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Resumen

Los grupos de Artin de ángulo recto conforman una familia muy interesante
tanto desde un punto de vista algebraico como topológico. Hay muchas
propiedades importantes conocidas para los grupos de Artin de ángulo recto:
por ejemplo, se sabe que son poli-libres, localmente indicables, ordenables a
derecha y residualmente �nitos. Además, varios problemas muy importantes
están completamente resueltos para esta familia de grupos, como el problema
de la palabra, el problema de rigidez, la conjetura K(π, 1) o el problema de
Serre.

En esta tesis vamos a estudiar alguna de estas propiedades para una
subfamilia más grande de grupos de Artin: los grupos de Artin pares. Gen-
eralizaremos muchas de estas propiedades bien para la familia completa de
grupos de Artin pares o para algunas subfamilias grandes e interesantes.

En particular, probamos que los grupos de Artin pares de tipo FC y de
tipo large son poli-libres (lo cual veremos que implicará que son localmente
indicables y ordenables a derecha) y que los grupos de Artin pares de tipo
FC y los grupos de Artin basados en el grafo de un bosque son residual-
mente �nitos. Finalmente, resolveremos el problema de Serre para la familia
completa de grupos de Artin pares.
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Abstract

Right-angled Artin groups form an interesting family of groups both from an
algebraic and a topological point of view. There are a lot of well-known prop-
erties of right-angled Artin groups: for example they are poly-free, locally
indicable, right orderable and residually �nite. Besides, also many important
problems are well understood for these groups such as the word problem, the
rigidity problem, Serre's question or the K(π, 1) conjecture.

In this thesis, we will study some of these properties for a bigger and
interesting subfamily of Artin groups: even Artin groups. We generalize
many of these properties either for even Artin groups in full genarility or for
some big and interesting subfamilies.

In particular, we prove that even Artin groups of FC type and large even
Artin groups are poly-free (which, as we will see, implies that they are also
locally indicable and right orderable) and that even Artin groups of FC type
and general Artin groups based on trees are residually �nite. Finally, we
answer Serre's question for the whole family of even Artin groups.

xi





Chapter 1

Introduction and background

Artin groups were �rst introduced by Tits [74] as an extension of Coxeter
groups. They begin to gain fame and importance later on in the works of
Brieskorn [17],[16], [18], Brieskorn and Saito [19] and Deligne [36]. In all
these works the object of study was the speci�c family of spherical Artin
groups (which is the family associated to �nite Coxeter groups), although
some results involving general Artin groups can be found in [19].

Nowadays, the family of Artin groups has a huge importance both in
group theory and in algebraic geometry since in their study there has been an
important interaction of algebraic and geometric techniques. However, there
are very few works dealing with general Artin groups (one of them is due to
Charney and Paris [29]) and the knowledge of Artin groups mainly consists in
the study of more or less general subfamilies such as spherical Artin groups,
right-angled Artin groups or Artin groups of FC type. Moreover, the answers
to several basic questions are not known in general for Artin groups, for
example regarding the word problem or the rigidity problem.

Right-angled Artin groups, usually denoted by RAAGs, are one of the
most studied families of Artin groups. RAAGs were �rst studied in the 1970's
by Baudisch [7] and gained importance on the work by Droms (although he
called them "graph groups") [42], [43], [44]. This subfamily is important
because of many reasons, among them we should remark their applications
in homology groups (see Bestvina-Brady [8] or in low dimensional topology
(see Haglund-Wise [51] and Agol [1]). To understand in depth the family of
RAAGs as well to their main properties we refer to [27].

The objective of this thesis is to study some algebraic and geometric prop-
erties which had already been studied to RAAGs and extend them to bigger
families of Artin groups, focusing in the family of even Artin groups. As far
as we are aware, there are some results in the literature about even Coxeter
groups (see for example [2]) but not about even Artin groups, although they
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Chapter 1. Introduction and background

are mentioned in [5]. However, we think that this family of groups deserves
more attention because they share some remarkable properties with RAAGs,
as we will see in Section 1.2, but these properties are lost when we have a
relation of "odd" type.

This thesis is structured in the following way. In this �rst chapter we will
give several basic de�nitions and see the background on the topic of Artin
groups. Besides we will explain the importance and interest of the family of
even Artin groups.

In the following chapters we will focus on di�erent properties and study
them for some families of even Artin groups. In this way, in Chapter 2 we
will study some background of poly-freeness and we will study this property
for the family of even Artin groups of FC type, in Chapter 3 we will study the
property of poly-freeness for large even Artin groups. Later on, in Chapter
4 residually �niteness and in Chapter 5 quasi-projectivity. The structure of
each of these sections will be similar: �rst we will de�ne the property we
are dealing with and give some background focusing in the results known for
right-angled Artin groups and �nally we will explain the results that we have
obtained in relation to the corresponding property.

Lastly, in Chapter 5.5 we will see a summary of the results in the rest of
the thesis and we will brie�y see the projects in which I am working right
now and I am planning to work in the future.

1.1 Basic De�nitions

De�nition 1.1. Let S be a �nite set. A Coxeter matrix over S is a square
matrix M = (ms,t)s,t∈S indexed by the elements of S, with coe�cients in
N ∪ {∞}, and satisfying ms,s = 1 for all s ∈ S and ms,t = mt,s ≥ 2 for all
s, t ∈ S, s 6= t.

We will represent such a Coxeter matrix M by a labelled graph Γ, whose
set of vertices is S, and where two distinct vertices s, t ∈ S are linked by an
edge labelled with ms,t if ms,t 6=∞. We will also often use the notation V (Γ)
to denote the set of vertices of Γ (i.e., V (Γ) = S), when the graph Γ is clear
we shall omit Γ and denote this set of vertices by V .

Remark 1.2. The labelled graph Γ de�ned above is not the Coxeter graph of
M as de�ned in Bourbaki [14]. It is another fairly common way to represent
a Coxeter matrix.

If a, b are two letters and m is an integer ≥ 2, we set 〈a, b〉m = (ab)
m
2 if m

is even, and 〈a, b〉m = (ab)
m−1

2 a if m is odd. In other words, 〈a, b〉m denotes
the word aba · · · of length m.

2



1.2. Importance and interest of even Artin groups

De�nition 1.3. The Artin group associated to Γ, A = AΓ, is the group
de�ned by the presentation:

AΓ = 〈v; v ∈ V | 〈uv〉me = 〈vu〉me , e = {u, v} ∈ E〉. (1.1)

Right-angled Artin groups (RAAGs) are de�ned as Artin groups in which all
the edges of the graph have label 2.

De�nition 1.4. The Coxeter group associated to Γ, W = WΓ, is the quotient
of AΓ by the relations v2 = 1, v ∈ V . That is, it is de�ned by the presentation:

WΓ = 〈v; v ∈ V | v2 = 1, 〈uv〉me = 〈vu〉me , e = {u, v} ∈ E〉. (1.2)

Now, we are going to de�ne some interesting subfamilies that will appear
along the text.

For T ⊂ S, we denote by AT (resp. WT ) the subgroup of A (resp. W )
generated by T , and by ΓT the full subgraph of Γ spanned by T . Here we
mean that each edge of ΓT is labelled with the same number as its corre-
sponding edge of Γ. By Bourbaki [14], the group WT is the Coxeter group of
ΓT , and, by van der Lek [75], AT is the Artin group of ΓT .

De�nition 1.5. The group AT (resp. WT ) is called a standard parabolic
subgroup of A (resp. of W ).

De�nition 1.6. We say that A = AΓ is of spherical type if its associated
Coxeter group, WΓ, is �nite.

A subset T of S is called free of in�nity if ms,t 6=∞ for all s, t ∈ T .

De�nition 1.7. We say that A is of FC type if AT is of spherical type for
every free of in�nity subset T of S.

De�nition 1.8. We say that AΓ is large if ms,t ≥ 3 for every label in the
graph.

Finally, we will de�ne the main object of study of this thesis.

De�nition 1.9. We say that A is even if any �nite ms,t is even.

1.2 Importance and interest of even Artin groups

As remarked in the introduction, the family of even Artin groups hasn't
been studied a lot for the moment but we think that they deserve special
attention since they have particularly interesting properties as we shall see
next. Assume that A is even.

3



Chapter 1. Introduction and background

(1) Let s, t ∈ S, s 6= t. If we set ms,t = 2ks,t, then the Artin relation
〈s, t〉ms,t = 〈t, s〉ms,t becomes (st)ks,t = (ts)ks,t . This form of relation is
less innocuous than it seems as we will see in Chapter 2.

(2) Let T be a subset of S. Then the inclusion map AT ↪→ A always admits
a retraction πT : A → AT which sends s to s if s ∈ T , and sends s to
1 if s 6∈ T .

(3) Moreover, the K(π, 1) conjecture, which is one of the most important
problems related with Artin groups, is known to be true for this family
of groups (see Corollary 1.17 below).

Before stating that conjecture, we will review some basic notions which
are necessary to understand its statement.

De�nition 1.10. A space V is said to be aspherical if its only non-trivial
homotopy group is the �rst homotopy group (i.e. the fundamental group).

De�nition 1.11. Given a vector space V and a �eld K, a re�ection with
respect to a bilinear map B : V × V −→ K is a linear map

ru(v) = v − 2B(u, v)u

for some unit vector u.

De�nition 1.12. Let π be a group. A topological space is a K(π, 1) if it is
aspherical and has �rst homotopy group the group π.

Any Coxeter group (W ) can be represented as a discrete re�ection group,
i.e. a discrete group of linear transformations of a �nite dimensional vector
space V with the generators si acting as re�ections with respect to some
bilinear form B. If W is a �nite Coxeter Group and r ∈ W is a re�ection, we
de�ne Hr as the hyperplane consisting of the set of �xed points. This way,
complexifying the action de�ned before one obtains a �nite arrangement of
complex hyperplanes CHr in Cn such that W acts freely in the complement,
YW = Cn − (∪CHr).

For in�nite Artin groups we can de�ne an analogous hyperplane comple-
ment YW in C⊗ V .

At this point, we can state the K(π, 1)-Conjecture:

Conjecture 1.13. (The K(π, 1)-Conjecture) Let W be a Coxeter Group and
A the associated Artin Group. Then YW/W is aspherical with fundamental
group A. That is, YW/W is a K(A, 1) space.

4



1.2. Importance and interest of even Artin groups

The conjecture is known to be true in several particular cases, including
the case when W is a �nite Coxeter Group, and the case when W is a right-
angled Coxeter group (i.e. the associated Artin Group A is right-angled). A
proof for the general case is still unknown.

The proof for right-angled Coxeter groups is very extense and technical
and can be found in [28]. Essentially, the proof consists on constructing what
is called the modi�ed Deligne complex and showing that it is contractible.

Using an already known result due to Charney it is easy to see that for
even Artin groups the conjecture is also true.

First we need to determine which are the �nite even Coxeter groups.
The classi�cation of �nite Coxeter groups is well-known. The irreducible

�nite Coxeter groups are the ones de�ned by the following Coxeter graphs
[35], [34]:

An n ≥ 1

Bn
4

n ≥ 2

Dn n ≥ 4

E6 E7

E8 F4
4

H3
5

H4
5

I2(p)
p

p ≥ 5

5



Chapter 1. Introduction and background

Remark 1.14. Notice, that here we are using the Coxeter graphs notation
due to Bourbaki [14] instead of the one we have de�ned before. The reason
for this change is to make easier the representation of the graphs and because
this is the most common notation for spherical Artin groups.

In the Coxeter graphs two commutative vertices are not joined, if two
vertices are joined with an edge without label there is a relation of label 3
between them. In other case, we label the edge between the two vertices with
the same number as in the original graph.

Theorem 1.15. Finite even Coxeter groups are direct product of dihedral
groups or copies of the cyclic group of two elements C2.

Proof. If we look at the classi�cation of irreducible �nite Coxeter groups, the
only ones wich are even are:

A1,B2, I2(p); p = 2k, k ≥ 3

which gives us the groups C2, D2, Dp; p ≥ 3 respectively (where Dn, n ∈ Z,
is the dihedral group of degree n).

So any �nite even Coxeter groups must be a direct product with factors
C2 or Dk, k ≥ 2.

Now, using the following proposition due to Charney we will get our
desired result:

Proposition 1.16. [26] Let (W,S) be a Coxeter system such that every irre-
ducible, �nite subgroup WT (based on a subgraph T of Γ) is either Sym4,Z2,
or a dihedral group, and let A be the associated Artin group. Then the Deligne
complex DA is CAT(0), and the hyperplane complement HW/W is a K(A, 1)
space.

So, from Theorem 1.15 and Proposition 1.16 we obtain as an immediate
consequence:

Corollary 1.17. Even Artin groups verify the K(π, 1) conjecture.
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Chapter 2

Poly-freeness: Background and

even FC type Artin groups

In this chapter we will study the concept of poly-freeness for some families
of even Artin groups. In section 2.1 we will de�ne the notion of poly-freeness
and we will see why it is an important property, in Section 2.2 we will recall
some previously known results regarding the poly-freeness of RAAGs. Later
on, in section 2.3 we will prove that even Artin groups of FC type are poly-
free, this result has been published in [11].

2.1 Importance of poly-freeness

De�nition 2.1. A group G is poly-free if there exists a tower of normal
subgroups

1 = G0 EG1 E ...EGN = G

such that every quotient Gi+1/Gi is free and Gi EG.
The least natural number, N , such that it exist a tower like this for G is

the poly-free length of G and we will denote it by pfl(G).

This property is important because it implies the property of being locally
indicable:

De�nition 2.2. A group G is locally indicable if each of its �nitely gen-
erated subgroups maps homomorphically onto Z.

We will need to use a lemma about locally indicable groups:

Lemma 2.3. [37] If a group G contains a normal subgroup G∗ such that G∗

and G/G∗ are both locally indicable then G is also locally indicable.

7
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Proof. Let H be a �nitely generated subgroup of G. Then, HG∗ ≤ G and
H ∩G∗ EH.

Now, if G∗ � HG∗, then 1 6= HG∗/G∗ ≤ G/G∗ is �nitely generated and
since G/G∗ is locally indicable HG∗/G∗ can be mapped homomorphically to
Z. We haveH/H∩G∗ ' HG∗/G∗, soH/H∩G∗ can be mapped homomorphi-
cally to Z, and composing with the natural epimorphism φ : H −→ H/H∩G∗
we get that also H can be mapped homomorphically to Z.

Otherwise, if G∗ = HG∗ then H ≤ G∗ and since G∗ is locally indicable
and H is �nitely generated, we have that H can be mapped homomorphically
to Z. So, G is locally indicable.

Now, let's see that poly-freeness implies locally indicability. To see this,
�rst we will see that free groups are locally indicable:

Theorem 2.4. Every free group is locally indicable.

Proof. It is easy to see that every free group maps homomorphically to Z.
And it is known that every subgroup of a free group is also free.

So, from this two facts, we get that every �nitely generated subgroup
of a free group maps homomorphically to Z, i.e. every free group is locally
indicable.

Theorem 2.5. Every poly-free group is locally indicable

Proof. It su�ces to iterate the use of Lemma 2.3 and Theorem 2.4.

Finally, it is possible to see that beging locally indicable implies the ex-
istence of a right order:

De�nition 2.6. A pair (G,<) (where G is a group and < is a total order)
is a right ordered group if the order < is right invariant, i.e

g < h⇒ gk < hk, ∀g, h, k ∈ G.

Example 2.7. The group Z with its usual order is right ordered.

We have the following useful characterization of right orderability:

Theorem 2.8. [25][13] G is right orderable if and only if every �nitely gen-
erated non-trivial subgroup of G has a non-trivial quotient which is also right
orderable.

And from this we can deduce our theorem:

Theorem 2.9. [73] Every locally indicable group is right orderable

Proof. Since Z is clearly right-orderable, the result follows from 2.8.

8



2.2. Poly-freeness for right-angled Artin groups

2.2 Poly-freeness for right-angled Artin groups

In this section we follow [58], [45] and [53].

De�nition 2.10. The chromatic number of a graph Γ, chr(Γ), is the
minimum number of colours which are necessary to paint the vertices of
the graph Γ in the way that two vertices which are joined by an edge have
di�erent colours.

De�nition 2.11. A clique is a complete graph (i.e. each pair of vertices
are joined by an edge).

De�nition 2.12. The clique number of a graph Γ, clq(Γ), is the number
of vertices of the greater clique which is a subgraph of Γ.

De�nition 2.13. Let φ be an homomorphism φ : AΓ −→ Fq from a right-
angled Artin group to a free group. The set D = {v ∈ V (Γ) | φ(v) = 1} is the
set of dead vertices, the set L = V (Γ)−D is the set of living vertices

and the smallest subgraph of Γ containing L, ΓL, is the living subgraph

of Γ.

De�nition 2.14. Let G be a group generated by a set S. A word w of length
k over S ∪ S−1 is a geodesic word if no other word over S ∪ S−1 of length
strictly less than k represents the same element in G as w does.

A total order de�ned over S ∪ S−1 de�nes a total order, called shortlex
order, on all words over S ∪ S−1 in which shorter words always precede
longer ones and the words of the same length are ordered lexicographically
according to the order de�ned on S ∪ S−1.

A shortlex representative of an element g ∈ G is the smallest word in the
shortlex order that represents g, so it is by de�nition geodesic.

Now we will prove some results which will be useful during our proof.

Proposition 2.15. If G is poly-free of length N and H ≤ G then H is
poly-free of length ≤ N .

Proof. Given a poly-free tower for G:

1 = G0 EG1 E ...EGN = G.

We consider the tower:

1 = G0 ∩H EG1 ∩H E ...EGN ∩H = H

which is a poly-free tower for H (since every subgroup of a free group is
free).

9



Chapter 2. Poly-freeness: Background and even FC type Artin groups

Proposition 2.16. If G has a free normal subgroup H and the quotient G/H
is poly-free with pfl(G/H) = N , then G is poly-free with pfl(G) ≤ N + 1.

Proof. Let φ : G −→ G/H be the canonical homomorphism.
Consider a poly-free tower:

1 = Q0 EQ1 E ...EQN = G/H.

Then the tower:

1E φ−1(Q0) = H E φ−1(Q1)E ...E φ−1(QN) = G

is a poly-free tower for G.

Lemma 2.17. A group G is poly-free if and only if

G = (...(Fn1 o Fn2)o ...)o Fnk .

Proof. The ⇐ implication is obvious.
For the ⇒ impication, we know that G is poly-free, i.e there exists a

tower:

1 = G0 EG1 E ...EGN = G

such that Gi/Gi−1 is free. Then, F := G/GN−1 is free. We consider the
projection epimorphism τ : G −→ F and by the universal property of free
groups, there exists φ : F −→ G such that τφ = 1F and F ' φ(F ) ≤ G. So,
G = GN−1 o φ(F ). And by induction we get the desired result.

Lemma 2.18. The group Zn has poly-free length equal to n.

Proof. Since Zn is a direct product of n copies of the free group Z, Zn is
poly-free with length at most n.

To show that Zn cannot have poly-free length less than n, assume that
Zn = (...(Fn1 o Fn2)o ...)o Fnk , for some (�nite or in�nite) ni, i = 1, ..., k.

Since Zn is abelian, we must have n1 = ... = nk = 1. Thus Zn can be
generated by k elements (one of each Fni). However, Zn cannot be generated
by less than n elements, which shows n ≤ k.

Given a graph Γ with chromatic number > 1, let D be the set of vertices
of one of the colours and L = V (Γ)−D the vertices of the remaining colours.

We consider ΓL the full subgraph of Γ generated by the vertices in L.

Let φ be the homomorphism φ : AΓ −→ AΓL given by φ(d) = 1 if d ∈ D
and φ(a) = a if a ∈ L. Then D is the set of the dead vertices and AΓL is the
living subgraph. This homomorphism is well de�ned because of the following
well known result:

10
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Proposition 2.19. Given two groups G1 = 〈X | R〉, G2, φ : G1 −→ G2

de�nes a homomorphism if and only if φ(r) = 1 ∀r ∈ R.

In the following proof we will build a free group F (isomorphic toKer(φ))
and an action of AΓL on F and we will see that AΓ is isomorphic to the
semidirect product F oAΓL .

This result was proved independently by Duchamp-Krob [45], Howie [58]
and Hermiller-�uni¢ [53].

Theorem 2.20. [45][58][53] Let Γ be a �nite graph, or more generally a
graph with �nite chromatic number chr(Γ) and �nite clique number clq(Γ).

The right-angled Artin group AΓ is poly-free. Moreover:

clq(Γ) ≤ pfl(Γ) ≤ chr(Γ)

and there exists a poly-free tower of length chr(Γ).

Proof. To prove that AΓ is poly-free and the upper bound on the poly-free
length we argue by induction on chr(Γ).

If chr(Γ) = 1, then Γ is totally disconnected, so it is poly-free of length 1.
Let us supposse that chr(Γ) ≥ 2, and that for every graph Γ′ with chr(Γ′) <
chr(Γ). Then the group A′Γ is poly-free and has a poly-free tower of length
chr(Γ′).

We choose a coloration of Γ with chr(Γ) di�erent colours, one of which
will be grey. Let D be the set of grey vertices in V = V (Γ), L = V − D
the vertices of di�erent colours, ΓL the subgraph induced by L and AΓL

the corresponding right-angled Artin group. Then, chr(ΓL) ≤ chr(Γ) − 1,
so by induction hypothesis there exists a poly-free tower for AΓL of length
chr(Γ)− 1.

We consider the maps induced as follows:

π : AΓ −→ AΓL

x 7→

{
x if x ∈ L
1 if x ∈ D

ι : AΓL −→ AΓ

x 7→ x x ∈ L

(note that π, ι are well-de�ned by Proposition 2.19).
As π ◦ ι = 1d we get the semidirect product: Ker(π) o AΓL = AΓ. We

only need to see that Ker(π) is a free group.

11
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Consider the following sets:

T = {αxα−1 | x ∈ D,α ∈ AΓL} ⊂ AΓ

T̂ = {Tβ | β ∈ T}

AΓL acts on T̂ in the obvious way:

α(Tβ) = Tαβα−1

Therefore, AΓL acts on the free group F (T̂ ) and we de�ne G as:

G = F (T̂ )oAΓL

We consider the following applications:

fT : F (T̂ ) −→ AΓ

Tβ 7→ β

f : G −→ AΓ

(Tw, α) 7→ fT (Tw)α

Obviously, αfT (Tw)α−1 = fT (α(Tw)). Note that fT induces a group ho-
momorphism that we also denote fT and that f is also a group homomor-
phism (notice that f((Tw1 , α1), (Tw2 , α2)) = w1α1w2α2 = f(Tw1 , α1)f(Tw2 , α2)).

Now, we de�ne:

g : AΓ −→ G

x ∈ L 7→ g(x) = x

x ∈ D 7→ g(x) = Tx

We claim that g induces a well de�ned group isomorphism such that
g(F (T̂ )) = ker(π). As F (T̂ ) is free, this implies that ker(π) is free. Let
x, y ∈ V be such that xy = yx, we have two options: either x, y ∈ L or x ∈ L
and y ∈ D (since two vertices of the same colour cannot be joined, we cannot
have x, y ∈ D).

1. x, y ∈ L.
g(x)g(y) = xy = yx = g(y)g(x).

2. x ∈ L, y ∈ D.

g(x)g(y)g(x−1) = xTyx
−1 = Txyx−1 = Ty = g(y).
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2.3. Poly-freeness on even Artin groups of FC type

Then g induces a group homomorphism. So, we only have to check that
f ◦ g = Id and g ◦ f = Id. Since both are well-de�ned, it is enough to see it
for the generators:

1. f ◦ g = Id

(a) x ∈ L
(f ◦ g)(x) = f(x) = x.

(b) x ∈ D
(f ◦ g)(x) = f(Tx) = x.

2. g ◦ f = Id

(a) x ∈ L
(g ◦ f)(x) = g(x) = x.

(b) β ∈ T . β = αxα−1 with α ∈ AΓL and x ∈ D (Tβ = αTxα
−1).

(g ◦ f)(Tβ) = (g ◦ f)(αTxα
−1) = g(αxα−1) = (αTxα

−1) = Tβ.

Thus, AΓ ' G = F (T̂ ) o AΓL and notice that the isomorphism sends
F (T̂ ) to ker(π), so F (T̂ ) ' ker(π). By induction AΓL has poly-free tower
of length chr(Γ) − 1, thus by Proposition 2.16 AΓ has a poly-free tower of
length chr(Γ), and pfl(Γ) ≤ chr(Γ).

Finally, we consider the lower bound of the poly-free tower. Let m =
clq(Γ) and let Γ̂ be a clique of Γ with m vertices. Then Γ̂ is a complete graph
and the subgroup AΓ̂ corresponding to Γ̂ is isomorphic to Zm. By Lemma
2.18, m = pfl(Γ̂), and by Proposition 2.15, pfl(Γ̂) ≤ pfl(Γ).

Remark 2.21. We want to remark that it is also known that every one relator
Artin group is poly-free. This result is due to Mullholland and Rolfsen and
can be found in Theorems 3.6, 3.9 and 3.18 in [68].

2.3 Poly-freeness on even Artin groups of FC

type

In this section we prove that even Artin groups of FC type are poly-free, this
section is based in [11].

Recall that an Artin group AΓ is called of FC type if for every complete
subgraph Ω of Γ, the associated Coxeter group WΩ is �nite (i.e. AΩ is
spherical).

13



Chapter 2. Poly-freeness: Background and even FC type Artin groups

2.3.1 Preliminaries

Britton's lemma

Let G be a group generated by a �nite set S. We denote by (S ∪ S−1)∗

the free monoid over S ∪ S−1, that is, the set of words over S ∪ S−1, and
we denote by (S ∪ S−1)∗ → G, w 7→ w̄, the map that sends a word to the
element of G that it represents. Recall that a set of normal forms for G is a
subset N of (S ∪ S−1)∗ such that the map N → G, w 7→ w̄, is a one-to-one
correspondence.

Let G be a group with two subgroups A,B ≤ G, and let ϕ : A → B
be an isomorphism. A useful consequence of Britton's lemma yields a set of
normal forms for the HNN-extension G∗ϕ = 〈G, t | t−1at = ϕ(a), a ∈ A〉 in
terms of a set N of normal forms for G and sets of representatives of the
cosets of A and B in G (see Lyndon�Schupp [64]). Explicitly, choose a set
TA of representatives of the left cosets of A in G containing 1, and a set TB
of representatives of the left cosets of B in G also containing 1.

Proposition 2.22 (Britton's normal forms). Let Ñ be the set of words of
the form w0t

ε1w1 · · · tεmwm, where m ≥ 0, εi ∈ {±1} and wi ∈ N for all i,
such that:

(a) w̄i ∈ TA if εi = −1, for i ≥ 1,

(b) w̄i ∈ TB if εi = 1, for i ≥ 1,

(c) there is no subword of the form tεt−ε.

Then Ñ is a set of normal forms for the HNN-extension G∗ϕ.

Variations of the even Artin-type relations

For a, b in a group G, we denote by ba = a−1ba the conjugate of b by a. The
aim of this subsection is to illustrate how the Artin relations in even Artin
groups can be expressed in terms of conjugates. This observation will be a
key point in our proof of Theorem 2.41.

Lemma 2.23. Let s, t be two generators of an Artin group A such that
ms,t = 2k is �nite and even. Then

ts
−1

= t−1(ts)−1 · · · (tsk−2

)−1ts
k−1

ts
k−2 · · · tst ,

ts
k

= ts
k−1 · · · tst(ts)−1 · · · (tsk−1

)−1 .

In particular, ts
i ∈ 〈t, ts, . . . , tsk−1〉 for all i ∈ Z.
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Proof. It is easily proved by induction that (st)` = s` ts
`−1 · · · tst for all ` ≥ 1.

Then by conjugating this equality by s we have (ts)` = s` ts
` · · · ts2ts. From

the equality (st)k = (ts)k follows ts
k−1 · · · tst = ts

k · · · ts2ts. This implies on
the one hand that ts

k
= ts

k−1 · · · tst(ts)−1 · · · (tsk−1
)−1 and, on the other hand,

that t = (ts)−1 · · · (tsk−1
)−1ts

k
ts
k−1 · · · ts. By conjugating this last equality

by s−1 we obtain ts
−1

= t−1 · · · (tsk−2
)−1ts

k−1
ts
k−2 · · · t. Finally it is easily

shown by induction that ts
−1−`

, tk+` ∈ 〈t, ts, . . . , tsk−1〉 for all ` ≥ 0, hence
ts
i ∈ 〈t, ts, . . . , tsk−1〉 for all i ∈ Z.

2.3.2 Poly-freeness of even Artin groups of FC type

In this section we prove that even Artin groups of FC type are poly-free
(Theorem 2.41). We begin with a characterization of these groups in terms
of their de�ning graphs.

Lemma 2.24. Let AΓ be an even Artin group. Then AΓ is of FC type if and
only if every triangular subgraph of Γ has at least two edges labelled with 2.

Proof. We say that Γ is reducible if there exists a partition S = X t Y such
that X 6= ∅, Y 6= ∅ and ms,t = 2 for all s ∈ X and t ∈ Y . We say that Γ is
irreducible otherwise. There exists a unique partition S = X1tX2t · · ·tX`

such that Xi 6= ∅ and ΓXi is irreducible for all i ∈ {1, . . . , `}, and ms,t = 2
for all s ∈ Xi, t ∈ Xj, i, j ∈ {1, . . . , `}, i 6= j. In this case we have AΓ =
AX1×AX2×· · ·×AX` andWΓ = WX1×WX2×· · ·×WX` . In particular, AΓ is
of spherical type if and only if AΓXi

is of spherical type for all i ∈ {1, . . . , `}.
Then we say that Γ is the orthogonal sum of ΓX1 ,ΓX2 , . . . ,ΓX` .

Suppose that AΓ is even. From the classi�cation of �nite irreducible
Coxeter groups (see Section 1.2, [35], [34]) follows that AΓ is irreducible of
spherical type if and only if Γ has at most two vertices and, if |S| = 2,
then the two vertices of Γ are connected (by an edge labelled with an even
number ≥ 4). It follows that AΓ is of spherical type if and only if Γ is a
complete graph and is the orthogonal sum of irreducible graphs with 1 or 2
vertices. This condition is clearly equivalent to Γ is a complete graph and
every triangular subgraph of Γ has at least two edges labelled with 2.

Suppose that AΓ is even and of FC type. Let Ω be a triangular subgraph
of Γ. Since AΓ is of FC type and Ω is a complete subgraph, AΩ is of spherical
type and therefore, by the above, Ω has at least two edges labelled with 2.
Suppose that AΓ is even and every triangular subgraph of Γ has at least
two edges labelled with 2. Let Ω be a complete subgraph of Γ. Then every
triangular subgraph of Ω has at least two edges labelled with 2, hence, by
the above, AΩ is of spherical type. So, AΓ is of FC type.
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The proof of Theorem 2.41 is based on the following.

Proposition 2.25. Assume that AΓ is even and of FC type. Then there is
a free group F such that AΓ = F oA1, where A1 is an even Artin group of
FC type based on a proper subgraph of Γ.

We proceed now with some notations needed for the proof of Proposition
2.25. Fix some vertex z of Γ. Recall that the link of z in Γ is the full subgraph
lk(z,Γ) of Γ with vertex set V (lk(z,Γ)) = {s ∈ S | s 6= z and ms,z 6= ∞}.
As ever, we see lk(z,Γ) as a labelled graph, where the labels are the same as
in the original graph Γ. We set L = lk(z,Γ), and we denote by Γ1 the full
subgraph of Γ spanned by S \ {z}. We denote by A1 and AL the subgroups
of AΓ generated by V (Γ1) and V (L), respectively. Recall from Section 1.1
that A1 and AL are the Artin groups associated with the graphs Γ1 and L,
respectively (so this notation is consistent).

As pointed out in Section 1.2, sinceAΓ is even, the inclusion mapA1 ↪→ A
has a retraction π1 : AΓ → A1 which sends z to 1 and sends s to s if s 6= z.
Similarly, the inclusion map AL ↪→ A1 has a retraction πL : A1 → AL which
sends s to s if s ∈ V (L), and sends s to 1 if s 6∈ V (L). It follows that AΓ and
A1 split as semi-direct products AΓ = Ker(π1)oA1 and A1 = Ker(πL)oAL.

For s ∈ V (L) we denote by ks the integer such that mz,s = 2ks. Lemma
2.24 implies the following statement. This will help us to describe AL as an
iterated HNN extension.

Lemma 2.26. Let s, t be two linked vertices of L.

(1) Either ks = 1, or kt = 1.

(2) If ks > 1, then ms,t = 2.

Let L1 be the full subgraph of L spanned by the vertices s ∈ V (L) such
that ks = 1. Lemma 2.26 implies that L \ L1 is totally disconnected. We
set V (L \ L1) = {x1, . . . , xn}. Again, from Lemma 2.26, we deduce that, for
each i ∈ {1, . . . , n}, if the vertex xi is linked to some vertex s ∈ V (L1), then
the label of the edge between xi and s must be 2. For each i ∈ {1, . . . , n}
we set Si = lk(xi, L), and we denote by Xi the full subgraph of L spanned
by {x1, . . . , xi} ∪ V (L1) and X0 = L1. Note that Si is a subgraph of L1 and,
therefore, is a subgraph of Xi. The subgraphs of Γ that we have de�ned so
far are sitting as follows inside Γ

Si ⊆ L1 = X0 ⊆ X1 ⊆ . . . ⊆ Xn = L ⊆ Γ1 ⊆ Γ

where i ∈ {1, . . . , n} The de�ning map of each of the HNN extensions will
be the identity in the subgroup generated by the vertices commuting with
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xi, that is, ϕi = Id : ASi → ASi . Then, writing down the associated presen-
tation, we see that AXi = (AXi−1

)∗ϕi with stable letter xi. So, we get the
following.

Lemma 2.27. We have AL = ((AL1∗ϕ1) ∗ϕ2 · · · )∗ϕn.

Now, �x a set N1 of normal forms for AL1 (for example, the set of shortlex
geodesic words with respect to some ordering in the standard generating
system). We want to use Britton's lemma to obtain a set of normal forms
for AL in terms of N1. To do so, �rst, for each i ∈ {1, . . . , n}, we need to
determine a set of representatives of the right cosets of ASi in AL1 . The
natural way to do it is as follows. Consider the projection map πSi : AL1 →
ASi which sends s ∈ V (L) to s if s ∈ V (Si) and sends s to 1 otherwise.
Observe that AL1 = ASi n Ker(πSi). Then, Ker(πSi) is a well-de�ned set of
representatives of the right cosets of ASi in AL1 .

In our next result we will use this set of representatives together with
Britton's lemma to construct a setNL of normal forms forAL. More precisely,
NL denotes the set of words of the form

w0x
ε1
α1
w1 · · ·xεmαmwm ,

where wj ∈ N1 for all j ∈ {0, 1, . . . ,m}, αj ∈ {1, . . . , n}, w̄j ∈ Ker(πSαj ) and
εj ∈ {±1} for all j ∈ {1, . . . ,m}, and there is no subword of the form xεαx

−ε
α

with α ∈ {1, . . . , n}.

Lemma 2.28. The set NL is a set of normal forms for AL.

Proof. For i ∈ {0, 1, . . . , n}, we denote by NL,i the set of words of the form

w0x
ε1
α1
w1 · · ·xεmαmwm , (2.1)

where wj ∈ N1 for all j ∈ {0, 1, . . . ,m}, αj ∈ {1, . . . , i}, w̄j ∈ Ker(πSαj ) and
εj ∈ {±1} for all j ∈ {1, . . . ,m}, and there is no subword of the form xεαx

−ε
α

with α ∈ {1, . . . , i}. We prove by induction on i that NL,i is a set of normal
forms for AXi . Since AL = AXn , this will prove the lemma.

The case i = 0 is true by de�nition since AL1 = AX0 and NL,0 = N1.
So, we can assume that i ≥ 1 plus the inductive hypothesis. Recall that
AXi = (AXi−1

)∗ϕi , where ϕi is the identity map on ASi . By induction,
NL,i−1 is a set of normal forms for AXi−1

. We want to apply Proposition
2.22, so we also need a set Ti of representatives of the right cosets of ASi in
AXi−1

. Since AL1 = ASi n Ker(πSi), we see that we may take as Ti the set
of elements of AXi−1

whose normal forms, written as in Equation 2.1, satisfy
w̄0 ∈ Ker(πSi). Now, take g ∈ AXi and use Proposition 2.22 with the set
NL,i−1 of normal forms and the set Ti of representatives to write a uniquely
determined expression for g. The set of these expressions is clearly NL,i.
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Given g ∈ AL, we denote by n(g) the normal form of g in NL. We
denote by T ∗0 the set of g ∈ AL \ {1} such that n(g) is of the form n(g) =
xα1w1x

ε2
α2
w2 · · ·xεmαmwm (that is, w0 = 1 and ε1 = 1) and n(g) does not start

with xkα1
α1 . We set T0 = T ∗0 ∪ {1} and T = T0 Ker(πL). We take an abstract

set B = {bg | g ∈ T} in one-to-one correspondence with T and we denote by
F = F (B) the free group freely generated by B. This is the free group that
appears in the statement of Proposition 2.25.

Recall that π1 : AΓ → A1 is the projection that sends z to 1 and sends s
to s for all s ∈ S \ {z} and that we have AΓ ' Ker(π1)oA1. The following
lemma is not needed to prove Proposition 2.25 but it helps to understand
our approach and explains where the set T comes from.

Lemma 2.29. The group Ker(π1) is generated by {zg | g ∈ T}.

Proof. It follows from the de�nition of π1 that Ker(π1) is the normal closure
of {z}, hence Ker(π1) is generated by {zg | g ∈ AΓ}. Let g ∈ AΓ that
we write g = g0z

ε1g1 · · · zεmgm with εi ∈ {±1} and gi ∈ A1 for all i. Let
hi = gigi+1 · · · gm for i ∈ {0, 1, . . . ,m}. Then

zg = (zhm)−εm · · · (zh1)−ε1zh0(zh1)ε1 · · · (zhm)εm .

So, Ker(π1) is generated by {zg | g ∈ A1}.
Recall that we have the decomposition A1 = AL n Ker(πL), hence each

element g ∈ A1 has a unique decomposition of the form g = hk with h ∈ AL
and k ∈ Ker(πL). Let H be the subgroup of Ker(π1) generated by {zg | g ∈
T}. We take h ∈ AL and k ∈ Ker(πL) and we turn to prove that zhk ∈ H by
induction on the length of n(h).

If h = 1, then hk = k ∈ T , hence zhk ∈ H. So, we can assume that h 6= 1
plus the inductive hypothesis. Let n(h) = w0x

ε1
α1
w1 · · · xεmαmwm be the normal

form of h. We have ms,z = 2 for all s ∈ V (L1), hence each element of AL1

commutes with z, and therefore zhk = zh
′k, where h′ = xε1α1

w1 · · ·xεmαmwm. So,
we can assume that w0 = 1. We write n(h) = xtαw1x

ε2
α2
w2 · · ·xεmαmwm, where

t ∈ Z\{0}, and either w1 6= 1, or α2 6= α, or m = 1. For i ∈ {0, 1, . . . , kα−1}
we set hi = xiαw1x

ε2
α2
w2 · · · xεmαmwm. If 1 ≤ i ≤ kα − 1, then hi ∈ T0, hence

hik ∈ T , and therefore zhik ∈ H. If i = 0, then zhik ∈ H by induction. By
Lemma 2.23 we have zhk ∈ 〈zhik | 0 ≤ i ≤ kα − 1〉, hence zhk ∈ H.

So, by Lemma 2.29 we have a surjective homomorphism F → Ker(π1)
which sends bg to zg for all g ∈ T . It remains to show that this homomorphism
is injective. This will not be done directly. Our strategy is to prove that A1

admits an action on F that mimics the action of A1 on Ker(π1) (see Lemma
2.37), and then to prove that the semi-direct product F o A1 obtained via
this action is isomorphic to AΓ.
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We set B0 = {bg | g ∈ T0} and we denote by F0 = F (B0) the free group
freely generated by B0. We start by de�ning an action of AL on F0. This
will be later extended to the desired action of A1 on F .

Given h ∈ T0, we denote by supp(h) the set of xi ∈ V (L \ L1) which
appear in the normal form n(h). We will need the following technical result.

Lemma 2.30. Let s ∈ V (L) and h ∈ T0.

(1) If s ∈ V (L1) and s ∈ V (Si) for every xi ∈ supp(h) (including the case
h = 1), then hs 6∈ T0 and hs−1 6∈ T0, but shs−1, s−1hs ∈ T0.

(2) If s = x ∈ V (L \ L1) and h = xkx−1, then hs 6∈ T0 and hs−1 ∈ T0.

(3) If s = x ∈ V (L \ L1) and h = 1, then hs ∈ T0 and hs−1 6∈ T0.

(4) We have hs, hs−1 ∈ T0 in all the other cases.

Proof. We take h ∈ T0 and s ∈ V (L). If h = 1 and s = x ∈ V (L \ L1),
then hs = hx = x ∈ T0 and hs−1 = hx−1 = x−1 6∈ T0. If h = 1 and
s ∈ V (L1), then hs = s 6∈ T0, hs−1 = s−1 6∈ T0 and s−1hs = shs−1 =
1 ∈ T0. So, we can assume that h 6= 1. Then the normal form of h is
written xα1w1x

ε2
α2
w2 · · ·xεmαmwm where m ≥ 1, wj ∈ N1, αj ∈ {1, . . . , n},

w̄j ∈ Ker(πSαj ) and εj ∈ {±1} for all j, there is no subword of the form

xεαx
−ε
α , and this word does not begin with xkα1

α1 .
Suppose that s = x ∈ V (L \ L1). If either wm 6= 1, or wm = 1 and

xεmαm 6= x−1, then the normal form of hs = hx is xα1w1 · · ·xεmαmwmx. Then
hx ∈ T0 unless hx = xkx which means that h = xkx−1. If wm = 1 and
xεmαm = x−1, then the normal form of hs = hx is xα1w1 · · ·xεm−1

αm−1
wm−1, hence

hx ∈ T0. If either wm 6= 1, or wm = 1 and xεmαm 6= x, then the normal
form of hs−1 = hx−1 is xα1w1 · · · xεmαmwmx

−1, hence hx−1 ∈ T0. If wm = 1
and xεmαm = x, then the normal form of hs−1 = hx−1 is 1 if m = 1 and is
xα1w1 · · ·xεm−1

αm−1
wm−1 if m ≥ 2, hence hx−1 ∈ T0.

Suppose that s ∈ V (L1) and s ∈ V (Sαj) for all j ∈ {1, . . . ,m}. Let
j ∈ {1, . . . ,m}. Since s ∈ V (Sαj), by Lemma 2.26, the vertices s and
xαj are connected by an edge labelled with 2, hence s and xαj commute.
Moreover, since w̄j ∈ Ker(πSαj ), we have s−1w̄js, sw̄js

−1 ∈ Ker(πSαj ). We
denote by w′j (resp. w′′j ) the normal form of s−1w̄js (resp. sw̄js

−1). By
the above the normal form of hs is sxα1w

′
1 · · ·xεmαmw

′
m and the normal form

of s−1hs is xα1w
′
1 · · ·xεmαmw

′
m, hence hs 6∈ T0 and s−1hs ∈ T0. Similarly, the

normal form of hs−1 is s−1xα1w
′′
1 · · ·xεmαmw

′′
m and the normal form of shs−1 is

xα1w
′′
1 · · ·xεmαmw

′′
m, hence hs

−1 6∈ T0 and shs−1 ∈ T0.
Suppose that s ∈ V (L1) and there exists k ∈ {1, . . . ,m} such that s 6∈

V (Sαk). We choose such a k so that s ∈ V (Sαj) for all j ≥ k + 1. As
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before, we have s−1w̄js, sw̄js
−1 ∈ Ker(πSαj ) and s commutes with xαj if j ≥

k + 1. Moreover, since s 6∈ V (Sαk), we have πSαk (s) = 1, hence w̄ks, w̄ks−1 ∈
Ker(πSαk ). We set w′j = wj if j ≤ k − 1, we denote by w′k the normal form
of w̄ks and, for j ≥ k + 1, we denote by w′j the normal form of s−1w̄js.
Then xα1w

′
1x

ε2
α2
w′2 · · · xεmαmw

′
m is the normal form of hs, hence hs ∈ T0. We

set w′′j = wj if j ≤ k − 1, we denote by w′′k the normal form of w̄ks−1

and, for j ≥ k + 1, we denote by w′′j the normal form of sw̄js−1. Then
xα1w

′′
1x

ε2
α2
w′′2 · · ·xεmαmw

′′
m is the normal form of hs−1, hence hs−1 ∈ T0.

Hidden in the proof of Lemma 2.30 is the fact that, if g1, g2 ∈ AL1 and
h ∈ T0, then g1hg2 ∈ AL1T0. Moreover, by Lemma 2.28, every element of
AL1T0 is uniquely written in the form gh with g ∈ AL1 and h ∈ T0. In this
case we set u(gh) = h. So, by Lemma 2.30, if s ∈ V (L1) and h ∈ T0, then
u(hs) = s−1hs if s ∈ V (Si) for every xi ∈ supp(h), and u(hs) = hs otherwise.
If s = x ∈ V (L \L1), then u(hx) is not de�ned if h = xkx−1, and u(hx) = hx
otherwise.

We turn now to de�ne the action of AL on F0. We start with the action
of the generators. Let s ∈ V (L). For h ∈ T0 we set

bh∗s =

{
bu(hs) if hs ∈ AL1T0 ,
bxkx−1 · · · bx b1 b

−1
x · · · b−1

xkx−1 if s = x ∈ V (L \ L1) and h = xkx−1 .

Then we extend the map B → F0, bh 7→ bh ∗s, to a homomorphism F0 → F0,
f 7→ f ∗ s.

Lemma 2.31. The above de�ned homomorphism ∗s : F0 → F0 is an auto-
morphism.

Proof. The result will follow if we show that the map has an inverse. Our
candidate to inverse will be the map ∗s−1 : F0 → F0 de�ned by

bh ∗ s−1 =


bu(hs−1) if hs−1 ∈ AL1T0 ,
b−1

1 b−1
x · · · b−1

xkx−2 bxkx−1 bxkx−2 · · · bx b1 if s = x ∈ V (L \ L1)
and h = 1 .

Assume �rst that either s ∈ V (L1), or h 6∈ {1, xkx−1} with s = x ∈ V (L \
L1). In this case we only have to check that u(u(hs)s−1) = h = u(u(hs−1)s).
Observe that the condition s ∈ V (L1) and s ∈ Si for every xi ∈ supp(h) is
equivalent to s ∈ V (L1) and s ∈ Si for every xi ∈ supp(u(hs)), thus, if that
condition holds, we have u(hs) = s−1hs and u(u(hs)s−1) = u((s−1hs)s−1) =
ss−1hss−1 = h. If the condition fails, then u(hs) = hs and u(u(hs)s−1) =
u((hs)s−1) = hss−1 = h. Analogously, one checks that h = u(u(hs−1)s).
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Now, we assume that s = x ∈ V (L \ L1) and either h = 1 or h = xkx−1.
If h = xkx−1, then

(bh ∗ x) ∗ x−1 = (bxkx−1 · · · bx b1 b
−1
x · · · b−1

xkx−1) ∗ x−1

= bxkx−2 · · · b1 (b1 ∗ x−1) b−1
1 · · · b−1

xkx−2

= bxkx−2 · · · b1 b
−1
1 b−1

x · · · b−1
xkx−2 bxkx−1 bxkx−2 · · · bx b1 b

−1
1 · · · b−1

xkx−2 = bxkx−1 = bh .

On the other hand,

(bh ∗ x−1) ∗ x = bxkx−2 ∗ x = bxkx−1 = bh .

The case when h = 1 is analogous.

To show that this action, de�ned just for the generators of AL, yields an
action of AL on F0, we need to check that it preserves the Artin relations.
We do it in the next two lemmas.

Lemma 2.32. Let s, t ∈ V (L) such that ms,t = 2. Then (g ∗s)∗ t = (g ∗ t)∗s
for all g ∈ F0.

Proof. Since s and t are linked in V (L), Lemma 2.24 implies that at least one
of the vertices s, t lies in V (L1). Without loss of generality we may assume
s ∈ V (L1), i.e., ks = 1. Let h ∈ T0. Then bh ∗ s = bu(hs).

Assume �rst that either ht ∈ T0, or t ∈ Si for every xi ∈ supp(h). In this
last case, we have t ∈ Si for any xi ∈ supp(u(hs)). Therefore

(bh ∗ s) ∗ t = bu(hs) ∗ t = bu(u(hs)t) and (bh ∗ t) ∗ s = bu(ht) ∗ s = bu(u(ht)s) .

Depending on whether hs lies in T0 or not we have u(hs) = hs or u(hs) =
s−1hs, and the same for t. So, we have four cases to consider. If hs, ht ∈ T0,
then hst = hts ∈ T0 and

u(u(hs)t) = u((hs)t) = hst = hts = u((ht)s) = u(u(ht)s) .

If hs ∈ T0 and ht 6∈ T0, then hst 6∈ T0 but t−1hts ∈ T0, hence

u(u(hs)t) = u((hs)t) = t−1hst = t−1hts = u((t−1ht)s) = u(u(ht)s) .

Similarly, if hs 6∈ T0 and ht ∈ T0, then u(u(hs)t) = u(u(ht)s). If hs, ht 6∈ T0,
then s−1hst 6∈ T0 and t−1hts 6∈ T0, thus

u(u(hs)t) = u((s−1hs)t) = t−1s−1hst = s−1t−1hts = u((t−1ht)s) = u(u(ht)s) .

We are left with the case where t = y ∈ V (L \ L1) and h = yky−1.
Then, since s and y are linked, for every α ∈ {0, 1, . . . , ky − 1} we have
u(yαs) = s−1yαs = yα, thus

(bh ∗ s) ∗ y = bh ∗ y = byky−1 · · · by b1 b
−1
y · · · b−1

yky−1 ,

(bh∗y)∗s = (byky−1 · · · by b1 b
−1
y · · · b−1

yky−1)∗s = byky−1 · · · by b1 b
−1
y · · · b−1

yky−1 .
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If w is a word over {s, t}, where s, t ∈ V (L), and if h ∈ T0, we de�ne bh∗w
by induction on the length of w by setting bh∗1 = bh and bh∗(ws) = (bh∗w)∗s.

Lemma 2.33. Let s, t ∈ V (L) such that ms,t = 2k > 2. Then bh ∗ ((st)k) =
bh ∗ ((ts)k) for all h ∈ T0.

Proof. Note that, since s and t are linked and the edge between them is
labelled with 2k > 2, Lemma 2.24 implies that s, t ∈ V (L1). Take h ∈ T0.
Then, in a similar way as in the proof of Lemma 2.32, we have hs ∈ T0 if and
only if u(hstst · · · t)s ∈ T0 and this is also equivalent to u(htsts · · · t)s ∈ T0.
The same thing happens for t. So, we may distinguish essentially the same
cases as in the �rst part of the proof of Lemma 2.32 and get the following.
If hs, ht ∈ T0, then

(bh) ∗ (st)k = bh(st)k = bh(ts)k = (bh) ∗ (ts)k .

If hs ∈ T0 and ht 6∈ T0, then

(bh) ∗ (st)k = bt−kh(st)k = bt−kh(ts)k = (bh) ∗ (ts)k .

Similarly, if hs 6∈ T0 and ht ∈ T0, then (bh)∗(st)k = (bh)∗(ts)k. If hs, ht 6∈ T0,
then

(bh) ∗ (st)k = b(st)−kh(st)k = b(ts)−kh(ts)k = (bh) ∗ (ts)k .

All the previous discussion implies the following.

Lemma 2.34. The mappings ∗s, s ∈ V (L), yield a well-de�ned right-action
F0 ×AL → F0, (u, g) 7→ u ∗ g.

Moreover, this action behaves as one might expect. To show this, we will
need the following technical lemma.

Lemma 2.35. Let g ∈ AL1T0, and let n(g) = w0x
ε1
α1
w1 · · ·xεnαnwn be its

normal form. Then any pre�x of n(g) also represents an element in AL1T0.

Proof. The only case where it is not obvious is when the pre�x is of the
form w0x

ε1
α1
w1 · · ·x

εj
αjuj with uj a pre�x of wj. Let h be the element of AL

represented by w0x
ε1
α1
w1 · · · x

εj
αjuj, and let h′ be the element represented by

w0x
ε1
α1
w1 · · ·x

εj
αj . It is clear that h′ ∈ AL1T0. Moreover, h = h′ūj, hence, as

pointed out after the proof of Lemma 2.30, we have h ∈ AL1T0.

Lemma 2.36. For every g ∈ AL1T0 we have b1 ∗ g = bu(g).
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Proof. Set again n(g) = w0x
ε1
α1
w1 · · ·xεnαnwn. Let vs

ε be a pre�x of n(g) with
s a vertex and ε ∈ {±1}. Note that Lemma 2.35 implies that vsε and v
represent elements in AL1T0. We are going to prove that, if b1 ∗ v̄ = bu(v̄),
then also b1 ∗ v̄sε = bu(v̄sε). Note that this will imply the result. As v̄sε lies
in AL1T0, the element u(v̄sε) is well-de�ned. Observe that u(u(v̄)sε) is also
well-de�ned. We have b1 ∗ (v̄sε) = bu(v̄) ∗ sε = bu(u(v̄)sε). So, we only need to
show that u(u(v̄)sε) = u(v̄sε). Set v̄ = qh with h ∈ T0 and q ∈ AL1 . Then
u(v̄) = h, thus, by Lemma 2.30, u(u(v̄)sε) = u(hsε) = u(qhsε) = u(v̄sε).

Our next objective is to extend the action of AL on F0 to an action of
A1 on F . Recall that T = T0Ker(πL) and that any h ∈ T can be written in
a unique way as h = h0u with h0 ∈ T0 and u ∈ Ker(πL). Taking this into
account we set bh = bh0u = bh0 · u. We extend this notation to any element
ω =

∏
bεihi ∈ F0 by setting ω · u =

∏
bεihiu.

Now, let g ∈ A1 and h ∈ T . We write h = h0u with h0 ∈ T0 and
u ∈ Ker(πL). So, with the previous notation, we have bh = bh0 · u. Then we
set

bh ∗ g = (bh0 ∗ πL(g)) · (πL(g)−1ug) .

We can also write this action as follows. Let ω =
∏
bεihi ∈ F0 and let u ∈

Ker(πL). Then

(ω · u) ∗ g = (ω ∗ πL(g)) · (πL(g)−1ug) . (2.2)

Lemma 2.37. The above de�ned map F × A1 → F , (ω, g) 7→ ω ∗ g, is a
well-de�ned right-action of A1 on F .

Proof. The lemma is essentially a consequence of the fact that the action of
AL on F0 is well-de�ned. Let g1, g2 ∈ A1 and let bh = bh0 · u ∈ B, where
h0 ∈ T0 and u ∈ Ker(πL). Then, using Equation 2.2,

(bh ∗ g1) ∗ g2 = ((bh0 · u) ∗ g1) ∗ g2 =
(
(bh0 ∗ πL(g1)) · (πL(g1)−1ug1)

)
∗ g2

= ((bh0 ∗ πL(g1)) ∗ πL(g2)) · (πL(g2)−1(πL(g1)−1ug1)g2)

= (bh0 ∗ πL(g1g2)) · (πL(g1g2)−1ug1g2) = bh ∗ g1g2 .

Recall the homomorphism ϕ : F → Ker(π1) that sends bh to zh for all
h ∈ T . We consider the semi-direct product G = A1nF associated with the
above action, and we turn to de�ne an extension of ϕ to G.

Lemma 2.38. The map G → A, (g, ω) 7→ g ϕ(ω), is a well-de�ned homo-
morphism.
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Proof. We have to check that, for all g1, g2 ∈ A1 and all ω1, ω2 ∈ F , we have

ϕ(g1, ω1)ϕ(g2, ω2) = g1g2ϕ(ω1)g2ϕ(ω2)

= ϕ(g1g2, (ω1 ∗ g2)ω2) = g1g2ϕ((ω1 ∗ g2)ω2) .

Since the restriction of ϕ to F is a group homomorphism, this is equivalent
to show that ϕ(ω1)g2 = ϕ(ω1 ∗ g2). It is enough to prove this for the group
generators. So, we can assume that ω1 = bh for some h ∈ T , and that g2 = s
for some vertex s ∈ V (Γ), s 6= z. We have ϕ(bh)

s = s−1zhs = s−1h−1zhs,
and we need to check that this is equal to ϕ(bh ∗ s). To see it we set h = h0u,
with h0 ∈ T0 and u ∈ Ker(πL), so that bh = bh0 · u.

Observe �rst that, if s 6∈ V (L), then πL(s) = 1, thus bh ∗ s = bh0 · (us) =
bh0us = bhs, and therefore

ϕ(bh ∗ s) = ϕ(bhs) = zhs = ϕ(bh)
s .

So, from now on, we will assume that s ∈ V (L). Then πL(s) = s, thus
bsh = (bh0 ∗ s) · (s−1us), and therefore

ϕ(bh ∗ s) = ϕ(bh0 ∗ s)s
−1us = s−1ϕ(bh0 ∗ s)s

−1us .

So, we only have to prove that ϕ(bh0∗s) = zh0s. We distinguish three di�erent
cases. If h0s ∈ T0, then bh0 ∗ s = bh0s, thus

ϕ(bh0 ∗ s) = ϕ(bh0s) = zh0s .

If h0s 6∈ T0, s ∈ V (L1) and s ∈ Si for every xi ∈ supp(h0), then bh0 ∗ s =
bs−1h0s, thus

ϕ(bh0 ∗ s) = ϕ(bs−1h0s) = zs
−1h0s = zh0s .

Finally, if s = x ∈ V (L \ L1) and h0 = xkx−1, then

bh0 ∗ x = bxkx−1 · · · bx b1 b
−1
x · · · b−1

xkx−1 ,

thus
ϕ(bh0 ∗ x) = ϕ(bxkx−1 · · · bx b1 b

−1
x · · · b−1

xkx−1)

= zx
kx−1 · · · zx z (zx)−1 · · · (zxkx−1

)−1 = zx
kx

= zh0x .

Now, we want to de�ne the inverse map of ϕ. We do it by giving the
images of the Artin generators of A, that is, the vertices of Γ.

Lemma 2.39. There is a well-de�ned homomorphism ψ : A → G that sends
s to s for all s ∈ V (Γ) \ {z}, and sends z to b1.
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Proof. We have to check that the Artin relations are preserved by ψ. Note
that it su�ces to check it for the Artin relations that involve z and some
s ∈ V (Γ) \ {z}. If s 6∈ V (L), then there is nothing to check because, in that
case, s and z are not linked in Γ, hence there is no relation between them. If
s ∈ V (L), then we can rewrite the Artin relation as

zs
ks

= zs
ks−1 · · · zs z (zs)−1 · · · (zsks−1

)−1 .

We include here the case s ∈ V (L1), where we have ks = 1 and the above
formula is zs = z. Applying ψ to the left hand side of this equation we get

ψ(zs
ks

) = s−ks b1 s
ks = s−1 bsks−1 s = bsks−1 · · · bs b1 b

−1
s · · · b−1

sks−1 ,

which is exactly what we get applying ψ to the right hand side.

Lemma 2.38 and Lemma 2.39 show part of the following result.

Proposition 2.40. The maps ϕ : G → A and ψ : A → G are well-de�ned
group isomorphisms.

Proof. We have already seen that both maps are group homomorphisms. We
claim that they are inverses of each other. This will prove the result. Let
s ∈ V (Γ), s 6= z. We have (ϕ ◦ ψ)(s) = ϕ(s) = s and (ψ ◦ ϕ)(s) = ψ(s) = s.
Also (ϕ ◦ ψ)(z) = ϕ(b1) = z and (ψ ◦ ϕ)(b1) = ψ(z) = b1. Moreover, Lemma
2.36 implies that b1 and the Artin generators of A1 generate the whole group
G, so ψ ◦ ϕ is the identity map of G. Similarly, ϕ ◦ ψ is the identity map of
A.

Now, we obtain immediately our main result.

Theorem 2.41. Every even Artin group of FC type is poly-free.

Proof. By Proposition 2.40, AΓ ' G = FoA1. By induction we may assume
that A1 is poly-free, thus A is also poly-free.
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Chapter 3

Poly-freeness: large even Artin

groups

The main objective of this chapter is to prove that large even Artin groups
are poly-free.

Recall that an Artin group is said to be large if me ≥ 3 for every e ∈ E.
This is a family of Artin groups which has been frequently studied. One of the
most interesting results proved for them is a solution to the word problem.
Holt and Rees described a set of normal forms for the elements of large Artin
groups [56], these normal forms will play a key role in this chapter.

In section 3.1 we review some results by Holt and Rees about normal
forms in large Artin groups. Section 3.2 is rather technical: we use the
normal forms of section 3.1 together with other results from [56] to gain
information about geodesic words in large even Artin groups.

In section 3.3 we will see how to split any large even Artin group as
semidirect product of a parabolic subgroup and certain normal subgroup.
Later on we will show that this normal subgroup is free and this semidirect
product decomposition will be crutial to argue by induction and deduce our
main result. Finally, in section 3.4 we will prove the main result and in
section 3.5 we use a similar strategy to prove that any Artin group based on
an even triangle graph is poly-free.

3.1 Normal forms in Artin groups

In this section we will recall some de�nitions and results about normal forms
which can be found in [56], [15], [57] applying them to the particular case of
even Artin groups.

De�nition 3.1. We call alphabet to a �nite set L. An element a ∈ L is
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Chapter 3. Poly-freeness: large even Artin groups

called a letter. A word over L is a �nite sequence of letters.
Formally, a word can be de�ned as a map w : {1, ..., n} → L where w(i)

is the i-th letter of the word. The length of a word w is the integer n and it
is denoted by |w|.

When n = 0, we say that w is the empty word over L, and it is denoted
by ε. We denote by L∗ the set of all words over the alphabet L. Given a
word w = abc, with possibly empty a, b, c ∈ L∗, the word a is said to be a
pre�x of w, c is a su�x of w and b is a subword of w. Given a word w
we denote by f [w] and l[w] the �rst and last letter of w respectively. So, if
|w| = n, f [w] = w(1) and l[w] = w(n).

From now on we �x L = S∪S−1, where S is a generating set of the group
G. A letter a ∈ L is positive if a ∈ S and is negative otherwise. The
name of a letter is its positive form.

If two words w, v represent the same element in a group G, we will write
w =G v.

De�nition 3.2. We say that a word w ∈ L∗ is positive if all its letters are
positive, negative if all its letters are negative and unsigned otherwise.

De�nition 3.3. A word w ∈ L∗ is freely reduced if it does not admit any
subword of the form aa−1 or a−1a for any letter a. We say that a not freely
reduced word admits a free reduction.

A word w ∈ L∗ is geodesic if for any other word v such that w =G v, we
have that |w| ≤ |v|.

De�nition 3.4. Let L be an alphabet. Given <lex an arbitrary lexicographic
ordering on L (which induces a lexicographic order, that we denote <lex, in
L∗), the shortlex ordering <slex on L∗ is de�ned by

w <slex v if and only if |w| < |v| or |w| = |v| and w <lex v.

De�nition 3.5. A word w is said to be a shortlex minimal representa-

tive if for every word v 6= w such that w =G v, w <slex v.

Remark 3.6. Every shortlex minimal representative is geodesic.

3.1.1 Dihedral Artin groups

De�nition 3.7. The dihedral Artin group A2(m), m ∈ Z+∪{+∞} is the
Artin group based on the graph consisting of two vertices joined by an edge
labelled with m or two disconnected vertices if m =∞. If m <∞ this is the
group with presentation 〈a, b | m(a, b) = m(b, a)〉.
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We want to study how to obtain a shortlex representative of a given word
in A2(m) form arbitrary. Ifm =∞, A2(∞) is the free group on two variables
and it is easy to see that every freely reduced word w ∈ A2(∞) is shortlex
minimal. So we only need to consider the cases where m <∞.

We de�ne m(a, b) as the alternating product of a and b of length m begin-
ning with a. Similarly, we de�ne (a, b)m as the alternating procuct of a and b
of length m ending with b. Notice that if m is even, we have m(a, b) = (a, b)m
and we can use any of the notations indistinctly.

De�nition 3.8. Let w be a freely reduced word in A2(m) over the alphabet
L = {a, a−1, b, b−1}. Consider the integers:

r1 = max{r | r(a, b) or r(b, a) is a subword of w},

r2 = max{r | r(a−1, b−1) or r(b
−1, a−1) is a subword of w},

p(w) = min{r1,m} and n(w) = min{r2,m}.

Geodesic words w in A2(m) are characterized by the values p(w) and
n(w).

Proposition 3.9. [65] Let g ∈ A2(m) and let w ∈ L∗ be a freely reduced
word representing g.

1. If p(w) +n(w) < m, then w is the unique geodesic representative for g.

2. If p(w) + n(w) = m, then w is one of the geodesic representatives for
g.

3. If p(w) + n(w) > m, then w is not geodesic. Furthermore, w has a
subword w′ such that p(w′) + n(w′) = m.

Let w be a shortlex minimal word representing g. Then since w is
geodesic, p(w) + n(w) ≤ m. Moreover, if p(w) + n(w) < m, then w is
the unique geodesic word for g and such word must be the shortlex minimal
representative of g.

De�nition 3.10. Let w be a freely reduced word in A2(m). Let {x, y} =
{z, t} = {a, b} and put p = p(w) and n = n(w). The word w is called a
critical word if p + n = m and it has one of the following forms. In these
forms, ξ+ represents some positive word in L∗, ξ− some negative word in L∗

and η some word in L∗.
If w is a positive word, then
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Chapter 3. Poly-freeness: large even Artin groups

w = ξ+(x, y)m or w = m(x, y)ξ+,

where w has exactly one alternating positive subword of length m.
If w is a negative word, then

w = ξ−(x−1, y−1)m or w = m(x−1, y−1)ξ−,

where w has exactly one alternating negative subword of length m.
If w is an unsigned word, then

w = p(x, y)η(z−1, t−1)n or w = n(x−1, y−1)η(z, t)p.

We denote by T the set of all critical words.

Let us consider the Garside element ∆ := (a, b)m. Notice that ∆ is central
if m is even but a∆ = b if m is odd. We de�ne the automorphism ν of L∗ such
that ν(w) = w∆. Notice that for the case of even Artin groups ν = IdL∗.

De�nition 3.11. De�ne a map τ on the critical words as follows:

(x, y)m 7→ (y, x)m,

ξ+(x, y)m 7→ m(t, z)ν(ξ+), where z = f [ξ+],

m(x, y)ξ+ 7→ ν(ξ+)(z, t)m, where z = l[ξ+],

(x−1, y−1)m 7→ (y−1, x−1)m,

ξ−(x−1, y−1)m 7→ m(t−1, z−1)ν(ξ−), where z = f [ξ−]−1,

m(x−1, y−1)ξ− 7→ ν(ξ−)(z−1, t−1)m, where z = l[ξ−]−1,

p(x, y)η(z−1, t−1)n 7→ n(y−1, x−1)ν(η)(t, z)p, where p+ n = m, n, p 6= 0,

n(x−1, y−1)η(z, t)p 7→ p(y, x)ν(η)(t−1, z−1)n, where p+ n = m, n, p 6= 0.

Here {x, y} = {z, t}, ξ+ is a non-empty positive word, ξ− a non-empty
negative word and η can be empty.

These are called τ -moves.

Proposition 3.12. [56][15] For any critical word w:

1. τ(w) is also critical, τ(w) =G w and τ(τ(w)) = w.

2. p(τ(w)) = p(w) and n(τ(w)) = n(w).

3. f [w] and f [τ(w)] have di�erent names, the same is true for l[w] and
l[τ(w)].
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4. f [w] and f [τ(w)] have the same sign if w is positive or negative, but
di�erent signs if w is unsigned; the same is true for l[w] and l[τ(w)].

De�nition 3.13. Let w be a word that admits a factorization w = w1w2w3

where w2 is a critical word. If w1τ(w2)w3 admits a free reduction or if
w1τ(w2)w3 <lex w1w2w3, we say that w admits a critical reduction.

We say that w1τ(w2)w3 is a right length reduction (or that w admits
a right lengt reduction) if l[τ(w2)] = f [w3]−1.

We say that w1τ(w2)w3 is a left lex reduction (or that w admits a left
lex reduction) if f [τ(w2)] <lex f [w2] and w1τ(w2)w3 does not admit a free
reduction.

Theorem 3.14. [56][15] Let W be the set of all words that do not admit
any right length reduction or left lex reduction. Then W is the set of shortlex
minimal representatives of elements of A2(m).

Remark 3.15. Since W is the set of shortlex minimal representatives, it is
clear that if w ∈ W , then for every pre�x u of w, also u ∈ W .

3.1.2 Large Artin groups

To �nd normal forms for arbitrary large Artin groups we will use the results
we had for dihedral groups. Let AΓ be a large even Artin group with n
generators a1, ..., an, let mi,j be the label of the edge between ai and aj,
L = {a±1

1 , ..., a±1
n }. To �nd normal forms for arbitrary large Artin groups we

will use the results we had for dihedral groups. We �x a lexicographic order
on L. Given an arbitrary word w ∈ L∗, we can consider all the subwords of
w involving only 2 generators, say ai and aj, as words in the dihedral group
A2(mi,j). For such a subword u, we de�ne p(u), n(u) and τ as before. We
will denote by Ti,j the set of critical words in the subgroup A2(mi,j).

De�nition 3.16. Let w be a freely reduced word over AΓ. Suppose that w
has a factorization αw1uw2β, where u ∈ Ti,j.

If w1 is a 2-generator subword on ai1 , aj1 such that |{i, j} ∩ {i1, j1}| = 1,
the name of l[w1] is not in {ai, aj} and w1f [τ(u)] ∈ Ti1,j1, then we say that
we have a critical left overlap in w1f [τ(u)].

Similarly, if w2 is a 2-generator subword on ai2 , aj2 such that |{i, j} ∩
{i2, j2}| = 1, the name of f [w2] is not in {ai, aj} and l[τ(u)]w2 ∈ Ti2,j2, then
we say that we have a critical right overlap in l[τ(u)]w2.

De�nition 3.17. Let α1u1β1 be a freely reduced word with u1 a critical sub-
word. Consider a sequence:

31



Chapter 3. Poly-freeness: large even Artin groups

α1u1β1, α1τ(u1)β1 = α2u2β2 ... αkτ(uk)βk.

where all the u′is are critical subwords, ui = wif [τ(ui−1)]∗ for wi a su�x of
αi−1 (in this case we have a critical left overlap) or ui = l[τ(ui−1)]∗wi for
wi a pre�x of βi−1 (in this case we have a critical right overlap), i = 2, ...k,
where ∗ represents some positive power ≥ 1.

If at each step we have a left (resp. right) critical overlap, we say that
this is a leftward (resp. rightward) critical sequence.

If a critical sequence is such that αkτ(uk)βk is not freely reduced, the
sequence is called a length reducing sequence. In this situation, we say
that βk is the tail of the sequence. If it is reduced and αkτ(uk)βk <lex α1u1β1,
then it is a lex reducing sequence.

Now, we are going to see some examples to illustrate how critical se-
quences work. For both examples we are going to consider the large even
Artin group based on a triangle with labels (4, 4, 4),

AΓ = 〈a, b, c | abab = baba, acac = caca, bcbc = cbcb〉.

Example 3.18. Let us consider the word w = cbcabacbcb and the lexico-
graphic order a < a−1 < b < b−1 < c < c−1.

w = cbcaba

u1︷︸︸︷
cbcb −−−→

τ(u1)
w1 = cbc

u2︷︸︸︷
ababcbc︸︷︷︸

τ(u1)

−−−→
τ(u2)

w2 =

u3︷︸︸︷
cbcbabacbc︸︷︷︸

τ(u2)

−−−→
τ(u3)

w3 = bcbc︸︷︷︸
τ(u3)

abacbc.

And since w3 <lex w, this is a leftward lex reducing sequence.

Example 3.19. Let us consider the word w = a−1b3abc−1a2cb−1aba and the
lexicographic order a < a−1 < b < b−1 < c < c−1.

w =

u1︷ ︸︸ ︷
a−1b3ab c−1a2cb−1aba −−−→

τ(u1)
w1 =

u2︷ ︸︸ ︷
bab3a−1c−1a2cb−1aba︸ ︷︷ ︸
τ(u1)

−−−→
τ(u2)

w2 =

u3︷ ︸︸ ︷
bab3ca2c−1a−1b−1aba︸ ︷︷ ︸

τ(u2)

=−−−→
τ(u3)

w3 =

Free red︷︸︸︷
bab3ca2c−1bab−1a−1a︸ ︷︷ ︸

τ(u1)

−−−−−→
FreeRed

w′ = bab3ca2c−1bab−1.

Since |w′| < |w|, this is a rightward length reducing sequence.
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Theorem 3.20. [56] Let G be a large Artin group. Let W be the set of all
freely reduced words w that admit no rightward length reducing sequence or
leftward lex reducing sequence of any length k ≥ 1. Then W is the set of
shortlex representatives.

Proposition 3.21. [56] Suppose that w ∈ W and a ∈ L is such that wa is
freely reduced but wa 6∈ W . Then applying a single rightward length reducing
or leftward lex reducing sequence followed by a free reduction in the rightward
case (where the letter a will be the tail of the sequence) to wa we get an
element of W .

Remark 3.22. Given w ∈ L∗ denote by sl(w) the shortlex minimal repre-
sentative of w. We use the same notation for g ∈ G and put sl(g) for its
shortlex minimal representative.

Remark 3.23. Again, sinceW is the set of shortlex minimal representatives,
it is clear that if w ∈ W , then u ∈ W , for every subword u of w.

3.2 Technical results about geodesic words in

large Artin groups

In this section we will prove several results concerning geodesic words in large
Artin groups that we will later use to prove that groups in this family are
polyfree.

De�nition 3.24. Given a word w of length n, we will denote by pr(w, k),
k = 1, ..., n the pre�x of length k of w and by w(k) the k-th letter of w.

Our �rst technical lemma is equivalent to Proposition 4.5 (1) in [56].
However, we will incude a proof to introduce some of the techniques that we
will use in the rest of the chapter.

Lemma 3.25. Let G be a large Artin group, a ∈ L. There are no two
geodesic words aw1, a

−1w2 such that aw1 =G a
−1w2.

Proof. Let us suppose that both words are geodesic and represent the same
element of the large Artin group G. We may assume that w1 is a shortlex
representative. Without loss of generality we will suppose that a < a−1 are
the �rst letters in the lexicographic order. Let us call ŵ = a−1w2, then we
can suppose that sl(ŵ) = aw1 (it must have this form since a is the �rst
letter of the lexicographic order and the word is geodesic). Let n = |ŵ|.

It is clear that since ŵ is geodesic, pr(ŵ, k) is also geodesic for every
k = 1, ..., n. Obviously, we have pr(ŵ, k) = a−1αk, k = 1, ..., n, where α1 = ε.
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Chapter 3. Poly-freeness: large even Artin groups

Since in the lexicographic order before a−1 there is only a and sl(pr(ŵ, n)) =
sl(ŵ) = aw1, there exists m ∈ {2, ..., n} such that f [sl(pr(ŵ,m))] = a and
f [sl(pr(ŵ,m − 1))] = a−1. But since sl(pr(ŵ,m − 1)) ∈ W , there is a
leftward lex reducing sequence that transforms sl(pr(ŵ,m − 1))ŵ(m) into
sl(pr(ŵ,m)). Let us call l to the length of that sequence, and let ul be the
last critical word of the sequence.

Since that secuence must change the �rst letter of the word, we have that
τ(ul) must begin by a and ul must begin by a−1. But, by Proposition 3.12,
f [τ(ul)] and f [ul] must have di�erent names, getting a contradiction.

Lemma 3.26. Consider a large Artin group G and let b ∈ L. Let t > 0, w
a word. Then:

• A word btw is geodesic if and only if bw is geodesic.

• A word b−tw is geodesic if and only if b−1w is geodesic.

Proof. We are going to prove only the case when the word is btw, the case
of b−tw is completely analogous. The fact that if btw is geodesic then bw is
geodesic is obvious by Remark 3.23. Let us suppose then that bw is geodesic
but btw is not geodesic. Thus, there must exist k > 1 such that bkw is
not geodesic but bk−1w is geodesic. Therefore, w−1b−(k−1) is geodesic, but
w−1b−k is not geodesic. Hence, sl(w−1b−(k−1))b−1 is not geodesic and by
Theorem 3.21 there exists a rightward length reducing sequence in which
b−1 is going to be the tail that will be eliminated. Let us call l to the
length of that sequence, and let ul be the last critical word of the sequence.
Therefore, sl(w−1b−(k−1)) =G ŵτ(ul) is geodesic and τ(ul) ends by b. But
then, sl(w−1b−(k−1)) has a geodesic representative ending by b, so bk−1w has
a geodesic representative beginning with b−1, which is impossible by Lemma
3.25.

Lemma 3.27. Consider a large Artin group G and let b, h ∈ L, w′ ∈ L∗. If
w = btw′ (resp. w = b−tw′) is geodesic but wh doesn't have a geodesic repre-
sentative beginning with bt (resp. b−t), then w′h has a geodesic representative
beginning with b−1 (resp. b).

Proof. We are going to prove the result only in the case w = btw′ with t > 0,
the other case is completely analogous.

The hypothesis implies that btw′h is not geodesic, thus by Lemma 3.26,
bw′h is not geodesic. Let us consider the word w1 = bw′ which is geodesic,
then w1h = bw′h doesn't have a geodesic representative beginning by b (oth-
erwise, wh would have a geodesic representative begining by bt contradicting
the hypothesis). We have

(w1h)−1 = h−1w−1
1 = h−1w′−1b−1 =G sl(h

−1w′−1)b−1.
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But since w1h doesn't have a geodesic representative beginning by b, then
sl(h−1w′−1)b−1 is not geodesic and by Theorem 3.21 there is a rightward
length reducing sequence for sl(h−1w′−1)b−1 such that b−1 is the tail and
sl(h−1w′−1) =G ŵτ(ul) geodesic with l[τ(ul)] = b.

Therefore, there exists a geodesic representative of h−1w′−1 ending by b,
and then w′h has a geodesic representative beginning by b−1.

In the next technical results we want to understand when we can have
elements admiting geodesic representatives of the form asw1 =G b

tw2.

Example 3.28. Consider the group AΓ = 〈a, b | (ab)2 = (ba)2〉. Note that
the relation abab = baba implies [a, bab] = [b, aba] = 1. From this we get:

b2(aba)2 = abababab = a(baba)bab = a2babbab = a2(bab)2.

The motivation of the following technical results is precisely to understand
better this kind of situation. From now on, let AΓ be a large Artin group
and let W be the set of words that admit neither rightward length reducing
sequence nor leftward lex reducing sequence. Recall that then W is the set
of shorlex representatives by Theorem 3.20 (in particular, words in W are
geodesic).

Notice that the set W of shortlex representatives depends on the chosen
order in the generating set. In the following technical results we only want
to prove certain restrictions on the form of the geodesic representatives and
to do so, we use appropiate lexicographic orders in each case. This has
the e�ect that we will have to check consistence of the chosen order when
applying these results.

Lemma 3.29. Let G = AΓ be a large Artin group. Suppose that a (resp.
a−1) is the �rst letter of the lexicographic order and that there exist u geodesic
word and a letter l such that

• ul is geodesic,

• sl(ul) begins with as, s > 1, (resp. s < −1),

• sl(u) doesn't begin with as.

Then sl(u) must begin by ai with i = s− 1 (resp. i = s+ 1).

Proof. Without loss of generality we may suppose that u is a shorlex rep-
resentative. We are going to argue by induction on |ul| = k. We will only
prove the result for s > 1, the case s < −1 is analogous.
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If |ul| = 2, then ul = a2 and therefore the only option is u = l = a, so
s = 2 and i = s− 1 = 1.

Let us suppose that the result is true for length smaller than k. Recall
that sl(ul) = asû and that sl(u) = aiu′ for some i ∈ Z, some û and some u′.
We may also assume that û and u′ don't begin by a.

Note that as sl(u) is shorltex and since a is the �rst letter of the lexi-
cographic order (thus a < a−1), u cannot have any geodesic representative
begining by as. We want to prove that i = s − 1 if s > 1. Note that u′ is
also shortlex and does not begin with a±1 so it doesn't have any geodesic
representative beginnig with a. Moreover, as u is geodesic, u′ cannot have
any geodesic representative begining with a−1. Finally notice that by Lemma
3.25 i and s must have the same sign.

We know by Proposition 3.21 that there exists a leftward length reducing
sequence that transforms sl(u)l = aiu′l into sl(ul) = asû.

...→ αrurβr → αrτ(ur)βr = asû

Note that αr is a pre�x of both sl(u)l = aiu′l and sl(ul) = asû, so the number
of a′s at the beginning of αr cannot be bigger than i. Since αrτ(ur)βr begins
by as, αr = ap, p ≤ i, and as f(ur) and f(τ(ur)) must have di�erent names,
we conclude that αr = ai, which implies asû = aias−iû and sl(u′l) = as−iû.
But now, if s−i 6= 1, using the inductive hypothesis, we would have that sl(u′)
begins with a which is impossible. So, s− i = 1 and therefore i = s− 1.

Corollary 3.30. Suppose that a is the �rst letter of the lexicographic order
and let w = b±1w′ be geodesic such that sl(w) = asw̃, s > 0, with a 6= b a
letter. Then there are pre�xes pr(w, l1), ..., pr(w, ls), l1 < l2 < ... < ls, such
that sl(pr(w, li)) begins by ai, but not by ai+1.

Proof. We will argue by induction over s. If s = 1 there is nothing to
prove. Let us suppose that it is true for s − 1. It is clear that pr(w, j) =
pr(w, j−1)w(j). Let r be the greatest integer such that sl(pr(w, r−1)w(r)) =
sl(pr(w, r)) = asγ and sl(pr(w, r − 1)) does not begin with as. Then, by
Lemma 3.29, sl(pr(w, r − 1)) = as−1w′ and we set ls = r. Now, we can
assume that the result is true for pr(w, r − 1) by induction hypothesis and
we conclude the proof.

Remark 3.31. Notice that with an analogous strategy we can prove the
following statement. Let w = b±1w′ be geodesic such that sl(w) = asw̃,
s < 0. There exist pre�xes pr(w, l1), ..., pr(w, ls), l1 < l2 < ... < ls, such that
sl(pr(w, li)) begins by ai, but sl(pr(w, li − 1)) begins by ai+1 but not by ai,
i = −1, ..., s.
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Lemma 3.32. In a large even Artin group, let s ≥ t ≥ 1 (resp. s ≤ t ≤ −1)
and

w = btw′, ŵ = asŵ′ geodesic words such that w =G ŵ. (3.1)

Let 2m be the label between a and b. The minimal length of such a word w
is |w| = |s|+ |t|(2m− 1). Moreover, the only word w of this length satisfying
(3.1) is:

w = bt[2m−1(a, b)]tas−t, ŵ = as[2m−1(b, a)]t

for s, t ≥ 1 or

w = bt[2m−1(a−1, b−1)]|t|a−|s−t|, ŵ = as[2m−1(b−1, a−1)]|t|

for s, t ≤ −1.

Proof. We will only prove the case s, t ≥ 1, the case s, t ≤ −1 follows by
symmetry (it is enough to consider a−1, b−1 as generators instead of a, b).

Without loss of generality, we �x a lexicographic order whose �rst letters
are a < b < a−1 < b−1. Then, as we may assume ŵ′ ∈ W we have sl(w) =
ŵ = asŵ′.

By Corollary 3.30 there exists a pre�x pr(w, l1) such that sl(pr(w, l1)) =
aα′ is a geodesic word such that α′ doesn't have a geodesic representative
beginning with a and sl(pr(w, l1− 1)) doesn't begin with a. Therefore, since
the order is a < b < a−1 < b−1 and w begins with b, sl(pr(w, l1 − 1)) must
also begin with b.

We claim that sl(pr(w, l1 − 1)) must begin by bt. Suppose that this does
not happen, then there exists l2 < l1 such that sl(w, l2 − 1) begins with
bt but sl(w, l2) begins with br with r < t,where br be the biggest pre�x of
sl(pr(w, l2)) that is a power of b. Observe that by construction pr(w, l2 −
1) begins by bt. The fact that this element has a geodesic representative
beginning by bt and that our order is a < b < a−1 implies that bra must be
a pre�x of sl(pr(w, l2)). Then there is a leftward lex reducing sequence

sl(pr(w, l2 − 1))w(l2)→ sl(pr(w, l2)) = braγ.

So if un → τ(un) is the last τ -move in the leftward lex reducing sequence, we
have that f(τ(un)) = a. So, we know by Proposition 3.12 that un must be a
positive critical word and it must have one of the following forms:

un =

{
either bt−rξ(t, z)2m if t− r ≥ 1, {z, t} = {a, b}
or (b, a)2m ξ if t− r = 1

In both cases u = brun is a pre�x of a word representive of pr(w, l2). If we
are in the �rst case, then u = brun = btξ(t, z)2m is also a critical word and
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applying τ , we obtain a geodesic representative of pr(w, l2) that begins with
a, getting a contradiction.

If we are in the second case, u = brun = bt−1(b, a)2mξ, applying τ we get
τ(un) = ξ(t, z)2m with {z, t} = {a, b}. Therefore, u =G b

t−1ξ(t, z)2mw
′. But

notice that bt−1ξ(t, z)2m is a critical word and if we apply τ we get a geodesic
representative of pr(w, l2) that begins by a which is again impossible. So the
claim follows.

Now, by Theorem 3.21 we know that there is a leftward lex reducing se-
quence that transforms sl(pr(w, l1−1))w(l1) into sl(pr(w, l1)). As sl(pr(w, l1−
1))w(l1) begins with bt and sl(pr(w, l1)) begins with a, the sequence must
involve the �rst letter of these words and if we let r be the length of that
sequence, τ(ur) = 2m−1(a, b)btξ. Therefore,

w =G [2m−1(a, b)]btw̃ = 2m(a, b)bt−1w̃. (3.2)

Besides, this (together with the lexicographic order) implies that 2m−1(a, b)bt =

2m(a, b)bt−1 is a pre�x of sl(pr(w, l1)).
Now we will argue by induction on t. If t = 1, notice that 2m−1(a, b)bt

has length 2m and since by Corollary 3.30 we will need at least s di�erent
pre�xes, the length of a word satisfying this must be at least 2m + s − 1,
that is exactly the length of 2m−1(b, a)as =G as 2m−1(b, a). Obviously, there
are no other words of this length satisfying the property.

Let us suppose now that the result is true for t < k and consider t =
k. Since t > 1, we have that also s > 1. We already know that w =G

2m−1(a, b)btw̃ = 2m(a, b)bt−1w̃. Now we claim that sl(bt−1w̃) begins by as−1.
Assume that sl(bt−1w̃) does not begin by as−1, then sl(bt−1w̃) = apw̃′

with 0 ≤ p < s− 1 where w̃′ has no geodesic representative that begins with
a. Besides, we know that

w =G 2m−1(a, b)bbt−1w̃ =G a2m−2(b, a)bapw̃′ =G a
p+1

2m−1(b, a)w̃′︸ ︷︷ ︸
α

=G a
sw′.

Let us call α =2m−1 (b, a)w̃′. As p + 1 < s, sl(α) must begin by a, and
so there must be a pre�x pr(α, l′1) such that sl(pr(α, l′1)) begins by a but
sl(pr(α, l′1 − 1)) begins by b because our lexicographic order is a < b < a−1.

Therefore, there exists a leftward lex reducing sequence

sl(pr(α, l′1 − 1))︸ ︷︷ ︸
b...

α(l′1) −→ sl(pr(α, l′1))︸ ︷︷ ︸
a...

.

Let us denote by u1, ..., ur the critical words of the sequence. As sl(pr(α, l′1−
1))α(l′1) begins with b and sl(pr(α, l′1)) begins with a, the end of the sequence
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must involve the �rst letter of the words. Since w̃′ does not have any geodesic
representative beginning by a, the last critical word of the sequence, ur, must
be of the form ξ(b, a)2m with ξ = 2m−1(b, a)ξ′ (ξ′ possibly empty) and it must
be a positive critical word. Notice that if ξ′ 6= ε, f [ξ′] = b because by the
form of the critical word it must begin by b or a. The latter case is impossible
since w̃′ doesn't have a geodesic representative begining by a. So we are left
with two cases

• either ξ′ = ε and f [u′r] = b

• or ξ′ 6= ε.

Then in both cases u′r = ξ′(b, a)2m is also a critical word, and τ(u′r) begins
by a. Thus the sequence u1, ..., ur−1, u

′
r is a reducing sequence for w̃′. After

applying τ we get a geodesic representative beginning with a, yielding a
contradiction. Thus, sl(bt−1w̃) begins by as−1.

Therefore, we have the words

w =G [2m(a, b)]bt−1w̃ =G [2m(a, b)]as−1w̃′ =G a
s[2m−1(b, a)]w̃′.

So, the minimal length is 2m+ML(s−1 , t−1 ) where ML(s−1 , t−1 ) is the
minimal length of the case with parameters t−1, s−1, and by induction hy-
pothesis we know that ML(s−1 , t−1 ) = s−1 +(t−1 )(2m−1 ) and the only
words satisfying this are bt−1[2l−1(a−1, b−1)]|t−1|as−t =G a

s−1[2l−1(b−1, a−1)]|t−1|.
Thus, for parameters t, s, the minimal length is 2m+s−1+(t−1)(2m−

1) = s+t(2m−1) and the only words of this length are bt[2m−1(a, b)]|t−1|as−t =G

as[2m−1(b, a)]|t−1| as we wanted.

Lemma 3.33. In a large even Artin group we cannot have two geodesic words
asw1 =G b

−tw2, s, t ≥ 2.

Proof. We may assume s = t = 2. We argue by contradiction. Let T be
the set of elements of G that have geodesic representatives w′ = a2w1 =G

b−2w2 = w and assume T 6= ∅. Let g ∈ T be an element of minimal geodesic
length represented by w =G w

′ as before.
Without loss of generality we consider the lexicographic order a < b <

b−1 < a−1 < .... By the choice of the order we can suppose that w′ = sl(w).
Besides, also by the choice of the order and the fact that w is geodesic together
with Lemma 3.25 we deduce that if sl(pr(w, i)), 1 ≤ i ≤ |g|, doesn't begin
with b−1 it must begin by a.

Let n = |g|, we have sl(pr(w, n)) = w′. Since g is minimal we know
that sl(pr(w, n)) is the �rst pre�x in the series beginning by a2 (in other
case there would be a pre�x α of w shorter than w and such that α ∈
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T ). Let sl(pr(w, j)) be the �rst pre�x which doesn't begin by b−2. Then,
sl(pr(w, j−1)) begins by b−2 and sl(pr(w, j)) may begin by a or by b−1a (by
the choice of the lexicographic order). Let us see that in both cases, we have
that sl(pr(w, n− 1)) must begin by ab.

By Theorem 3.21 there is a leftward lex reducing sequence that transforms
sl(pr(w, j − 1))w(j) into sl(pr(w, j)).

1. Let us supppose that sl(pr(w, j)) begins by a, then we know that the
last critical word of the reducing sequence must involve the �rst letter.
Let r be the length of the reducing sequence, then sl(pr(w, j)) begins
with τ(ur). Then ur is a critical word in a, b beginning with b−2 and
such that τ(ur) begins with a. Let 2m be the label between a and b,
therefore: ur = b−1b−1ξ′(t, z)2m−1 where {t, z} = {a, b}. Thus, τ(ur) =

2m−1(a, b)b−1ξ′t−1 where t ∈ {a, b} so sl(pr(w, j)) begins by ab.

Therefore, since by minimality sl(pr(w, n − 1)) cannot begin by a2, it
begins by ab (since sl(pr(w, j)) begins by ab and b is the second letter
in the lexicographic order).

2. Assume now that sl(pr(w, j)) begins by b−1a. Recall that sl(pr(w, j −
1)) begins with b−2. Then we know that there exists a leftward lex
reducing sequence transforming sl(pr(w, j − 1))w(j) into sl(pr(w, j)),
and that the last critical word of the reducing sequence must involve
the second letter of the word and not the �rst one (i.e. every letter of
the word except the �st one belongs to the reducing sequence). Let r be
the length of the reducing sequence, then sl(w, j) begins with b−1τ(ur).
Then ur is a critical word in a, b beginning with b−1 and such that τ(ur)
begins with a, therefore: ur = n(b−1, a−1)ξ(t, z)p where {t, z} = {a, b},
p+ n = 2m. Thus, τ(ur) = p(a, b)ξ(t

−1, z−1)n.

By Corollary 3.30 there exists k with j < k < n such that sl(pr(w, k))
begins with a and sl(pr(w, k − 1)) begins with b−1a (by the chosen
lexicographic order and Lemma 3.25). We know by Theorem 3.21 that
there exists a leftward lex reducing sequence that transforms sl(pr(w, k−
1))w(k) into sl(pr(w, k)), let d be the length of this sequence. Then,
since the �rst letter is changed, sl(pr(w, k)) must begin with τ(ud),
besides recall that sl(pr(w, k− 1)) begins with b−1a. Therefore, ud has
one of the following forms:

ud =

{
either b−1(aξ′) 2m−1(t, z), {t, z} = {a, b}
or b−1

2m−1(a, b)
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So, then:

τ(ud) =

{
either 2m−1(a, b)(aξ′)t−1, t ∈ {a, b}
or 2m−1(a, b)b−1

Therefore, sl(pr(w, k)) begins by ab. Moreover sl(pr(w, n)) begins with
a2 and sl(pr(w, n− 1)) doesn't by minimality. Therefore, sl(pr(w, n−
1)) must also begin by ab (since b is the second letter in the lexico-
graphic order).

So we have that sl(pr(w, n)) begins by a2 and sl(pr(w, n− 1)) begins by
ab. By Theorem 3.21 we know that there is a leftward lex reducing sequence
that transforms sl(pr(w, n − 1))w(n) into sl(pr(w, n)), and if we call r′ to
the length of that sequence sl(pr(w, n)) = aτ(ur′). Therefore, by Proposition
3.12 ur′ is a positive critical word beginning with b. Then

τ(ur′) =

{
either aξ′ 2m(t, z), {z, t} = {a, b}
or 2m(a, b)ξ

Thus:

ur′ =

{
either 2m(b, a)aξ′

or ξ 2m(t, z), {z, t} = {a, b},

In both cases, aur′ is also a positive critical word beginning with a, therefore
appliying τ to this critical word instead of applying it to ur′ in the last
step, we would obtain a geodesic representative of w beginning with b (by
Proposition 3.12). But w begins by b−1 and this is impossible by Lemma
3.25.

Lemma 3.34. In a large even Artin group, let w = btw′ (resp. w = a−tŵ′),
ŵ = a−1ŵ′ (resp. ŵ = bw′), t ≥ 1 be geodesic words such that w =G ŵ. Let
2m be the label between a and b. The minimal length of such a word w is
|w| = t+ (2m− 1). Moreover, the only words w of this length satisfying that
are: w = bt 2m−1(a−1, b−1) =G 2m−1(a−1, b−1)bt (resp. w = a−t 2m−1(b, a) =G

2m−1(b, a)a−t).

Proof. Obviously, a word w like that must begin by bt (resp. a−t ) and since
it can be transformed, must contain a critical word, so it must have at least
length t+ 2m− 1.

The only way to get a word like that of this length is considering the short-
est possible critical word, i.e. w = bt 2m−1(a−1, b−1) (resp. a−t 2m−1(b, a)).
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Finally, we will need the following result which is equivalent to Proposi-
tion 4.5 (3) in [56].

Given a set A, we will use #A to denote the cardinal of the set.

Lemma 3.35. Let us consider the large even Artin group AΓ. Given an
element g ∈ AΓ

#{v ∈ V (Γ)± | exists w geodesic representative of g such that f [w] = v} ≤ 2.

3.3 Technical key result

In this section we will �nd a presentation for the kernel of the map ψ : AΓ →
AΓ\{r} induced by r 7→ 1 and v 7→ v if v 6= r. Notice that this is well de�ned
because our group is an even Artin group.

Notation 3.36. Let Γ be a simple labelled graph with even labels. Let r ∈
V (Γ). We will consider the Artin groups G = AΓ and G1 = AΓ\{r}. We
will denote by b1, ..., bn the vertices connected to r whith label 2kj, kj > 1,
1 ≤ j ≤ n and by c1, ..., ck the vertices non-connected to r.

De�nition 3.37. For i = 1, ..., n we de�ne the following integer numbers:

p+
i =

⌊
ki
2

⌋
+ 1

n−i = −
(⌊

ki − 1

2

⌋
+ 1

)
p−i =

⌊
ki
2

⌋
+ 1− ki = p+

i − ki

n+
i = ki −

(⌊
ki − 1

2

⌋
+ 1

)
= ki + n−i

where bxc denotes the integer part of x.

Remark 3.38. The following properties are satis�ed for large even Artin
groups (every ki ≥ 2):

1. p+
i ≥ 2, n+

i > 0, n−i < 0, p−i ≤ 0.

2. p+
i > |p−i |

3. |n−i | ≥ n+
i and the equality holds if and only if ki is even.

4. p+
i ≥ |n−i | and the equality holds if and only if ki is odd.
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Lemma 3.39. We have:

1. p−i − 1 = n−i

2. n+
i < p+

i

Proof.

1. p−i − 1 =
(⌊

ki
2

⌋
+ 1− ki

)
− 1 =

⌊
ki
2

⌋
− ki = −

(⌊
ki−1

2

⌋
+ 1
)

= n−i .

2. n+
i = ki −

(⌊
ki−1

2

⌋
+ 1
)

= ki −
⌊
ki−1

2

⌋
− 1 <

⌊
ki
2

⌋
+ 1 = p+

i

De�nition 3.40. We will consider the following sets of elements of G:

Ω+
i =

{
g ∈ G | g has a geodesic representative beginning with b

p+
i
i

}
Ω−i =

{
g ∈ G | g has a geodesic representative beginning with b

n−i
i

}
for i = 1, ..., n.

Remark 3.41. We have Ω+
i ∩ Ω−i = ∅ by Lemma 3.25.

Consider an Artin relation of even type of the form (rbi)
ki = (bir)

ki . We
can rewrite it as follows:

rb
ki
i = rb

ki−1
i ...rbir

(
rbi
)−1

...
(
rb
ki−1
i

)−1

r−bi = r−1
(
rbi
)−1

...
(
rb
ki−2
i

)−1

rb
k1−1
i rb

ki−2
i ...rbir

From here we can easily see that these expressions are equivalent to:

rb
p+
i
i = rb

p+
i
−1

i ...rb
p−
i
i ...

(
rb
p+
i
−1

i

)−1

rb
n−
i
i =

(
rb
n−
i

+1

i

)−1

...rb
n+
i
i ...rb

n−
i

+1

i

Taking these relations as inspiration, we de�ne the following sets of relations:

De�nition 3.42.

R̂+ =

{
rsl(b

p+
i
i g) = rsl(b

p+
i
−1

i g)...rsl(b
p−
i
i g)...

(
rsl(b

pi−1
i g)

)−1

; b
p+
i
i g ∈ Ω+

i for some 1 ≤ i ≤ n

}
R̂− =

{
rsl(b

n−
i
i g) =

(
rsl(b

n−
i

+1

i g)

)−1

...rsl(b
n+
i
i g)...rsl(b

n−
i

+1

i g); b
n−i
i g ∈ Ω−i for some 1 ≤ i ≤ n

}
R̂ = R̂+ ∪ R̂−

43



Chapter 3. Poly-freeness: large even Artin groups

Remark 3.43. Let h = b
p+
i
i ∈ Ω+

i . The relation of R̂+ associated to h is

rsl(b
p+
i
i g) = rsl(b

p+
i
−1

i g)...rsl(b
p−
i
i g)...

(
rsl(b

pi−1
i g)

)−1

and will be denoted by R(h).

Analogously, let h = b
n−i
i g ∈ Ω−i . The relation of R̂− associated to h

is rsl(b
n−
i
i g) =

(
rsl(b

n−
i

+1

i g)

)−1

...rsl(b
n+
i
i g)...rsl(b

n−
i

+1

i g) will and will be denoted

by R(h).

Now, let us consider the map

ψ : AΓ → AΓ\{r}

induced by r 7→ 1 and v 7→ v if v 6= r. We want to obtain a presentation for
the kernel of this map. To do so, we will observe that AΓ ' AΓ\{r} n ker(ψ)
and use a standard argument that can be found in Appendix A of [66], to
obtain a presentation for the semidirect product.

Let K = 〈Y | C〉 and G = 〈Z | T 〉 be groups. Let G act on Y by
permutations. Notice that C ≤ F (Y ), the free group generated by Y , and
observe that G also acts on F (Y ). We assume that this action preserves C.
Let Y0 be a set of representatives for the G-orbits in Y and C0 be a set of
representatives for the G-orbits in C. We observe that C0 ≤ 〈t(a0) | a0 ∈
Y0, t ∈ G〉 that is, we may express elements of C0 as products of elements in
the G-orbit of Y0. We then set Ĉ0 ⊂ 〈t−1a0t | a0 ∈ Y0, t ∈ G〉 to be the set of
�xed expressions for the elements of C0 where we have replaced the action
of G on Y0 by the conjugation of elements. The set Ĉ0 is thus a set of formal
expressions which will be used later to express relations in groups.

Lemma 3.44. [66] With the notation above, we have

GnK = 〈Y0, Z | Ĉ0, T, [StabG(y), y], y ∈ Y0〉,

where the semidirect product is given by the action of G on K.

Lemma 3.45. Let G be a large even Artin group, r a generator and G1 =
AΓ\{r} as before. If g ∈ G1 satis�es g−1rg = r, then g = ε.

Proof. Let w be a shortlex representative for g. As r =G w−1rw, the word
w−1rw is obviously not shortlex, so it is clear that there exists a pre�x α
of w−1rw such that α contains r and admits a rightward length reducing
sequence. But that means that at some moment of the sequence we will have
a critical word ui in two letters, one of them being r. Since G is large even,
in every critical word the name of each of the letters appears at least twice,
so one of the occurences of r must occur in w or w−1. But since g ∈ G1, it
is impossible that neither r nor r−1 appear in w or w−1. So it is impossible
to have such a critical word ui and hence g = ε.
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Lemma 3.46. ker(ψ) is isomorphic to:

K :=
〈
rsl(g); g ∈ AΓ1 | R̂

〉
,

where R̂ is the set of relations de�ned in De�nition 3.42.

Proof. Note that ker(ψ) is the normal subgroup of AΓ generated by r. We
de�ne an action of G1 = AΓ\{r} = 〈S1 | C〉 (where S1 is the set of generators
of G1 and C is the set of Artin relations of G1) on the abstract group K via

h−1(rsl(g))h = rsl(gh), h ∈ G1.

Let us see that this action preserves the relators of K. To prove that, we
may suppose that h is a generator, i.e. that h ∈ S1. Consider an R̂+ relation

rsl(b
p+
i
i g) = rsl(b

p+
i
−1

i g)...rsl(b
p−
i
i g)...

(
rsl(b

pi−1
i g)

)−1

,

where g has a representative w with bp
+
i
i w geodesic. If h acts on both sides

of this relation we obtain:

rsl(b
p+
i
i gh) and rsl(b

p+
i
−1

i gh)...rsl(b
p−
i
i gh)...

(
rsl(b

pi−1
i gh)

)−1

,

we want to see that these two elements of K are equal.
Assume �rst that the element gh has some geodesic representative u with

b
p+
i
i u also geodesic. Then there is a R̂+ relation of the form

rsl(b
p+
i
i gh) = rsl(b

p+
i
−1

i gh)...rsl(b
p−
i
i gh)...

(
rsl(b

pi−1
i gh)

)−1

,

which is precisely the image under h of the previous relation.
Now, we are left with the case when g has a representative w with bp

+
i
i w

geodesic but bp
+
i
i wh has no geodesic representative beginning by bp

+
i
i . Then,

by Lemma 3.27 gh has a geodesic representative that begins by b−1
i , say b−1

i α

. Thus, bp
−
i
i gh has a geodesic representative that begins by bp

−
i −1
i . But, by

Lemma 3.39 we have that p−i −1 = n−i . So, it begins by b
n−i
i and rearranging,

we obtain:

rsl(b
p−
i
i gh) = rsl(b

n−
i
i α) =

(
rsl(b

n−
i

+1

i α)

)−1

...rsl(b
n+
i
i α)...rsl(b

n−
i

+1

i α)

which is a relation of R̂−.
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Following the same strategy, we can prove that the same happens with
the R̂− relations.

Now, applying Lemma 3.44 to our case, we obtain that

G1 nK = 〈Y0, Z | Ĉ0, T, [StabG1(y), y], y ∈ Y0〉,

where Y0 = r, Z = V (G1), Ĉ0 = Ĉ+ ∪ Ĉ−, T = C with

Ĉ+ = {sl(bp
+
i
i g)−1rsl(b

p+
i
i g) = sl(b

p+
i −1
i g)−1rsl(b

p+
i −1
i g)...sl(b

p−i
i g)−1rsl(b

p−i
i g)...

(sl(bpi−1
i g)−1rsl(bpi−1

i g))−1; b
p+
i
i g ∈ Ω+

i for some 1 ≤ i ≤ n}

Ĉ− = {sl(bn
−
i
i g)−1rsl(b

n−i
i g) = (sl(b

n−i +1
i g)−1rsl(b

n−i +1
i g))−1...sl(b

n+
i
i g)−1rsl(b

n+
i
i g)...

sl(b
n−i +1
i g)−1rsl(b

n−i +1
i g); b

n−i
i g ∈ Ω−i for some 1 ≤ i ≤ n}

Therefore,
G1 nK = 〈r, V (G1) | Ĉ0, C, [StabG1(r), r]〉.

Now, if g ∈ StabG1(r), we have that g−1rg = rsl(g) = r in K because of the
form of the action. Hence sl(g) = ε by Lemma 3.45 and thus we don't have
any relation of this type. Thus:

GnK = 〈r, V (G1) | Ĉ0, C〉.

But since in our presentation we have C, the set of relations of G1, we can
rewrite the relations of Ĉ0 in the following way:

Ĉ+
1 = {(bp

+
i
i g)−1r(b

p+
i
i g) = (b

p+
i −1
i g)−1r(b

p+
i −1
i g)...

(
b
p−i
i g
)−1

r(b
p−i
i g)...

((bpi−1
i g)−1r(bpi−1

i g))−1; g ∈ G1, b
p+
i
i g geodesic, 1 ≤ i ≤ n}

Ĉ−1 = {(bn
−
i
i g)−1r(b

n−i
i g) = ((b

n−i +1
i g)−1r(b

n−i +1
i g))−1...

(
b
n+
i
i g
)−1

r(b
n+
i
i g)...

(b
n−i +1
i g)−1r(b

n−i +1
i g); g ∈ G1, b

n−i
i g geodesic, 1 ≤ i ≤ n}

Ĉ1 = Ĉ+ ∪ Ĉ−

So we get the presentation:

G1 nK = 〈V (G1), r | Ĉ1, C〉.

We de�ne:

C ′1 = {(bp
+
i )−1r(bp

+
i ) = (bp

+
i −1)−1r(bp

+
i −1)...r...((bp

+
i −1)−1r(bp

+
i −1))−1, i = 1, ..., n}
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So in fact, the relations in Ĉ1 \ C ′1 are obtained from the ones of C ′1 by
conjugation. So we can eliminate them from the presentation using Tietze
transformations. Thus, we have:

G1 nK = 〈V (G1), r | C ′1, C〉 ' AΓ

and the isomorphism maps K onto ker(ψ). Therefore, K := 〈rsl(g); g ∈ G1 |
R̂〉 = 〈〈r〉〉 = ker(ψ).

3.4 Poly-freeness for large even Artin groups

In this section we are going to prove our main result, i.e. that every large
even Artin group is polyfree.

Let Γ be a labelled graph with even labels ≥ 4 and AΓ the associated
Artin group. Let r be a vertex of the graph and G1 = AΓ\{r}

By Lemma 3.46 we know that:

K := 〈〈r〉〉 = 〈rsl(g); g ∈ G1 | R̂〉

with

R̂+ =

{
rsl(b

p+
i
i g) = rsl(b

p+
i
−1

i g)...rsl(b
p−
i
i g)...

(
rsl(b

pi−1
i g)

)−1

; b
p+
i
i g ∈ Ω+

i for some 1 ≤ i ≤ n

}
R̂− =

{
rsl(b

n−
i
i g) =

(
rsl(b

n−
i

+1

i g)

)−1

...rsl(b
n+
i
i g)...rsl(b

n−
i

+1

i g); b
n−i
i g ∈ Ω−i for some 1 ≤ i ≤ n

}
R̂ = R+ ∪R−

where b1, ..., bn are the vertices connected to r, 2k1, ..., 2kn the labels of the
connecting edges and

Ω+
i =

{
h ∈ G | h has a geodesic representative beginning with bp

+
i
i

}
Ω−i =

{
h ∈ G | h has a geodesic representative beginning with bn

−
i
i

}
for i = 1, 2, ..., n.

Recall that in De�nition 3.37 we have de�ned the numbers p+
i , p

−
i , n

−
i , n

+
i

and that by Remark 3.41 we already know that Ω+
i ∩ Ω−i = ∅.

Lemma 3.47. An element g ∈ G can belong at most to two di�erent sets
Ω±i , i = 1, ..., n.

Proof. It is easily deduced from Lemma 3.35.
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Lemma 3.48. If i 6= j, Ω+
i ∩ Ω−j 6= ∅ if and only if n−j = −1, i.e. kj = 2.

Proof. Recall that p+
i ≥ 2. By Lemma 3.33, given a geodesic word w = asw′,

s ≥ 2, there cannot be another geodesic representative of the same element
begining by b−t, t > 1. So, if Ω+

i ∩ Ω−j 6= ∅, then n−j = −1. The fact that if
n−j = −1 then Ω+

i ∩ Ω−j 6= ∅ is clear by Lemma 3.34.

Now, notice that by the form of the relations in R̂, we see that each

rsl(b
p+
i
i g) (resp. rsl(b

n−
i
i g)) is conjugate in K to rsl(b

p−
i
i g) (resp. rsl(b

n+
i
i g) ).

Let us de�ne the following maps:

ρεi : Ωε
i −→ G1

h 7→ b−εkii ĝ

for i = 1, ..., n and ε = ±.
Notice that if ε = +, then h has a geodesic representative of the form

b
p+
i
i h̄ where h̄ doesn't have a geodesic representative begining with b−1

i . Thus,

ρ+
i (h) = b

p−i
i h̄. Similarly, if ε = −, then h has a geodesic representative of

the form b
n−i
i h̄ where h̄ doesn't have a geodesic representative begining with

bi. Thus, ρ−i (h) = b
n+
i
i h̄.

Let Ω = ∪ni=1(Ω+
i ∪ Ω−i ). We also de�ne Λ = G1 \ Ω.

Let P be the set of subsets of G1. We set:

ρ : P −→ P
A 7→ ∪ni=1(ρ+

i (A ∩ Ω+
i )) ∪ (ρ−i (A ∩ Ω−i )) ∪ (A ∩ Λ). (3.3)

When we consider the image under ρ of a one element subset {g} ⊂ P(W ),
we will write ρ(g) instead of ρ({g}).

Lemma 3.49. Let g ∈ Ω.

(i) If g lies in only one of the sets Ω±i , say g ∈ Ωε
i, then

ρ(g) = {ρεi(g)}.

(ii) If g lies in two of the sets, say g ∈ Ωε
i ∩ Ωδ

j , then

ρ(g) = {ρεi(g), ρδj(g)}.

Note that by Lemma 3.47 there are no other possibilities.
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Proof. The result is just an inmediate consequence of the de�nition of ρ.

Lemma 3.50. Let g ∈ Ω+
i , g1 ∈ Ω−i . We have

(i) |g| > |ρ+
i (g)|

(ii) |g1| ≥ |ρ−i (g1)| with equality if and only if w1 = b
n−i
i w2 is a geodesic

representative of g1, ki is an even number and w2 doesn't have a geodesic
representative beginning by b−1

i (and therefore, it cannot begin by b±1
i ).

Proof. The result follows from Remark 3.38.

Lemma 3.51. Let g ∈ ∪nq=1Ω−q such that |g| = |ρ−i (g)|. Then ρ−i (g) doesn't
belong to the intersection of two of the sets Ω±j , j = 1, 2, ..., n.

Proof. The hypothesis and Lemma 3.50 imply that g has a geodesic repre-
sentative of the form w = b

n−i
i w′ and that ki is an even number.

Therefore, the element ρ−i (g) has a geodesic representative of the form

b
ki+n

−
i

i w′ (because of the hypothesis on its length), where no geodesic repre-
sentative of w′ begins by bi.

Assume that there exists bp
+
i
i u geodesic such that bki+n

−
i

i w′ =G b
p+
i
i u. This

is impossible because ki + n−i < p+
i by Lemma 3.39 and w′ doesn't have any

geodesic representative beginning with bi. So ρ−i (g) 6∈ Ω+
i .

Analogously, we see that ρ−i (g) cannot be in Ω−i (because |n+
i | > 0 and

and w′ doesn't have any geodesic representative beginning with b−1
i ) and by

Lemma 3.35 there is only other possible letter such that the word can begin
with it so it can belong at most to one Ω±j .

Lemma 3.52. Assume that we choose a lexicographic order such that for
every j, vj < v−1

j , then for every g in the suitable set sl(g) >slex sl(ρ
±
i (g)).

Proof. By Lemma 3.50 we only have to consider the case when g has a
geodesic representative w = bn

−
i w′, ki is an even number and w′ doesn't have

any geodesic representative beginning with b±1
i .

In this case, by de�nition of ρ−i we know that ρ−i (g) = bn
+
i g′ where

g′ is the element represented by the word w′ and |n−i | = |n+
i |. Notice

that sl(bn
−
i
i w′) >slex sl(b

n+
i
i w′) if and only if sl(bn

−
i
i w′w′−1) = b

n−i
i >slex

sl(b
n+
i
i w′w′−1) = bni∗i . But n−i is a negative number and n+

i is positive and
since in the lexicographic order we have b < b−1, the result follows.

Lemma 3.53. Given g ∈ Ω there exists l ∈ Z+ such that if h ∈ ρl(g) =
ρ(ρ...ρ︸ ︷︷ ︸

l

(g)) and h ∈ Ω then |h| < |g|.
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Proof. Let g ∈ Ω, we know that #ρ(g) = 1 or 2 (recall that we use #A to
denote the cardinal of the set A.). We de�ne β = {h ∈ ρ(w) | |h| = |g|}. If
β is empty, the result follows for l = 1 by Lemma 3.50. So we can suppose β
is not empty.

By Lemma 3.50 g must have a geodesic representative w = b
n−i
i w′ for

some i such that ki is even and w′ doesn't have any geodesic representative
beginning with b±1

i . Considering if necessary all the elements of β instead of
g and using Lemma 3.51 we may assume that #ρl(g) = 1 for all l ≥ 1. It is
enough to prove that there exists l ∈ Z+ such that |ρl(g)| < |g|.

We are going to argue by induction overm, the number of negative letters
in w. Notice that since we are working on an even Artin group, the number
of negative letters in a word is constant for any of its geodesic representatives
(see De�nition 3.11).

As w = b
n−i
i w′ for ki even, |n−i | ≤ m. Let k = min{|n−j | | kj is even}. If

m = k, then w′ must be positive. But then, sl(ρ(g)) = sl(b
n+
i
i w′) is positive,

and therefore if ρ2(g) ∈ Ω, |ρ2(g)| < |ρ(g)| = |g|.
In the general case, sl(ρ(g)) = sl(b

n+
i
i g′) has less negative letters than w,

and we distinguish three cases: if ρ(g) 6∈ Ω or |ρ(ρ(g))| < |ρ(g)| we are done.
Otherwise, we may apply the induction hypothesis and we obtain that there
exists an l−1 ∈ Z+ such that either ρl−1(ρ(g)) 6∈ Ω or |ρl−1(ρ(g))| < |ρ(g)| =
|g|. That is, either ρl(g) 6∈ Ω or |ρl(g)| < |g|.

Corollary 3.54. Given g ∈ Ω, there exists l ∈ Z+ such that ρl(g) ⊂ Λ.

Proof. We will argue by induction over the geodesic length of g. If |w| = 0
the result is obvious.

Let γ = |g|, and suppose that it is true for length less than γ. By Lemma
3.53 there exists l1 ∈ Z such that for every g′ ∈ ρl1(g) either g′ ∈ Λ or |g′| <
|g| = γ. Let β = {g′ ∈ ρl1(g) | g′ 6∈ Λ} = {g′1, ..., g′µ}, by induction hypothesis
there is l′i ∈ Z such that ρl

′
i(g′i) ⊂ Λ for i = 1, ..., µ. Let l2 = max{l′i}. Thus,

for l = l1 + l2 we have that ρl(g) ⊂ Λ.

De�nition 3.55. Given g ∈ Ω we de�ne α(g) as the smallest positive integer
such that ρα(g)(g) ⊂ Λ. This way, we de�ne the map:

δ : Ω −→ P(Λ)

g 7→ δ(g) := ρα(g)(g)

We denote H = 〈bk1
1 , b

k2
2 , ..., b

kn
n 〉.

Remark 3.56. Notice that the elements in δ(g) lie in the intersection of the
coset Hg with Λ.
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Lemma 3.57. H is freely generated by bk1
1 , ..., b

kn
n .

Proof. Observe �rst that any freely reduced word in the alphabet
{b±k1

1 , b±k2
2 , ..., b±knn } can also be seen as a freely reduced word in the alpha-

bet {b±1
1 , b±1

2 , ..., b±1
n }. Now, assume that w,w′ are freely reduced words in

{b±k1
1 , b±k2

2 , ..., b±1
n } which represent the same element in G. We may assume

that w′ is shortlex and w is not.
Therefore, by Theorem 3.20 w should admit a critical reducing sequence,

so it must have a critical subword. But by De�nition 3.10 it is impossible
to have a critical subword on b±kii , b

±kj
j if ki, kj ≥ 2 and mbi,bj ≥ 4. Thus w

doesn't admit a critical reducing sequence, and w must be shortlex. There-
fore, w = w′.

Lemma 3.58. Assume g ∈ Ω±i ∩ Ω±j and ŵi ∈ δ(ρ±i (g)) and ŵj ∈ δ(ρ±j (g)),
then ŵi 6=G ŵj.

Proof. Note that ŵi, ŵj both lie in the cosetHg. Notice as well that δ(ρ±i (g)),
δ(ρ±j (g)) ⊂ δ(g). Since ŵi ∈ δ(g), then ŵi =G higi (hi ∈ H beginning with
b±i ). Analogously, ŵj =G hjgj (hj ∈ H beginning with b±j ). Then, ŵi =G ŵj
implies that hi =G hj, but this is impossible since H is free by Lemma 3.57
and hi, hj begin by di�erent letters.

Lemma 3.59. The minimal geodesic length of an element g ∈ Ω±i ∩Ω±j , i 6= j
is bounded below by |n−j | + |n−i |(2m − 1) where |n−j | ≥ |n−i | and m = mbi,bj .
Moreover, there is always an element g of that geodesic length in the set
Ω−i ∩ Ω−j .

Proof. Assume �rst that g ∈ Ω+
i ∩Ω−j . Then, by Lemma 3.41, n−j = −1 thus

also n−i = −1. Using Lemma 3.34 we have that the geodesic length of g is at
least

|p+
i |+ (2m− 1) > 1 + (2m− 1) = |n−j |+ |n−i |(2m− 1) (3.4)

where the inequality is strict since p+
j ≥ 2 by Remark 3.38 (1).

Now assume that g ∈ Ω−i ∩ Ω+
j , by Lemma 3.33 and Remark 3.38 (1)

n−i = −1. By Lemma 3.34 the minimal geodesic length of such an element is

|p+
j |+ (2m− 1) ≥ |n−j |+ (2m− 1) = |n−j |+ |n−i |(2m− 1) (3.5)

where by Lemma 3.39 the equality holds if and only if kj is odd.
If g ∈ Ω+

i ∩ Ω+
j , by Lemma 3.32 the minimal geodesic length of g is

|p+
j |+ |p+

i |(2m− 1) ≥ |n−j |+ |n−i |(2m− 1) (3.6)

where by Lemma 3.39 the equality holds if and only if ki, kj are odd.
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Finally, if g ∈ Ω−i ∩Ω−j , by Lemma 3.32 the minimal geodesic length of g
is

|n−j |+ |n−i |(2m− 1)

and also by Lemma 3.32 we know that there exists an element of this length
satisfying g ∈ Ω−i ∩ Ω−j .

Remark 3.60. Let t = n−i , s = n−j , b = vi, a = vj. If kj is even, in Lemma
3.59 the inequalities (3.4), (3.5) and (3.6) are strict and therefore there is
only one element g ∈ Ω±i ∩Ω±j , i 6= j with geodesic length |n−j |+ |n−i |(2m−1).
This element is:

bt[2m−1(a−1, b−1)]|t|a−|s−t| =G a
s[2m−1(b−1, a−1)]|t|

If kj is odd and ki is even, then ki ≥ 2 and therefore by Lemma 3.48
Ω+
i ∩ Ω−j = Ω−i ∩ Ω+

j = ∅. The inequality (3.6) is strict. Therefore there is
again only one element g ∈ Ω±i ∩Ω±j of geodesic length |n−j |+ |n−i |(2m− 1).
This element is

bt[2m−1(a−1, b−1)]|t|a−|s−t| =G a
s[2m−1(b−1, a−1)]|t|

If ki, kj are both odd numbers, applying Lemmas 3.32, 3.33 and 3.34, we
obtain that there are two elements of that geodesic length in Ω±i ∩ Ω±j :

bt[2m−1(a−1, b−1)]|t|a−|s−t| =G a
s[2m−1(b−1, a−1)]|t|,

b−t[2m−1(a, b)]|t|a|s−t| =G a
−s[2m−1(b, a)]|t|.

In this way, if we consider the order a < a−1 < b < b−1 < ... we have that
the shortlex representative in Ω±i ∩ Ω±j is :

• If ki, kj are both odd numbers,

b−t[2m−1(a, b)]|t|a|s−t| =G a
−s[2m−1(b, a)]|t|

(which is a positive word).

• Otherwise,

bt[2m−1(a−1, b−1)]|t|a−|s−t| =G a
s[2m−1(b−1, a−1)]|t|

(which is a negative word).
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Recall that we are considering the group:

K := 〈〈r〉〉 = 〈rsl(g); g ∈ G1 | R̂〉

with

R̂+ = {rsl(b
p+
i
i g) = rsl(b

p+
i
−1

i g)...rsl(b
p−
i
i g)...(rsl(b

pi−1
i g))−1; b

p+
i
i g ∈ Ω+

i for some 1 ≤ i ≤ n}

R̂− = {rsl(b
n−
i
i g) = (rsl(b

n−
i

+1

i g))−1...rsl(b
n+
i
i g)...rsl(b

n−
i

+1

i g); b
n−i
i g ∈ Ω−i for some 1 ≤ i ≤ n}

R̂ = R̂+ ∪ R̂−

Notice that the relations of R̂+ and R̂− have the following form:

R̂+ = {rsl(h) = αrsl(ρ
+
i (h))α−1;h ∈ Ω+

i for some 1 ≤ i ≤ n}

R̂− = {rsl(h) = αrsl(ρ
−
i (h))α−1;h ∈ Ω−i for some 1 ≤ i ≤ n}

R̂ = R̂+ ∪ R̂−

Proposition 3.61. K is a free group.

Proof. We are going to prove it using Tietze transformations. We order the
vertices b1, ..., bn linked to r, in such way that k1 ≤ k2 ≤ ... ≤ kn and we
consider the lexicographic order

b1 < b−1
1 < b2 < b−1

2 < ... < bn < b−1
n < c1 < c−1

1 < ... < ck < c−1
k .

Notice that the choice of this order is consistent with the results of Section
3.2, since there we only used the chosen orders as a technical tool to prove
the possible existence or not of determinate kinds of geodesic representatives,
but the results themselves didn't depend on the chosen order.

Firstly, let us consider those generators of the form rsl(g), such that g ∈
Ω. For such an element there is at least one relation in R which is of the
form rsl(g) = αrsl(ρ

±
i (h))α−1 (see Remark 3.43), it will belong to R+ or R−

depending on whether g has a geodesic representative beginning with bp
+
i
i or

b
n−i
i respectively (i = 1, 2, ..., n). Thus, using Tietze transformations we can
erase that relation and the generator rsl(g). This can be done to erase every
generator rsl(g) with g ∈ Ω, but maybe not every relation of R. Because if g
lies in two of the sets Ω±i , Ω±j (remind that by Lemma 3.47, any element can
belong to at most two sets Ω±i ), then after using Tietze transformations we
are left with a relation of the following form:

α−1rsl(ρ
s
i (w1))α = β−1rsl(ρ

t
j(w2))β. (3.7)
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We de�ne R̃ as the set of remaining relations after this proccess. Recall
that Λ = G1 \ Ω.

After this process we get a presentation:

K = 〈rsl(g); g ∈ G1, g ∈ Λ | R̃〉.

Now we will see that we can also get rid of the relations in R̃. Notice that

Ω :=
⋃{

Ω±i ∩ Ω±j | i, j = 1, ..., n, i 6= j
}
⊂ {g ∈ G1 | #(Hg ∩ Λ) > 1}

since the elements in Ω are of the form b
ε1kj1
j1

...b
εnkjn
jn

g and if two expressions
represent the same group element, then by Lemma 3.58 the b′jis must also
be equal. Notice that there is a bijection between the relations in R̂ and the
elements of Ω since each relation appears when we have an element in Ω.
Also recall that for any g ∈ Ω we have #ρ(sl(g)) = 2 by Lemma 3.49 (ii).

Let us explain a little the strategy that we are going to follow. At this
point we have a presentation of the group K with:

1. Set of generators {rsl(g), g ∈ Λ}, bijective to Λ.

2. Set of relators R̃ = {r(α) | α ∈ Ω}, bijective to Ω.

We want to show that it is possible to remove all the relators and some
generators using Tietze transformations. To do that we proceed inductively.
More precisely, we �rst order the elements of Ω using the shortlex order:

α1 < α2 < ... < αi < ...

To each element αi we associate a ui ∈ Λ such that the relator r(αi) can
be written as:

rui = γrwiγ−1

where γ is a word in the alphabet {rsl(g), g ∈ Λ− {u1, ..., ui}}.
Notice that by the order that we have stablish in the vertices, we need to

take α1 ∈ Ω±1 ∩Ω±2 . By Remark 3.60 for the element α1 we have the following
possibilities:

• If k1, k2 are both odd numbers, then α1 admits the following two
geodesic representatives:

w1 = b
p+

1
1 2m−1(b2, b1)p

+
2 b

p+
2 −p

+
1

2 , w2 = b
p+

2
2 2m−1(b1, b2)p

+
2 .

• Otherwise, α1 admits the following two geodesics representatives: w1 =

b
n−1
1 2m−1(b−1

2 , b−1
1 )|n

−
2 |b

n−2 −n
−
1

2 , w2 = b
n−2
2 2m−1(b−1

1 , b−1
2 )|n

−
2 |.
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Where in both cases m = m12.
We know that |ρ−s (ws)| = |ws| if and only if ks is even and that |ρ+

s (ws)| <
|ws|. Then, we can distinguish the following cases:

1. If k1, k2 are odd numbers, we have that for s = 1, 2, |ρ+
s (ws)| < |ws|,

which implies by minimality that ρ+
s (ws) 6∈ Ω. Thus #δ(ρ+

s (ws)) = 1,
so δ(sl(α1)) = {δ(ρ+

1 (w1)), δ(ρ+
2 (w2))} has only two elements.

2. If k2 is even and k1 is odd (or the other way around), then, |ρ−1 (w1)| <
|w1|, so ρ−1 (w1) 6∈ Ω and #δ(ρ−i (wi)) = 1. And |ρ−2 (w2)| = |w2| and
by Lemma 3.51 ρ−2 (w2) 6∈ Ω and since by Lemma 3.52 sl(ρ−2 (w2)) <slex

sl(w2) and w1 =G w2 are the shorltex minimal words in Ω, we have
that #δ(ρ−2 (w2)) = 1. So, δ(sl(α1)) = {δ(ρ−1 (w1)), δ(ρ−2 (w2))} has only
two elements.

3. If k1, k2 are both even, then for s = 1, 2 |ρ−s (ws)| = |ws| and by Lemma
3.51 ρ−s (ws) 6∈ Ω and again since by Lemma 3.52 sl(ρ−s (ws)) <slex sl(ws)
and w1 =G w2 are the shorltex minimal words in Ω, we have that
#δ(ρ−s (ws)) = 1. So, δ(sl(α1)) = {δ(ρ−1 (w1)), δ(ρ−2 (w2))} has only two
elements.

So, in every possible case δ(α1) = {ŵ1, ŵ2} ⊂ Λ and both lie in the coset
Hα1 in Λ. Besides, ŵ1 6=G ŵ2 by Lemma 3.58.

Therefore, we may assume sl(ŵ2) >slex sl(ŵ1) and using a Tietze trans-
formation we can erase the relation and the generator rsl(ŵ2).

We de�ne the set Λ1 = Λ \ {sl(ŵ2)}. Now, we can de�ne the natural
projection π1 : P(Λ) → P(Λ1) given by π1(A) = A ∩ Λ1. After this, we
de�ne δ1 = π1 ◦ δ : Ω −→ P(Λ1).

We are going to prove that we can construct a family of subsets Λ = Λ0 ⊃
Λ1 ⊃ Λ2 ⊃ ... such that for each element g of G1 if sl(g) <slex sl(αk), then
#(Λl∩δ(g)) = 1 for every l ≥ k−1. Once we have constructed these sets, we
can de�ne the applications πk : P(Λ)→ P(Λk) and δk = πk◦δ : Ω −→ P(Λk).

1. For k = 1, take Λ1.

2. Assume Λ1, ...,Λk−1 have been constructed. For k we know that
#(Λk−1 ∩ δ(g)) = 1 for every g such that sl(g) <slex sl(αk). Also
αk ∈ Ω±i ∩ Ω±j for some i, j ∈ {1, ..., n} with i 6= j. At a �rst step we

have two geodesic representatives of αk: wi begining with b
p+
i
i or bn

−
i
i

and wj begining with b
p+
j

j or b
n−j
j .

By Lemma 3.53 for each s = i, j there exist ls ∈ Z such that |ρls(ws)| <
|ws| (and |ρds(ws)| = |ws| for ds < ls). Note that by Lemma 3.51 each
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Chapter 3. Poly-freeness: large even Artin groups

of the elements represented by ws, ρ(ws),..., ρls−1(ws) lies at most on
one of the sets Ω±r , r ∈ {1, ..., n}.
Therefore, sl(ρls(ws)) <slex sl(αk) and by construction of Λk−1, Λk−1 ∩
(ρli(ws)) = w̃s. Therefore δk−1(α) ∩ Λk−1 = {w̃i, w̃j} (and both must
be di�erent by Lemma 3.58).

Now, we may assume sl(w̃j) >slex sl(w̃i), and we de�ne Λk = Λk−1 \
{w̃j}.

Now, at each step of the induction, when we obtain δk−1(α) ∩ Λk−1 =
{w̃i, w̃j}, we know that the relation R(αk) can be written as rsl(w̃j) equals to
a conjugate of rsl(w̃i). And using a Tietze transformation we may eliminate
the relation and the generator rsl(w̃j).

Notice that by the construction of the family {Λk}, the word ŵ1 obtained
in the construction of Λ1 veri�es that ŵ1 ∈ Λk for any k ∈ N. Therefore,
notice that ∩k∈ZΛk 6= ∅. In this way, after each inductive step we have a
presentation of the group K with:

1. Set of generators {rsl(g), g ∈ Λk}, bijective to Λk.

2. Set of relators R̃k = {r(αi) | i = k+ 1, ...}, bijective to Ω \ {α1, ..., αk}.

Thus, eventually we can remove every relation and we conseve a non-
empty set of generators ∩k∈ZΛk. Therefore, the group is free.

And now, as an immediate consequence we obtain our main theorem:

Theorem 3.62. Any even Artin group based on a large graph is poly-free.

Proof. It follows immediately from Lemma 3.46 and Proposition 3.61.

3.5 Poly-freeness for Artin groups based on even

triangle graphs

Consider the case when our graph is a triangle. We can distinguish four
di�erent types of triangles according to the number of edges with label 2:

(i) (2, 2, 2),

(ii) (2k1, 2, 2),

(iii) (2k1, 2k2, 2),
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3.5. Poly-freeness for Artin groups based on even triangle graphs

(iv) (2k1, 2k2, 2k3).

with ki ≥ 2.
The Artin group associated to a triangle of type (i) is Z3, so it is poly-free.

Artin groups associated to type (ii) triangles are even of FC type and so we
know that it is also poly-free by [11] (In fact, these groups are of the form
A2(2k1)×Z so they are obviously poly-free). And Artin groups associated to
triangles of type (iv) are large even Artin groups and thus they are also poly-
free by Theorem 3.62. The only remaining case are Artin groups associated
to triangles of type (iii).

b2

b1

r

2k1 2k2

2

The problem for this case is that as far as we know there are not known
normal forms for the associated group.

However, notice that in every proof along the chapter we have only used
normal forms in the small subgroup AΓ\{r}, never in the big Artin group AΓ.
Thus, almost the exact same proof that we have used to prove poly-freeness
for large even Artin groups works also for any even Artin group Γ satisfying
that there exists a vertex r ∈ V (Γ) such that AΓ\{r} is a large even Artin
group.

The only place where we need to change a bit our proof is in Lemma 3.46
since Lemma 3.45 is not true for this Artin group. In this way, in G1 n K
we could not have discarded the relations [Stab(r), r]. We are going to give
a di�erent proof for Lemma 3.46 in this situation.

Lemma 3.63. Let AΓ = 〈r, b1, b2 | (rb1)k1 = (b1r)
k1, rb2 = b2r, (b1b2)k2 =

(b2b1)k2〉 and AΓ1 = AΓ\{r} = 〈b1, b2 | (b1b2)k2 = (b2b1)k2〉. Let us consider the
map:

ψ : AΓ −→ AΓ1 ,

induced by r 7→ 1 and bi 7→ bi for i = 1, 2.
ker(ψ) is isomorphic to:

K := 〈rsl(g); g ∈ AΓ1 | R̂〉,

where R̂ is the set of relations de�ned in De�nition 3.42.
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Chapter 3. Poly-freeness: large even Artin groups

Proof. Note that ker(ψ) is the normal subgroup of AΓ generated by r.
Notice that in this case we have p+

1 = 2, p−1 = 0, n−1 = −1, n+
1 = 1, p+

2 =
1, p−2 = 0, n−2 = −1, n+

2 = 0. Hence, we have R̂ = R̂+ ∪ R̂− with:

R+ = {rsl(b21g) = rsl(b1g)rsl(g)
(
rsl(b

−1
1 g)
)−1

; b2
1g ∈ Ω+

1 }∪{rsl(b2g) = rsl(g); b2g ∈ Ω+
2 }

R− = {rsl(b
−1
1 g) =

(
rsl(g)

)−1
rsl(b1g)rsl(g); b−1

1 g ∈ Ω−1 }∪{rsl(b
−1
2 g) = rsl(g); b−1

2 g ∈ Ω−2 }

As before, we de�ne an action of G1 = AΓ1 = AΓ\{r} = 〈b1, b2 | (b1b2)k2 =
(b2b1)k2〉 on the abstract group K via

h−1(rsl(g))h = rsl(gh), h ∈ G1.

The proof is exactly the same as in Lemma 3.46 until we obtain the pre-
sentation of the semidirect product applying Lemma 3.44. In our case, we
obtain

G1 nK = 〈r, b1, b2 | Ĉ0, T, [StabG1(r), r]〉.

where Ĉ0 = Ĉ+ ∪ Ĉ−, T = {(b1b2)k2 = (b2b
k2
1 )} with

Ĉ+ = {sl(b2
1g)−1rsl(b2

1g) = sl(b1g)−1rsl(b1g)sl(g)−1rsl(g)(sl(b1g)−1rsl(b1g))−1;

b2
1g ∈ Ω+

1 } ∪ {sl(b2g)−1rsl(b2g) = sl(g)−1rsl(g); b2g ∈ Ω+
2 }

Ĉ− = {sl(b−1
1 g)−1rsl(b−1

1 g) = (sl(g)−1rsl(g))−1sl(b1g)−1rsl(b1g)sl(g)−1rsl(g);

b−1
1 g ∈ Ω−1 } ∪ {sl(b−1

2 g)−1rsl(b−1
2 g) = sl(g)−1rsl(g); b−1

2 g ∈ Ω−2 }

Since in our presentation we have T = {(b1b2)k2 = (b2b
k2
1 )}, the only relation

of G1, we can rewrite the relations of Ĉ0 in the following way:

Ĉ+
1 = {(b2

1g)−1r(b2
1g) = (b1g)−1r(b1g)(g)−1r(g)((b1g)−1r(b1g))−1; b2

1g geodesic}∪
{(b2g)−1r(b2g) = (g)−1r(g); b2g geodesic}

Ĉ−1 = {(b−1
1 g)−1r(b−1

1 g) = ((g)−1r(g))−1(b1g)−1r(b1g)(g)−1r(g); b−1
1 g geodesic}∪

{(b−1
2 g)−1r(b−1

2 g) = (g)−1r(g); b−1
2 g geodesic}

Ĉ1 = Ĉ+ ∪ Ĉ−

So we get the presentation:

G1 nK = 〈b1, b2, r | Ĉ1, T, [StabG1(r), r]〉.

We de�ne:

C ′1 = {b−2
1 rb2

1 = b−1
1 rb1r(b

−1
1 rb1)−1, b−1

2 rb2 = r}.
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3.5. Poly-freeness for Artin groups based on even triangle graphs

So in fact, the relations in Ĉ1 \ C ′1 are obtained from the ones of C ′1 by
conjugation. So we can eliminate them from the presentation using Tietze
transformations. Thus, we have:

G1 nK = 〈b1, b2, r | C ′1, T, [StabG1(r), r]〉.

Note that {C ′1, T} is in fact the set of relations in AΓ. Therefore, we have
an epimorphism

AΓ � G1 nK.

To end the proof it is enough to see that the relations [StabG1(r), r] are
also satis�ed in AΓ.

Let us consider g ∈ StabG1(r), therefore by the de�nition of our action
rsl(g) =K r. Now, take into account the following property of the set of
relations R̂. By construction, each time that we have a relation R̂+:

rsl(b
p+
i
i g) = rsl(b

p+
i
−1

i g)...rsl(b
p−
i
i g)...

(
rsl(b

pi−1
i g)

)−1

,

then in the original AΓ it is satis�ed:

rb
p+
i
i g =AΓ

rb
p+
i
−1

i g...rb
p−
i
i g...

(
rb
pi−1
i g

)−1

.

Analogously, we have a similar situation for the relations of R̂−.
Therefore, rsl(g) =K r implies that rg =AΓ

r, i.e. g−1rg =AΓ
r. Thus,

g−1rg =AΓ
r for every g ∈ StabG1(r).

But, [StabG1(r), r] = {g−1rg = r | g ∈ StabG1(r)}, so the relations
[StabG1(r), r] are also satis�ed in AΓ.

Thus, we have:

G1 nK = 〈b1, b2, r | C ′1, T 〉 ' AΓ

and the isomorphism maps K onto ker(ψ). Therefore, K := 〈rsl(g); g ∈ G1 |
R̂〉 = 〈〈r〉〉 = ker(ψ).

Remark 3.64. Notice that this proof could have also been applied to the
case of large Artin groups proved before. But we have preferred to present
the proofs in this way because we think that Lemma 3.45 has importance by
itself.

As we have commented before, the rest of the proof for polyfreeness works
in almost the same way as for large Artin groups. The proof of Proposition
3.61 can be used also in this case just taking into account the following
remarks:
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Chapter 3. Poly-freeness: large even Artin groups

• The proof of Lemma 3.48 cannot be used in this case, but in our par-
ticular case we have n−1 = n−2 = −1, so we don't need to apply it.

• It is not necessary to use Remark 3.60 in order to check di�erent cases.
Since we are considering a particular case, we know that for this group
α1 = a−1b−1a−1b−1 =G b

−1a−1b−1a−1.

Therefore:

Corollary 3.65. The Artin group based on the triangle graph (2k1, 2k2, 2) is
poly-free.

Corollary 3.66. Any even Artin group based on a triangle graph is poly-free.
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Chapter 4

Residually �niteness

In this chapter we will study the notion of residually �niteness for some fam-
ilies of even Artin groups (and also for a family of general Artin groups).
In Section 4.1 we will de�ne residually �niteness and we will see some back-
ground about this property. Later on, in Section 4.2 we will prove that even
Artin groups of FC type are residually �nite, this result also appears in [11].
Finally, in section 4.3 we will prove residually �niteness for other families of
Artin groups like Artin groups based on forest graphs. These results have
been published in [10] and this last section is based on that paper.

4.1 De�nitions and background

De�nition 4.1. A group G is said to be residually �nite if, for every g ∈
G \ {1}, there is a normal subgroup of �nite index in G not containing g.
Equivalently, G is residually �nite if for every 1 6= g ∈ G there exists a
homomorphism α from G to a �nite group such that α(g) 6= 1.

It is well-known that being residually �nite is not closed under short exact
sequences, in the sense that, if N is a normal subgroup of G and both N
and G/N are residually �nite, then one cannot deduce the same for G itself.
However, the situation changes if we work under some extra hypothesis. For
example, a direct product of residually �nite groups is residually �nite. This
can be generalized to the following result of Boler�Evans [12] that will be
crucial in our argument.

Theorem 4.2 (Boler�Evans [12]). Let G1, G2 be residually �nite groups, and
let K ≤ G1, G2 such that both split as Gi = Hi oK. Then the amalgamated
free product G = G1 ∗K G2 is residually �nite.

For the sake of completeness we will reproduce a proof of this theorem.
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Chapter 4. Residually �niteness

Proposition 4.3. Let G be a group �tting in a split short exact sequence:

1 −→ K −→ G
π

� H −→ 1

i.e. G = K oH.
Let us suppose that K,H are residually �nite and K is �nitely generated.

Then G is residually �nite.

Proof. Let us consider g ∈ G, g 6= 1. If h = π(g) 6= 1,then as H is residually
�nite, there exists ϕ : H −→ F with F �nite such that ϕ(h) 6= 1. So for
ψ = ϕ ◦ π : G −→ F , ψ(g) = ϕ(h) 6= 1.

On the other hand, if π(g) = 1, g ∈ K and as g 6= 1, there exists a �nite
index subgroup L1 such that g 6∈ L1. Put m = [K : L1], since K is �nitely
generated there are only �nitely many subgroups: L1, L2, ..., Ll of index m
([52]).

We de�ne M = ∩li=1Li. Then M is of �nite index (it is intersection of
�nite index subgroups), g 6∈M and M is a characteristic subgroup.

Therefore, we get:

H
f1−→ Aut(K)

f2−→ Aut(K/M)

where f1 is de�ned by the semidirect product and f2 from M being char-
acteristic.

We de�ne ϕ1 = f2 ◦ f1 : H −→ Aut(K/M) and π1 : K −→ K/M the
projection.

Let us consider:

ψ : K oH −→ K/M o Aut(K/M)

(k, h) 7→ (π1(k), ϕ1(h))

which clearly is a homomorphism and veri�es that ψ(g) = (π1(g), 1) 6= 1
(since g 6∈M so π1(g) 6= 1).

As K/M oAut(K/M) is �nite, we deduce that G is residually �nite.

Lemma 4.4. Let us consider

1 −→ K −→ G
π−→ H −→ 1.

If K,H are residually �nite, K is �nitely generated and Z(K) = {1}, G
is residually �nite.
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Proof. Let us consider g ∈ G, g 6= 1. If h = π(g) 6= 1, then as H is residually
�nite there exists ϕ : H −→ F with F �nite such that ϕ(h) 6= 1. So for
ψ = ϕ ◦ π : G −→ F , ψ(g) = ϕ(h) 6= 1.

On the other hand, if π(g) = 1, g 6= 1, we choose g1 ∈ K such that
gg1 6= g1g, and we consider h = g1gg

−1
1 g−1 ∈ K \{1}. By the same argument

as in the proof of Proposition 4.3, there exists a characteristic subgroup of
�nite index N Cf K such that h 6∈ N .

Therefore, we get:

G
f1−→ Aut(K)

f2−→ Aut(K/M)

where f1 is de�ned by the conjugation and f2 fromM being characteristic.
We de�ne ϕ = f2 ◦ f1 : G −→ Aut(K/M) and π : K −→ K/M the

projection. We will denote k̄ = π(k).
Let us see that ϕ(g) 6= Id.

ϕ(g)(ḡ1)ḡ−1
1 = ḡḡ1ḡ

−1ḡ−1
1 6= 1.

Therefore, ϕ(g)(ḡ1) 6= ḡ1 so ϕ(g) 6= Id. Thus, G is residually �nite.

Our following lemma will be an inmediate consequence of this theorem
due to Gruenberg:

Theorem 4.5. [50] If P is a root property, then every free product of residu-
ally P groups is itself residually P if and only if every free group is residually
P.

Just applying it to the case where P is the property of being �nite, we
obtain:

Lemma 4.6. If G1 and G2 are residually �nite, then G = G1 ∗ G2 is also
residually �nite.

So now we can prove Theorem 4.2:

Theorem 4.2. We consider:
ιi : K ↪→ Gi

πi : Gi → K

such that πi ◦ ιi = IdK . Then Hi = Ker(πi).
We have the sequence:

1 −→ Hi −→ Gi

πi

� K −→ 1.
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Then, Gi = Hi oK. We have homomorphisms:

ϕi : K −→ Aut(Hi)

Let us consider H = H1 ∗H2, we de�ne:

ϕ : K −→ Aut(H)

such that ϕ(k)|Hi = ϕi(k) (i.e. ϕ = ϕ1 ∗ ϕ2).
Thus we have G = H oϕK. We take g ∈ G. Let us consider π : G→ K,

H = Kerπ. If k = π(g) 6= 1, there exists α : K −→ F with F �nite such
that ϕ(k) 6= 1 (since K is residually �nite). So for ψ = α ◦ π : G −→ F ,
ψ(g) = α(k) 6= 1.

If π(g) = 1, g ∈ H, we write g = g1g2...gl where:

gi ∈ H1 \ {1} or gi ∈ H2 \ {1}
and

gi ∈ H1 \ {1} =⇒ gi+1 ∈ H2 \ {1}
gi ∈ H2 \ {1} =⇒ gi+1 ∈ H1 \ {1}

We can suppose without loss of generality that g2i+1 ∈ H1 \ {1} and g2i ∈
H2 \ {1} for all i.

There exist N1, N2 such that:

N1 Cf G1, g1, g3, ... 6∈ N1

N2 Cf G2, g2, g4, ... 6∈ N2

We will denote N̄j = Nj ∩Hj, then:

N̄1 Cf H1, g1, g3, ... 6∈ N̄1

N̄2 Cf H2, g2, g4, ... 6∈ N̄2

Consider X = 〈〈N̄1 ∪ N̄2〉〉. By de�nition X CH. Take k ∈ K ⊂ Gj then
kNjk

−1 = Nj since Nj is normal. It is also true that kHjk
−1 = Hj (since it

is the kernel). Therefore, kN̄jk
−1 = N̄j. Moreover, kXk−1 = X since it is

invariant by the generators). Besides:

H/X ' (H1/N1) ∗ (H2/N2)

which is �nitely generated since it is a free product of �nite groups.
So G/X = H/X o K with the induced action. By Lemma 4.6 H/X is

residually �nite and therefore by Proposition 4.3 so is G/X.
Now, let us consider π : G −→ G/X. By construction π(g) 6= 1. And

since G/X is residually �nite, there exists a homomorphism α from G/X to
a �nite group such that απ(g) 6= 1. Hence we have that also G is residually
�nite.

64



4.2. Residually �niteness on even Artin groups of FC type

4.2 Residually �niteness on even Artin groups

of FC type

In this section we will show that even Artin groups of FC type are residually
�nite.

Theorem 4.7. Every even Artin group of FC type is residually �nite.

Proof. We argue by induction on the number of vertices of Γ. Assume �rst
that Γ is complete. Then, by de�nition, AΓ is of spherical type, hence, by
Cohen�Wales [31] and Digne [38], AΓ is linear, and therefore AΓ is residually
�nite.

Assume that Γ is not complete. Then we can choose two distinct vertices
s, t ∈ S = V (Γ) such that ms,t = ∞. Set X = S \ {s}, Y = S \ {t} and
Z = S \ {s, t}. From the presentation of A follows that A = AX ∗AZ AY .
Moreover, since A is even, the inclusion map AZ ↪→ AX has a retraction
πX,Z : AX → AZ which sends r to r for all r ∈ Z and sends t to 1, henceAX =
Ker(πX,Z) o AZ . Similarly, the inclusion map AZ ↪→ AY has a retraction
πY,Z : AY → AZ , hence AY = Ker(πY,Z)oAZ . By the inductive hypothesis,
AX and AY are residually �nite, hence, by Theorem 4.2, A is also residually
�nite.

4.3 Residually �niteness on Artin groups based

on forest graphs

In this section we will see that the families of triangle free even Artin groups
and general Artin groups based on forest are also residually �nite.

De�nition 4.8. A graph Γ is triangle free if no full subgraph of Γ is a
triangle.

In fact, notice that every triangle free even Artin groups is an even Artin
group of FC type, so the fact that it is residually �nite is already proved by
the previous result.

Moreover, it was also already known that Artin groups based on forest
are residually �nite since when Γ is a forest, the Artin group AΓ is the
fundamental group of a graph manifold by Gordon [49], and is thus virtually
special by Przytycki-Wise [72], hence is linear and residually �nite.

Nevertheless, our proofs are quite di�erent to the previously known ones,
and we include it here because of their interest.
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De�nition 4.9. Given the set S = V (Γ).A partition of S is a set P of
pairwise disjoint subsets of S satisfying ∪X∈PX = S.

We say that a partition is admissable if, for all X, Y ∈ P, X 6= Y , there
is at most one edge in Γ connecting an element of X with an element of Y .
In particular, if s ∈ X and t ∈ Y are connected in Γ by an edge and s′ ∈ X,
s′ 6= s, then s′ is not connected in Γ by any edge to any vertex of Y .

An admissible partition P determines a new graph Γ/P de�ned as fol-
lows. The set of vertices of Γ/P is P . Two distinct elements X, Y ∈ P are
connected by an edge labelled by m if there exists s ∈ X and t ∈ Y such
that ms,t = m( 6=∞).

Lemma 4.10. If a graph Γ has one or two vertices then AΓ is residually
�nite.

Proof. If Γ has only one vertex, then AΓ ' Z which is residually �nite.
Suppose that Γ has two vertices s, t. If ms,t = ∞, then AΓ is a free group
of rank 2 which is residually �nite. If ms,t 6=∞, then Γ is of spherical type,
hence by Digne [38] and Cohen-Wales [31], AΓ is linear, and therefore is
residually �nite.

Lemma 4.11. Let Γ be a graph and let A = AΓ. Let s ∈ S. We set
Y = S \ {s}, we denote Γ1, ...,Γl the connected components of ΓY , and for
i ∈ {1, ..., l}, we denote by Yi the set of vertices of Γi. If AYi∪{s} is residually
�nite for all i ∈ {1, ..., l}, then A is residually �nite.

Proof. We argue by induction on l. If l = 1; then Y ∪{s} = S and AY ∪{s} =
A, so A is obviously residually �nite. Suppose that l ≥ 2 and that the
inductive hypothesis holds. We set X1 = Y1 ∪ ... ∪ Yl−1 ∪ {s}, X2 = Yl ∪ {s}
and X0 = {s}. Let G1 = AX1 , G2 = AX2 , and L = AX0 ' Z. The groups G1

and G2 are residually �nite by induction. It is easily seen in the presentation
of A that A = G1 ∗L G2. Furthermore, the homomorphism ρ1 : G1 → L
which sends t to s for all t ∈ X1 is a retraction of the inclusion map L ↪→ G1,
hence G1 splits as a semi-direct product G1 = H1 o L. Similarly, G2 splits
as a semi-direct product G2 = H2 oL. We conclude by Theorem 4.2 that A
is residually �nite.

Lemma 4.12. Let Γ be a graph, let A = AΓ, and let P be an admissible
partition of S such that

a the group AX is residually �nite for all X ∈ P,

b the graph Γ/P has at most two vertices.
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Then A is residually �nite.

Proof. If |P| = 1 there is nothing to prove. Suppose that |P| = 2 and one
of the elements of P is a singleton. We set P = {X, Y } where X = S \ {t}
and Y = {t} for some t ∈ S. If there is no edge in Γ connecting t to an
element of X, then A = AX ∗ AY , hence A is residually �nite. So, we can
assume that there is an edge connecting t to an element s ∈ X. Notice that
this element is unique by de�nition of admissibility. We denote by Γ1, ...,Γl
the connected components of ΓX\{s} and, for i ∈ {1, ..., l}, we denote Xi the
set of vertices of Γi. For all i ∈ {1, ..., l} the group AXi∪{s} is residually
�nite since AXi∪{s} ⊂ AX . On the other hand, A{s,t} is residually �nite by
Lemma 4.10. Noticing that the connected components of ΓS\{s} are precisely
Γ1, ...,Γl and {t}, we deduce from Lemma 4.11 that A is residually �nite.

Now assume that |P| = 2 and both elements of P are of cardinality
≥ 2. Set P = {X, Y }. If there is no edge in Γ connecting an element of
X with an element of Y , then A = AX ∗ AY , hence A is residually �nite.
So, we can assume that there is an edge connecting an element s ∈ X to an
element t ∈ Y . Again, this edge is unique. Let Ω1, ...,Ωp be the connected
components of ΓX\{s} and let Γ1, ...,Γq be the connected components of ΓY .
We denote by Xi the set of vertices of Ωi for all i ∈ {1, ..., p} and by Yj the
set of vertices of Γj for all j ∈ {1, ..., q}. The group AXi∪{s} is residually
�nite since Xi ∪ {s} ⊂ X for all i ∈ {1, ..., p}, and, by the above, the group
Ayj∪{s} is residually �nite for all j ∈ {1, ..., q}. It follows by Lemma 4.11 that
A is residually �nite.

Remark 4.13. Alternative arguments from Pride [71] and/or from Burillo-
Martino [24] can be used to prove partially or completely Lemma 4.12.

Therefore, we can obtain our main results:

Theorem 4.14. Let Γ be a graph, let A = AΓ, and let P be an admissible
partition of S such that

a) the group AX is residually �nite for all X ∈ P,

b) the graph Γ/P is even and triangle free.

Then A is residually �nite.

Proof. We argue by induction on the cardinality |P| of P . The case |P| ≤ 2
is covered by Lemma 4.12. So, we can suppose that |P| ≥ 3 and that the
inductive hypothesis holds. Since Γ/P is triangle free, there exists X, Y ∈ P
such that none of the elements of X is connected to an element of Y . We set
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Chapter 4. Residually �niteness

U1 = S \X, U2 = S \ Y , and U0 = S \ (X ∪ Y ). We have A = AU1 ∗AU0
AU2

and, bu inductive hypothesis, AU1 and AU2 are residually �nite. Since Γ/P
is even, the inclusion map AU0 ↪→ AU1 admits a retraction ρ1 : AU1 → AU0

which send t to 1 if t ∈ T and sends t to t if t ∈ U0. Similarly, the inclusion
map AU0 ↪→ AU2 admits a retraction ρ2 : AU2 → AU0 . By Theorem 4.2 it
follows that A is residually �nite.

Theorem 4.15. Let Γ be a graph, let A = AΓ, and let P be an admissible
partition of S such that

a) the group AX is residually �nite for all X ∈ P,

b) the graph Γ/P is a forest.

Then A is residually �nite.

Proof. We argue by induction on the cardinality |P| of P . The case |P| ≤ 2
is covered by Lemma 4.12. So, we can assume that |P| ≥ 3 and that the
inductive hypothesis holds. Set Ω = Γ/P . Let Ω1, ...,Ωl be the connected
components of Ω. For i ∈ {1, ..., l} we denote by Pi the set of vertices of
Ωi and we set Yi = ∪X∈PiX and Γi = ΓYi . The set Pi is an admissible
partition of Yi and Γi/Pi = Ωi is a tree for all i ∈ {1, ..., l}. Moreover, we
have A = AY1 ∗ ... ∗ AYl . hence A is residually �nite if and only if AYi is
residually �nite for all i ∈ {1, ..., l}. So, we can assume that Ω = Γ/P is a
tree.

Since |P| ≥ 3, Ω has a vertex X of valence ≥ 2. Choose Y ∈ P connected
to X by an edge of Ω. Let s ∈ X and t ∈ Y such that s and t are connected
by an edge of Γ. Recall that by de�nition s and t are unique. Let Q′
be the connected component of ΩP\{X} containing Y , let PQ′ be the set
of vertices of Q′, let U ′ = ∪Z∈PQ′Z, let U = U ′ ∪ {s}, and let PQ = PQ′ ∪
{{s}}. Observe that PQ is an admissible partition of U , that AZ is residually
�nite for all Z ∈ PQ, that ΓU/PQ is a tree, and that |PQ| < |P|. By
the inductive hypothesis it follows that AU is residually �nite. Let R be
connected component of ΩP\{Y } contatining X, let PR be the set of vertices
of R, and let V = ∪Z∈PRZ. Observe that PR is an admissible partition of V ,
that AZ is residually �nite for all Z ∈ PR, that ΓV /PR is a tree, and that
|PR| < |P|. By the inductive hypothesis it follows thatAV is residually �nite.
Let ∆1, ...,∆q be the connected components of ΓS\{s}. Let i ∈ {1, ..., q}. Let
Zi be the set of vertices of ∆i. It is easily seen that either Zi ∪ {s} ⊂ U , or
Zi ∪ {s} ⊂ V , hence by the above, AZi∪{s} is residually �nite. We conclude
by Lemma 4.11 that A is residually �nite.

And, from Lemma 4.14 and Lemma 4.15 we obtain:
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4.3. Residually �niteness on Artin groups based on forest graphs

Corollary 4.16. Let Γ be a graph, let A = AΓ.

(1) If Γ is even and triangle free, then A is residually �nite.

(2) If Γ is a forest, then A is residually �nite.
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Chapter 5

Quasi-projectivity

The question of classi�cation of quasi-projective groups, which today is re-
ferred to as Serre's question, has been frequently alluded to since Zariski [76]
and Van Kampen [59] proposed it for complements of curves in the projective
plane. The search for properties of such groups goes back to Enriques [46] and
O.Zariski [77, Chapter VIII]. This has developed in the search for obstruc-
tions for a group to be quasi-projective (resp. quasi-Kähler) starting with
Morgan [67], Kapovich-Millson [60], Arapura [3, 4], Libgober [62], Dimca [39],
Dimca-Papadima-Suciu [40], and Artal-Cogolludo-Matei [5, 6].

In this chapter we concentrate in the possible characterization of quasi-
projective Artin groups, as stated in [40, p. 451]. These results have been
published in [9] in which this chapter is mainly based. Any proof of such
results requires the use of obstructions to disregard the negative cases as well
as the constructive part of �nding realizations for the positive cases.

A �rst approach to this problem is given in [40, Thm. 11.7] where quasi-
projective right-angled Artin groups are characterized by complete multi-
partite graphs corresponding to direct products of free groups. In the more
general case of even Artin groups, that is, Artin groups associated with even-
labelled graphs, the label plays an important role and not all multipartite
graphs produce quasi-projective Artin groups.

In order to describe such graphs we de�ne the concept of qp-irreducible
graph. In this context, graph means for us simple graph. Let us denote by
Gqp the family of labelled graphs whose associated Artin groups are quasi-
projective. Given two labelled graphs Γ1 = (V1, E1,m1), Γ2 = (V2, E2,m2),
we de�ne their 2-join Γ1 ∗2 Γ2 = (V,E,m) as the labelled graph given by the
join of Γ1 and Γ2 whose connecting edges have all label 2, that is

m(e) =

{
mi(e) if e ∈ Ei
2 if e ∈ E \ (E1 ∪ E2).
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...

r

Kr

2`

S2`

4 4

2

T (4, 4, 2)

Figure 5.1: qp-irreducible graphs of type Kr, S2`, and T (4, 4, 2).

We say Γ ∈ Gqp is a qp-irreducible graph if Γ is not a 2-join of two graphs
in Gqp.

Denote by Kr a disjoint graph with r vertices and no edges. Also denote
by Sm the graph given by two vertices joined by an edge with label m.
Finally, denote by T (4, 4, 2) the triangle as shown in Figure 5.1. It will be
shown that these are the only qp-irreducible even graphs. In other words,
the main result of this chapter is the following.

Theorem 5.1. Let Γ = (V,E, 2`) be an even-labelled graph and AΓ its asso-
ciated even Artin group. Then the following are equivalent:

1. AΓ is quasi-projective, that is, Γ ∈ Gqp.

2. Γ is the 2-join of �nitely many copies of Kr, S2`, and T .

Moreover, if Γ ∈ Gqp, then AΓ = π1(X) where X = P2 \ C is a curve
complement.

As mentioned in the Section 1.2, the K(π, 1) conjecture referred to an Artin
group AΓ claims that a certain space, that appears as a quotient of the
complement of the Coxeter arrangement by the action of the Coxeter group
associated to Γ is an Eilenberg-MacLane space whose fundamental group is
AΓ � or a K(AΓ, 1) space � see for instance [70] for a detailed explanation of
this conjecture. In the context of quasi-projective groups, we can also ask
ourselves whether or not a quasi-projective Artin group is realizable by an
Eilenberg-MacLane space.

Conjecture 5.2 (Quasi-projective K(π, 1) conjecture). Any quasi-projective
Artin group AΓ can be realized as AΓ = π1(X) for a smooth, connected, quasi-
projective Eilenberg-MacLane space X.

The other main result of this chapter is a positive answer to the quasi-
projective K(π, 1) conjecture for even Artin groups.
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Theorem 5.3. Quasi-projective even Artin groups satisfy the quasi-projective
K(π, 1) conjecture.

This chapter is organized as follows: in section 5.1 the general de�nition
of quasi-projective groups will be given as well as the notion of characteristic
varieties as an invariant of a group. Section 5.2 will be devoted to studying
kernels of cyclic quotients of Artin groups, called co-cyclic subgroups. Sec-
tion 5.3 focuses on the problem of �nding qp-irreducible graphs. The main
theorems will be proved in section 5.4.

5.1 Settings and de�nitions

5.1.1 Quasi-projective groups

The main focus of this section is the study of those groups that can appear as
fundamental groups in an algebraic geometry context, in particular as fun-
damental groups of smooth connected quasi-projective varieties. Recall that
a quasi-projective variety is the complement of a hypersurface in a projective
variety de�ned simply as the zero locus of a �nite number of homogeneous
polynomials in C[x0, ..., xn].

De�nition 5.4. A group G is quasi-projective if G = π1(X) for a smooth
connected quasi-projective variety X.

Example 5.5. Since the fundamental group of the complement of a smooth
plane curve of degree d in P2 is the cyclic group Zd and the complement of two
lines in P2 has the homotopy type of C∗, all cyclic groups are quasi-projective.
Moreover, since the complement of r+ 1 irreducible smooth curves C0, ..., Cr
of degrees di = degCi intersecting transversally has fundamental group

π1(P2 \ C0 ∪ ... ∪ Cr) = Zr ⊕ Zd,

where d = gcd(d0, ..., dr), one immediately obtains that all abelian groups are
quasi-projective.

This example points out that the quasi-projective variety whose funda-
mental group realizes a quasi-projective group is clearly not unique in any
geometrical sense, since the torsion part d can be attained in many di�erent
ways.

Example 5.6. On the other end of abelianization properties, the free group
of rank r is also quasi-projective since it can be realized as the fundamental
group of the complement of r + 1 points in the complex projective line P1.
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Chapter 5. Quasi-projectivity

The following important properties of quasi-projective groups are well
known.

Proposition 5.7.

1. If G is a quasi-projective group and K ⊂ G is a �nite index subgroup
of G, then K is also a quasi-projective group.

2. If G1, G2 are quasi-projective groups, then G1 × G2 is also a quasi-
projective group.

We will denote the set of all quasi-projective varieties by ΣQ.
We can consider the following family:

ΣH := {Pn \ V | V is a projective hypersurface } ⊂ ΣQ.

For now, we will focus on this subset. We can also consider the family:

ΣC := {P2 \ C | C is a projective curve} ⊂ ΣH .

One interesting result involving these families is that:

Proposition 5.8. {π1(F ) | F ∈ ΣC} = {π1(F ) | F ∈ ΣH}

We get this result using a weak version of Lefschetz's hyperplane theorem.

Theorem 5.9. (Lefschetz's hyperplane theorem)
Let X be an n-dimensional complex projective variety in Pn, and let Y

be a generic hyperplane section of X such that X \ Y is smooth. Then, the
natural map:

πk(Y ) −→ πk(X)

is an isomorphism for k < n− 1 and is surjective for k = n− 1.

A sketch of the proof of Proposition 5.8 would be to consider a hypersur-
face V and intersect it with a generic plane section H.

The inclusion map i : H ∩ (Pn \ V ) −→ Pn \ V de�nes a morphism of
fundamental groups:

I : π1(H ∩ (Pn \ V )) −→ π1(Pn \ V )

which by Lefschetz theorem (Theorem 5.9) is an isomorphism if n > 2.

Applying the theorem repeatedly we get to H \ (V ∩H) on the left side
where H = P2 and V ∩H is a curve.
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We will study {π1(Pn \ V ) | V ⊂ Pn hypersurface} and for that it will be
enough to compute {π1(P2 \ C) | C ⊂ P2 curve}.

We will focus now on computing π1(P2 \ C).

5.1.2 Computing π1(P2 \ C) using braid monodromy

The objective of this section is to compute π1(P2 \ C). Before starting, we
are going to give some basic notions about the action of braids in free groups
which will be useful in the process.

Action of a braid on a free group

Let α ∈ Brd(C) (group of braids) and Fd the free group of rank d.
There exists a right action (the action which permutes the d meridians

we have talked earlier):

∇ : Brd(C)× Fd −→ Fd

such that

∇(σi, µj) = µσij =


µj if j < i or j > i+ 1

µi+1 if j = i

µi+1µiµ
−1
i+1 if j = i+ 1

Besides, ∇(αβ, µ) = µαβ = ∇(β,∇(α, µ)).
Thus, it is straight forward to check that if d = 2 (Fd = 〈a, b〉), aσn = a

is the relation corresponding to two joined vertices with label n in an Artin
group, i.e. if n = 2k we get (ab)k = (ba)k.

Computation of π1(P2 \ C)

We choose adequate coordinates such that P = [0 : 1 : 0] 6∈ C and {z = 0} 6⊂
C.

Since P2 \ {z = 0} = C2, we have π1(P2 \ (C ∪ {z = 0})} = π1(C2 \ C).
Our curve C will be the set of zeros of a homogeneous polynomial f(x, y, z)
of degree d, i.e. C = {f(x, y, z) = 0}. So:

Proposition 5.10. P 6∈ C ⇐⇒ f(0, 1, 0) 6= 0, which happens if and only if
f(x, y, z) has degree d in the variable y.

Besides:

P2 \ {z = 0} = {[x : y : z] | z 6= 0} = {[x
z

: y
z

: 1]} ↔ {(x, y) ∈ C2}.

75



Chapter 5. Quasi-projectivity

Considering [u : v : 1] 7→ (u, v) and (x, y) 7→ [x : y : 1], we have an isomor-
phism between the last two sets. The equation of C ∩ C2 is {f(x, y, 1) = 0}
(From now on we will consider f(x, y) = f(x, y, 1)) .

Remark 5.11. To recover the original equation of the curve from this one,
we only have to homogenize the polynomial, i.e. we have to divide x and y
by z and then multiply by zd the whole equation.

Now, if we consider the projection π : C2 −→ C such that (x, y) 7→ x.
Given a generic point x0 ∈ C, we have that the �ber in x0, Fx0 = {(x0, y) ∈
C2 | f(x0, y) = 0} is generically the union of d di�erent points of C = π−1(x0)
(since the polynomial f(x, y) has degree d over the variable y).

Remark 5.12. In some points of C this is going to fail due to the existence
of singularities in the curve or tangencies with respect to a line x = k for
some constant k.

More precisely, there exists a �nite set ∆ ⊂ C such that #Fx0 = d if and
only if x0 ∈ C \∆. (In fact, ∆ = {x0 ∈ C | ∂f∂y (x0, y) = f(x0, y) = 0}).

De�nition 5.13. We say that the �ber bundle is locally trivial if for each
point of the base x, the �ber (i.e., the preimage of a neighbourhood of the
point, Ux) is di�eomorphic to the product of the preimage of the point and
the neighbourhood Ux. In other words, if for each x ∈ B, ∃Ux neighbourhood
such that π−1(Ux) ' π−1(x)× Ux.

So, we have the following result:

Theorem 5.14. π : (C2 \π−1(∆), C \π−1(∆)) −→ (C\∆) is a locally trivial
�ber bundle, i.e., for each x0 ∈ C \ ∆, ∃Ux0 ⊂ C \ ∆ neighbourhood such
that:

(π−1(Ux0), C) ' (π−1(x0)× Ux0 , Fx0 × Ux0).

This proccess is known as trivialization.

De�nition 5.15. A sequence of groups and homomorphisms:

G0 → G1 → G2 → ...

is called exact if the image of each homomorphism is equal to the kernel
of the next.

We can trivialize through a path joining open sets. Thus, the �bers at
two di�erent points are di�eomorphic, Fx0 ' Fx1 . So we can speak about
the �ber (F ) of a locally trivial �ber bundle. This de�nes an exact sequence
(denoting E the total space and B the �ber bundle base):
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5.1. Settings and de�nitions

... −→ π2(B) −→ π1(F ) −→ π1(E) −→ π1(B) −→ 0

In our case, F = C \ { d points} and π1(F ) = Fd (free group of rank d).
Besides, B = C \ ∆, so π2(C \ ∆) = 0 and π1(C \ ∆) = Fr (free group of
rank r) where r = #∆. And E = C2 \ (C ∪L∆), where L∆ = ∪x1∈∆π

−1
1 (x1).

Therefore, we obtain the following exact sequence:

0 −→ Fd −→ π1(C2 \ (C ∪ L∆)) −→ Fr −→ 0

The generators of Fd are meridians (loops around the d points), similarly
the generators of Fr are loops around our r points. We consider that the
paths are taken in the front side. When we trivialize and we go along a
closed path in the base, the d points are the same but they don't necessarily
maintain their order, so a braid is formed. When we end, we have got the
same points but not in the same order. Thus, we have:

π1(C2 \ (C ∪ L∆)) = 〈µ1, ..., µd, γ1, ..., γr : µγij = µj〉.

We have that µγij ∈ Fd. In order to compute π1(C2 \ C) and be capable of
eliminating L∆, we have to factor out by the normal subgroup generate by
the γi.

Theorem 5.16. (Zariski-Van-Kampen)

π1(C2 \ C) = 〈µ1, ..., µd : µγij = µj〉.

5.1.3 When is π1(P2 \ C) an Artin group?

Local Braids

We have studied before that we can encounter di�erent kinds of non-regular
values of the projection of the curve, these may occur due to the existence of
tangencies or singularities in the curve. Our objective now is to study what
kind of braid is formed from each of these situations.

1. Tangencies

If we have a special �ber of the type y2 = x, we take a circunfernece
around 0, x(t) = e2πit. Then y = ±eπit.
Thus, we obtain the braid σ
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and the action obtained is:

µσ1 = µ2 = µ1

µσ2 = µ−1
2 µ1µ2 = µ1.

So the action is equivalent to identifying both generators.

In general, for tangencies we obtain σ or a conjugate of it (when the
base point is far from the local point).

2. If we have a singularity of the kind y2 = x2, we take a circunfernece
around 0, x(t) = e2πit. Then y = ±e2πit.

Then, we get the braid σ2

and the relation obtained is µ1µ2 = µ2µ1 (Artin relation for label 2).

3. In general, if we have a singularity of the type y2 = xk and we take a
circunfernece around 0, x(t) = e2πit and so y = ±ekπit. Then, we get
the braid σk and the relation obtained is the Artin relation for label k.

4. There also exits other kind of singularities, but they don't produce
Artin relations.

For example, if we have a singularity of the kind yd = xd and we take
a circunference around 0, x(t) = e2πit. Then y = ηidx, i = 0, ..., d − 1,
where ηid are unity roots.

Then we obtain the braid: (σ1σ2...σd−1)d.

................
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Remark 5.17. To get even Artin relations, the singularities must locally be
of the form y2 = x2k (eventually, there may be some tangencies, but they are
not shown in the group).

Algebraic Curves

Theorem 5.18. (Bezout's Theorem)
If C1, C2 are plane curves of degrees d1, d2 respectively (without commmon

components) then: ∑
p∈C1∩C2

νp(C1, C2) = d1d2.

If we can parametrize C1 near p:

C1 = ψ(t) = (ψ1(t), ψ2(t)).

We take C2 = {f2(x, y) = 0}, and then νp(C1, C2) = ordt(f2 ◦ ψ(t)).

Example 5.19. If C1 = {y = xk} and C2 = {y = −xk}, we want to compute
ν0(C1, C2) (C1 ∩ C2 = {0}).

A parametrization of C1 near 0 is ψ(t) = (t, tk). And C2 = {f2(x, y) =
y + xk = 0}.

Thus:

f2 ◦ ψ(t) = (y + xk) ◦ ψ(t) = tk + tk.

Then, ν0(C1, C2) = ordt(f2 ◦ ψ(t)) = k.
Therefore (y − xk)(y + xk) are two branches which intersect with inter-

section multiplicity k.

Coming back to our case of even Artin groups, we had seen that the
singularities must locally have the form y2 = x2k. But this is equivalent to
(y − xk)(y + xk) = 0, so locally there are two branches which intersect in a
point.

5.1.4 Serre's question for Artin groups

The question about deciding whether a certain group is quasi-projective is
known as Serre's question. This question is solved for right-angled Artin
groups, but almost nothing is known for more general Artin groups.

Theorem 5.20 ([40, Theorem 11.7]). The right-angled Artin group AΓ is
quasi-projective if and only if AΓ is a product of �nitely generated free groups,
i.e. AΓ = Fn1 × ...× Fnr .
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Chapter 5. Quasi-projectivity

The direct implication is proved by exploiting the obstructions of reso-
nance varieties of quasi-projective groups. The converse is achieved by real-
izing such groups as fundamental groups of quasi-projective varieties, built
as products of complements of points in C.

In fact, this result can be interpreted in terms of the graphs via the 2-join
construction as follows.

De�nition 5.21. Consider Γ1 and Γ2 two labelled graphs. The 2-join of Γ1

and Γ2, denoted by Γ = Γ1 ∗2 Γ2 is the labelled graph Γ de�ned as the join of
the graphs and whose label is de�ned as

m(e) =

{
mi(e) if e ∈ E(Γi)

2 otherwise.

The Artin group of a 2-join is the product of the Artin groups, that is,

AΓ1∗2Γ2 = AΓ1 ×AΓ2 . (5.1)

From Example 5.5 note that a free abelian group of rank r is an Artin group
corresponding to a complete right-angled Artin group of r vertices, or 2-
joins of r points. From Example 5.6 note that a free group of rank r is also
an Artin group corresponding to a totally disconnected graph of r vertices.
Using (5.1), Theorem 5.20 can be rewritten as follows.

Theorem 5.22. Let Γ be a right-angled graph, then AΓ is quasi-projective if
and only if Γ is the 2-join of �nitely many totally disconnected graphs.

For triangle Artin groups and general type Artin groups, partial results
on their quasi-projectivity are given in [5], among those we describe the
following associated with Artin groups of type AS2`

and AT in Figure 5.1.

Theorem 5.23 ([5, Chapter 5]). The Artin groups AS2`
= 〈a, b | (ab)` =

(ba)`〉 and AT = 〈a, b, c | abab = baba, acac = caca, bc = cb〉 are quasi-
projective.

Proof. • First let us prove that AS2l
is quasi-projective. Let's consider

C = {(y − xl)y = 0} an a�ne curve (Figure 5.2). (C2 − C = P2 −
(z = 0 ∪ C̄) where C̄ = z(yzl−1 − xl) = 0).
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5.1. Settings and de�nitions

Figure 5.2: Curve C for AS2l

There is only one special �ber (where there are less than two points of
intersection, coloured in green). We take a generic �ber (coloured in
red). Studying that special �ber (�ber a), we get the braid σ2l (Figure
5.3):

Figure 5.3: Braid σ2l

which generates the relation:

(µ1µ2)l = (µ2µ1)l.
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Figure 5.4: Curve C for AT

Thus, we get the even Artin group of two vertices and label 2l:

AS2l
= 〈a, b | (ab)l = (ba)l〉.

• Now let us see that AT is quasi-projective. Now, let's consider l1 =
{2x− y = 1}, l2 = {2x+ y = −1} and C = {(y − x2)l1l2 = 0} (Figure
5.4). (C2−C = P2−(z = 0∪C̄) where C̄ = z(yz−x2)(2x−y−z)(2x+
y + z) = 0). There are three special �bers (coloured in green, where
there are less than three points of intersection). We take a generic �ber
(gen, coloured in red). Studying the �rst special �ber (�ber a), we get
the braid σ4

2 (Figure 5.5) which generates the relations:

µ1 = µ1

(µ2µ3)2 = (µ3µ2)2.
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Figure 5.5: Braid σ4
2

Figure 5.6: Braid σ2
1

So, from the �rst braid we obtain the relation:

(µ2µ3)2 = (µ3µ2)2. (5.2)

Now in the second one (b), we have the braid σ2
1 (Figure 5.6), so we

get the relations:

µ1µ2 = µ2µ1

µ3 = µ3.

Therefore, from the second braid we obtain the relation:

µ1µ2 = µ2µ1. (5.3)

Studying the �ber c, we have the braid σ1σ
4
2σ
−1
1 (Figure 5.7) and we

get the relations:

µ1 = (µ1)σ1σ4
2σ
−1
1 ⇒ µ1 = µ3µ1µ3µ1µ

−1
3 µ−1

1 µ−1
3 ⇒ (µ3µ1)2 = (µ1µ3)2

(5.4)
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Figure 5.7: Braid σ1σ
4
2σ
−1
1

µ2 = (µ2)σ1σ4
2σ
−1
1 ⇒ µ2 = µ3µ1µ3µ1µ

−1
3 µ−1

1 µ−1
3 µ−1

1 µ2µ3µ1µ3µ1µ
−1
3 µ−1

1 µ−1
3 µ−1

1 .
(5.5)

And using relation (5.4) in (5.5), we get that the second relation (5.5)
is equivalent to µ2 = µ2. So, from this braid we obtain the relation:

(µ3µ1)2 = (µ1µ3)2. (5.6)

Thus, we get the even Artin group of three vertices and three edges,
two of them with label 4 and the other label 2:

AT = 〈a, b, c | ab = ba, (ac)2 = (ca)2, (bc)2 = (cb)2〉.

Our objective in this chapter is to give a similar characterization to The-
orem 5.22 for even Artin groups.

5.1.5 Characteristic Varieties

Characteristic varieties are a sequence of invariants of a group. They were
introduced by Hillman in [54] for links using Alexander modules. Properties
of characteristic varieties have been studied extensively: by Cohen-Suciu [33],
Libgober [61, 62] Arapura in [3, 4], Dimca [39] and together with Papadima
and Suciu [40, 41], Artal-Cogolludo-Matei [5, 6], Liu-Maxim [63], Budur-
Wang [23, 22]and Budur-Liu-Wang [21]. It should also mentioned that the
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connection between Alexander modules and cohomology of local systems was
�rst proved by Hironaka [55].

For expository reasons we will mainly follow [61] and we will only pro-
vide speci�c references for the more specialized results. Let X be a �-
nite CW-complex and G = π1(X) its fundamental group. For the sake
of simplicity, we assume that the abelianization H1(G) = G/G′ of G is
torsion-free, say H1(G) = Zr. Consider the universal abelian cover X̃

φ→X,
where Deck(φ) = Zr is generated by t1, . . . , tr ∈ Deck(φ). Since Deck(φ)
acts on H1(X̃), the group H1(X̃) inherits a module structure over the ring
Λ = Z[Deck(φ)] = Z[Zr]. This module MX = H1(X̃) is called the Alexan-
der module of X. As any Λ-module, MX has a sequence of invariants given
by the Fitting ideals or analogously by the sequence of annihilators of its
exterior powers as follows:

Ik = AnnΛ

(
k∧
MX

)
⊂ Λ,

where AnnR(A) = {r ∈ R | ra = 0 ∀ a ∈ A} ⊂ R is by de�nition the
annihilator ideal of an R-module A. After tensoring Λ by C, a new ring ΛC

is obtained over which one can take an algebraic geometrical point of view
and consider the zero locus of Ir ⊗ ΛC inside the torus Spec ΛC = (C∗)r.

De�nition 5.24. We de�ne the sequence of characteristic varieties of X as:

V1(X) := Z(I1) ⊃ ... ⊃ Vk(X) := Z(Ik) ⊃ ...

where Z(Ik) ⊂ (C∗)r is the zero locus of Ik.

There is an alternative way to de�ne characteristic varieties using Fitting
ideals.

De�nition 5.25. Let ϕ : A2 → A1 be a map of free modules over a ring R.
We de�ne the ideal F̃k(ϕ) ⊂ R as the image of the canonical map:

k∧
A2 ⊗

k∧
A∗1 → R

induced by ϕ.

De�nition 5.26. Let M be a �nitely presented module over R and consider
a free resolution

ϕ : A2 → A1 →M → 0

ofM such that A1 (resp. A2) is a �nitely generated R-module of rank r (resp.
s). For every integer k ≥ 0 we de�ne the k-th Fitting ideal of M to be

Fk(M) := F̃r−k(ϕ).
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Proposition 5.27. Under the above conditions, the sequence of character-
istic varieties Vk(X) coincides with the zero locus of the Fitting ideals of its
Alexander module Fk(MX).

Proof. This is an immediate consequence of [20, Cor. 1.3].

Characteristic varieties of quasi-projective spaces satisfy the following
result:

Proposition 5.28. [3, 41] The irreducible components of the characteristic
varieties associated to a quasi-projective group G are algebraic translated tori
by torsion points, that is, they are intersection of zero-sets of polynomials of
the form

P (t1, ..., tr) =
∏
i

(tn1
1 ...t

nr
r − νi),

where νi is a root of unity.
Moreover, the intersection of two such irreducible components is a �nite

union of torsion points.

From the computational point of view, a third way to calculate the se-
quence of characteristic varieties from a �nite presentation of a group

G = π1(X) = 〈a1, ..., an : R1 = ... = Rm = 1〉 (5.7)

is provided via Fox calculus (see [47]).
Formally, one associates a matrix

A =

(
∂Ri

∂aj

)
1≤i≤m,1≤j≤n

,

to the presentation (5.7), where the derivative of a word in the letters a1, . . . , an
is obtained by extending the following de�ning properties by linearity:

∂uv

∂aj
=

∂u

∂aj
+ φ(u)

∂v

∂aj
,

∂1

∂aj
= 0, and

∂ai
∂aj

=

{
1 if i = j

0 otherwise.

The matrix A is called the Alexander matrix associated with (5.7) and
it turns out to be the matrix of the free resolution of a module which is not
the Alexander module, but the Alexander invariant M̃X = H1(X̃, φ−1(p)),
which is the relative homology of the universal abelian cover of X relative to
the preimage of a point as a Λ-module exactly as was done for the Alexan-
der module MX . As in knot theory, both invariants are related (see for
instance [30, Ch. 1]).
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Proposition 5.29. The sequence of characteristic varieties of X can be cal-
culated via Fox calculus as

Vk(X) \ 1̄ = Z(Fk+1(MX)) \ 1̄ = Z(Fk+1(M̃X)) \ 1̄.

The computational advantage of Fk+1(M̃X) is that it can be computed
from the Alexander matrix A of a free resolution of M̃X as follows:

Fk+1(M̃X) =


Λ if k > n

0 if k ≤ max{0, n−m}
(minors of order n− k of A) otherwise.

5.2 Preliminaries

Characteristic varieties of even Artin groups are too similar to those of quasi-
projective groups and hence they cannot be used to tell them apart. However,
some of their �nite index subgroups can be detected as not quasi-projective.
This is why we present a study of a certain type of subgroups of even Artin
groups that will be key in the discussion on quasi-projectivity.

5.2.1 Co-cyclic subgroups of even Artin groups

Let us consider the even Artin group associated with Γ = (V,E, 2`).
The Artin group associated with Γ has a presentation AΓ = 〈v; v ∈

V | A`e(e); e ∈ E〉, where A`e(e) denotes the relation (uv)`e = (vu)`e with
e = {u, v}. Let us �x a vertex, say u ∈ V and an integer k > 1; our purpose
is to give a presentation of the index k subgroup AΓ,u,k of AΓ de�ned as the
kernel of the following morphism:

αu,k : AΓ −→ Zk

v 7→

{
1 if v = u

0 otherwise.

One can think of these as �nite index normal subgroups of a group that
appear as the kernel of a surjection onto a �nite cyclic group, and refer to
them as co-cyclic subgroups.

Note that, for any v ∈ V the conjugation of v by ui is in AΓ,u,k, vi :=
uivu−i. Also, ū := uk will be in the kernel of αu,k. In order to write a
presentation for AΓ,u,k we need some notation. Let us denote by 〈x, y〉li,ε a
formal word in the letters {x0, ..., xk−1, y} as follows

〈x, y〉li,ε = (xi · · ·xk−1yx0 · · ·xi−1)c xi · · ·︸ ︷︷ ︸
re+ε

,
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where l = ck + r, i ∈ Zk and ε = 0, 1. Note that 〈x, y〉li,ε can be thought of
as a cyclic product of the letters x0, . . . , xk−1, and y starting at xi and with
length c(k + 1) + r + ε.

Also, let us consider the set of vertices in V adjacent to u with label 2:

V2,u = {v ∈ V | e = {u, v} ∈ E,me = 2`e = 2}.

The remaining vertices will be denoted by W = V \ ({u} ∪ V2,u).
One obtains the following presentation for AΓ,u,k.

Theorem 5.30. The co-cyclic subgroup AΓ,u,k is generated by

{ū} ∪ V2,u ∪
⋃
w∈W

{w0, ..., wk−1}

and the following is a complete set of relations:

(R) 1. A1(v, ū), for v ∈ V2,u,

2. A`e(v, v
′), for v, v′ ∈ V2,u, e = {v, v′} ∈ E,

3. A`e(v, wi), for v ∈ V2,u, w ∈ W , i ∈ Zk, e = {v, w} ∈ E,
4. A`e(wi, w

′
i), for w,w

′ ∈ W , i ∈ Zk, e = {w,w′} ∈ E.

(RB) Bi
`e,k

(w, ū), for w ∈ W ∩ lk(u), i ∈ Zk, e = {u,w} ∈ E,

where `e = cek + re and Bi
`e

(w, ū) is the relation

〈w, ū〉`ei,ε = 〈w, ū〉`ei+1,ε and ε =

{
0 if 0 ≤ i < k − re
1 otherwise.

Proof. The proof is a direct application of Reidemeister-Schreier's theorem
(c.f. [48]) to obtain a presentation of AΓ,u,k as the kernel of αu,k

AΓ,u,k

j
↪→ AΓ

αu,k→ Zk.

Consider the Reidemeister's section s : Zk → AΓ of the map αu,k given as
s(i) := ui. Then AΓ,u,k admits a presentation generated by the letters

{ū} ∪
⋃
v∈V

{v0, ..., vk−1},

where j(ū) = uk and j(vi) = uivu−i whose relations are:

1. A`e(vi, wi), for v, w ∈ V , i ∈ Zk, if e = {v, w} ∈ E,
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2. Bi
`e,k

(w, ū), for i ∈ Zk, if v ∈ lk(u).

However, note that if v ∈ V2,u, then uivu−i = vi = vj = ujvu−j which implies
a reduction in the set of generators, which now becomes as stated:

{ū} ∪ V2,u ∪
⋃
w∈W

{w0, ..., wk−1}.

Finally, note that the only relations a�ected by this elimination of generators
are those of type A`e(vi, wi) for v ∈ V2,u, which now become A`e(v, wi), and
those of type Bi

1,k(v, ū) for v ∈ V2,u, which now be reduced to A1(v, ū), as
stated.

Remark 5.31. Our purpose will be to study the characteristic varieties of
the co-cyclic subgroups. As presented in section 5.1.5 these are subvarieties
of SpecC[G/G′], for G = AΓ,u,k. First we will describe the abelianization of
AΓ,u,k. Since G is �nitely presented consider F → G the map from the free
group F in the generators of G. The kernel K of this homomorphism is a
free subgroup generated by the set of relations in G. Consider G

ΦG→ G/G′,
g → tg the abelianization map (with a multiplicative structure). According to
Theorem 5.30 the abelianization G/G′ = ΦF(F)/ΦF(K) is generated by

{tū} ∪ {tv}v∈V2,u ∪
⋃
w∈W

{tw,0, ..., tw,k−1},

where for convenience tw,i is used to denote twi. Note that (R).(1)-(4) con-
sidered as words in the free group F belong in fact to F′ and hence their
image by the abelianitation map ΦF is trivial. On the other hand, the words
Bi
`e,k

(w, ū), w ∈ W ∩ lk(u) produce the following relations in homology:

tw,i = tw,i+de = ... = tw,i+nde if e = {u,w}, de = gcd(`e, k), (5.8)

De�nition 5.32. The presentation described in Theorem 5.30 will be referred
to as the standard presentation of AΓ,u,k.

5.2.2 Fox calculus on the co-cyclic subgroups AΓ,u,k

Fox derivatives of a standard presentation

We want to describe the Fox derivatives of the relations of a standard pre-
sentation of the subgroup AΓ,u,k.

The �rst set of relations of type (R) in Theorem 5.30 are classical Artin
relations. In order to describe their Fox derivatives we introduce the poly-
nomial pl(t) = tl−1

t−1
and as above, we denote by tg the homology class of an
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Chapter 5. Quasi-projectivity

element g. In the following results we present the Fox derivatives of certain
relations of type W1 = W2, by this we mean the derivative of the abstract
word W1W

−1
2 .

Lemma 5.33. Under the above conditions

∂A`e(a, b)

∂g
=


−(tb − 1)p`e(tatb) if g = a

(ta − 1)p`e(tatb) if g = b

0 otherwise.

In order to describe the derivatives of relations of type (RB), let us use
some conventions:

t̄w,i,j =


tw,i · · · tw,j−1 if 0 ≤ i < j ≤ k

1 if i = j

t̄wt0/t̄w,j,i if 0 ≤ j < i ≤ k

where tw,i = twi with wi = uiwu−i, t0 = tū, and t̄w = t̄w,0,k. Let us de�ne the
following set that will be useful for the statement of the following lemma:

∆i,j =

{
{i < k < j} if i < j

{k > i} ∪ {k < j} if j < i

We de�ne also the number

αe =

{
0 if re = 0

1 otherwise.

Lemma 5.34. Under the above conditions,

∂Bi
`e,k

(w, ū)

∂g
=



t̄w,i,k(1− t−1
w,i+re

)pce+ε(t0t̄w) if g = ū(
1− t0t̄w

tw,i+re

)
pce(t0t̄w) + αe(t0t̄w)ce if g = wi

t̄w,i,j(1− t−1
w,i+re

)pce+1(t0t̄w) if g = wj, j ∈ ∆i,i+re

t̄w,i,j(1− t−1
w,i+re

)pce(t0t̄w)− αe
t̄w,i,i+re
tw,i+re

(t0t̄w)ce if g = wi+re

t̄w,i,j(1− t−1
w,i+re

)pce(t0t̄w) otherwise.

Proof. The proof is straightforward. First notice that:

∂Bi
`e,k

(w, ū)

∂g
=
∂〈w, ū〉`ei,ε(〈w, ū〉

`e
i+1,ε)

−1

∂g
.
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Let us suppose �rst that ε = 0, we will calculate
〈w, ū〉`ei,0
∂g

. It is straight-

forward that

∂〈w, ū〉`ei,0
∂g

=



t̄w,i,kpce(t0t̄w) if g = ū

t̄w,i,jpce(t0t̄w) if g = wj, j < i

t̄w,i,jpce+αe(t0t̄w) if g = wi

t̄w,i,jpce+1(t0t̄w) if g = wj, i < j < i+ re

t̄w,i,jpce(t0t̄w) if g = wj, j ≥ i+ re.

Now, using the multiplication rule and 0 = ∂uu−1

∂v
= ∂u

∂v
+ tu

∂u−1

∂v
one

obtains:
∂(〈w, ū〉`ei+1,0)−1

∂g
= − 1

(t0t̄w)ce t̄i+1,i+1+re

∂〈w, ū〉`ei+1,0

∂g

Therefore:

∂Bi
`e,k

(w, ū)

∂g
=
∂〈w, ū〉`ei,0

∂g
+ (t0t̄w)ce t̄w,i,i+re

∂(〈w, ū〉`ei+1,0)−1

∂g

And so, doing the computations we obtain:

∂Bi
`e,k

(w, ū)

∂g
=



t̄w,i,k(1− t−1
w,i+re

)pce(t0t̄w) if g = ū

t̄w,i,j(1− t−1
w,i+re

)pce(t0t̄w) if g = wj, j < i(
1− t0t̄w

tw,i+re

)
pce(t0t̄w) + αe(t0t̄w)ce if g = wi

t̄w,i,j(1− t−1
w,i+re

)pce+1(t0t̄w) if g = wj, i < j < i+ re

t̄w,i,j(1− t−1
w,i+re

)pce(t0t̄w)− αe
t̄w,i,i+re
tw,i+re

(t0t̄w)ce if g = wi+re

t̄w,i,j(1− t−1
w,i+re

)pce(t0t̄w) if g = wj, j < i+ re.

We will made the computations in detail for a sample case. Assume
g = wi, then:

∂Bi
`e,k

(w, ū)

∂wi
= pce+αe(t0t̄w) + (t0t̄w)ce t̄w,i,i+re

(〈w, ū〉`ei+1,0)−1

∂wi
=

= pce(t0t̄w) + αe(t0t̄w)ce − (t0t̄w)ce t̄w,i,i+re
(t̄w,i+1,i)pce(t0t̄w)

(t0t̄w)ce t̄w,i+1,i+1+re

=

= pce(t0t̄w)+αe(t0t̄w)ce−t̄w,i,i+re
(t0t̄w)

t̄w,i,i+1+re

pce =

(
1− t0t̄w

tw,i+re

)
pce(t0t̄w)+αe(t0t̄w)ce .
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Similarly, we will suppose now that ε = 1. Again we will calculate
〈w, ū〉`ei,1
∂g

.

It is straight-forward that

∂〈w, ū〉`ei,1
∂g

=



t̄w,i,kpce+1(t0t̄w) if g = ū

t̄w,i,jpce+1(t0t̄w) if g = wj, j < i+ re

t̄w,i,jpce(t0t̄w) if g = wj, i+ re ≤ j < i

t̄w,i,jpce+αe(t0t̄w) if g = wi

t̄w,i,jpce+1(t0t̄w) if g = wj, j > i.

We use again the multiplication rule as in the previous case and we obtain:

∂(〈w, ū〉`ei+1,1)−1

∂g
= − 1

(t0t̄w)ce t̄i+1,i+1+re

∂〈w, ū〉`ei+1,1

∂g

Therefore:

∂Bi
`e,k

(w, ū)

∂g
=
∂〈w, ū〉`ei,1

∂g
+ (t0t̄w)ce t̄w,i,i+re

∂(〈w, ū〉`ei+1,1)−1

∂g

And so, doing the computations we obtain that
∂Bi

`e,k
(w, ū)

∂g
is equal to:



t̄w,i,k(1− t−1
w,i+re

)pce+1(t0t̄w) if g = ū

t̄w,i,j(1− t−1
w,i+re

)pce+1(t0t̄w) if g = wj, j < i+ re

t̄w,i,j(1− t−1
w,i+re

)pce(t0t̄w)− αe
t̄w,i,i+re
tw,i+re

(t0t̄w)ce if g = wi+re

t̄w,i,j(1− t−1
w,i+re

)pce(t0t̄w) if g = wj, i+ re < j < i(
1− t0t̄w

tw,i+re

)
pce(t0t̄w) + αe(t0t̄w)ce if g = wi

t̄w,i,j(1− t−1
w,i+re

)pce+1(t0t̄w) if g = wj, j < i+ re.

Alexander matrices for co-cyclic subgroups of even Artin groups

Given Γ = (V,E, 2`) an even labelled graph. Let us �x u ∈ V and an integer
k > 1. We will denote by MΓ (resp. MΓ,u,k) the Alexander matrix associated
with the Artin presentation of AΓ, (resp. the standard presentation of AΓ,u,k

given in �5.2.1). The purpose of this section is to describe some relevant
properties of both MΓ and MΓ,u,k.
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Among these properties, the most relevant for our purposes refer to their
rank. Note that, since these matrices have coe�cients in a ring of Laurent
polynomials R = C[Zm], a matrix A ∈ Mat(R) has rank at least r if and
only if there is a value p = (t1, . . . , tm) ∈ Cm such that A⊗R/mp ∈ Mat(C)
has an r× r non-zero minor, where mp denotes the maximal ideal at p. This
operation will be called evaluating and will be used oftentimes to simplify
notation.

Lemma 5.35. The rank of the Alexander matrix MΓ de�ned above is ex-
actly |V | − 1.

Proof. Consider MT the row submatrix of MΓ given by the |V | − 1 relations
determined by the edges of a maximal tree T in Γ. SinceMT clearly has rank
|V | − 1, the matrix MΓ has rank at least |V | − 1.

To see the equality, consider Γ̄ = (V, Ē, 2¯̀) the completion of the graph Γ
obtained from Γ by adding an edge of label 2 for every pair of disconnected
vertices. The matrixMΓ̄ associated with this graph containsMΓ as a subma-
trix. Choose any vertex v ∈ V , we will show that the |V |−1 rows associated
to the relations involving v generate the remaining rows.

Consider e = {w,w′} ∈ Ē, using Lemma 5.33, the row fe associated with
the classical Artin relation A¯̀

e
(w,w′) has the form:

p¯̀
e
(twtw′) (0 ... 0 (1− tw′) 0 ... 0 (tw − 1) 0 ... 0) (5.9)

where the non-zero elements are at the columns corresponding to the vertices
w and w′ respectively.

Note that, since Γ̄ is a complete labelled even graph, the three ver-
tices v, w, w′ ∈ V̄ = V form a triangle, that is, e = {w,w′}, e1 = {v, w},
e2 = {v, w′}. Moreover, the rows fe, fe1 , and fe2 satisfy the following linear
combination:

(tv − 1)

p¯̀
e
(twtw′)

fe +
(tw′ − 1)

p¯̀
e1

(tvtw)
fe1 +

(tw − 1)

p¯̀
e2

(tvtw′)
fe2 = 0.

Thus, MΓ̄ has rank less than or equal to |V | − 1. Since MΓ is a submatrix of
MΓ̄ the result follows.

Notation 5.36. Recall from Theorem 5.30 that the generators of a standard
presentation of AΓ,u,k can be distinguished in three type groups {ū} ∪ V2,u ∪
Wk,u, where

V2,u = {v ∈ V | e = {u, v} ∈ V, `e = 1}
and

Wk,u = {wi,j | wi ∈ W = V \ ({ū} ∪ V2,u), j ∈ Zk}.
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In the sequel, the elements in V2,u will be denoted by v1, ..., vm, where m is
the number of vertices adjacent to u with label 2. Analogously, the elements
of Wk,u will be denoted by wi,j, for wi ∈ W , where 1 ≤ i ≤ n = |V | −m− 1
and j ∈ Zk.

From the results of the two previous sections, we immediately obtain the
following description of the Alexander matrix MΓ,u,k.

Lemma 5.37. The Alexander matrix MΓ,u,k of AΓ,u,k associated with its
standard presentation has the following form:

w∗,0 w∗,1 ... w∗,k−1 v1 ... vm ū



0 0 ... 0 Ak 0
A′0 0 ... 0 A0 0
0 A′1 ... 0 A1 0
... ... ... ... ... ... ... ...
0 0 ... A′k−1 Ak−1 0

tū − 1 1− tv1

0 0 0 ...
. . .

...
tū − 1 1− tvm

MB

where:

1. w∗,j denotes the set of columns associated with all the generators of type
wi,j ∈ Wk,u for a �xed j ∈ Zk, with wi ∈ W , as in Notation 5.36.

2. Ak is the Alexander matrix corresponding with relations of type R(2)
in Theorem 5.30 with respect to the generators {v1, . . . , vm}.

3. the submatrices A′j and Aj are so that the matrix (A′j Aj) is the
Alexander matrix of the relations of type R(3) in Theorem 5.30 with
respect to the generators {w∗,j, v1, . . . , vm} , i.e. their rows are of the
form:

fa,b ≡ pcab(tatb) (0 ... 0 (1− tb) 0 ... 0 (ta − 1) 0 ... 0)

for a = vl ∈ V2,u and b = wi,j ∈ Wk,u.

4. The submatrixMB is the Alexander matrix associated with the relations
of type (RB) in Theorem 5.30. Note that this is a block matrix whose
blocks are the submatrices MB(w,u) associated with the relations of type
Bi
`e,k

(w, ū), for i ∈ Zk and {u,w} ∈ E.
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Lemma 5.38. The submatrix MB(w,u) has maximal rank.

Proof. As was mentioned above, we are assuming {u,w} ∈ E. Let us distin-
guish two cases depending on whether or not `e is a multiple of k.

1. Assume `e ≡ 0 mod k. Using Lemma 5.34 and evaluating tw,0 =
tw,1 = ... = tw,k−2 = 1 in MB(w,u) the following upper triangular matrix
is obtained:

M =

w0 w1 ... wk−2 wk−1 ū


tū − 1 tū − 1 ... tū − 1 tū − 1 1− tw,k−1

1− tw,k−1tū 0 ... 0 0 0
0 1− tw,k−1tū ... 0 0 0

0 0
. . . ...

...
...

0 0 ... 1− tw,k−1tū 0 0

which has maximal rank.

2. Assume `e 6≡ 0 mod k. Write `e = cek + re, with 0 < re < k. Analo-
gously to the previous case, using Lemma 5.34 and evaluating now at
tw,0 = tw,1 = ... = tw,k−2 = tw,k−1 = 1, the following matrix is obtained:

M =

w0 ... wr−1 wr ... wk−r−1 wk−r ... wk−1 ū



1 −tcū 0
. . . . . . ...

. . . . . . ...
. . . . . . ...

. . . . . . ...
1 −tcū

−tc+1
ū 1

...
. . . . . .

−tc+1
ū 1 0

Formally, tū = 0 produces a matrix of maximal rank and hence the
result follows using small enough values of tū.

Remark 5.39. Note that, in the previous Lemma, the submatrix of MB(w,ū)

resulting from deleting the column ū has a maximal rank. Therefore, in order

95



Chapter 5. Quasi-projectivity

to study the rank of MΓ,u,k, and after row operations, one can assume that
MB(w,ū) is equivalent to:

w0 w1 ... wk−2 wk−1 ū


∗ ∗ . . . ∗ ∗ ∗
0 ∗ . . . ∗ ∗ ∗
0

. . . . . . ∗ ...
...

0 0
. . . . . .

...
...

0 0 . . . 0 ∗ ∗

Recall that the corank of a matrix M , is de�ned as

corank(M) = #columns(M)− rank(M).

Then one has the following result on the corank of MΓ,u,k.

Lemma 5.40. Under the conditions above corank(MΓ,u,k) ≤ 1.

Proof. Let us consider Γu = Γ\{u}. We will �rst assume that Γu is connected.
Following the notation above, recall that V2,u = {v1, . . . , vm} denotes the set
of vertices adjacent to u with label 2 andW = {w1, . . . , wn} denotes the set of
remaining vertices of Γu. We will consider the matrixM obtained eliminating
the column corresponding to u from the Alexander matrix MΓ,u,k (which has
(nk+m+ 1)− 1 = nk+m columns). We will prove the result showing that
M has maximal rank:

1. If n = 0, the matrix M becomes:

M =

v1 . . . vm



1− tū
. . .

1− tū
∗ ∗ ∗
... ... ...
∗ ∗ ∗

which has maximal rank.

2. If n 6= 0, consider T a spanning tree on Γu.
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(a) Assume m 6= 0. In this case we will describe certain submatrices
of MΓ which will appear as blocks in MΓ,u,k of the appropriate
rank.

In order to do this, note that T will contain at least n edges
e1, .., en satisfying that each ei involves at least one vertex in W
and W ⊂ V ({e1, ..., en}). Let us denote by S ⊂ T the forest
containing the edges e1, .., en. Note that S de�nes a submatrix
M0 of MΓu . We will show that columns and rows can be ordered
in such a way thatM0 is upper triangular, every diagonal element
is non-zero, and the columns associated with the vertices W come
�rst.

This can be easily seen by induction. In case Γu has only two
vertices, say v and w (this is by hypothesis the minimum number
of vertices), and only one edge, the matrix M0 is a row matrix
of type (5.9) whose columns can be reordered as wanted. Now,
suppose the result is true for λ− 1 vertices and consider now the
case when Γu has exactly λ vertices. Choose a vertex w′ in V (S) of
degree 1. Note that, by de�nition, S must contain at least one such
vertex in W , so one can assume w′ ∈ W . Then S \ {w′} veri�es
the result. The matrixM0 results from the latter after adding one
column (associated with w′) and one row f (associated with the
edge containing w′). Note that placing w′ as the �rst column and
f as the �rst row concludes the proof.

Also note that the submatrix Mn of M0 resulting from keeping
only the columns associated with the vertices in W appears as is
in k blocks in MΓ,u,k corresponding to the copies of the vertices
in W and the relations associated with the edges of S. This pro-
duces a square submatrix Mk of MΓ,u,k of size kn and non-zero
determinant. Finally, let us add to Mk the columns associated
with all vertices in V2,u placed at the end. Since every vi ∈ V2,u is
adjacent to u with label 2 the relations associated with these edges
result in rows producing an upper triangular square submatrix M
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of size kn+m whose determinant is non-zero as below.

M =

W V



Mn

0
. . .

... 0 Mn

...
... . . . 1− tū

...
... . . . . . . . . .

0 0 0 0 0 1− tū

This ends this case.

(b) If m = 0, then the spanning tree T consists of n vertices and n−1
edges. Let us consider wn a vertex in Γ adjacent to u (there must
be at least one since Γ is connected). Consider the Alexander
submatrix MB(wn,ū) associated with relations of type (RB), which
by Remark 5.39, is equivalent to:

wn,0 wn,1 ... wn,k−2 wn,k−1


∗ ∗ . . . ∗ ∗
0 ∗ . . . ∗ ∗
0

. . . . . . ∗ ...

0 0
. . . . . . ...

0 0 . . . 0 ∗

Let f1, ..., fk denote the k rows of this matrix.
On the other hand, let MT be the (n− 1)×n submatrix MΓ asso-
ciated with T . Let us order the relations in such a way thatMT is
upper triangular with non-zero diagonal elements and whose last
column corresponds to wn � in other words, the vertex associated
to the �rst column must have degree 1.
For each group of copies of the vertices wj,p, there is a copy of
the tree T with an analogous matrix MT,p. Now, one can write
the Alexander matrix MΓ in the following way: the �rst rows
correspond to the matrix MT , then the row f1 completed with
zeroes where necessary, then the rows corresponding to the matrix
MT,1, then the row f2. Finally the matrix MT,k−1 and the row fk.
This matrix is clearly upper triangular and it has maximal rank
(kn = kn+m).
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Summarizing, if Γu is connected, then rank(MΓ,u,k) ≥ nk+m, and hence
corank(MΓ,u,k) ≤ 1.

Assume now that Γu is not connected, and denote by Γ1, ...,Γs its con-
nected components.

Then, the Alexander matrix MΓ,u,k after removing the column ū is of the
form:

C1 C2 ... Cs


MC1 0 . . . 0

0 MC2

. . . ...
... . . . . . . 0
0 . . . 0 MCs

where MCi corresponds to a connected graph. The result follows from the
connected case since the matrix is block-diagonal.

Lemma 5.41. Assume e = {w, u} ∈ E such that `e ≡ 0 mod k, then
the matrix MB(w,ū) has rank 1 over Λ/p, where p is the ideal generated by
1− tūtw,0 · · · tw,k−1.

Proof. By Lemma 5.34 we know that MB(w,ū) is a multiple by pce(tūt̄w) of
the following matrix

M =


1− t̄w,0,k tū − 1 ... t̄w,0,k−1(tū − 1)

t̄w,1,k(tw,0 − 1) 1− t̄w,1,0 ... t̄w,1,k−1(tw,0 − 1)
... ... ... ...

t̄w,k−1,k(tw,k−2 − 1) t̄w,k−1,0(tw,k−2 − 1) ... tw,k−2 − 1


Note that, mod p, M can be written as

t−1
ū (t0 − 1) tū − 1 ... t̄w,0,k−1(tū − 1)

t−1
ū t−1

w,0(tw,0 − 1) t−1
w,0(tw,0 − 1) ... t̄w,1,k−1(tw,0 − 1)

... ... ... ...
t−1
ū t−1

w,0...t
−1
w,k−2(tw,k−2 − 1) t−1

w,0...t
−1
w,k−2(tw,k−2 − 1) ... tw,k−2 − 1


If fj denotes the j-th row of M note that

(tū − 1)tw,0 · · · tw,j−2fj = (tw,j−2 − 1)f1

for any j = 2, ..., k − 1 and thus the result follows.
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5.3 qp-Irreducible graphs

As mentioned in the Introduction, a graph is called quasi-projective � or qp-
graph � if its associated Artin group is in Gqp. The purpose of this section is
to describe the simplest qp-graphs, referred to as qp-irreducible graphs for
even Artin groups.

De�nition 5.42. We call Γ a qp-irreducible graph if AΓ is quasi-projective
and it cannot be obtained as a 2-join of two quasi-projective graphs.

By Proposition 5.7(2), the 2-join of qp-graphs must be a qp-graph. How-
ever, in general, properties on Artin groups are not easily read from sub-
graphs. This result allows one to read an obstruction to quasi-projectivity
from certain subgraphs to graphs.

De�nition 5.43. We say that Γ1 is a v-subgraph of Γ if Γ1 is obtained from
Γ by deleting some vertices. We will denote it Γ1 ⊂v Γ. In this situation Γ
is called a v-supergraph of Γ1.

Lemma 5.44. Let AΓ1 be the Artin group of Γ1 = (V1, E1,m1). Assume that
for certain k ∈ Z≥2, and u ∈ Γ1, the subgroup Ĝk := AΓ1,u,k ⊂ AΓ1 satis�es
that there exist two ideals Î1, Î2 ⊂ Λ̂k := C[H1(Ĝk)] such that:

(C1) Z(Îi) ⊂ Vri(Ĝk), ri ≥ 1 for i = 1, 2,

(C2) dim(Z(Î1 + Î2)) ≥ 1, and

(C3) (a) either Z(Î1 + Î2) ⊂ Vr(Ĝk) for r > max{r1, r2},
(b) or Î1, Î2 are prime ideals of Λ̂k.

Then AΓ1 is not quasi-projective.
Moreover, if Γ = (V,E,m) is any v-supergraph of Γ1 such that me is even

for any e = {v, w} ∈ E, v ∈ V1, w ∈ V \ V1, then AΓ is not quasi-projective.

Proof. Let us prove the �rst part by contradiction. Assuming that AΓ1 is
quasi-projective would imply that the co-cyclic group AΓ1,u,k is also quasi-
projective by Proposition 5.7(1). The strategy of this proof is to reach a
contradiction on the quasi-projectivity of AΓ1,u,k by �nding two irreducible
components of its characteristic variety intersecting in a positive dimensional
component and thus contradicting Proposition 5.28. Let us assume that
r1 ≥ r2. Note that the set of zeroes Z(Îi) may be non-irreducible, but, using
condition (C3)(a) in the statement, there exists an irreducible component,
say H1 (resp. H2) in Z(Î1) (resp. Z(Î2)) which is not contained in Z(Î2)
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(resp. in Z(Î1)). By condition (C2) their intersection H1∩H2 has dimension
greater or equal to 1.

To prove the moreover part, we will show that AΓ also satis�es the hy-
potheses of the �rst part, that is, that there exist two ideals I1, I2 ⊂ Λk :=
C[H1(Gk)] satisfying conditions (C1)-(C2) and either (C3)(a) or (C3)(b) for
the subgroup Gk := AΓ,u,k ⊂ AΓ. Note that, the condition on the parity
of the labels joining vertices from V1 and V \ V1 ensures the existence of a
commutative diagram

1 → Gk → GΓ → Z → 1
↓ ||

1 → Ĝk → GΓ1 → Z → 1

which allows for the existence of a morphism H1(Gk) → H1(Ĝk) extending
to Λk → Λ̂k. Moreover, Λ̂k = Λk/I for a certain ideal. In order to describe
it let us decompose V as a disjoint union V = V1 ∪ Ṽ2,u ∪W , where Ṽ2,u =
{v ∈ V \ V1 | e = {u, v} ∈ E,me = 2}. Then

I = Ideal
(
{tv − 1 | v ∈ V \ Ṽ2,u} ∪ {tw,j − 1 | w ∈ W, j ∈ Zk}

)
.

Since the tensor product is right exact, the matrix M̂Γ,u,k = MΓ,u,k⊗Λ/I

determines the Alexander Λ̂k-module of Ĝk. We claim that

M̂Γ,u,k =

(
MΓ1,u,k 0

0 A′

)
. (5.10)

In order to check this, �rst note that the submatrix of M̂Γ,u,k whose rows are
associated to the edges of Γ1 has the form(

MΓ1,u,k 0
)
.

The claim will follow if we prove that the remaining rows, associated with
the edges in E \ E1, satisfy that any entry in a column in V1 is in Î. The
latter is a consequence of (5.9) and Lemma 5.34.

Finally, note that if condition (C3)(a) (resp. (C3)(b)) is satis�ed for Îi,
then also condition (C3)(a) (resp. (C3)(b)) is satis�ed for Ii = I + Îi us-
ing (5.10) (resp. using that Z(Ii) = Z(Îi)×{1} is irreducible). Therefore the
ideals I1, I2 ⊂ Λk also satisfy the conditions of the statement for AΓ and the
result follows.

Remark 5.45. By Theorem 5.22, the only qp-irreducible right-angled graphs
are sets of r disconnected vertices, Kr. On the other hand, we have estab-
lished by Theorem 5.23 that both the segment S2` with label 2` (` > 1) and
the triangle T (4, 4, 2) are also qp-irreducible graphs.
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...
r

Kr

2`

S2`
4 4

2

T (4, 4, 2)

Figure 5.8: qp-irreducible graphs of type Kr, S2`, and T (4, 4, 2).

The purpose of this section is to show that the only qp-irreducible graphs
are Kr, S2` (` > 1), and T (4, 4, 2).

First we can assume that our graph has at least three vertices, otherwise
it is qp-irreducible if and only if it is disconnected Kr (r = 1, 2) or a segment
S2` (` > 1). The second reduction is given in [5], for strictly even graphs,
that is, even graphs that are not right-angled. We recall it here.

Theorem 5.46 ([5, Thm. 5.26]). If Γ is a strictly even, non-complete graph
with at least three vertices, then AΓ is not quasi-projective.

This result is shown by proving that the characteristic varieties of the
Artin groups of non-complete strictly even graphs contain two irreducible
components having a positive dimensional intersection, which contradicts
Proposition 5.28.

For the sake of completeness, we will include a proof of this theorem which
will be developed in the next three lemmas. Notice that to prove Theorem
5.46 is enough to discard the following three cases:

Lemma 5.47. If Γ̂ is an even graph which contains a v-subgraph Γ ⊂v Γ̂ as
in Figure 5.9 with k, r ≥ 2, then AΓ̂ is not quasiprojective.

w

u

v

2r 2k

u v

w

Figure 5.9

Proof. We will consider the subgroup AΓ,u,r ⊂ AΓ of index r. The Alexander
matrix, MΓ,u,r, of the associated group is:
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ū v0 w0 v1 w2 ... vr−1 wr−1



0 p2k(tv,0tw,0)(1− tw,0) p2k(tv,0tw,0)(tv,0 − 1) 0 0 ... 0 0
0 0 0 p2k(tv,1tw,1)(1− tw,1) p2k(tv,1tw,1)(tv,1 − 1) ... 0 0
... ... ... ... ... ... ... ...
0 0 0 0 0 ... p2k(tv,r−1tw,r−1)(1− tw,r−1) p2k(tv,r−1tw,r−1)(tv,r−1 − 1)

1− t̄v,0,r tū − 1 0 t̄v,0,1(tū − 1) 0 ... t̄v,0,r−1(tū − 1) 0
t̄v,1,r(tv,0 − 1) 1− t̄v,1,0 0 tv,1 − 1 0 ... t̄v,1,r−1(tv,1 − 1) 0

... ... ... ... ... ... ... ...
t̄v,r−1,r(tv,r−2 − 1) t̄v,r−1,0(tv,r−2 − 1) 0 t̄v,r−1,1(tv,r−2 − 1) 0 ... tv,r−2 − 1 0

By Lemma 5.40, MΓ,u,r has rank ≥ 2r. Since MΓ,u,r has exactly 2r rows,
its rank must be 2r, so it has corank 1. We now consider two ideals:

I1 = (tv,0 − 1, tv,1 − 1)

I2 = (tū − 1, tw,1 − 1) +
∑
i 6=1

(tv,i − 1).

If we study the corank of MΓ,u,r|I1 (resp. MΓ,u,r|I2), it is easily seen that:

corankMΓ,u,r|I1 = corankMΓ,u,r|I2 = 2 > corankMΓ,u,r = 1.

Now, I1 + I2 annuls the last r rows corresponding to the Pseudo Artin sub-
matrix as well as the second row. Therefore, there are only r − 1 non-zero
rows and:

corankMΓ,u,r|I1+I2 ≥ r + 2 > max{corankMΓ,u,r|I1 , corankMΓ,u,r|I2} = 2.

Moreover, note that, Z(I1 + I2) has dimension ≥ 1 since the variable tw,0 is
free. Therefore, by Lemma 5.44, AΓ̂ is not quasiprojective.

Lemma 5.48. If Γ̂ is an even graph which contains a v-subgraph Γ ⊂v Γ̂ as
in Figure 5.10 with r ≥ 2. Then AΓ̂ is not a quasiprojective group.

w

u

v

2 2r

v w

u

Figure 5.10

Proof. We will consider the subgroup AΓ,u,r ⊂ AΓ of index r. The Alexander
matrix of the associated group is:
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MΓ,u,r =

u v w0 w1 ... wr−1


1− tv tū − 1 0 0 ... 0

1− t̄w,0,r 0 tū − 1 t̄w,0,1(tū − 1) ... t̄w,0,r−1(tū − 1)
t̄w,1,r(tw,0 − 1) 0 1− t̄w,1,0 tw,0 − 1 ... t̄w,1,r−1(tw,0 − 1)
t̄w,2,r(tw,1 − 1) 0 t̄w,2,0(tw,1 − 1) 1− t̄w,2,1 ... t̄w,2,r−1(tw,1 − 1)

... ... ... ... ... ...
t̄w,r−1,r(tw,r−2 − 1) 0 t̄w,r−1,0(tw,r−2 − 1) t̄w,r−1,1(tw,r−2 − 1) ... tw,r−2 − 1

By Lemma 5.38,the submatrix obtained by eliminating the �rst row has
rank r, and the �rst row is independent with respect to the others (note the
entries in column v), soMΓ,u,r has rank r+1 (so corank 1). We now consider
two ideals:

I1 = (tū − 1) +
∑
i 6=0

(tw,i − 1),

I2 = (tū − 1) +
∑
j 6=1

(tw,j − 1).

Note that I1 (resp. I2) makes the columns v and w0 (resp. w1) vanish.
Therefore:

corankMΓ,u,r|I1 = corankMΓ,u,r|I2 = 2 > corankMΓ,u,r = 1.

Now, clearly:

corankMΓ,u,r|I1+I2 ≥ 3 > max{corankMΓ,u,r|I1 , corankMΓ,u,r|I2} = 2.

Moreover, Z(I1+I2) has dimension≥ 1 since the variable tv is free. Therefore,
by Lemma 5.44, AΓ̂ is not quasiprojective.

Lemma 5.49. Assume Γ̂ is an even graph which contains a v-subgraph Γ ⊂v
Γ̂ as in Figure 5.11 with r ≥ 1. Then AΓ̂ is not a quasiprojective group.

w

u

v
2r

u v

w

Figure 5.11

Proof. If r = 1 we have a right-angled graph, so we already know that it is
not quasiprojective (by Theorem 5.22), so it is not a simple block. Therefore,
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we can supposse r > 1. Consider the subgroup AΓ,u,r ⊂ AΓ of order r. Note
that the Alexander matrix of the associated group is:

MΓ,u,r =

u v0 ... vr−1 w0 ... wr−1


1− t̄v,0,r tū − 1 ... t̄v,0,r−1(tū − 1)

t̄v,1,r(tv,0 − 1) 1− t̄v,1,0 ... t̄v,1,r−1(tv,0 − 1) 0
... ... ... ...

t̄v,r−1,r(tv,r−2 − 1) t̄v,r−1,0(tv,r−2 − 1) ... tv,r−2 − 1

By Lemma 5.38, this matrix has rank r (i.e. maximal rank since it is a
(2r + 1)× r matrix), so it has corank r + 1. Consider the following ideals:

I1 = (tū − 1) +
∑
i 6=1

(tw,i − 1),

I2 = (tū − 1) +
∑
j 6=0

(tw,j − 1).

Note that I1 (resp. I2) makes the column v1 (resp. v0) vanish. Therefore:

corankMΓ,u,r|I1 = corankMΓ,u,r|I2 = r + 2 > corankMΓ,u,r = r + 1.

Now, clearly:

corankMΓ,u,r|I1+I2 = 2r+1 > max{corankMΓ,u,r|I1 , corankMΓ,u,r|I2} = r+2.

Moreover, Z(I1 + I2) has dimension ≥ 1 since the variables tw,p are free.
Therefore, by Lemma 5.44, the group AΓ̂ is not quasiprojective.

Note that qp-irreducible even graphs � other than a point � are necessar-
ily strictly even. Hence, the purpose of the rest of the section is to study
complete qp-irreducible graphs of three or more vertices.

5.3.1 Complete QP-irreducible graphs with 3 vertices

Theorem 5.50. Assume Γ is an even v-supergraph of T (2r, 2k, 2`) with r ≥
3 and k ≥ 2 � see Figure 5.12. Then AΓ is not quasi-projective.

Proof. Without loss of generality, one can assume r ≥ k ≥ `. Four separate
cases will be considered.
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w

u

v

2r 2k

2`
v w

u

Figure 5.12

1. In case r ≥ 4, k ≥ 2, one can consider the index r subgroup AT,u,r ⊂
AT , where T = T (2r, 2k, 2`). According to Lemma 5.37 MT,u,r has
two B-Artin submatrices MB(v,ū) and MB(w,ū) of r rows each and an
Artin submatrix of r rows (corresponding to the r relations A`(vi, wi)
for i ∈ Zr. Hence MT,u,r is a 3r × (2r + 1) matrix whose corank is ≤ 1
by Lemma 5.40. Let us de�ne p = 1 − tūt̄v and consider the following
ideals

I1 = (p, tv,0 − 1, tv,1 − 1, tw,0 − 1, tw,1 − 1)

I2 = (p, tv,0 − 1, tv,2 − 1, tw,0 − 1, tw,2 − 1).

Note that rank(MB(v,ū)|Ii) = 1 by Lemma 5.41. In addition, note that
the �rst two rows of MT,u,r|I1 are zero and also the �rst and third rows
of MT,u,r|I2 . Summarizing, MT,u,r|Ii contains three submatrices Mi,A,
Mi,B(v,ū), and Mi,B(w,ū), where rank(Mi,A) ≤ r− 2, rank(Mi,B(v,ū)) = 1,
and rank(Mi,B(w,ū)) ≤ r. Therefore rank(MT,u,r|Ii) ≤ 2r − 1. Since
MT,u,r has 2r + 1 columns, one has

corank(MT,u,r|Ii) ≥ 2 > corankMT,u,r.

Also

corank(MT,u,r|I1+I2) < max{corankMT,u,r|I1 , corankMT,u,r|I2},

since I1+I2 makes one extra row vanish, which is originally independent
from the others. Finally, Z(I1+I2) has dimension ≥ 1 since the variable
tū is free (since r ≥ 4, P gives a relation between tv,3 and tū but does not
�x any of them). Therefore, by Lemma 5.44, AΓ is not quasi-projective.

According to Remark 5.31, if gcd(k, r) = 1 (resp. gcd(k, r) = 2), then
tw,0 = tw,1 = tw,2 (resp. tw,0 = tw,2). However, the variables tv,i are all
di�erent due to the choice of r, the label of the edge {u, v}, as the index
of the �nite subgroup. Hence ideals I1 and I2 satisfy the properties of
Lemma 5.44 anyway.
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2. Case r = 3 and k = 3 can be treated by considering AT,u,3 ⊂ AT the
subgroup of index 3.

The associated Alexander matrix, MT,u,3, is:

u v0 w0 v1 w1 v2 w2



0 p`(tv,0tw,0)(1− tw,0) p`(tv,0tw,0)(tv,0 − 1) 0 0 0 0
0 0 0 p`(tv,1tw,1)(1− tw,1) p`(tv,1tw,1)(tv,1 − 1) 0 0
0 0 0 0 0 p`(tv,2tw,2)(1− tw,2) p`(tv,2tw,2)(tw,2 − 1)

1− tv,0tv,1tv,2 tū − 1 0 tv,0(tū − 1) 0 tv,0tv,1(tū − 1) 0
tv,1tv,2(tv,0 − 1) 1− tv,1tv,2tū 0 tv,0 − 1 0 tv,1(tv,0 − 1) 0
tv,2(tv,1 − 1) tv,2tū(tv,1 − 1) 0 1− tv,2tūtv,0 0 tv,1 − 1 0

1− tw,0tw,1tw,2 0 tū − 1 0 tw,0(tū − 1) 0 tw,0tw,1(tū − 1)
tw,1tw,2(tw,0 − 1) 0 1− tw,1tw,2tū 0 tw,0 − 1 0 tw,1(tw,0 − 1)
tw,2(tw,1 − 1) 0 tw,2tū(tw,1 − 1) 0 1− tw,2tūtw,0 0 tw,1 − 1

By Lemma 5.40, it has corank ≤ 1. We now consider the ideals:

I1 = (tū − 1, tv,1 − 1, tv,2 − 1, tw,0 − 1, tw,1 − 1)
I2 = (tū − 1, tv,1 − 1, tv,2 − 1, tw,0 − 1, tw,2 − 1).

Now,

MΓ,w0,3|I1 =

u v0 w0 v1 w1 v2 w2



0 0 p`(tv,0tw,0)(tv,0 − 1) 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 p`(tv,2tw,2)(1− tw,2) 0

1− tv,0 0 0 0 0 0 0
(tv,0 − 1) 0 0 tv,0 − 1 0 (tv,0 − 1) 0

0 0 0 1− tv,0 0 0 0
1− tw,2 0 0 0 0 0 0

0 0 1− tw,2 0 0 0 0
0 0 0 0 1− tw,2 0 0

has corank 2, and:

MΓ,w0,3|I2 =

u v0 w0 v1 w1 v2 w2



0 0 p`(tv,0tw,0)(tv,0 − 1) 0 0 0 0
0 0 0 p`(tv,1tw,1)(1− tw,1) 0 0 0
0 0 0 0 0 0 0

1− tv,0 0 0 0 0 0 0
(tv,0 − 1) 0 0 tv,0 − 1 0 (tv,0 − 1) 0

0 0 0 1− tv,0 0 0 0
1− tw,1 0 0 0 0 0 0

0 0 1− tw,1 0 0 0 0
(tw,1 − 1) 0 (tw,1 − 1) 0 0 0 tw,1 − 1

has also clearly corank 2. Therefore

2 = max(corankMT,u,3|I1 , corankMT,u,3|I2) > 1 ≥ corankMT,u,3
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Also

MT,u,3|I1+I2 =

u v0 w0 v1 w1 v2 w2



0 0 p`(tv,0tw,0)(tv,0 − 1) 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

1− tv,0 0 0 0 0 0 0
(tv,0 − 1) 0 0 tv,0 − 1 0 (tv,0 − 1) 0

0 0 0 1− tv,0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

has corank 3. Therefore

corankMT,u,3|I1+I2 = 3 > max{corankMT,u,3|I1 , corankMT,u,3|I2} = 2.

Moreover, Z(I1 + I2) has dimension ≥ 1 since the variable tv,0 is free.
Therefore, by Lemma 5.44, AΓ̂ is not quasiprojective.

3. Case r = 3, k = ` = 2 follows after considering the subgroup AT,u,2 ⊂
AT of index 2. The associated Alexander matrix is

MT,u,2 =

ū v0 w0 v1 w1


0 p0(1− tw,0) p0(tv,0 − 1) 0 0
0 0 0 p1(1− tw,1) p1(tv,1 − 1)

1− tv,0tv,1 tū − 1 0 tv,0(tū − 1) 0
tv,1(tv,0 − 1) 1− tv,1tū 0 tv,0 − 1 0
1− tw,0tw,1 0 tū − 1 0 tw,0(tū − 1)
tw,1(tw,0 − 1) 0 1− tw,1tū 0 tw,0 − 1

with pi = 1 + tw,itv,i + t2w,it
2
v,i, i = 0, 1.

By Lemma 5.40, it has corank ≤ 1. We now consider the ideals

I1 = (1− tūt̄w, 1− tūt̄v, p0)
I2 = (1− tūt̄w, 1− tūt̄v, p1),

By Lemma 5.41, it is clearly seen thatMT,u,2|Ii has corank 2. Therefore:

2 = max(corankMT,u,2|I1 , corankMT,u,2|I2) > 1 ≥ corankMT,u,2.

It is also easy to see that MT,u,2|I1+I2 has corank 3. So, clearly:

corankMT,u,2|I1+I2 = 3 > max{corankMT,u,2|I1 , corankMT,u,2|I2} = 2.
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Moreover, Z(I1 + I2) has dimension ≥ 1, since I1 + I2 is generated by
four polynomials in �ve variables. Therefore, by Lemma 5.44, AΓ̂ is
not quasiprojective.

4. Finally, if r = 3, k = 2, and ` = 1, the result follows after considering
AT,v,3 ⊂ AT the subgroup of index 3 which has associated Alexander
matrix:

MΓ,v,3 =

v̄ w u0 u1 u2



1− tw tv̄ − 1 0 0 0
0 p0(1− tu,0) p0(tw − 1) 0 0
0 p1(1− tu,1) 0 p1(tw − 1) 0
0 p2(1− tu,2) 0 0 p2(tw − 1)

1− tu,0tu,1tu,2 0 tv̄ − 1 tu,0(tv̄ − 1) tu,0tu,1(tv̄ − 1)
tu,1tu,2(tu,0 − 1) 0 1− tu,1tu,2tv̄ tu,0 − 1 tu,1(tu,0 − 1)
tu,2(tu,1 − 1) 0 tu,2tv̄(tu,1 − 1) 1− tv̄tu,0tu,2 tu,1 − 1

where pi = 1 + twtu,i, i = 0, 1, 2. By Lemma 5.40, it has corank ≤ 1.
We now consider the ideals:

I1 = (p0, p1, 1− tv̄ t̄u)
I2 = (p0, p2, 1− tv̄ t̄u),

By Lemma 5.41, it is clearly seen thatMΓ,v,3|Ii has corank 2. Therefore

2 = max(corankMΓ,v,3|I1 , corankMΓ,v,3|I2) > 1 ≥ corankMΓ,v,3.

It is also easy to see that MΓ,v,3|I1+I2 has corank 3. So, clearly

corankMΓ,v,3|I1+I2 = 3 > max{corankMΓ,v,3|I1 , corankMΓ,v,3|I2} = 2.

Moreover, Z(I1 + I2) has dimension ≥ 1 since I1 + I2 is generated by
four polynomials in �ve variables. Therefore, by Lemma 5.44, AΓ̂ is
not quasiprojective.

Theorem 5.51. Assume Γ is an even v-supergraph of T (4, 4, 4). Then, AΓ

is not quasi-projective.

Proof. Consider T = T (4, 4, 4) with vertices V = {u, v, w} and the index 2
co-cyclic subgroup AT,u,2 ⊂ AT . According to Lemma 5.37 the Alexander
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matrix of the associated group is

MT,u,2 =

v0 w0 v1 w1 ū


p0(1− tw,0) p0(tv,0 − 1) 0 0 0

0 0 p1(1− tw,1) p1(tv,1 − 1) 0
tū − 1 0 tv,0(tū − 1) 0 1− tv,0tv,1

1− tv,1tū 0 tv,0 − 1 0 tv,1(tv,0 − 1)
0 tū − 1 0 tw,0(tū − 1) 1− tw,0tw,1
0 1− tw,1tū 0 tw,0 − 1 tw,1(tw,0 − 1)

with pi = 1 + tv,itw,i, i = 0, 1. By Lemma 5.40, MT,u,2 has corank ≤ 1.
Consider the ideals

I1 = (1− tūt̄v, 1− tūt̄w, p0)

I2 = (1− tūt̄v, 1− tūt̄w, p1).

By Lemma 5.41, it is clearly seen that MT,u,2|Ii has corank 2. Therefore

2 = max{corankMT,u,2|I1 , corankMT,u,2|I2} > 1 ≥ corankMT,u,2

It is also easy to see that MT,u,2|I1+I2 has corank 3, which implies

corankMT,u,2|I1+I2 = 3 > max{corankMT,u,2|I1 , corankMT,u,2|I2} = 2.

Moreover, Z(I1 + I2) has dimension ≥ 1 since I1 + I2 is generated by four
polynomials in �ve variables. Therefore, by Lemma 5.44, AΓ is not quasi-
projective.

The previous results combined prove the following.

Corollary 5.52. The only strictly even complete qp-graphs with three ver-
tices are T (2`, 2, 2) with ` ≥ 2 and T (4, 4, 2). Moreover, the latter is the only
qp-irreducible even graph with three vertices.

5.3.2 QP-irreducible even graphs with 4 vertices

As an immediate consequence of Theorems 5.50, 5.51, and 5.46, the only
candidates to qp-irreducible even graphs with 4 vertices must be complete
even v-supergraphs of either T (2`, 2, 2) or T (4, 4, 2). Figure 5.13 shows all
possible such graphs.

This list can easily be obtained using the following observation.
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Figure 5.13

Lemma 5.53. Any qp-irreducible even graph with at least 3 vertices has
labels no larger than 4.

Proof. By Theorem 5.46 one can assume the graph Γ is complete. Assume
me ≥ 6 for some edge e ∈ E of Γ. By Theorem 5.50 all edges adjacent to
e must have a label 2. Since Γ is complete Γ = {e} ∗2 Γ′, where Γ′ is the
resulting v-subgraph after deleting the vertices of e.

Note that the 4-graph in Figure 5.13(a) is the only candidate containing
T (2, 2, 2), Figure 5.13(b) is the only candidate containing T (4, 4, 2), but no
T (2, 2, 2), and Figure 5.13(c) is the only candidate containing T (4, 4, 2) but
no T (2`, 2, 2).

We are going to see that these three candidates cannot be qp-irreducible
graphs.

Theorem 5.54. There are no qp-irreducible even graphs of four vertices.
Moreover, an even graph containing any of the graphs in Figure 5.13 as

a v-subgraph is not quasi-projective.
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Proof. As discussed above, one only needs to rule out the list of graphs shown
in �gure 5.13. We will do this separately and using similar arguments.

• For graph 5.13(a) let us consider the index 2 subgroup AΓ,u,2 ⊂ AΓ.
Its Alexander matrix is given as follows:

MΓ,u,2 =

w1,0 w2,0 w3,0 w1,1 w2,1 w3,1 ū



1− t2,0 t1,0 − 1 0 0 0 0 0
1− t3,0 0 t1,0 − 1 0 0 0 0

0 1− t3,0 t2,0 − 1 0 0 0 0
0 0 0 1− t2,1 t1,1 − 1 0 0
0 0 0 1− t3,1 0 t1,1 − 1 0
0 0 0 0 1− t3,1 t2,1 − 1 0

tū − 1 0 0 t1,0(tū − 1) 0 0 1− t1,0t1,1
1− t1,1tū 0 0 1− t1,0 0 0 t1,1(t1,0 − 1)

0 tū − 1 0 0 t2,0(tū − 1) 0 1− t2,0t2,1
0 1− t2,1tū 0 0 t2,0 − 1 0 t2,1(t2,0 − 1)
0 0 tū − 1 0 0 t3,0(tū − 1) 1− t3,0t3,1
0 0 1− t3,1tū 0 0 t3,0 − 1 t3,1(t3,0 − 1)

where ti,j denotes twi,j . We now consider the following prime ideals:

I1 = (tū − 1, t1,1 − 1, t2,0 − 1, t2,1 − 1, t3,0 − 1)

I2 = (tū − 1, t1,0 − 1, t1,1 − 1, t2,1 − 1, t3,0 − 1).

Note that corank(MΓ,u,2|I1) = corank(MΓ,u,2|I2) = 2,
corank(MΓ,u,2|I1+I2) = 4 and Z(I1 + I2) is equal to:

{(tū, t1,0, t1,1, t2,0, t2,1, t3,0, t3,1) = (1, 1, 1, 1, 1, 1, λ) | λ ∈ C∗} ⊂ (C∗)7.

The result follows from Lemma 5.44 and the fact that dimZ(I1 + I2) =
1.

• For graph 5.13(b) consider AΓ,u,2 ⊂ AΓ. Computing the Alexander
polynomials using SAGE we obtain that two of the prime ideals asso-
ciated to the irreducible components are:

I1 = (tv−1, tū−1, t1,1−1, t2,0−1), I2 = (tū−1, t1,1−1, t2,0−1, 1+t1,0tv).

And it's easy to check that Z(I1 + I2) has dimension 1 instead of 0
({(1, 1,−1, 1, 1, λ) ∈ (C∗)5 | λ ∈ C∗} ⊂ V (I)) and hence contradicts
Theorem 5.28 .

Therefore, by Theorem 5.28 and Proposition 5.7(1) AΓ is not quasi-
projective.
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• For graph 5.13(c) the result follows considering the subgroup AΓ,u,2 ⊂
AΓ. The Alexander matrix associated to the group is:

MΓ,u,2 =

ū v w1,0 w2,0 w1,1 w2,1



1− tv tū − 1 0 0 0 0
0 0 1− t2,0 t1,0 − 1 0 0
0 0 0 0 1− t2,1 t1,1 − 1
0 p1,0(1− t1,0) p1(tv − 1) 0 0 0
0 p2,0(1− t2,0) 0 p2(tv − 1) 0 0
0 p1,1(1− t1,1) 0 0 p1,1(tv − 1) 0
0 p2,1(1− t2,1) 0 0 0 p2,1(tv − 1)

1− t1,0t1,1 0 tū − 1 0 t1,0(tū − 1) 0
t1,1(t1,0 − 1) 0 1− tūt1,1 0 t1,0 − 1 0
1− t2,0t2,1 0 0 tū − 1 0 t2,0(tū − 1)
t2,1(1− t2,0) 0 0 1− tūt2,1 0 t2,0 − 1

where p1,i = 1 + t1,itv, and p2,i = 1 + t2,itv.

By Lemma 5.40, MΓ,u,2 has corank ≤ 1. We consider the prime ideals

I1 = (tū − 1, t1,0 − 1, t2,1 − 1, p1,1), I2 = (tū − 1, t1,0 − 1, t2,1 − 1, p2,0).

Now,

MΓ,w0,2|I1 =

ū v w1,0 w2,0 w1,1 w2,1



1− tv 0 0 0 0 0
0 0 1− t2,0 0 0 0
0 0 0 0 0 t1,1 − 1
0 0 p1,0(s1 − 1) 0 0 0
0 p2,0(1− t2,0) 0 p2,0(tv − 1) 0 0
0 0 0 0 0 0
0 0 0 0 0 p2,1(tv − 1)

1− t1,1 0 0 0 0 0
0 0 1− t1,1 0 0 0

1− t2,0 0 0 0 0 0
(1− t2,0) 0 0 0 0 t2,0 − 1

has clearly corank 2 and
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MΓ,u,2|I2 =

ū v w1,0 w2,0 w1,1 w2,1



1− tv 0 0 0 0 0
0 0 1− t2,0 0 0 0
0 0 0 0 0 t1,1 − 1
0 0 p1,0(tv − 1) 0 0 0
0 0 0 0 0 0
0 p1,1(1− t1,1) 0 0 p1,1(tv − 1) 0
0 0 0 0 0 p2,1(tv − 1)

1− t1,1 0 0 0 0 0
0 0 1− t1,1 0 0 0

1− t2,1 0 0 0 0 0
(1− t2,0) 0 0 0 0 t2,0 − 1

has also corank 2.

Therefore:

2 = max(corankMΓ,u,2|I1 , corankMΓ,u,2|I2) > 1 ≥ corankMΓ,u,2

Besides:

MΓ,u,2|I1+I2 =

ū v w1,0 w2,0 w1,1 w2,1



1− tv 0 0 0 0 0
0 0 1− t2,0 0 0 0
0 0 0 0 0 t1,1 − 1
0 0 p1,0(tv − 1) 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 p2,1(tv − 1)

1− t1,1 0 0 0 0 0
0 0 1− t1,1 0 0 0

1− t2,0 0 0 0 0 0
(1− t2,0) 0 0 0 0 t2,0 − 1

has corank 3. So, clearly:

corankMΓ,u,2|I1+I2 = 3 > max{corankMΓ,u,2|I1 , corankMΓ,u,2|I2} = 2

Besides, Z(I1 + I2) has dimension ≥ 1 since we have six di�erent vari-
ables but only 5 polynomials.

Therefore, by Lemma 5.44, AΓ̂ is not quasiprojective.
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5.3.3 QP-irreducible even graphs with more than 4 ver-

tices

As a consequence of the results obtained in the previous sections, no quasi-
projective even Artin group can contain any of the following subgraphs:

1. A vertex with two edges with labels 2r, r ≥ 3 and 2k, k ≥ 2 � see
Theorems 5.50 and 5.46.

2. A triangle T (4, 4, 4) � see Theorem 5.51.

3. A three-edge tree of labels 4, 4, 4 � see Theorems 5.46, 5.51, and 5.54.

Theorem 5.55. There are no qp-irreducible even graphs with more than 3
vertices.

Proof. The result follows for graphs with four vertices by the previous section.
For any qp-irreducible even graph Γ with more than four vertices note

the following:

• Γ must be complete by Theorem 5.46.

• If Γ contains an edge e with label me = 2r, r ≥ 3, then by (1) above,
Γ = {e} ∗2 Γ̂ and hence Γ is not qp-irreducible.

• If Γ contains an edge e with label me = 4, then either Γ = {e} ∗2 Γ̂
(see (2) above) or Γ = T (4, 4, 2) ∗2 Γ̂ (see (3)).

5.4 Proofs of Main Theorems

5.4.1 Proof of Theorem 5.1

As a consequence of Theorems 5.22 and 5.23 graphs of type Kr, S2`, and
T (4, 4, 2) as in Figure 5.8 are qp-irreducible. Moreover, by Corollary 5.52
and Theorem 5.55 these are the only ones. Using equiation (5.1) and Propo-
sition 5.7(2) any 2-join qp-irreducible graphs is quasi-projective. This com-
pletes the �rst part of the proof.

For the moreover part it is enough to check that the product of two
fundamental groups of curve complements is also the fundamental group of a
curve complement. This is a consequence of the following result due to Oka
and Sakamoto.
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Theorem 5.56. [69] Let C1 and C2 be plane algebraic curves in C2. Assume
that the intersection C1∩C2 consist of distinct d1d2 points where di (i = 1, 2)
are respective degrees of C1 and C2. Then the fundamental group π1(C2 \
(C1 ∪ C2)) is isomorphic to the product of π1(C2 \ C1) and π1(C2 \ C2).

5.4.2 Proof of Theorem 5.3

Since the product of two K(π, 1) spaces is also a K(π, 1) space it is enough
to prove the result for the qp-irreducible even graphs Kr, S2`, and T (4, 4, 2).
The graph Kr is associated with the free group Fr of rank r, which can be
realized as the fundamental group of the complement to r points in C, which
is an Eilenberg-MacLane space.

The group AS2`
associated with the segment graph S2` is the fundamental

group of the complement X to the a�ne curve {y − x`} ∪ {y = 0}. In
projective coordinates X can be seen as the complement to the projective
curve C = {yz(yz`−1 − x`) = 0} ⊂ P2, that is, X = P2 \ C. Consider the
projection π : P2 \ {[1 : 0 : 0]} → P1, de�ned by [x : y : z] 7→ [y : z]. Note
that π|X :→ P1 \ {[0 : 1], [1 : 0]} is well de�ned, locally trivial �bration and
moreover, the �ber at each point [y : z] is homeomorphic to C \ {` points}.
Thus X is also an Eilenberg-MacLane space.

Finally, the triangle Artin group AT associated with the triangle T =
T (4, 4, 2) is the fundamental group of the complement X to the a�ne curve
{y − x2} ∪ {2x − y − 1 = 0} ∪ {2x + y + 1 = 0} [5, Example 5.11]. Using
the identi�cation C2 = P2 \ {z = 0} we can think of X as the complement
of a smooth conic and three tangent lines in the complex projective plane.
After an appropriate change of coordinates, X can be given as P2 \ C, where
C = {F (x, y, x) = xyz(x2 + y2 + z2 − 2(xy + xz + yz)) = 0} ⊂ P2.

Figure 5.14: Projective curve C = {F = 0}

We will consider a 4-fold cover X4 of X. Since the higher homotopy
groups of X and X4 are isomorphic, it is enough to show that X4 is an
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Eilenberg-MacLane space. Consider the Kummer morphism κ : P2 → P2

de�ned by κ([x : y : z]) = [x2 : y2 : z2]. Note that κ is a 4:1 rami�ed cover
and its rami�cation locus is R = {xyz = 0}. Since R ⊂ C κ de�nes an
unrami�ed cover on X4 = κ−1(X). Moreover, the preimage of C by κ is a
product of 7 lines, three of which are the axis xyz = 0 and four of them are
the preimage of the conic (x2 + y2 + z2− 2(xy+ xz+ yz)) = 0. In particular

C2 = κ−1(C) = {F (x2, y2, z2) = 0}
= {xyz(x+ y + z)(x+ y − z)(x− y + z)(x− y − z) = 0}.

Geometrically this corresponds to a Ceva arrangement � formed by the six
lines of a generic pencil of conics � with an extra line passing through two
out of the three double points. In our equations, the pencil of conics can
be de�ned as F[α:β] = α((x + z)2 − y2) − β((x − z)2 − y2). Note that for
α = β = 1 one obtains F[1:1] = 4xz. The rational map π : P2 99K P1 de�ned
by the pencil, where π−1[α : β] = {F[α:β] = 0}, that is, π([x : y : z]) =
[(x− z)2 − y2 : (x+ z)2 − y2] is not de�ned at the base points of the pencil.
Since the curve C2 contains these base points, one obtains that π|X4 is well
de�ned, where X4 = κ−1(X) = P2 \ C2.

After our discussion above, recall that the special �bers of π are the six
lines {xz(x+y+z)(x+y−z)(x−y+z)(x−y−z) = 0}. Finally, note that the
line y = 0 is a multisection since π|y=0 is de�ned by π([x : 0 : z]) = [(x−z)2 :
(x + z)2] which is 2:1 and rami�es only at [0 : 1] and [1 : 0], therefore the
map

π|X4 : X4 → P1 \ {[0 : 1], [1 : 0], [1 : 1]}
[x : y : z] 7→ [(x− z)2 − y2 : (x+ z)2 − y2]

is a well-de�ned locally trivial �bration whose generic �ber is the smooth
conic of the pencil with six points removed (the four base points and the two
points of intersection with the multisection {y = 0}). Therefore X4 is an
Eilenberg-MacLane space.

5.5 An example

To end this chapter we take a closer look into the triangle Artin group
AT , T = T (4, 4, 2) given by geometrical methods coming from its quasi-
projectivity property.

First we will show that AT is not an extension of free groups. To do so
we �rst study the surjections of AT onto a free group Fr of rank r. Any
surjection of groups G1→→G2 induces an injection of characteristic varieties
Vi(G2) ↪→ Vi(G1) via the change of base ∗ ⊗C[G2/G′2] C[G1/G

′
1] that turns an
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ideal in C[G2/G
′
2] to an ideal in C[G1/G

′
1] (see [61]). An Alexander matrix

of AT can be obtained immediately from Lemma 5.33 and (5.9) as

MAT =

 −(t0t1 + 1)(t1 − 1) (t0t1 + 1)(t0 − 1) 0
−(t0t2 + 1)(t2 − 1) 0 (t0t2 + 1)(t0 − 1)

0 −t2 + 1 t1 − 1


and thus its characteristic variety V1(AT ) = T1 ∪ T2 ∪ T3 is the zero set of
the Fitting ideal generated by the 2× 2-minors of MAT , where

T1 = {(−t−1, t, 1) | t ∈ C∗} ⊂ (C∗)3,
T2 = {(−t−1, 1, t) | t ∈ C∗} ⊂ (C∗)3,
T3 = {(−t−1, t, t) | t ∈ C∗} ⊂ (C∗)3

are three one-dimensional complex tori in (C∗)3. Since the characteristic
variety of the free group Fr has dimension r, this implies that the only possible
surjection AT →→ Fr is restricted to r = 1.

Note that any short exact sequence

1→ Fs → AT → Z→ 0

splits and the action of Z onAT is trivial in homology. ThereforeAT = FsoZ
is called an IA-product of free groups and by [32, Corollary 3.4] the Poincaré
polynomial PAT (t) of AT should factor as a product of linear terms in Z[t].
However, since the complement X = P2\C of the conic an three tangent lines
shown in Figure 5.14 is a K(AT , 1)-space it is enough to calculate PX(t).
One can easily check that h0(X) = 1 and h1(X) = 3. Moreover, using the
additivity of the Euler characteristic

χ(X) = χ(P2)−
∑
χ(Ci) + # Sing(C) = 3− 4χ(P1) + 3 = 1

= h0(X)− h1(X) + h2(X) = −2 + h2(X),

where Ci are the irreducible components of C and χ(Ci) = χ(P1) = 2 since
they are all rational curves. Therefore h2(X) = 3 and thus

PAT (t) = PX(t) = 3t2 + 3t+ 1

which is not a product of linear factors in Z[t].
However, as shown in the proof of Theorem 5.3, � see section 5.4.2 � its

4-fold cover X4 is the complement of a line arrangement of �bered type whose
fundamental group π1(X4) is a �nite index normal subgroup of AT which is
an IA-free product of free groups F3 o F3.
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En conclusión, durante mis años de doctorado he estado trabajando en la
extensión de tres resultados y propiedades conocidas para los grupos de Artin
de ángulo recto a otras familias más grandes de grupos de Artin (pares):

• En relación con la propiedad de la poli-libertad, hemos sido capaces de
probar que los grupos de Artin pares de tipo FC y de tipo large son
poli-libres. Por el momento, no podemos extenderlo más debido a lo
siguiente: por un lado, el tipo de técnicas que usamos se basan en el
hecho de que nuestras relaciones son de tipo par. Por otro lado, una
extensión a familias más generales de grupos de Artin pares parece difí-
cil ya que necesitaríamos formas normales y no hay solución conocida
del problema de la palabra para grupos de Artin pares en general.

Durante una estancia de investigación que hice en Newcastle, empecé
a trabajar con Sarah Rees en el problema de extender su algoritmo
para formas normales de grupos de Artin de tipo large a familias más
grandes de grupos de Artin. Este es actualmente un proyecto abierto
pero creemos que seremos capaces de extender el algortimo un poco
más.

Si tenemos éxito con este problema, un proyecto futuro sería aplicar el
algoritmo obtenido para tratar de extender nuestras demostraciones de
la poli-libertad a la nueva familia de grupos de Artin pares para la que
tendríamos formas normales.

• Respecto a la propiedad de ser residualmente �nitos, hemos demostrado
esta propiedad para los grupos de Artin pares de tipo FC y para los
grupos de Artin basados en grafos que son bosques. Por el momento
no somos capaces de extender más esta propiedad, pero otro proyecto
interesante para el futuro sería tratar de extenderla a familias más
grandes.

• Además, hemos sido capaces de caracterizar en términos del grafo
cuándo un grupo de Artin par es cuasiproyectivo. Ahora estamos estu-

119



Conclusiones y trabajo futuro

diando este problema omitiendo la condición de que las relaciones sean
pares y tratando de resolver el problema para grupos de Artin gen-
erales. Si consiguiésemos esa tarea, también querríamos comprobar si
se veri�ca la conjetura K(π, 1) cuasiproyectiva que hemos establecido.

Además, actualmente estoy trabajando en otros problemas interesantes.
Uno de ellos es el problema de la rigidez en los grupos de Artin pares, esto
es, de saber si dados dos grupos de Artin AΓ ' AΩ implica o no que Γ ' Ω,
en el cual esto trabajando con Luis Paris.

Finalmente, junto con mis directores de tesis Conchita Martínez-Pérez y
José Ignacio Cogolludo-Agustín, estoy estudiando los grupos de homología
de los núcleos de Artin, una estructura relacionada con los grupos de Artin.
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Summing up, during these years of my PhD we have been working on the
extension to more general families of (even) Artin groups of known results
and properties of three types for RAAGs:

• In relation to the property of poly-freeness we have been able to prove
that even Artin groups of FC type and large even Artin groups are
poly-free. For the moment we can't extend it anymore because of the
following: on the one hand, the type of techniques that we use rely
on the fact that our relators are of even type. On the other hand, an
extension to more general families of even Artin groups seems di�cult
since we would need normal forms and there is no known solution for
the word problem for general even Artin groups.

During a research stay in Newcastle I began to work with Sarah Rees
in the problem of extending their algorithm for normal forms of large
Artin groups to bigger families of Artin groups. This is nowadays work
in progress but we think we will be able to extend the algorithm a bit
more.

If we succeed with this problem, a future project would be to apply the
obtained algorithm to try to extend also our proofs of poly-freeness to
the new family of even Artin groups for which we would have normal
forms.

• With respect to residually �niteness, we have established this property
for the family of even Artin groups of FC type and for Artin groups
based on forests. For the moment we haven't been able of extending
more this property, but another interesting future project would be to
try to extend it to bigger families.

• Besides, we have been able of characterizing in terms of the graph when
an even Artin group is quasi-projective. Now we are studying this
problem without the even condition and trying to solve the problem
for general Artin groups. Moreover, if we succeed in this task we would
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also like to check the Quasi-projective K(π, 1) conjecture that we have
stated.

Moreover, nowadays I am working on other interesting problems. One of
them is the problem of the rigidity of even Artin groups, i.e. knowing if
AΓ ' AΩ implies or not that Γ ' Ω, in which I am working on together with
Luis Paris .

Finally, together with my PhD advisors Conchita Martínez-Pérez and
José Ignacio Cogolludo-Agustín, I am studying the homology groups of Artin
kernels, a structure related with Artin groups.
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