de campo 

magnético de 1,1714 mT. De nuevo, el plano de cálculo para el campo magnético esta 

centrado a la altura media para poderlo comparar con los anteriores casos. En la figura 

30 se muestra en detalle dicho campo. 

 

Figura 30: Detalle del campo magnético producido por ambas bobinas afectado por la ferrita. 
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Como se puede ver, el campo magnético creado en el espacio intermedio de 

ambas bobinas es mucho más pequeño que en el caso anterior, por lo que se puede 

deducir que la ferrita esta haciendo su efecto de amplificación y concentración. Para 

comprobar realmente lo que esta ocurriendo es necesario cambiar el plano de cálculo 

del campo magnético y contemplar como en los casos anteriores la distribución de 

campo magnético perpendicular a los conductores y ver como la ferrita afecta al mismo, 

tal y como se muestra en la figura 31: 

 

Figura 31: Distribución de campo magnético producido por ambas bobinas con la ferrita (1-10 mT) 

 Como se puede apreciar en la figura 31, la concentración de campo magnético 

reside principalmente en torno a los conductores, y por la zona central queda 

prácticamente anulado. El valor máximo medido por el programa es de 133,65 mT. En 

la figura se muestra una distribución desde 1 mT hasta 10 mT. Todas las zonas 

sombreadas en color rojo oscuro superan los 10 mT y en las proximidades del 

conductor, casi en su superficie, se da el valor máximo de campo magnético. También 

se aprecia que el campo no pasa más allá de la placa de ferrita a simple vista, pero si se 

modifica la escala para ver si cumple normativa obtenemos la figura 32. El sistema ideal 

será el que no deje escapar nada de campo magnético al entorno y lo concentre solo 

entre las bobinas, para permitir así la mejor transmisión de energía con las menores 

pérdidas posibles. Las placas de ferrita se podrían hacer más anchas o más largas, para 

intentar que recogieran más campo magnético. También se podían hacer con curvatura 

por todos sus lados, ya que en el modelo que hay diseñado solo poseen curvatura por los 

lados y tanto el principio como el final están sin curvatura. Es decir, el diseño de la 

ferrita se podría adaptar de diversas formas según fuera necesario y según interese para 

el sistema.   
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Figura 32: Distribución de campo magnético producido por ambas bobinas con la ferrita para normativa         
(Máx. 10 µT) 

Como se puede apreciar en la figura 32, el campo magnético es superior a los 10 

µT en un radio de aproximadamente un metro desde el punto medio de las dos bobinas, 

lo que hace que no cumpla normativa. También se puede ver que el hecho de utilizar 

una jaula de Faraday cuadrada o esférica no afecta al estudio del campo magnético, ya 

que este no se expande hasta los límites de la jaula, sino que se queda próximo al 

entorno de las propias bobinas sin llegar a ningún extremo de la jaula. De ello se deduce 

que el uso de una jaula esférica es totalmente válido y no interfiere para nada en la 

distribución del campo magnético.  

Hay que comprender que este diseño simula un sistema real de carga de 

vehículos eléctricos por efecto de inducción magnética. La bobina de secundario 

teóricamente va adosada a la parte inferior del coche, y a poco más de distancia se 

encuentran las personas en el interior del vehículo. Según la normativa, el campo 

magnético que afecte a una persona no puede ser mayor de 10 µT y no puede superar la 

altura de la rodilla. El inconveniente es que las personas se encuentran sentadas dentro 

del vehículo, por lo que es estrictamente necesario evitar que entre cualquier campo 

magnético dentro del vehículo, por pequeño que sea, para garantizar la seguridad de los 

pasajeros y la viabilidad del sistema de carga. Así pues es necesario apantallar ese 

campo de alguna forma para evitar que se extienda tanto en el entorno. 

Toda esta información, cálculos y resultados se puede encontrar en el archivo 

“MF de bobinas + ferrita”. 
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3.5.5  CAMPO  MAGNÉTICO  PRODUCIDO  POR  AMBAS  BOBINAS  CON  

CHAPA  DE  ALUMINIO 

 

Tal como se ha comprobado en el apartado 3.5.4, el campo magnético creado 

por el sistema con ferrita supera la normativa y se extiende más de lo deseado en el 

entorno que lo rodea. Por ello, se busca la forma de aislar ese campo magnético y 

concentrarlo entre las dos bobinas. Partiendo de la misma base que en el apartado 3.5.3 

con las dos bobinas alimentadas en condiciones nominales, se colocan las chapas de 

aluminio de forma que envuelvan las bobinas primaria y secundaria. Las chapas no son 

planas, sino que tienen una forma similar a un recipiente cuadrado, el cual tiene 

rebordes y curvas para adaptarse a englobar la bobina en cuestión. En otras palabras, las 

chapas son similares a un gorro o sombrero que se adapta a las bobinas para meterlas en 

su interior, tal y como se aprecia en la figura 33. Las chapas a utilizar idealmente han de 

tener un espesor entre 1 y 2 mm pero a la hora de simular el programa presentaba 

muchos problemas de cálculo con una chapa tan fina, ya que el mallado debía de ser 

muy fino para ajustarse a su reducido grosor. Por ello, fue necesario aumentar el grosor 

de la misma hasta 1 cm, que es cuando se podía aplicar un mallado aceptable en 

precisión y que a la vez el ordenador pudiera calcularlo. A términos reales de 

efectividad, igual da una chapa de 1 mm que de 1 cm ya que sobre el aluminio se va a 

producir efecto pelicular y solo va a contar la superficie del mismo, no el grosor, por lo 

que la aproximación de tomar una chapa mas gruesa para el caso de la simulación es 

totalmente valida y correcta, sin ningún error que pueda acarrearle al sistema.  

 

Figura 33: Modelo de bobinas con chapas de aluminio. 

 Partiendo de la misma base de físicas y estudios que en los casos anteriores, se 

vuelve a aplicar una esfera como jaula de Faraday equivalente para reducir el mallado y 

los grados de libertad, permitiendo así que el ordenador pueda calcularlo. El mallado se 
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establece más fino (finer) para el aire que engloba la jaula, y grueso (coarse) o 

extremadamente grueso (extremely coarse) para el resto de los elementos, ya que lo que 

interesa es conocer la distribución espacial del campo magnético y la precisión en los 

demás elementos tampoco ha de ser tan importante como la que se ha de tener en el 

espacio circundante. Así pues, volviendo a aplicar aislamiento magnético al sistema y 

grosor a la esfera que lo envuelve, el campo magnético calculado es el mostrado en la 

figura 34 y en detalle en la figura 35.  

 

Figura 34: Campo magnético generado por ambas bobinas con aluminio. 

 

Figura 35: Detalle del campo magnético producido por ambas bobinas con chapas de aluminio. 
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Como se puede apreciar en la figura 34, el campo magnético máximo calculado 

por el programa es de 8,1752 mT, siendo el valor medido en el punto central de 5,1115 

mT. Se comprueba también que hay más campo que en el caso anterior de las bobinas y 

las ferritas, ya que las propias ferritas lo que hacían es recoger el campo magnético y 

acumularlo en las proximidades a los conductores. El campo obtenido es prácticamente 

la mitad que en el caso 3.5.3, por lo que se puede deducir que el aluminio disminuye el 

efecto del campo magnético generado por las bobinas. Ahora lo que interesa conocer es 

la distribución de campo en el espacio cambiando el plano de cálculo de orientación, tal 

y como se muestra en la figura 36. 

 

Figura 36: Distribución de campo magnético producido por ambas bobinas con chapas de aluminio (1-10 mT) 

Como se puede ver en la figura 36, que tiene un rango impuesto en la 

distribución de campo magnético entre 1 y 10 mT, el campo no sale más allá de las 

chapas de aluminio. El programa calcula un máximo de 92,458 mT en el sistema 

estando el plano centrado en el origen de simetría y tal como se distribuye en la figura 

36, la concentración máxima de campo magnético es alrededor de los conductores. Si se 

aumenta el rango de distribución del campo magnético se aprecia como la concentración 

reside en dicha zona, tal y como se puede ver en la figura 37: 

 

Figura 37: Distribución de campo magnético producido por ambas bobinas con chapas de aluminio (1-50 mT) 



MEMORIA DESCRIPTIVA Septiembre 2012 

 

 44 

 

Al analizar este modelo queda comprobado que el campo magnético no escapa 

más allá de la propia chapa de aluminio. Ahora bien, es necesario comprobar si 

cumpliría la normativa impuesta para el ser humano, ya que hay que tener en cuenta 

para ella campos magnéticos muy pequeños. En la figura 38 se analiza la distribución de 

campo magnético para un rango entre 1 y 10 µT. 

 

Figura 38: Distribución de campo magnético creado por ambas bobinas con chapas de aluminio para normativa 
(Máx. 10 µT) 

 Como se puede comprobar, todas las zonas sombreadas en rojo oscuro superan 

los 10 µT, pero no sale más allá de las chapas de aluminio, a excepción de los extremos, 

en los cuales se aprecia como el campo magnético sale al exterior y se cierra en el 

espacio circundante. Ahora bien, comparando este caso con el caso visto en el punto 

3.5.4, es posible combinar ambos elementos, tanto la ferrita como el aluminio, para que 

se den a la vez los conceptos de amplificación magnética y aislamiento magnético y 

conseguir de esta forma que el campo magnético no escape del sistema, además de 

lograr una mayor concentración del mismo en el espacio intermedio de las bobinas, lo 

que mejorará la capacidad de transferencia de energía y el rendimiento general del 

sistema. Si se unen los casos 3.5.4 y 3.5.5 se logra tener el sistema completo definido al 

principio el cual consta de las dos bobinas trabajando en condiciones nominales, las dos 

placas de ferrita y las chapas de aluminio con la forma de “sombrero” para poder cubrir 

las bobinas y las placas de ferrita. Con todo ello y tal como se ha visto el 

comportamiento en las figuras 32 y 38, si se superponen ambos casos, debería de 

obtenerse al final un campo concentrado en torno a los conductores que no escapara más 

allá del limite impuesto por las chapas de aluminio, incluyendo el efecto que se da en 

los extremos, ya que la ferrita se encargaría de agrupar el campo magnético y evitar 

dicha dispersión por los extremos de las placas. Cuanto más se consiga concentrar el 

campo magnético, menores perdidas habrá en el entorno y mayor potencia se podrá 

transferir desde la bobina de primario a la bobina de secundario. 

Toda esta información, cálculos y resultados se puede encontrar en el archivo 

“MF de bobinas + chapasAl”. 
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3.5.6  CAMPO  MAGNÉTICO  CREADO  POR  EL  SISTEMA  COMPLETO 

 

El sistema completo es el mostrado al principio del documento el cual contiene 

las dos bobinas alimentadas en condiciones nominales, las dos laminas de ferrita y las 

dos chapas de aluminio, todo ello encerrado en una jaula de Faraday esférica, tal y como 

se ha mostrado en los puntos 3.5.4 y 3.5.5, para reducir el mallado y facilitar la 

posibilidad de cálculo. Las condiciones de físicas, de mallado y de estudio son iguales 

que en los dos apartados anteriores, es decir, se sigue aplicando la física de campos 

magnéticos aplicando aislamiento magnético a la superficie de la jaula de Faraday. Se 

aplican igualmente las físicas de circuitos eléctricos para poder alimentar el sistema con 

las corrientes nominales y poder introducir el desfase de 90º deseado utilizando el 

sistema de puertos de alimentación y nodos de conexión visto anteriormente y el estudio 

a aplicar sigue siendo en dominio de la frecuencia a un valor de 18000 Hz. El mallado 

se aplica igual que en los dos últimos casos, planteando un mallado grueso (coarser) o 

extremadamente grueso (extremely coarse) para los elementos y un mallado más fino 

(finer) para el entorno que engloba al sistema, para el cual se requiere más precisión 

para que el cálculo y distribución del campo magnético sea lo más preciso posible que 

permita el ordenador. De nuevo, la chapa de aluminio utilizada es de 1 cm en vez del 1 

mm ideal por el mismo motivo anterior. En resumen, este modelo de estudio une y 

calcula el conjunto de los apartados 3.5.4 y 3.5.5 manteniendo las mismas condiciones 

que se dan en cada uno de los modelos y ejecutando un cálculo conjunto de todo el 

sistema unido. El estudio se muestra en la figura 39. 

 

Figura 39: Campo magnético creado por ambas bobinas afectado por ferrita y aluminio. 
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 Como se puede comprobar, el máximo valor calculado por el programa en el 

plano es de 2,7029 mT, siendo 1,148 mT el valor que se da en el centro del sistema, por 

lo que se puede entender que la ferrita esta aplicando el mismo efecto visto 

anteriormente en el apartado 3.5.4 de acumulación del campo magnético en torno a los 

conductores, aumentando también su valor nominal en torno a los mismos. Por ello, el 

campo magnético paralelo a los conductores va a ser mucho menor que en el caso que 

no hay ferrita, como el apartado 3.5.5. En la figura 40 se muestra un detalle del campo 

magnético producido, muy similar al obtenido en la figura 30.  

 

Figura 40: Detalle del campo magnético creado por ambas bobinas afectado por ferrita y aluminio 

Ahora bien, si se cambia el plano de cálculo y se pone perpendicular a los 

conductores, tal y como se ha hecho en todos los casos anteriores, se podrá apreciar la 

distribución del campo magnético, el cual tendrá que estar acumulado en torno a los 

conductores y sin salir más allá de las chapas de aluminio, ni siquiera por los extremos, 

ya que la ferrita se encargará de acumular el campo y que no se disperse por el espacio 

de forma uniforme. En la figura 41 se muestra el plano perpendicular con el campo 

magnético correspondiente, centrado en el origen (justo en el punto de simetría del 

sistema) con un rango de 1 a 10 mT. Tal como se aprecia en la figura, el campo 

magnético se centra en torno a los conductores, dejando de nuevo el espacio entre las 

bobinas con un campo prácticamente nulo.  
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Figura 41: Distribución de campo magnético producido por ambas bobinas con ferrita y aluminio (1-10 mT) 

 Si se aplica el rango para comprobar normativa y ver la distribución de campo 

para un máximo de 10 µT, se podrá apreciar si el campo magnético se escapa de los 

límites impuestos por las chapas de aluminio y el efecto de las láminas de ferrita. Esta 

distribución se muestra en la figura 42.  

 

Figura 42: Distribución de campo magnético para normativa con ferrita y aluminio (Máx. 10 µT) 

  Toda la zona sombreada en rojo oscuro supera el valor de 10 µT. Comparando la 

figura 42 con la figura 38 vista en el apartado 3.5.5 se demuestra que efectivamente la 

ferrita retiene más el campo magnético y no sale con tanta dispersión por los extremos, 

por lo que todos los valores de 10 µT y superiores quedan encerrados entre las chapas 

de aluminio y no sale al exterior del sistema ningún campo superior al valor máximo 

permitido, por lo que se puede decir que el sistema esta completamente apantallado y 

que cumple la normativa impuesta. A efectos prácticos, el campo magnético calculado 

en la figura 42 es justo en el punto de simetría del sistema (en el medio) que es el punto 

en el que el valor del mismo debería de ser máximo. De todas formas es posible 

desplazar el plano de cálculo en profundidad para ver como se distribuye el campo en 

zonas más próximas a los extremos. En la figura 43 se muestra la distribución de campo 

magnético para normativa a 100 mm del punto de referencia (del centro). En la figura 

44 se muestra a 200 mm del centro y en la figura 45 a 300 mm del punto central de 

referencia. 
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Figura 43: Distribución de campo magnético para normativa con ferrita y aluminio a 100 mm (Máx. 10 µT) 

 

Figura 44: Distribución de campo magnético para normativa con ferrita y aluminio a 200 mm (Máx. 10 µT) 

 

Figura 45: Distribución de campo magnético para normativa con ferrita y aluminio a 300 mm (Máx. 10 µT) 

Como se puede apreciar en las figuras, conforme aumenta la distancia de 

separación con el punto de simetría, el campo magnético disminuye y sale cada vez 

menos hacia el exterior del sistema por los laterales de las chapas de aluminio. Como el 

sistema es simétrico, las distancias tomadas es indiferente que sean hacia delante o hacia 

detrás, ya que a la misma distancia del origen o centro de simetría, el campo magnético 

ha de ser el mismo. 

Toda esta información, cálculos y resultados se puede encontrar en el archivo “MF 

sistema completo (bobinas+Al+Ferrita)”. 
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3.5.7  RESULTADOS  FINALES  Y  TABLA  COMPARATIVA 

 

Una vez realizados todos los cálculos y análisis necesarios sobre todos los 

modelos resulta interesante el poder comparar todo lo obtenido en el programa de 

simulación de elementos finitos Comsol Multiphysics, con los datos obtenidos en el 

programa de simulación en 2D FEMM y a la vez comparar ambos dos con las medidas 

reales ejecutadas sobre el sistema físico montado en el laboratorio del CIRCE.  

La comparación de las magnitudes de campos magnéticos resulta inviable 

debido a que en el programa de simulación por elementos finitos en 2D FEMM solo se 

tiene en cuenta los conductores en un eje de dirección, como si fueran conductores 

paralelos, y no simula el efecto de los conductores perpendiculares a los mismos que 

formarían la bobina cuadrada. Por ello, el campo magnético que se obtiene en el 

programa FEMM siempre va a ser menor al obtenido en el programa Comsol 

Multiphysics y en el sistema real, debido a que no tiene en cuenta los conductores 

completos en toda su distribución espacial. Por otro lado, tampoco se puede comparar 

los resultados obtenidos con el programa Comsol Multiphysics con las magnitudes 

reales de campo magnético medidas en el sistema real debido a que no hay datos ni 

ensayos de laboratorio que recojan los valores de campo magnético en condiciones 

nominales, por lo que únicamente se pueden comparar los valores obtenidos de las 

inductancias y el coeficiente de inducción mutua, los cuales quedan reflejados a 

continuación:  

 

Magnitud 

 

Medidas reales 

 

FEMM 

 

Comsol Multiphysics 

 

L1 

 

19,3 µH 

 

20,6 µH 

 

15,2 µH 

 

L2 

 

124,75 µH 

 

134,45 µH 

 

113,41 µH 

 

M 

 

8,68 µH 

 

8,41 µH 

 

8,352 µH 

 

Como se puede apreciar en la tabla, el programa FEMM es más preciso a la hora de 

calcular las magnitudes L1 y L2, ya como se comentó anteriormente, y debido a que es 

un programa en 2D y por lo tanto no tiene el volumen de los elementos como tiene 

Comsol Multiphysics y por lo tanto no depende tanto del mallado como depende este 

ultimo. Por otro lado, el coeficiente de inducción M es muy aproximado en al valor real 

con cualquiera de los dos programas.  
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4 PROBLEMAS  Y  SOLUCIONES 
 

El programa Comsol Multiphysics es un sistema en constante evolución y por lo 

tanto no se puede decir que este acabado o sea perfecto. Cada versión nueva que se 

lanza al mercado incluye mejoras y correcciones de errores de la anterior versión, por lo 

que resulta prácticamente imposible disponer de una versión que no tenga ningún 

problema. Muchas veces resulta necesario “engañar” al programa para que interprete lo 

que se desea, aunque eso implique añadirle más datos de los necesarios, definir otras 

superficies o similar. En esta sección se muestran los problemas sufridos a lo largo del 

desarrollo y el como se han subsanado en la medida de lo posible.  

 

4.1 LOS  PARÁMETROS 
 

Los parámetros no son un problema como tal, pero pueden llegar a serlo si no se 

saben interpretar bien y trabajar con ellos. El fundamento principal de utilizarlos es por 

si resulta necesario cambiar en algún momento alguna medida o valor de las 

dimensiones del sistema. Su uso puede resultar más complejo que si se utilizan números 

reales para definir las medidas, ya que todas las ecuaciones para definir las distancias de 

separación entre elementos y la distribución en el espacio hay que hacerlas con los 

parámetros. Por el contrario tienen la ventaja de que si resulta necesario cambiar un 

valor (por ejemplo, el diámetro de los conductores) no es necesario ir uno por uno 

cambiando el valor numérico, sino que con cambiar el valor del parámetro y haciendo 

clic en el botón “build all” se rediseña todo el sistema completo con la nueva magnitud 

cambiada.  

 

4.2 LA  FORMA  DE  DISEÑAR 
 

La forma de diseñar los elementos físicos en Comsol Multiphysics es realmente 

peculiar. El fundamento principal es similar a Solidworks, pero el problema viene 

cuando hay que diseñar objetos o elementos con radios de curvatura, agujeros en 

superficies o similares. Es necesario utilizar operaciones booleanas de unión, 

intersección o diferencia, por lo que siempre que se desea construir, por ejemplo, un 

arco que gira 90º y tiene un grosor de, por ejemplo, 2 mm, es necesario utilizar dos 

circunferencias concéntricas, la segunda 2 mm mayor que la primera para darle dicho 

grosor, y utilizar la operación booleana correspondiente para que cree un “aro” de 2 mm 

de grosor, al cual posteriormente hay que trocear por medio de cuadrados hasta 

conseguir el arco de giro deseado de 90º. En otras palabras, el diseño de elementos que 

se salen más allá de lo convencional es complejo, lento y tosco. Resulta mucho más 
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sencillo diseñar todo el sistema en AutoCad e importarlo al programa. En el caso de este 

proyecto, se diseñó todo sobre la base de Comsol Multiphysics porque resultaba útil el 

poder manipular de forma independiente cada elemento del diseño, ya que para el 

estudio de los campos magnéticos se ha analizado elemento por elemento, y si el 

sistema completo hubiera sido importado desde AutoCad o Solidworks, no se podría 

haber hecho tanta modificación del sistema. Hubiera sido necesario crear cada modelo 

de forma independiente en los programas correspondientes y luego exportarlo.  

 

4.3 LAS  FÍSICAS  Y  CONDICIONES  DE  FRONTERA 
 

El mayor problema que se dio a la hora de plantear las físicas fue el definir 

correctamente las condiciones de frontera que había que aplicar al sistema y el como 

ejecutarlas para que el programa pudiera calcular. En el manual del programa, de más 

de 1000 páginas, no aparece ningún tipo de explicación de como aplicar las condiciones 

de frontera ni las físicas, la única referencia son los ejemplos que aparecen resueltos, los 

cuales sirven un poco de ayuda a la hora de poder plantear el sistema, pero no resuelven 

ningún tipo de duda. Fue necesario establecer en los conductores de las bobinas dos 

veces el mismo material (cobre) ya que había que definirlo en su volumen y en su 

superficie. A la hora de excitar las bobinas con corriente, era necesario crear los puertos 

de alimentación tal como se explicó. Los puertos de alimentación hacen que circule la 

corriente por la superficie, de forma que resulta necesario definirles una profundidad y 

una anchura, que el propio programa la interpreta como la sección por la cual debe de 

circular la corriente. Por ello resultaba necesario definir en los conductores el cobre 

tanto en la superficie como en el volumen, ya que sino, el programa entendía que le 

faltaba un material. A la hora de los cálculos, da igual que se tenga en consideración el 

efecto skin o no, ya que la corriente que circula por el conductor es la misma y el campo 

magnético creado es el mismo, ahora bien, no es lo mismo que la corriente circule solo 

por la superficie o por todo el conductor, ya que el primer caso acarrea mucho más 

calentamiento y pérdidas que el segundo, pero a la hora del campo magnético que crean, 

es el mismo en ambos casos. Aunque ya que se había establecido que el sistema real 

estaba creado con hilo de Litz y que el efecto skin no se producía, era mejor establecer 

el modelo en Comsol Multiphysics de la misma forma. Lo realmente frustrante son las 

horas e intentos invertidos en aplicar las físicas, los estudios y las condiciones de 

frontera en el programa hasta que por fin se pudo establecer una base solida con la que 

analizar todos los modelos. No ha habido ni explicación ni ayuda por ninguna parte, los 

resultados se han obtenido a base de ensayo y error lo mejor posible dentro de los 

conocimientos y limitaciones sobre el programa. 
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4.4 MALLADO,  GRADOS  DE  LIBERTAD  Y  PC 
 

Comsol Multiphysics es un programa diseñado para industria, laboratorios y 

centros de investigación que tengan grandes equipos preparados para realizar cálculos y 

desarrollos de gran calidad y detalle. Este programa, en su modo 3D, no se puede 

utilizar en un PC convencional, ni siquiera uno de última generación comprado hace 2 

días. Los primeros cálculos realizados ya solicitaban una memoria RAM superior a 4 

Gb. El PC utilizado para el cálculo y desarrollo tenía en un principio 4 Gb de RAM 

justos, por lo que fue necesario aumentar la memoria al doble (8Gb) para poder efectuar 

algún calculo.  

El ordenador utilizado para realizar los cálculos consta de las siguientes 

características:  

 PC portátil SONY VAIO VPCEB4Z1E 

 Intel Core I5 480M (Doble núcleo, cuatro hilos de comunicación, 2,66 GHz 

cada núcleo, 3GHz en modo overclock automático).  

 8 Gb de memoria RAM DDR3. 

 Tarjeta gráfica ATI Mobility Radeon HD 5650 1Gb de memoria RAM propio. 

Comsol Multiphysics es un programa que necesita calcular y procesar con la 

memoria RAM del PC además de utilizar el propio procesador para ejecutar los 

cálculos. En los modelos sencillos, los cálculos duraban entre 20 y 30 minutos. En los 

modelos avanzados (en los que se introduce ferrita, aluminio y ambas a la vez) eran 

necesarias hasta 8 horas de cálculo para que el PC pudiera dar un resultado. Tantas 

horas no son debidas a que el modelo sea muy complejo de calcular, sino porque el PC 

no podía ejecutar los cálculos a la misma velocidad que había ejecutado los anteriores. 

En otras palabras: se ahoga. El propio programa muestra en la esquina inferior derecha 

la cantidad de memoria en uso y la cantidad de memoria requerida por el mismo. En los 

primeros modelos utilizaba de 2 a 3 Gb de RAM y solicitaba 3,5 o 4 Gb. En los últimos 

modelos estaba utilizando 7,6 Gb de RAM (que es el máximo disponible que permite 

ceder el PC) y solicitaba 12,6 a 14 Gb. Como necesitaba prácticamente el doble de lo 

que disponía, el cálculo era mucho mas lento. Por ello, para calcular modelos en 3D con 

buena calidad y precisión, se necesita una estación de trabajo de laboratorio preparada 

para realizar dichos cálculos. Lo ideal para los modelos calculados hubiera sido lo 

siguiente: 

 Dos procesadores Intel Core I7-3920 XM (cuatro núcleos, 8Mb de memoria 

cache, 3,8 GHz de RAM cada uno) dispuestos en paralelo.  

 32 Gb de memoria RAM DDR5 

 Tarjeta gráfica ATI Radeon HD 7970 Black Edition (1 GHz, 3 Gb de RAM 

DDR5 propios.) 
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Dado que las limitaciones son más que evidentes, resultaba necesario modificar la 

jaula de Faraday que envolvía al sistema para disminuir el mallado y posteriormente 

mallar los elementos por separado, centrando el mallado más fino en las zonas a 

estudiar y utilizando un mallado mas grueso en las zonas menos importantes para los 

resultados. El calculo realizado podría ser mucho más preciso con un PC como el 

descrito, pero a falta del mismo, se ha hecho lo mejor que se ha podido. Por ello el 

objetivo principal en los modelos complejos fue el disminuir el mallado a toda costa, 

bajando la resolución del mismo en los elementos y buscando que el mallado total no 

superara el millón de elementos. En el momento que el mallado superaba el millón de 

elementos, los grados de libertad ascendían hasta los 4 millones y el PC no podía 

calcular nada. De hecho, aunque se intentara dejar mas tiempo al PC calculando por 

poner un mallado más fino, llega un momento que da un error alegando que no tiene 

memoria suficiente para ejecutar los cálculos (run out of memory). Sin embargo, si se 

trabajara con modelos 2D no sería problema el PC, ya que no hay profundidad 

representada en el diseño y eso simplifica mucho los cálculos. Por ello es recomendable 

trabajar con este programa en 2D si no se dispone de un PC preparado para calcular en 

3D.  

El mallado y los grados de libertad van íntimamente ligados. Por un lado, el 

mallado plantea una serie de tetraedros que se reparten en todo el volumen del sistema 

definido para poder crear un sistema de cálculo en el entorno definido. Cada vértice de 

los tetraedros representa un punto de cálculo para el sistema, por ello, cuanto más 

mallado se disponga, más puntos de cálculo habrá. Estos puntos de cálculo son los que 

utiliza el programa para aplicar las físicas y los estudios definidos, de forma que, a 

mayor cantidad de puntos, mayor número de variables y con ello, más grados de 

libertad. En función del número de grados de libertad se necesitará un PC de mayor o 

menor potencia. El cálculo más preciso del modelo sería aquel que permitiera definir el 

mallado de la forma más fina posible en todos los elementos, pero para ello sería 

necesario un PC como el descrito anteriormente. 

 

4.5 LA  FALTA  DE  INFORMACIÓN 
 

Uno de los mayores problemas que tiene Comsol Multiphysics es que no es un 

programa conocido, por lo cual encontrar información sobre él resulta más complejo de 

lo habitual. El fabricante del programa, la empresa Comsol, posee una pagina web con 

un foro propio, en el cual se tratan diversas dudas en los aspectos particulares de cada 

uno de los usuarios, pero el problema reside en que la mayoría de los usuarios son 

noveles y no controlan el uso del programa, por lo que son incapaces de solventar la 

mayoría de las dudas planteadas. Por otro lado tampoco se dispone de un servicio de 

atención al cliente o foro de profesionales en el que preguntar cualquier duda, lo que 

aumenta mucho la dificultad de trabajar con este programa.  
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5 CONCLUSION  Y  VALORACIÓN  PERSONAL 
 

El desarrollo de este proyecto ha tenido unos aspectos buenos y otros no tan 

buenos. Resulta interesante trabajar en un concepto novedoso que todavía esta 

prácticamente sin explorar, como es el sistema de carga de los coches eléctricos. Un 

estudio exhaustivo sobre la materia puede proporcionar muchos avances en el concepto 

e ideas principales y se puede lograr un cambio total a nivel mundial en el ámbito del 

automovilismo, el transporte y la eficiencia energética. Tal como esta ahora la situación 

social y económica, resulta necesario buscar alternativas a los actuales combustibles, 

además de buscar la forma de economizar, ahorrar dinero y cuidar el medio ambiente.  

El “boom” oficial apareció con los vehículos híbridos. Estos reducían en gran 

magnitud las emisiones de gases a la atmósfera y el consumo de combustible, utilizando 

un motor de combustión pequeño y un motor eléctrico alimentado por una batería, 

ofreciendo una alternativa mucho más económica y saludable respecto a los ya muy 

vistos motores de combustión de gasolina o diesel. El siguiente paso fue la creación de 

vehículos 100% eléctricos, los cuales no contaminan lo más mínimo y no consumen 

ningún tipo de combustible, gracias a su motor eléctrico alimentado por una batería, por 

lo que no hay necesidad de explotación ni gasto económico adicional. Ahora bien, el 

problema es que son vehículos muy nuevos y su desarrollo esta todavía en los 

fundamentos básicos. La autonomía de ellos es prácticamente de 100 a 150 Km, debido 

a la capacidad de la batería, y su potencia es muy reducida (en torno a 45 a 60 CV) por 

lo que no son vehículos con los que se pueda recorrer grandes distancias o tengan 

capacidad para realizar un viaje. Los nuevos modelos que han de aparecer en el 

mercado durante los próximos meses constan ya de mayor autonomía (400 Km) y algo 

más de potencia (75 CV), pero sigue existiendo el mismo problema para todos: El 

tiempo de recarga de la batería. Para un modelo convencional, el tiempo de recarga de 

la batería es de aproximadamente 8 horas.  

Es aquí donde entra el sistema desarrollado en el CIRCE de carga de las baterías 

por inducción magnética. Utilizando un sistema como el estudiado en este documento, 

se podría reducir el tiempo de carga de un vehículo eléctrico drásticamente, haciendo 

que se cargara en 15 minutos en vez de 8 horas. Las ventajas que este sistema plantea 

son infinitas, ya que si se unificara como un estándar, este sistema se podría implantar 

en áreas de servicio y centros de repostaje para que mientras el conductor efectúa su 

parada obligatoria en el trayecto, el vehículo se recargara plenamente y pudiera 

continuar su camino sin problema. De esta forma, las distancias ya no serían un 

problema, y los trayectos largos serían totalmente viables. Simplemente para cargar el 

vehículo, este se tendría que colocar sobre la bobina principal, que estaría empotrada en 

el suelo, y la secundaria estaría dispuesta bajo el vehículo, de forma que al activar el 

sistema de carga, se transfiere la energía desde la bobina principal a la secundaría 
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debido al acoplamiento magnético que llevan y la resonancia con la que trabajan, y 

como son 30KV de potencia, la carga de la batería es cuestión de minutos. 

Dejando a un lado la idea principal del sistema y su aplicación física, la cual es la 

más interesante, a la hora de trabajar con el programa y realizar el estudio teórico del 

sistema real, lo peor de todo quizá haya sido el ponerse a trabajar con un programa 

totalmente desconocido y del que no hay ninguna ayuda disponible. Fueron muchas 

horas de trabajo con el programa, muchos intentos fallidos de cálculos, muchas pruebas 

para dar con los errores y muchas búsquedas de cual sería la mejor opción para efectuar 

el cálculo de los campos magnéticos de la forma más fiable. Lo ideal hubiera sido 

conocer a alguien que controlara el programa y conociera como manejarlo, para poder 

haber realizado algunos modelos con mucha más precisión de la que se han hecho, o 

calcular los parámetros de una forma más sencilla que la aplicada. Pero como no se 

disponía de ningún medio auxiliar, los modelos están calculados y desarrollados lo 

mejor posible según las circunstancias, aunque todo el computo de eventos hace que la 

situación sea frustrante.  

Por el contrario resulta muy gratificante el lograr los resultados esperados con el 

estudio de los campos magnéticos y la distribución de los mismos en el espacio. Todo 

esfuerzo da sus frutos, y en este caso, son unos resultados bastante buenos para las 

limitaciones que hay debidas al PC. Si se hubiera podido utilizar una estación de trabajo 

con un PC avanzado, los cálculos podrían haber sido mucho más precisos y exactos, sin 

necesidad de hacer aproximaciones o simplificaciones para que se pudiera calcular el 

modelo. Quizá si se hubiera utilizado otro programa distinto de elementos finitos que 

utilizara menos recursos físicos del PC podría haberse realizado los cálculos de forma 

más precisa. Por otro lado hubiera sido ideal el poder representar la distribución de 

campo magnético en el volumen que conforma el sistema, para apreciarlo de mejor 

forma y que quedara plasmada su distribución espacial. Existe una forma de representar 

la evolución del mismo a través de flechas o conos, pero solo indican el sentido, no la 

magnitud del mismo campo y tampoco se aprecian bien visualmente, por lo que no 

resultan una herramienta muy útil. La forma de representarlo en láminas o planos es útil, 

pero de esa forma también representan los programas de 2D, la única ventaja es que en 

este caso se tiene en consideración todo el conductor, y no lo definido en el plano, como 

ocurre con los programas de 2D.  

En conclusión final al menos resulta gratificante el haber trabajado y desarrollado 

algo que hasta la fecha nadie lo había hecho. El trabajar con el programa Comsol 

Multiphysics y el desarrollar un sistema tan novedoso como el sistema de carga por 

inducción magnética es algo que no se hace todos los días y que, además, supone un 

reto a alcanzar para poder obtener los resultados tal y como se deseaba. Es evidente que 

los posteriores estudios sobre el tema serán mucho más avanzados y mejores, pero este 

estudio en concreto casi se podría afirmar que es el pionero sobre este campo y el único 

existente hasta día de hoy.  


