000086991 001__ 86991
000086991 005__ 20200716101512.0
000086991 0247_ $$2doi$$a10.1016/j.compfluid.2019.01.011
000086991 0248_ $$2sideral$$a110358
000086991 037__ $$aART-2019-110358
000086991 041__ $$aeng
000086991 100__ $$0(orcid)0000-0003-4673-9073$$aMartínez-Aranda, S.$$uUniversidad de Zaragoza
000086991 245__ $$aA 1D numerical model for the simulation of unsteady and highly erosive flows in rivers
000086991 260__ $$c2019
000086991 5060_ $$aAccess copy available to the general public$$fUnrestricted
000086991 5203_ $$aThis work is focused on a numerical finite volume scheme for the coupled shallow water-Exner system in 1D applications with arbitrary geometry. The mathematical expressions modeling the hydrodynamic and morphodynamic components of the physical phenomenon are treated to deal with cross-section shape variations and empirical solid discharge estimations. The resulting coupled equations can be rewritten as a non-conservative hyperbolic system with three moving waves and one stationary wave to account for the source terms discretization. Moreover, the wave celerities for the coupled morpho-hydrodyamical system depend on the erosion-deposition mechanism selected to update the channel cross-section profile. This influence is incorporated into the system solution by means of a new parameter related to the channel bottom variation celerity. Special interest is put to show that, even for the simplest solid transport models as the Grass law, to find a linearized Jacobian matrix of the system can be a challenge in presence of arbitrary shape channels. In this paper a numerical finite volume scheme is proposed, based on an augmented Roe solver, first order accurate in time and space, dealing with solid transport flux variations caused by the channel geometry changes. Channel cross-section variations lead to the appearance of a new solid flux source term which should be discretized properly. The stability region is controlled by wave celerities together with a proper reconstruction of the approximate local Riemann problem solution, enforcing positive values for the intermediate states of the conserved variables. Comparison of the numerical results for several analytical and experimental cases demonstrates the effectiveness, exact well-balancedness and accuracy of the scheme.
000086991 536__ $$9info:eu-repo/grantAgreement/ES/DGA/FEDER$$9info:eu-repo/grantAgreement/ES/MINECO/CGL2015-66114-R
000086991 540__ $$9info:eu-repo/semantics/openAccess$$aby-nc-nd$$uhttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
000086991 590__ $$a2.399$$b2019
000086991 591__ $$aMECHANICS$$b54 / 136 = 0.397$$c2019$$dQ2$$eT2
000086991 591__ $$aCOMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS$$b55 / 109 = 0.505$$c2019$$dQ3$$eT2
000086991 592__ $$a1.075$$b2019
000086991 593__ $$aEngineering (miscellaneous)$$c2019$$dQ1
000086991 593__ $$aComputer Science (miscellaneous)$$c2019$$dQ1
000086991 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/acceptedVersion
000086991 700__ $$0(orcid)0000-0002-1386-5543$$aMurillo, J.$$uUniversidad de Zaragoza
000086991 700__ $$0(orcid)0000-0001-8674-1042$$aGarcía-Navarro, P.$$uUniversidad de Zaragoza
000086991 7102_ $$15001$$2600$$aUniversidad de Zaragoza$$bDpto. Ciencia Tecnol.Mater.Fl.$$cÁrea Mecánica de Fluidos
000086991 773__ $$g181 (2019), 8-34$$pComput. fluids$$tComputers and Fluids$$x0045-7930
000086991 8564_ $$s2390810$$uhttps://zaguan.unizar.es/record/86991/files/texto_completo.pdf$$yPostprint
000086991 8564_ $$s196171$$uhttps://zaguan.unizar.es/record/86991/files/texto_completo.jpg?subformat=icon$$xicon$$yPostprint
000086991 909CO $$ooai:zaguan.unizar.es:86991$$particulos$$pdriver
000086991 951__ $$a2020-07-16-09:19:26
000086991 980__ $$aARTICLE