
Repositorio de la Universidad de Zaragoza – Zaguan http://zaguan.unizar.es

Trabajo Fin de Máster

Aplicación de Técnicas de Minería de Textos para

Apoyar la Búsqueda de Información en Contextos

Médicos en Español

Application of Text Mining Techniques to Support

the Search of Information in Medical Contexts in

Spanish

Autor/es

Carlos Sánchez Coronas

Director/es

Sergio Ilarri Artigas

Carlos Tellería Orriols

Máster en Ingeniería Informática

Departamento de Informática e Ingeniería de Sistemas

Escuela de Ingeniería y Arquitectura

2019

AGRADECIMIENTOS

En primer lugar quiero agradecer a mis tutores, Sergio Ilarri y Carlos Telleŕıa
por su esfuerzo y su ayuda para guiarme en el desarrollo de este proyecto con
sus sabios consejos y sugerencias.

En segundo lugar, dar las gracias a todo el equipo docente de la Universidad
de Zaragoza, los cuales me han ayudado a adquirir competencias que me han
hecho mejorar tanto a nivel profesional como personal durante el transcurso
de este Máster.

Por otra parte, debo dar las gracias a todos mis amigos por estar siempre
cuando los necesitaba para ayudarme a desconectar y relajarme. En especial,
agradecer a Félix Angoso, médico interno residente en Calatayud y com-
pañero de piso, quien me ha ayudado con temas más técnicos relacionados
con la medicina debido a la naturaleza de mi trabajo.

Y por último, y no menos importante, agradecer enormemente a mis padres
por su constante apoyo moral durante el transcurso del Máster y de toda mi
formación, y sobre todo por su habilidad para calmarme cuando las cosas no
iban bien.

Sin todos vosotros no habŕıa conseguido llegar a ser lo que soy.

Gracias.

Resumen

Hoy en d́ıa, la mineŕıa de textos es uno de los campos de actuación clave
dentro del aprendizaje automático debido a la gran cantidad de texto que se
genera diariamente escrito en lenguaje natural, ya que es la forma que tene-
mos de comunicarnos y expresar nuestras ideas, haciendo a los ordenadores
capaces de entender esta forma de comunicación y de extraer información de
ella. Hay multitud de campos de actuación, como extracción de información,
detección de palabras clave, análisis del sentimiento, clasificación de docu-
mentos, etc. Una de las grandes barreras de este sector es el idioma, debido a
que las técnicas que se aplican son propias de un lenguaje y por tanto pueden
no ser aplicables a otro idioma diferente. Dentro del marco de la medicina,
también existen multitud de áreas de actuación, entre ellas, el procesamiento
de historias o gúıas cĺınicas puede ser de especial interés para la búsqueda
automática de información, ya que en medicina, es necesario tener acceso a
la última evidencia cient́ıfica para poder desarrollar la actividad.

Este trabajo se ha centrado en la aplicación de técnicas de mineŕıa de tex-
tos médicos en español con la idea de avanzar en la automatización de la
búsqueda de esta evidencia cient́ıfica. Durante su desarrollo se detalla el es-
tudio del arte del sector y la implementación y evaluación de un detector de
entidades médicas y los problemas encontrados al no contar con un conjunto
de datos espećıfico para esta tarea, y de un módulo cuyo objetivo es detectar
la intención de recomendación o sugerencia en textos, ya que suelen ser las
partes de las gúıas cĺınicas más importantes donde se resume toda la eviden-
cia cient́ıfica. A partir de este proyecto, se abren ĺıneas de trabajo futuro en
la búsqueda automática de la evidencia cient́ıfica de la medicina en español.

Índice general

1 Introducción 1
1.1 Motivación . 2
1.2 Objetivos . 3
1.3 Estructura de la memoria . 4

2 Estado del arte 7
2.1 Estado del arte de la mineŕıa de textos médicos 8
2.2 Estado del arte de la mineŕıa de textos médicos en español . . 10

3 Planificación y gestión 13
3.1 Metodoloǵıa . 13
3.2 Herramientas utilizadas . 15

4 Detector de entidades 19
4.1 Análisis . 19

4.1.1 SNOMED-CT . 21
4.1.2 DeCS . 22

4.2 Modelado . 23
4.2.1 Baseline . 25
4.2.2 Lematización . 27
4.2.3 Detector aproximado 31

4.3 Resultados . 33
4.3.1 Búsqueda de contexto 36
4.3.2 Lematización . 39
4.3.3 Detector aproximado 41
4.3.4 Evaluación de los resultados 42

5 Detector de recomendaciones 43
5.1 Análisis . 43

5.2 Modelado . 45
5.3 Resultados . 52

6 Despliegue 55

7 Conclusiones y trabajo futuro 57
7.1 Conclusiones . 57
7.2 Trabajo futuro . 59

Anexos 60

A Descripción del procesamiento de datos de SNOMED-CT 63

B Descripción del procesamiento de datos de DeCS 69

C Instalación de Freeling 75
C.1 Instalación en Windows . 75
C.2 Instalación en Linux . 76

D Código representativo de pruebas realizadas 79
D.1 Código de pruebas del detector de términos médicos 79
D.2 Código de pruebas del detector de recomendaciones 83

E Ejemplo de resultados del detector 87
E.1 Resultados con datos de SNOMED-CT - Ejemplo de texto . . 87
E.2 Resultados con datos de DeCS - Ejemplo de texto 90

Índice de figuras

Figura 2.1 Crecimiento de las publicaciones encontradas en MED-
LINE, durante la pasada década, de estudios en otros idiomas
diferentes al inglés. Extráıda de [43]. 11

Figura 3.1 Diagrama de proceso de las diferentes fases de CRISP-
DM. Extráıda de [28]. 14

Figura 3.2 Tareas organizadas usando la herramienta Bitrix24. . . 15
Figura 3.3 Cronograma inicial del proyecto. 17

Figura 4.1 Estructura de datos tipo trie. Extráıda de [32]. 27
Figura 4.2 Comparativa del tiempo de ejecución usando re y Flash-

Text. 27
Figura 4.3 Ejemplo de cálculo de la distancia de Levenshtein. . . . 32

Figura 5.1 Ejemplo de posibles hiperplanos del modelo SVM. Ex-
tráıda de [47]. 49

Figura 5.2 Ejemplo de modelo KNN. Extráıda de [2]. 51
Figura 5.3 Validación cruzada con k = 5. Extráıda de [59]. 52

Figura 6.1 Pantalla de inicio de la aplicación. 56
Figura 6.2 Pantalla de resultados de la aplicación. 56

Figura B.1 Estructura de un término de DeCS en formato XML. . 73
Figura B.2 Estructura de la respuesta de la aplicación DeCS. . . . 74

Índice de tablas

Tabla 4.1 Ejemplo de información extráıda de un término de SNOMED-
CT . 21

Tabla 4.2 Ejemplo de información extráıda de una relación de
SNOMED-CT . 21

Tabla 4.3 Ejemplo de información extráıda de una relación de DeCS 23
Tabla 4.4 Matrices de confusión del baseline sin contextualización

con ambos conjuntos de datos. 36
Tabla 4.5 Métricas de evaluación del detector baseline sin contex-

tualización. 37
Tabla 4.6 Matrices de confusión del baseline usando la similitud

entre códigos como contextualización con ambos conjuntos de
datos. 37

Tabla 4.7 Métricas de evaluación del detector baseline con simili-
tud entre códigos como contextualización. 37

Tabla 4.8 Matriz de confusión del baseline usando las relaciones
entre términos como contextualización con SNOMED-CT. . . 38

Tabla 4.9 Métricas de evaluación del detector baseline con rela-
ciones entre términos como contextualización. 38

Tabla 4.10 Matrices de confusión del detector tras lematizar el con-
tenido. 40

Tabla 4.11 Métricas de evaluación del detector tras lematizar el
contenido. 40

Tabla 4.12 Matrices de confusión del detector aproximado. 41
Tabla 4.13 Métricas de evaluación del detector aproximado. 41

Tabla 5.1 Resultados de los diferentes modelos para clasificar re-
comendaciones. 53

Tabla A.1 Descripción de campos informados en el fichero de térmi-
nos de SNOMED-CT. 64

Tabla A.2 Relación entre términos principales y sinónimos. 65
Tabla A.3 Información almacenada en base de datos. 67

Tabla B.1 Descripción de campos informados en el fichero de térmi-
nos de DeCS. 70

Tabla B.2 Listado de descriptores ráız disponibles en DeCS. 72
Tabla B.3 Estructura de la información almacenada en base de

datos del fichero de términos de DeCS. 74

Caṕıtulo 1

Introducción

Actualmente, la mineŕıa de textos engloba un amplio campo de trabajo con
múltiples posibilidades de actuación [1]. Esto se debe a la gran cantidad de
información no estructurada que se genera diariamente de formas muy diver-
sas usando lenguaje natural (noticias, art́ıculos, comentarios en redes socia-
les, historias cĺınicas, enciclopedias, etc.) y que no puede ser comprendida o,
mejor dicho, procesada directamente por los ordenadores.

Uno de los grandes problemas de este sector de mineŕıa de textos es el idioma
utilizado, ya que el vocabulario, la gramática, la sintaxis y la semántica son
propios de cada lenguaje, por lo que normalmente los mismos procedimientos
que se aplican a un idioma pueden no ser aplicables a otros idiomas. Debido a
que el inglés es idioma universal y el más utilizado hoy en d́ıa, la mayoŕıa de
proyectos de investigación realizados han sido enfocados hacia textos escritos
en inglés, por lo que las aplicaciones de técnicas de mineŕıa de textos en otros
idiomas están menos avanzadas.

Dentro del contexto de la medicina, la aplicación de técnicas de mineŕıa
de textos es especialmente útil. Las tareas de extracción de información y
procesado de lenguaje natural pueden ser aplicadas a los informes de alta,
evolutivos cĺınicos, gúıas de práctica cĺınica, art́ıculos cient́ıficos, y en gene-
ral a todos los textos médicos, ya sean cĺınicos o cient́ıficos, elaborados en
lenguaje natural, para facilitar la búsqueda de información.

1

En la Sección 1.1 se explica la motivación del presente trabajo. En la Sección
1.2 se detallan los objetivos planteados en este proyecto. Finalmente, en la
Sección 1.3 se muestra la estructura de la memoria.

1.1. Motivación

Uno de los problemas en la medicina, igual que en cualquier disciplina cient́ıfico-
técnica, radica en el hecho de que para desarrollar correctamente la actividad
es preciso tener acceso a la última evidencia disponible y al estado del arte
del conocimientos y los métodos.

Por otro lado, la eventual aplicación del aprendizaje automático a los sis-
temas de ayuda a la toma de decisiones cĺınica exigirá, inevitablemente, la
capacidad de los sistemas para extraer y analizar información no estructurada
y contextualizada de las historias o gúıas cĺınicas.

Uno de los posibles inconvenientes se da cuando el tiempo para encontrar
la respuesta espećıfica a una consulta puede alargarse demasiado, ya sea
porque las gúıas cĺınicas suelen ser muy extensas, porque los resultados del
buscador de Internet no son muy precisos, o porque no se tiene disponible a
una segunda persona que solvente la situación.

Por tanto, seŕıa interesante la elaboración de algún tipo de herramienta que
pudiese reducir dicho tiempo y hacer más eficaz este proceso de búsqueda.
Una posible solución consistiŕıa en facilitar una aplicación parecida a los
buscadores pero espećıfica para este dominio médico, acelerando e incremen-
tando la especificidad de la búsqueda de este tipo de información, de manera
que la respuesta sea lo mas precisa posible en función de la consulta.

Una de las fuentes de las que se puede obtener esta información son las
gúıas de práctica cĺınica [29]. En ellas se recogen un número importante de
recomendaciones y evidencias cient́ıficas de cara a la actuación cĺınica en
diversas situaciones, valorando el riesgo/beneficio de las mismas. Todos los
datos que las forman se ven sometidos a rigurosas revisiones sistemáticas
para mantenerse actualizados conforme pasa el tiempo.

2

Por otro lado, utilizando diversos documentos de contenido sanitario, tal
y como son las historias cĺınicas, se podŕıa adquirir bastante información
relevante de cara a la práctica médica. Como es lógico, y para respetar la
Ley Orgánica de Protección de Datos y Garant́ıa de los Derechos Digitales
3/2018 y Reglamento General de Protección de Datos (EU 2016/679), estos
documentos deben estar completamente anonimizados, con el objetivo de
garantizar la confidencialidad del paciente.

Por último, hoy en d́ıa se está dando a conocer un nuevo término a la hora
de hablar del entorno sanitario: la humanización de la medicina [24]. Dicho
término hace referencia a la búsqueda de la atención centrada en la persona,
tanto a nivel individual como a nivel socio-familiar. Este concepto surge
con el objetivo de no despersonalizar a la persona enferma a la hora de ser
tratada por personal sanitario, algo que suele ocurrir cuando un individuo se
enfrenta a una tecnificación que no entra dentro de sus conocimientos. Por
todo ello, no se puede pasar por alto la importancia que tendŕıa solucionar
estos inconvenientes de cara a la calidad de la atención al paciente ya que
podŕıa verse incrementada indirectamente al verse reforzado el conocimiento
de la evidencia cient́ıfica más fácilmente por el equipo sanitario.

1.2. Objetivos

El objetivo principal de este trabajo radica en avanzar en el desarrollo de una
aplicación que, en su estado final, sea capaz de, a partir de una búsqueda
realizada por un médico escrita en lenguaje natural, devolver extractos de
gúıas cĺınicas con la información que mejor resuelva la consulta en cuestión.

Uno de los objetivos más interesantes de esta área de trabajo es el desarrollo
de una herramienta capaz de etiquetar automáticamente términos médicos,
a partir de la cual se pueda obtener un conjunto de textos médicos etiqueta-
dos en un tiempo mucho más reducido que si se realizara de forma manual,
ya que este proceso requiere bastante tiempo y dedicación de profesionales
de la salud para conseguir un gold standard de calidad. Con esto será posi-
ble aplicar distintas técnicas de mineŕıa de textos para poder satisfacer las
búsquedas solicitadas.

3

Otro punto importante es poder identificar qué párrafos de estas gúıas son
los más útiles de cara a la práctica cĺınica, es decir, los más relevantes a la
hora de generar los resultados de la búsqueda en estas gúıas cĺınicas. Este
tipo de textos suelen ser recomendaciones, en las que explican cómo actuar
ante cierto problema, qué medicamento es mejor para un caso concreto, o
evidencias cient́ıficas de la evolución de tratamientos o enfermedades. Para
ello es necesario investigar técnicas de mineŕıa de textos que logren clasificar
los diferentes párrafos entre recomendaciones y no recomendaciones.

Para llegar a cumplir estos objetivos, la fases a seguir durante el desarrollo
del proyecto son las siguientes:

1. Estudio del estado del arte sobre la mineŕıa de textos en entornos médi-
cos.

2. Selección de uno o varios conjuntos de datos con información no es-
tructurada en español relacionados con el ámbito de la salud.

3. Identificación de problemas de interés, valorando su relevancia y com-
plejidad

4. Selección de un conjunto de tareas a abordar para su análisis en mayor
profundidad: extracción de palabras clave y detección de la intención
de recomendación en fragmentos de texto.

5. Evaluación experimental de las técnicas aplicadas.

6. Extracción de conclusiones y elaboración de la documentación, a lo
largo de desarrollo del trabajo.

Todos estos puntos se verán desarrollados a lo largo de esta memoria, deta-
llando el proceso realizado para llegar a ellos.

1.3. Estructura de la memoria

De cara a la estructuración de la memoria de este trabajo, se ha optado por
dividir las diferentes áreas en Caṕıtulos. En el Caṕıtulo 2, se resume el estado

4

del arte del tema a tratar. Inicialmente se habla sobre la mineŕıa de textos
a nivel general, para continuar tratando dicho tema de forma más enfocada
al ámbito médico y al castellano en śı. En el Caṕıtulo 3, se describe cómo
se ha planificado el proyecto aśı como las herramientas utilizadas durante su
desarrollo. En los Caṕıtulos 4, 5 y 6 se detalla minuciosamente el desarrollo de
los dos módulos descritos en los objetivos del trabajo: el detector de entidades
médicas y el detector de recomendaciones. Finalmente, en el Caṕıtulo 7,
se explican las conclusiones a las que se ha llegado tras la realización del
proyecto, junto con las ĺıneas de trabajo futuro que pueden ser de interés en
este ámbito.

Adicionalmente, se ha elaborado información complementaria en forma de
Anexos. En los Anexos A y B se detalla el proceso de transformación de los
conjuntos de datos obtenidos para adecuarlos a las necesidades del proyec-
to. En el Anexo C se explica el proceso de instalación de Freeling [48], una
herramienta de C++ necesaria para el funcionamiento de la aplicación desa-
rrollada. En el Anexo D se muestran fragmentos de código representativos
de las pruebas de evaluación realizadas. Finalmente, en el Anexo E se detalla
algún ejemplo de las pruebas realizadas de la detección de entidades.

5

6

Caṕıtulo 2

Estado del arte

La mineŕıa de textos engloba el conjunto de técnicas utilizadas para extraer
información significativa de un conjunto de textos escritos en lenguaje natu-
ral, es decir, convertir datos no estructurados en datos estructurados [1].

Algunas de las tareas más relevantes son las siguientes:

Recuperación de la Información (Information Retrieval, IR) [16]. Se
centra en facilitar cierta información; trata de recuperar documentos
de un conjunto de datos no estructurados que satisfacen una cierta
búsqueda.

Categorización de textos. (Text Categorization) [58]. Trata de asignar
un documento o texto a una categoŕıa espećıfica, como por ejemplo
filtrado de spam, análisis del sentimiento, etc.

Extracción de Información. (Information Extraction, IE) [56]. Técnicas
que se basan en procesar documentos no estructurados o semi estruc-
turados para recuperar cierta información espećıfica.

Reconocimiento de entidades nombradas. (Named Entity Recognition,
NER) [42]. Consiste en extraer y clasificar las entidades en categoŕıas
predefinidas, como nombres propios, lugares, etc.

7

Procesamiento del lenguaje natural.(Natural Language Processing,NLP)
[15]. Se basa en el análisis lingǘıstico tratando de comprender el len-
guaje natural mediante los ordenadores. La mayoŕıa de los algoritmos
de mineŕıa de textos hacen uso de técnicas NLP, como análisis mor-
fológico, semántico y/o sintáctico.

Las técnicas de mineŕıa de texto pueden realizarse tanto con aprendizaje
supervisado como no supervisado. Por un lado, las técnicas de aprendizaje
supervisado [11] tratan de inferir un clasificador a partir de un conjunto de
datos previamente procesado y etiquetado de manera manual para realizar
predicciones, patrones o recuperar información de los datos. Hay una am-
plia gama de métodos supervisados como Naive Bayes [57], Support Vector
Machine (SVM) [47], árboles de decisión [36], o métodos basados en reglas
[35].

Por otro lado las técnicas de aprendizaje no supervisado, a diferencia de
los métodos supervisados, no requieren de un conjunto de datos de entrena-
miento. Tratan de detectar datos no etiquetados o de inferir estructuras. Las
técnicas más comunes son las de clustering [62], donde los documentos se
agrupan en distintos grupos o clusters de forma que los documentos dentro
del mismo cluster guardan una similitud entre ellos, minimizando la distancia
intra-cluster, y los documentos de distintos clusters presentan una diferencia
entre ellos, maximizando la distancia inter-cluster.

2.1. Estado del arte de la mineŕıa de textos

médicos

Actualmente, existe una gran cantidad de información médica en numerosas
publicaciones o textos cient́ıficos de libre acceso (free full text), por lo que
las aplicaciones NLP se han ido abriendo camino en el mundo de la medicina
[3].

Por ello, se podŕıa definir el NLP cĺınico como un “subcampo” de investiga-
ción dentro del propio procesamiento del lenguaje natural [44], cuyo objetivo

8

engloba aspectos tales como el análisis de textos escritos por los propios pa-
cientes, la recuperación de información biomédica, los registros electrónicos
dentro del mundo sanitario, etc.

Como ya se ha comentado, al existir tanta densidad de información médica
procedente de diferentes puntos de vista, este campo se ha ido abriendo
camino en la actualidad. En algunos estudios como [45], se señala que algunas
herramientas y métodos de NLP están disponibles de forma gratuita y son
fáciles de usar, lo que permite mayor comodidad a la hora de aplicarlos por
los investigadores de otros campos.

Sin embargo, estas técnicas se enfrentan a una serie de complicaciones a la
hora de aplicarlas al entorno biomédico [39]. Una de ellas es la existencia
y la aparición de nuevos términos que hacen referencia a algo ya existente,
es decir, a la cantidad de sinónimos, acrónimos, siglas, etc., que podemos
encontrar para referirnos a un mismo aspecto. La forma de afrontar esta
situación ha generado la creación de sistemas de organización del conoci-
mientos y ontoloǵıas [65], aunque requieren la aparición de metodoloǵıas que
generen una consistencia firme de cara al etiquetado para obtener una unifor-
midad en toda esta información, además de mejorar la efectividad de dichas
herramientas.

Como es lógico, el desarrollo de la mineŕıa de textos se ha ido aplicando en los
diferentes campos de la medicina. Sin embargo, los art́ıculos suelen centrarse
más en los diferentes temas que abarca la medicina, en lugar de enfatizar la
metodoloǵıa de NLP. Algunos ejemplos son:

Oncoloǵıa [63], donde se observó que, a medida que se avanza en el
progreso de la aplicación del NLP hacia la investigación oncológica se
va creando una infraestructura rentable para avanzar en la atención y
el tratamiento del cáncer.

Radioloǵıa [49], donde la aplicación de la mineŕıa de textos permite la
automatización de una diversidad de tareas en dicho campo.

Geriatŕıa [13], donde se utilizó un modelo de CRF (Conditional Random
Fields) con el fin de identificar los diferentes śındromes geriátricos a

9

partir del texto obtenido de los diferentes pacientes. En él se observó
que la falta de contexto muchas veces afectaba a dicha identificación.

Riesgo de suicidio [17], donde se llegaron a unos resultados prometedo-
res de cara a identificar personas con mayor riesgo de suicidio a través
del procesamiento de textos publicados en redes sociales.

Los anteriores puntos muestran el potencial de las aplicaciones de técnicas
de mineŕıa de textos en el ámbito sanitario siendo una disciplina que se va
abriendo camino en dicho sector.

2.2. Estado del arte de la mineŕıa de textos

médicos en español

En términos generales, se podŕıa decir que el lenguaje cient́ıfico no se desa-
rrolla ajustándose a la gramática ya existente del lenguaje en el que se quiere
exponer, sino que se ajusta a la información que quiere transmitir sobre esa
ciencia [25]. Esto quiere decir que, de cara a analizar textos en un idioma
diferente al inglés, en este caso el español, antes se tienen que normalizar los
términos cĺınicos que se van a encontrar en dichos documentos.

El principal problema que nos encontramos es el hecho de la existencia de
una marcada diferencia en la disponibilidad de recursos lingǘısticos en inglés
respecto a otros idiomas. Aśı, se han desarrollado numerosas aplicaciones
que tratan el procesamiento de lenguaje natural cĺınico en inglés, como las
ya citadas en la sección anterior. Sin embargo, de cara a procesar textos
en lenguaje natural obtenidos de páıses donde el inglés no es la lengua ofi-
cial, estas técnicas no están tan desarrolladas, por lo que abre la puerta a
un importante campo de actuación. En la Figura 2.1 se puede apreciar el
crecimiento de las publicaciones en este ámbito para idiomas alternativos al
inglés.

Para ello se han desarrollado aplicaciones dirigidas al aprendizaje automáti-
co para el reconocimiento semántico y la normalización de términos cĺınicos,

10

Figura 2.1: Crecimiento de las publicaciones encontradas en MEDLINE, durante
la pasada década, de estudios en otros idiomas diferentes al inglés. Extráıda de
[43].

que han demostrado tener buenos resultado. Un ejemplo es el trabajo presen-
tado en [12], donde se crean una serie de vectores de caracteŕısticas (feature
vectors) junto con un enfoque de aprendizaje de cara a identificar términos
equivalentes en los diferentes textos a procesar.

Otro ejemplo de trabajo desarrollado en español es [18], donde se presenta una
herramienta que trata de determinar las proposiciones negativas en textos
cĺınicos en español, usando para ello un corpus gold standard etiquetado
manualmente por expertos.

Por otra parte, también se ha avanzado en el desarrollo de aplicaciones cuyo
objetivo es la de-identicación o anonimización de textos médicos en español
[38], mayormente tratándose de historias cĺınicas con abundante contenido
sensible que debe ser eliminado para su uso en aplicaciones de mineŕıa de
textos médicos, respetándose aśı el secreto profesional.

No obstante, la existencia de estos recursos debe ser tomada como una opor-
tunidad para aprovecharlos. Para ello, la traducción automática, ha sido uti-
lizada y estudiada [61], dando buenos resultados de cara a la recuperación
de información cĺınica en varios idiomas, mejorando su acceso, aunque no se
ha llegado a ver una mejor recuperación cuanto mejor sea la traducción.

11

12

Caṕıtulo 3

Planificación y gestión

En esta sección se explica cómo se ha controlado la organización y evolución
del trabajo, aśı como las tecnoloǵıas utilizadas durante el desarrollo. En la
Sección 3.1 se detalla la metodoloǵıa utilizada durante el desarrollo del pro-
yecto. En la Sección 3.2 se explican las herramientas utilizadas en el presente
trabajo.

3.1. Metodoloǵıa

Para el desempeño de este proyecto, se ha seguido la metodoloǵıa CRISP-
DM [55]. Este modelo es el más utilizado en mineŕıa de textos y de datos
en general, proporciona una descripción estándar del ciclo de vida de un
proyecto de mineŕıa de datos estructurado en seis fases (Figura 3.1). Algunas
de estas fases son bidireccionales, lo que permite revisar las fases anteriores.

Dado que se trata de un área totalmente nueva para el alumno, es necesario
una etapa inicial de formación y estudio del estado del arte sobre los temas
a abordar. Las fases del proyecto son las siguientes:

Formación y estudio del estado del arte.

13

Figura 3.1: Diagrama de proceso de las diferentes fases de CRISP-DM. Extráıda
de [28].

Comprensión del negocio. Consiste en definir los objetivos del proyecto,
evaluar la situación (recursos necesarios, requerimientos, etc.) y con-
vertir estos objetivos en un problema de mineŕıa de datos con el que
generar el proyecto inicial (plan, técnicas, herramientas, equipo, etc.).

Estudio y comprensión de los datos. Recolección, comprensión, explo-
ración y verificación de la calidad de los datos.

Preparación de los datos. Aborda las tareas de procesamiento de los
datos. (selección, limpieza, construcción, integración, etc.).

Modelado. Selección, diseño y desarrollo de las técnicas pertinentes para
abordar los objetivos planificados.

Evaluación. Estudiar los resultados obtenidos y seleccionar el modelo
más óptimo. Determinar si hay alguna cuestión importante del negocio
que no haya sido considerada lo suficiente.

Despliegue. Puesta en producción del modelo, generación de memoria
final y revisión del proyecto.

En la Figura 3.3 se muestra un cronograma en el que planifica inicialmente el

14

coste temporal de cada fase del proyecto desde la fecha de inicio (01/04/2019)
hasta la fecha de entrega prevista (22/11/2019). Nótese que los meses de junio
y julio están suprimidos debido a que, por motivos personales previstos de
antemano, no se pudo avanzar en el desarrollo del proyecto.

Por otra parte, para la gestión de las diferentes tareas de cada etapa del
trabajo, se ha hecho uso de la herramienta Bitrix24, un software de gestión
de tareas online totalmente gratuito que dispone de una sección Kanban que
se ha usado para dividir las tareas en tres bloques: Pendiente, En progreso y
Terminado, tal y como se muestra en la Figura 3.2.

Figura 3.2: Tareas organizadas usando la herramienta Bitrix24.

3.2. Herramientas utilizadas

El proyecto se ha desarrollado en el ordenador personal del alumno, cuyas
caracteŕısticas son: HP Pavilion, Intel Core i7-8700, 8 GB RAM, 1 TB. Se han
instalando en él todas las herramientas y datos necesarios para su desarrollo.

Para el desarrollo del proyecto se ha decidido utilizar Python 3 [51] usando
el IDE Anaconda Navigator [4] debido a su gran potencial para las tareas de
mineŕıa de textos, ya que cuenta con un gran número de libreŕıas que faci-
litan su implementación. Además, se ha usado MongoDB [41] como sistema

15

de bases de datos, ya que su almacenamiento en formato JSON [31] permite
una carga directa y transformación rápida de los datos al tipo de dato dic-
cionario de Python. A continuación se listan las herramientas instaladas para
el desarrollo del proyecto:

Freeling [48]: una herramienta de procesamiento del lenguaje natural
implementada en C++ y con posibilidad de utilizar en otros lenguajes
como Java, Perl o Python mediante instalación y compilación previa.

nltk [8]: otra herramienta de procesamiento del lenguaje natural para
Python.

Spacy [27]: otra herramienta de procesamiento de lenguaje natural para
Python.

Pandas [40]: extensión de la libreŕıa de Python numpy [46] para la
manipulación y análisis de datos en Python.

SymSpell [37]: utilizada para la corrección ortográfica.

Scikit-learn [10]: libreŕıa para Python con multitud de funcionalidades
de aprendizaje automático.

FlashText [22]: una herramienta diseñada para las tareas de búsqueda
y reemplazo de elementos en textos.

re [52]: libreŕıa de Python para la aplicación de expresiones regulares
en textos.

Inicialmente, se decidió desarrollar el proyecto en un entorno Windows 10, ya
que es el sistema operativo que hab́ıa instalado por defecto en el ordenador
del alumno, pero debido a problemas en la instalación de Freeling, que no se
pudieron solucionar, fue necesario optar por otro entorno. Esta herramienta
era necesaria ya que cuenta con funcionalidades no encontradas en otras he-
rramientas desarrolladas para trabajar textos en español (lematización), por
lo que se decidió instalar y desarrollar el trabajo en un entorno Linux donde
esta instalación pudo realizarse correctamente. El proceso de instalación en
Linux y los problemas encontrados en Windows se detallan en el Anexo C.

16

Figura 3.3: Cronograma inicial del proyecto.

17

18

Caṕıtulo 4

Detector de entidades

En esta sección se detalla el proceso de análisis, implementación y resultados
de un sistema de detección de entidades médicas en español. En la Sección
4.1 se detalla el análisis de los datos, en la Sección 4.2 se explica como se
ha desarrollado el modelado, y en la Sección 4.3 se muestran los resultados
obtenidos.

4.1. Análisis

Engloba las tareas de estudio y comprensión de los datos, y preparación de
los datos de la metodoloǵıa CRISP-DM.

Una de las formas más efectivas a la hora de desarrollar este tipo de herra-
mientas consiste en construir un clasificador usando un corpus gold standard
como datos de entrenamiento [34], es decir, un conjunto de textos con entida-
des previamente etiquetadas con la suficiente calidad y cantidad por expertos
en la materia, en este caso, médicos especializados.

Por ejemplo, en [50] se utiliza un conjunto de datos en inglés previamente
etiquetados sobre el que se aplican técnicas de procesamiento natural para

19

usarlos como datos de entrenamiento para un clasificador de entidades.

Por otro lado, en [21] se explica el desarrollo de un sistema de detección y
clasificación de entidades en español, haciendo uso de un corpus con tex-
tos etiquetados manualmente, y realizando tareas de aprendizaje automático
sobre éste.

Debido a la ausencia de este corpus gold standard y el desproporcionado
esfuerzo, que excede el alcance del presente proyecto, necesario para crearlo,
debido a la necesaria colaboración con expertos médicos, esta opción ha sido
descartada.

Una posible alternativa para construir un detector de entidades si no se
cuenta con este corpus consiste en usar un diccionario de términos clasificados
como referencia. Un ejemplo de este tipo de trabajos es [53], donde se usa un
diccionario de términos médicos en inglés para crear un detector de entidades
en textos médicos. Esta opción ha sido la elegida, dada su viabilidad, por lo
que el primer paso ha consistido en investigar posibles conjuntos de datos
disponibles para lograr construir este diccionario.

Este proceso de búsqueda no ha sido sencillo, debido tanto a que la cantidad
de datos médicos en castellano disponibles es mucho más reducida que en
inglés como a que la mayoŕıa de los datos de calidad encontrados engloban
campos muy acotados de la medicina, como por ejemplo radioloǵıa, hemato-
loǵıa, o protéınas, sin reflejar una visión global de la medicina general.

Finalmente, se ha conseguido obtener dos conjuntos de datos, a priori con
bastantes términos médicos como para poder desarrollar un modelo. Estos
datos se han obtenido de la versión traducida al castellano de SNOMED-CT
(Systematized Nomenclature of Medicine – Clinical Terms) [60] y de DeCS
(Descriptores de Ciencias de la Salud) [20], ambos con previa solicitud de
licencia para poder obtener los datos.

20

4.1.1. SNOMED-CT

SNOMED-CT es una terminoloǵıa cĺınica integral originalmente desarrolla-
da en inglés. Ha sido traducida, posteriormente, a otros idiomas, entre ellos
el español. La versión en castellano contiene actualmente más de un millón
de términos, denominados conceptos, en distintas clases jerarquizadas (tras-
torno, hallazgo, procedimiento, sustancia, etc.). A su vez, estos términos pre-
sentan ciertas relaciones predefinidas entre ellos; las más comunes son relacio-
nes de sinonimia y subclases. Toda esta información se divide en dos ficheros,
uno con los términos y su respectiva clase (más de un millón de términos)
y otro con las relaciones (más de cinco millones de relaciones), ambos en
formato CSV.

En la Tabla 4.1 se muestra un ejemplo de la información extráıda del fichero
de términos, donde conceptId es un código identificador del concepto, que es
el mismo para todos los términos que hacen referencia a este mismo concepto,
y typeId es otro código que indica si el término es un sinónimo o es el término
principal.

conceptId typeId term termType
248425001 900000000000013009 pirexia hallazgo

Tabla 4.1: Ejemplo de información extráıda de un término de SNOMED-CT

Por otra parte, en la Tabla 4.2 se muestra un ejemplo de los datos extráıdos
del fichero de relaciones, donde en este caso el campo typeId indica el tipo
de relación entre los dos conceptos definidos por su conceptId, en este caso
llamados sourceId y destinationId.

sourceId typeId destinationId
248425001 116680003 64882008

pirexia sinonimia fiebre

Tabla 4.2: Ejemplo de información extráıda de una relación de SNOMED-CT

Tras el procesamiento y adaptación de este fichero de términos con objeto de
poder construir un diccionario adaptado a las necesidades de este proyecto,

21

se obtienen 951.213 términos, contando sinónimos, divididos en 20 clases. En
el Anexo A se explica con más detalle el procesamiento los ficheros para la
construcción de un diccionario.

4.1.2. DeCS

El vocabulario estructurado y multilingüe DeCS [20] fue creado por BIRE-
ME (Centro Latinoamericano y del Caribe de Información en Ciencias de
la Salud) para servir como un lenguaje único en la indización de art́ıculos
de revistas cient́ıficas, libros, anales de congresos, informes técnicos, y otros
tipos de materiales, aśı como para ser usado en la búsqueda y recuperación
de asuntos de la literatura cient́ıfica en las fuentes de información disponibles
en la Biblioteca Virtual en Salud, como LILACS, MEDLINE y otras.

Fue desarrollado a partir del MeSH (Medical Subject Headings) de la U.S.
National Library of Medicine con el objetivo de permitir el uso de termino-
loǵıa común para búsqueda en múltiples idiomas, proporcionando un medio
consistente y único para la recuperación de la información de interés.

Los conceptos que componen DeCS son organizados en una estructura jerárqui-
ca, permitiendo la ejecución de búsqueda en términos más amplios o más
espećıficos o la recuperación de todos los términos que pertenezcan a una
misma estructura jerárquica. Es un vocabulario dinámico totalizando 33.966
descriptores y calificadores, siendo de estos 29.431 del MeSH y 4.535 exclu-
sivamente del DeCS.

La fuente de datos obtenida de DeCS también contiene múltiples ficheros, de
los cuales solamente uno es de utilidad para este trabajo. En él se recogen
todos los términos que contiene DeCS traducidos al castellano en formato
XML. El problema de este fichero es que, a diferencia de SNOMED-CT,
no viene informada la clase de cada término; sin embargo, a partir de otro
campo (treeId) los desarrolladores de DeCS ofrecen una aplicación basada
en servicios web [19], mediante la cual se puede obtener diversa información,
entre ella la clase de más alto nivel de la jerarqúıa de cada término, que se ha
usado para determinar la clase de cada elemento. Esta información se obtiene
a través del siguiente endpoint REST :

22

http://decs.bvsalud.org/cgi-bin/mx/cgi=@vmx/decs/?tree id=

En la Tabla 4.3 se muestra un ejemplo de la información extráıda de este
fichero, donde el campo ancestor hacer referencia a la clase de nivel superior
obtenida con el método explicado.

termName termUI treeId ancestor

Pulmón spa0000586 D03.633.100.221.173 ANATOMÍA

Tabla 4.3: Ejemplo de información extráıda de una relación de DeCS

En total se obtienen 91.823 términos médicos divididos en 20 clases, 10 veces
menos términos que para SNOMED-CT. Todo el procesado y adaptación del
fichero para la creación de un diccionario adaptado a las necesidades de este
proyecto se explica con más detalle en el Anexo B.

4.2. Modelado

En este apartado se detalla la fase de modelado de la metodoloǵıa CRISP-
DM.

Tras las primeras pruebas en la fase de implementación, se llegó a la con-
clusión de que es necesario contextualizar el texto que se está etiquetando
para obtener resultados de mejor calidad. Esto se debe a que al disponer
únicamente de un listado de términos, no se sabe si el término que se está
detectando tiene sentido dentro del contexto actual. Un ejemplo es el siguien-
te, donde se detecta ‘costillas’ como ‘estructura corporal’, que a priori tiene
sentido ya que es una estructura anatómica del cuerpo humano, pero no en
el contexto de la situación que refleja el texto, donde se refiere a un tipo de
comida:

“Varón acude al Servicio de Urgencias por reacción anafiláctica tras la in-
gesta de ‘costillas de cerdo’, según refiere. El paciente alega la aparición
de numerosas lesiones habonosas, eritematosas y pruriginosas tanto en ex-
tremidades superiores como en tórax y abdomen, tras la comida. Afebril. No

23

refiere haber cambiado de productos de higiene, ni haber utilizado perfumes
o ropa nueva. No otra cĺınica asociada al cuadro”.

La forma idónea de crear este contexto seŕıa a partir de una ontoloǵıa bien
formada, donde en función de las relaciones existentes entre los términos
médicos detectados dentro de la ontoloǵıa, se determine si cada término tie-
ne sentido dentro del contexto actual. Sin embargo, a partir de los datos
disponibles no es posible crear tal estructura, debido a que , como se verá
más adelante, las relaciones de las que se dispone (únicamente en SNOMED-
CT) no son las ideales, por lo que se han estudiado algunas alternativas para
solventar este problema:

Distancia entre códigos. Esta primera prueba consiste en generar el con-
texto en función de la distancia entre los identificadores de los términos
detectados. Esta distancia se ha calculado comparando los d́ıgitos en
la misma posición de ambos elementos, de tal forma que si el número
de d́ıgitos coincidentes es mayor o igual que el número de d́ıgitos no
coincidentes, se estima que son cercanos, y por tanto relacionados.

Para esta prueba se ha supuesto que los códigos de los términos de
ambos conjuntos de datos están ordenados por relación jerárquica. Sin
embargo, como se verá en la sección de resultados, esta suposición re-
sultó falsa.

Relación entre términos. En esta fase se ha intentado utilizar las rela-
ciones existentes en las fuentes de datos, de manera que sólo se dan por
válidos los términos detectados que tengan relaciones entre śı.

Con DeCS no se ha podido realizar esta prueba, ya que no facilita
ningún fichero con esta información, y aunque se podŕıa obtener a par-
tir de los identificadores facilitados y la aplicación basada en servicios
web, no se ha podido recuperar debido al enorme tiempo de ejecución
necesario y, a que, tras un número de peticiones, el sistema bloquea
la IP y no permite realizar más llamadas hasta pasado cierto tiem-
po. El ĺımite de peticiones permitidas o el tiempo de restricción no se
mencionan en sus términos de uso.

Con SNOMED-CT, gracias al fichero de relaciones facilitado, śı que es
posible realizar esta prueba. Para este experimento, se detectan solo

24

términos que estén relacionados entre śı con una profundidad de 3. Se
ha decidido que la profundidad sea tres porque, debido a los tamaños
de ambos ficheros, obtener mayor profundidad supone un coste de eje-
cución del orden de d́ıas.

Se han implementado tres tipos de detectores, cada uno con diferentes fun-
cionalidades, para valorar cuál de ellos da mejor resultado, aplicando cada
una de las pruebas descritas.

4.2.1. Baseline

Como primer paso, se ha desarrollado un modelo simple que sirve de refe-
rencia a la hora de valorar la mejora de otros detectores más complejos. Se
realiza únicamente un preprocesado en el que elimina caracteres no válidos,
tanto de los textos como de los términos, y convierte todo en minúsculas. En
este modelo se compara cada término con cada ngrama del texto y devuelve
aquellos términos que sean idénticos en el texto a procesar.

Inicialmente se utilizó la libreŕıa re de Python [52], que permite el uso de
expresiones regulares mediante las cuales comprueba la coincidencia de cada
término en el texto. En el Algoritmo 1 se muestra el funcionamiento descrito.

El tiempo de ejecución de este algoritmo es ligeramente elevado, desde 15
segundos hasta 200 dependiendo del tamaño del texto. Este tiempo es más
alto cuando se usa el diccionario de términos de SNOMED-CT que contiene
casi un millón de elementos, por lo que se han investigado posibles mejoras
para reducir este tiempo de ejecución.

Existe una libreŕıa llamada FlashText creada espećıficamente para las ta-
reas de búsqueda y remplazo de palabras en documentos [22], que realiza la
misma función que el algoritmo anterior, pero de manera más eficiente, redu-
ciendo considerablemente el tiempo de ejecución. En este caso es necesario
introducir como parámetro todos los elementos del diccionario en un obje-
to de esta libreŕıa, llamado KeywordProcessor, para posteriormente buscar
coincidencias en el texto.

25

Algoritmo 1 Baseline inicial

Entrada: Texto a procesar, diccionario de términos
Salida: Términos coincidentes en el texto.

preprocesar texto
preprocesar términos
para todo término hacer

comprobar coincidencia de término en texto mediante expresión regu-
lar.
si coincide entonces

añadir a lista de coincidencias
fin si

fin para
devolver lista de coincidencias

Los términos que se introducen en esta libreŕıa son transformados en una
estructura de datos trie [32]. Un trie está formado por un conjunto de datos
organizados en una estructura “tipo árbol” que permite una recuperación
de información más eficiente. Toda la información que está contenida dentro
de un trie consiste en una agrupación de claves. En este caso, una clave
hace referencia a una secuencia de una serie de śımbolos que forman parte
de un alfabeto determinado. Las claves son almacenadas en las hojas del
árbol y los nodos internos son pasarelas para guiar la búsqueda. Estas claves
van a ser almacenadas en las “hojas” de la estructura de árbol, existiendo
una serie de nodos internos que van a permitir la intercomunicación entre
ellas, facilitándose aśı la búsqueda. Este árbol está estructurado de forma
que cada letra de la clave se ubica en un nodo de tal manera que los hijos
de un nodo representan las distintas posibilidades de śımbolos diferentes que
pueden continuar al śımbolo representado por el nodo padre. En la Figura
4.1 se muestra un ejemplo gráfico de la estructura descrita .

En el Algoritmo 2 se muestra el funcionamiento del baseline usando esta
libreŕıa. El único inconveniente es que esta libreŕıa no permite añadir meta-
datos a los términos introducidos, por lo que al incluirlos se pierde el resto de
información, entre ellas la clase del término. Debido a esto, para cada coinci-
dencia es necesario recuperar el resto de metadatos. Aun aśı, el rendimiento
de este segundo algoritmo es mucho mejor que el primero, como se puede
ver en la Figura 4.2, donde se ha procesado 50 textos con cada uno de los

26

Figura 4.1: Estructura de datos tipo trie. Extráıda de [32].

algoritmos propuestos, siendo el tamaño de estos textos, 45 de entre 130 y
500 caracteres, y los 5 restantes de más de 500. El resto de valores de tiempo
se han interpolado.

Figura 4.2: Comparativa del tiempo de ejecución usando re y FlashText.

4.2.2. Lematización

El principal problema del baseline es que al mı́nimo cambio de una palabra
en el texto el detector es incapaz de encontrar dicha palabra; por ejemplo, si
en el diccionario aparece el término dolor de pierna y en el texto dolor en las

27

Algoritmo 2 Baseline optimizado usando FlashText

Entrada: Texto a procesar, diccionario de términos
Salida: Términos coincidentes en el texto.

preprocesar texto
preprocesar términos
incializar KeywordProcessor
para todo término hacer

introducir término en KeywordProcessor.
fin para
buscar coincidencias en el texto(KeywordProcessor.extract keywords(texto))

para todo término encontrado hacer
recuperar metadatos del término
añadir a la lista de coincidencias

fin para
devolver lista de coincidencias

piernas, el detector anterior no encontraŕıa coincidencia. Para mejorar estos
casos, se han preprocesado todos los términos y texto de la siguiente forma:

1. Convertir todo a minúsculas. Al igual que con el modelo anterior, se
han convertido tanto los términos como el texto a minúsculas. Para las
siglas se ha hecho una excepción: si el término en el diccionario aparece
todo en mayúsculas, se entiende que se trata de siglas, y por tanto este
paso no se aplica ni en el término ni en los textos.

2. Eliminación de palabras vaćıas. Suprimir aquellas palabras que carecen
de significado y no son relevantes para este tipo de aplicaciones, como
art́ıculos, preposiciones, determinantes, etc.

3. Aplicar lematización. Es un proceso lingǘıstico que consiste en, dada
una forma flexionada, hallar el lema correspondiente. El lema es la for-
ma que por convenio se acepta como representante de todas las formas
flexionadas de una misma palabra, llamado también base léxica. Por
ejemplo, el lema de las palabras rojo, roja, rojos o rojas es rojo

Para este procesado y lematización se ha hecho uso de la herramienta Free-

28

ling [48], una libreŕıa programada en C++ que cuenta con funcionalidades
de análisis del lenguaje para múltiples idiomas, entre ellos el español. Esta
herramienta cuenta con una API para poder ser utilizada desde Python, que
requiere una previa instalación y compilación para poder ser utilizada, ya
que no puede ser instalada mediante pip install como es habitual en Python.

No se ha encontrado ninguna libreŕıa en Python que recupere el lema de las
palabras en español con tan buenos resultados como Freeling. Por ejemplo, la
libreŕıa nltk y su paquete SnowballStemmer cuenta con múltiples funcionali-
dades para el castellano, pero no proporciona la funcionalidad de lematizar
palabras: únicamente se puede obtener la ráız o lexema, lo cual es menos
preciso y puede dar a errores a la hora de detectar comparando ráıces, como
con las palabras hombre y hombro, que comparten la misma ráız hombr, pero
que se tratan de unidades semánticas diferentes, entendiendo como unidad
semántica al conjunto de palabras o expresiones que tienen un significado
similar. Otro ejemplo es spacy, otra libreŕıa de procesamiento del lenguaje
natural que soporta el español. Esta herramienta śı que cuenta con la opción
de lematizar palabras, el problema es que su ı́ndice de acierto es bastante
menos elevado, errando sobre todo a la hora de lematizar sustantivos, donde
palabras como huevo, correo o corte, las convierte en huevar, correar y cortar,
aun detectándolas correctamente como sustantivos en el análisis morfológico.

Mediante una previa segmentación del texto en palabras, llamado tokeniza-
ción, se procesa cada una de éstas, obteniendo su lema, transformándola en
minúsculas, eliminándola si se trata de una palabra vaćıa. Para comprobar
la coincidencia de los elementos procesados, también se ha hecho uso de la
libreŕıa FlashText. En el Algoritmo 3 se muestra el funcionamiento de este
modelo.

Para mejorar el tiempo de ejecución de este detector se ha introducido, en la
base de datos de donde se recupera la información de cada término, un campo
con el término ya procesado y transformado a su lema, por lo que la primera
parte de este modelo donde se calculan los lemas de los términos, cuyo tiempo
de ejecución era de hasta 40 segundos en el caso de SNOMED-CT, ya no es
necesario.

Adicionalmente, tras las primeras pruebas, se hizo uso de un corrector or-
tográfico para paliar los problemas a la hora de no detectar palabras escritas

29

Algoritmo 3 Detector con lematización

Entrada: Texto a procesar, diccionario de términos
Salida: Términos coincidentes en el texto.

incializar KeywordProcessor
para todo término hacer

tokenizar término
para todo palabra del término hacer

si es palabra vaćıa entonces
eliminar palabra

fin si
transformar palabra a su lema

fin para
fin para

tokenizar texto
para todo palabra del texto hacer

si es palabra vaćıa entonces
eliminar palabra

fin si
transformar palabra a su lema

fin para

para todo lema hacer
introducir lema en KeywordProcessor.

fin para
buscar coincidencias en el texto(KeywordProcessor.extract keywords(texto))

para todo elemenos encontrados hacer
recuperar metadatos del término
añadir a la lista de coincidencias

fin para
devolver lista de coincidencias

30

incorrectamente, como hormiguoe al querer escribir hormigueo. Para esta
tarea se ha hecho uso de la libreŕıa SymSpell [37], una herramienta muy efi-
ciente con una media de 0.002 segundos de cálculo por palabra. Esta libreŕıa
permite cargar un diccionario espećıfico como fuente para la corrección, lo
que ha permitido el uso de un diccionario en español, que consta de 1.211.000
elementos, obtenido de un proyecto de código abierto donde se recogen las
palabras más frecuentes obtenidas de subt́ıtulos de peĺıculas [26]. Esta he-
rramienta usa la distancia de Levehnstein como métrica para determinar la
similitud entre palabras [6], que se explicará en la siguiente sección. La efi-
cacia de esta herramienta está limitada por el contenido del diccionario, no
siendo capaz de corregir palabras muy técnicas que no aparezcan en éste.
La confianza de los elementos detectados tras utilizar el corrector ortográfico
debe ser menor, ya que es posible que la corrección aplicada no sea correcta,
pudiendo corregir palabras demasiado técnicas que śı que están correctamen-
te escritas, por lo que se incluirá Probabilidad Media en estos elementos.

4.2.3. Detector aproximado

Otra alternativa consiste en realizar un cálculo para comprobar la similitud
entre el contenido del texto y los términos del diccionario médico. Esto solu-
cionaŕıa el problema de no detectar términos con faltas de ortograf́ıa, que son
frecuentes en los documentos de tipo historia cĺınica, o palabras en singular y
plural o masculino y femenino que también se solventa en el detector descrito
anteriormente. Por otro lado, es posible que se detecten palabras que sean
parecidas, pero que se traten de unidades semánticas diferentes. Este detec-
tor seŕıa el equivalente a usar un corrector ortográfico, pero con las fuentes
de datos de SNOMED-CT o DeCS como diccionario de corrección.

Este cálculo para comprobar la similitud entre palabras se realiza mediante
la distancia de Levenshtein [6]. Es una métrica que mide la diferencia entre
dos secuencias de caracteres. Representa el número mı́nimo de ediciones en
dichos caracteres (añadir, cambiar o borrar) necesarios para transformar una
secuencia en la otra. La definición matemática de la distancia de Levenshtein
entre dos secuencias a, b, leva,b(|a|, |b|) es la siguiente:

31

leva,b(i, j) =


max(i, j) if min(i, j) = 0,

min


leva,b(i− 1, j) + 1
leva,b(i, j − 1) + 1
leva,b(i− 1, j − 1) + 1(ai 6=bj)

otherwise.

Donde 1(ai 6=bj) es 0 cuando a = b y 1 si no. Nótese que las tres filas de la
parte del mı́nimo en la anterior fórmula corresponden con un borrado, una
inserción y una sustitución, respectivamente.

Por ejemplo en la Figura 4.3, la distancia entre TRASTO y RESTO es 2, ya
que hace falta una sustitución (A por E) y una eliminación (la primera T).

Figura 4.3: Ejemplo de cálculo de la distancia de Levenshtein.

Existe un módulo para Python, llamado python-Levenshtein [5], que realiza
este cálculo. Esta libreŕıa también cuenta con una relación de similitud o
ratio de Levenshtein, que se calcula mediante la siguiente fórmula:

(|a|+ |b|)− leva,b(i, j)

|a|+ |b|

Esta medida es interesante porque tiene en cuenta el tamaño de las secuen-
cias. No es lo mismo una distancia de Levenshtein = 2 en secuencias de
3 ó 4 caracteres, donde muy posiblemente se trate de palabras totalmente
distintas, como dado y duro, que en secuencias de 10 donde seguramente se
trate de algún error ortográfico o singular/plural. Por lo tanto, se ha decidido
usar esta medida para calcular la similitud entre palabras, siendo el umbral
mı́nimo 0.9, ya que un umbral inferior podŕıa suponer el aumento de falsos
positivos sobre todo en palabras cortas.

32

Para que este cálculo sea correcto, han de compararse elementos con el mismo
número de palabras, por lo que es necesario dividir el texto en ngramas en
función del número de palabras que tenga cada término a detectar.

Ya que calcular los ngramas del texto para cada término es muy ineficiente,
y elevaŕıa el tiempo de ejecución del detector, se han calculado previamente
los ngramas de los textos para n = 1,2,3,4,5,6; siendo 6 el número máximo
de palabras que tienen los términos del diccionario, y en función del tamaño
de cada término, se compara con una lista u otra.

El funcionamiento de este modelo se detalla en el Algortimo 4. Su gran incon-
veniente es su elevado tiempo de ejecución con respecto a los dos anteriores,
siendo de entre 200 y 500 segundos dependiendo del tamaño del texto, mien-
tras que los anteriores no superaban el segundo. El coste máximo de este
algoritmo es del orden de O(m*n) donde m es el número de términos del dic-
cionario y n el número de palabras del texto. Se ha decidido mantenerlo tal
y como se ha descrito, y en el caso de que los resultados de este modelo sean
mucho mejores con respecto a los demás en la fase de evaluación, modificar el
algoritmo para abordarlo de forma más eficiente mediante paralelización, ya
que al procesar cada término de manera independiente podŕıa ser aplicable,
y optimización de código.

4.3. Resultados

En esta sección se detalla la fase de evaluación de la metodoloǵıa CRISP-
DM. Tras valorar los resultados de las distintas pruebas, se concluirá qué
diccionario de términos es más eficaz y qué tipo de detector da mejores
resultados.

Para la valoración de los resultados se han usado 10 textos obtenidos de
historias cĺınicas totalmente anonimizadas proporcionadas por los directores
del TFM. Al ser textos extensos y con bastante contenido médico, se puede
comprobar el funcionamiento de los detectores implementados etiquetando
previamente los términos médicos encontrados en el texto de forma manual y
comparando el etiquetado con los resultados de cada prueba. Estos resultados

33

Algoritmo 4 Detector aproximado

Entrada: Texto a procesar, diccionario de términos
Salida: Términos coincidentes en el texto.

para todo n entre n=1 y 6 hacer
calcular ngramas del texto

fin para
para todo término hacer

calcular tamaño de ngrama del término = t
para todo ngrama del texto para n = t hacer

calcular ratio de Leveneshtein
si ratio mayor que umbral entonces

añadir término a la lista de coincidencias
fin si

fin para
fin para
devolver lista de coincidencias

se dividen en Verdadero Positivo (True Positive), Falso Positivo (False Posi-
tive), Verdadero Negativo (True Negative) y Falso Negativo (False Negative),
pudiendo crear aśı una matriz de confusión.

Verdadero Positivo: Elemento que aparece etiquetado en el texto y se
ha detectado correctamente.

Falso Positivo: Elemento que no aparece en el texto y se ha detectado
incorrectamente (puede ocurrir sobre todo en el detector aproximado).
También se incluyen en este grupo los términos que aparecen en el texto
pero han sido detectados en una clase incorrecta.

Verdadero Negativo: Se trata de elementos que śı que se han detecta-
do, pero se ha estimado correctamente que no procede etiquetar en el
caso actual. En el caso del texto de ejemplo de la Sección 5.2, detectar
costillas (estructura corporal) y estimar que no procede en ese texto
seŕıa un Verdadero Negativo. Este tipo solo apareceŕıa en la pruebas
de contextualización, ya que sin este proceso, el detector únicamen-
te detecta los términos encontrados, dando todos como correctos, sin
estimar ninguno como negativo.

34

Falso Negativo: Elemento que śı que está etiquetado previamente, pero
que el detector no ha encontrado. En el caso de las pruebas de con-
textualización, detectar un término y estimarlo como negativo cuando
debeŕıa ser positivo también es un Falso Negativo.

Como medidas de evaluación se han utilizado la precisión y el recall :

Precisión: Mide el ı́ndice de acierto del modelo, es decir, cuántas ins-
tancias se han detectado correctamente. Se define mediante la siguiente
fórmula:

Precision =
TP

TP + FP

Recall : Mide la exhaustividad del modelo, es decir, cuántos elementos
que haya que detectar se han detectado realmente. Se define mediante
la siguiente fórmula:

Recall =
TP

TP + FN

Cabe mencionar que, en ambos conjuntos de datos, hay elementos que no se
consideraron en el etiquetado manual, como antecedente de, que es un con-
cepto cĺınico que implica modificación del riesgo de padecer algo o hermano
fallecido, que es un antecedente familiar y puede ser claramente un indicador
de riesgo, pero que śı aparecen etiquetados correctamente y son términos a
tener en cuenta. Estos términos no se tuvieron en cuenta en el etiquetado
manual debido a la falta de conocimiento médico por parte del alumno, que
no se etiquetaron por desconocimiento o por acotar demasiado el etiquetado,
centrándose en los elementos que el alumno consideraba más relevantes, co-
mo medicamentos, śıntomas, enfermedades o procedimientos médicos. Todo
esto ha dificultado enormemente esta tarea de evaluación, por lo que ha sido
necesario adaptar el etiquetado en función de estos términos no considerados.

Por otra parte, debido a la gran variación entre los elementos de SNOMED-
CT y DeCS, no se han podido cuadrar los elementos etiquetados en ambos
conjuntos de datos ya que bastantes términos que aparecen en SNOMED-CT
no aparecen en DeCS y viceversa, como por ejemplo hospital, historia cĺınica

35

o acude a, que aparecen en SNOMED-CT pero no en DeCS. Dado que la
relevancia de estos elementos no es muy elevada, se ha decidido considerarlos
correctos, pero no como falsos negativos en el otro conjunto de datos.

4.3.1. Búsqueda de contexto

Como primera prueba se ha utilizado el modelo baseline con ambos métodos
para tratar de contextualizar el texto descritos en la Sección 5.2 (similitud
de códigos y relaciones).

En primer lugar, en la Tabla 4.4 se muestran las matrices de confusión sin
aplicar ningún tipo de contextualización, para comparar si el aplicarlas me-
jora o empeora los resultados.

SNOMED-CT
Detección

Positivo Negativo

R
e
a
l Positivo 240 149

Negativo 82 0

DeCS
Detección

Positivo Negativo

R
e
a
l Positivo 118 190

Negativo 70 0

Tabla 4.4: Matrices de confusión del baseline sin contextualización con ambos
conjuntos de datos.

En la Tabla 4.5 puede apreciarse cómo los resultados son superiores, aunque
mejorables, en SNOMED-CT con respecto a DeCS, sobre todo en cuanto al
recall. Se puede apreciar cómo el número de elementos no detectados (Falsos
Negativos) es superior en DeCS frente a SNOMED-CT, y también como se
detectan más elementos en SNOMED-CT que en DeCS. Esto se debe a que
el contenido de SNOMED-CT es mucho más completo, en cuanto al número
de términos presentes, tal y como se refleja en los resultados, habiendo 10
veces más términos que en DeCS.

En segundo lugar, en la Tabla 4.6 se muestran las matrices de confusión de
los resultados aplicando el método de similitud de códigos para buscar el con-
texto con ambos conjuntos de datos. En la Tabla 4.7, se puede apreciar como

36

Baseline
SNOMED-CT DeCS

Precisión 0.74 0.64
Recall 0.62 0.34

Tabla 4.5: Métricas de evaluación del detector baseline sin contextualización.

los resultados no tan eficaces como los anteriores. La precisión ha aumen-
tado, pero el recall ha disminuido considerablemente, debido a que estima
como negativos muchos de los términos cuando no debeŕıan serlos. Con los
resultados obtenidos podŕıa decirse que la similitud entre códigos no aporta
información acerca de la relación entre los términos y que, por tanto, no es
útil para la búsqueda de contexto.

SNOMED-CT
Detección

Positivo Negativo

R
e
a
l Positivo 157 232

Negativo 33 49

DeCS
Detección

Positivo Negativo

R
e
a
l Positivo 102 206

Negativo 23 47

Tabla 4.6: Matrices de confusión del baseline usando la similitud entre códigos
como contextualización con ambos conjuntos de datos.

Similitud de códigos
SNOMED-CT DeCS

Precisión 0.83 0.82
Recall 0.40 0.33

Tabla 4.7: Métricas de evaluación del detector baseline con similitud entre
códigos como contextualización.

Por último, en la Tabla 4.8 se muestra la matriz de confusión de los resultados
aplicando las relaciones entre términos de la fuente de datos para obtener el
contexto, en este caso solo de SNOMED-CT, ya que, como se ha explicado,
no ha sido posible obtener esta información para el conjunto de datos de
DeCS. Los resultados obtenidos son incluso peores que con la similitud entre

37

códigos, clasificando la mayoŕıa como negativos, lo que reduce considerable-
mente el recall, como se refleja en la Tabla 4.9. Este mal funcionamiento se
debe a que la mayoŕıa de relaciones existentes son de hiponimia, es decir, se
relaciona palabras de carácter más espećıfico con otras más generales, como
carcinoma epidermoide que es hipónimo de tumor, o de sinonimia, como fie-
bre y pirexia. Esto fomenta el aumento de elementos que se estiman negativos
erróneamente, ya que en textos donde no se haga mención de dos elementos
que sean sinónimos o que sean de la misma jerarqúıa seŕıan estimados como
negativos.

En el siguiente texto de ejemplo, los términos fiebre, amigdalitis bacteriana y
amoxicilina, seŕıan clasificados como negativos, aun existiendo en el conjun-
to de datos, ya que no pertenecen a la misma clase jerárquica ni son sinóni-
mos. Sin embargo, están claramente relacionados, siendo fiebre un śıntoma de
amigdalitis bacteriana y amoxicilina un posible tratamiento para amigdalitis
bacteriana:

“Paciente acude por persistencia de fiebre tras ser diagnosticado de amig-
dalitis bacteriana. Refiere haber tomado Amoxicilina 1/8h durante sólo
4 d́ıas. Se aconseja terminar el tratamiento (7-10 d́ıas)”

SNOMED-CT
Detección

Positivo Negativo

R
e
a
l Positivo 84 298

Negativo 33 59

Tabla 4.8: Matriz de confusión del baseline usando las relaciones entre térmi-
nos como contextualización con SNOMED-CT.

Distancia entre códigos
SNOMED-CT DeCS

Precisión 0.78 -
Recall 0.22 -

Tabla 4.9: Métricas de evaluación del detector baseline con relaciones entre
términos como contextualización.

38

Tras tratar de investigar posibles alternativas para la contextualización del
texto, no se ha encontrado ninguna manera de hallar un contexto claro con
los datos facilitados. Una alternativa planteada consiste en establecer una
relación jerárquica manual entre las clases en las que están divididas los
términos (ya que se ha visto que la jerarqúıa proporcionada por SNOMED
no genera buenos resultados), de manera que sólo se estimen como positivos
los elementos de una clase si se ha detectado algún otro elemento de una
clase superior. El problema radica en que las clases son demasiado genéricas
y la relación jerárquica a aplicar es demasiado pobre como para obtener
resultados eficaces. Se trató de profundizar un nivel en la relación de jerarqúıa
proporcionada por SNOMED-CT para obtener un desglose más espećıfico,
pero el número de clases en este segundo nivel se eleva a más de 22 mil,
haciendo imposible una relación jerárquica manual.

Por tanto, el resto de pruebas realizadas con los dos detectores restantes se
realizarán sin ningún tipo de contextualización, ya que como se ha visto, con
las pruebas realizadas la eficacia de los resultados disminuye.

4.3.2. Lematización

En la Tabla 4.10 se muestran las matrices de confusión de los resultados de
detección en los 10 textos tras procesar y lematizar cada texto y término.
Se puede apreciar cómo el número de elementos detectados ha aumentado
con respecto al baseline, reduciendo el número de Falsos Negativos, es decir,
términos no encontrados. En el conjunto de datos de DeCS se puede apre-
ciar en la Tabla 4.11 cómo los resultados son bastante inferiores, habiendo
un número de elementos detectados erróneamente (Falsos Positivos) mucho
mayor que el baseline en relación con SNOMED-CT, que se ha mantenido
casi constante. Esto se debe a que los datos de DeCS contienen más términos
metodológicos como en la consulta o al diagnóstico, que no son estrictamente
médicos y que, al transformarlos, se obtienen términos muy generales como
consultar o diagnosticar, que la mayoŕıa de veces se detectan erróneamen-
te. Además, cabe mencionar que, en ambos conjuntos de datos, hay algunos
términos que en la mayoŕıa de las ocasiones se trata de palabras no médicas,
como varios(sustancia) o triple(fármaco de uso cĺınico) que se detectan y en
casi todas las ocasiones son falsos positivos, lo que reduce la precisión del

39

detector.

SNOMED-CT
Detección

Positivo Negativo

R
e
a
l Positivo 265 90

Negativo 85 0

DeCS
Detección

Positivo Negativo

R
e
a
l Positivo 187 121

Negativo 147 0

Tabla 4.10: Matrices de confusión del detector tras lematizar el contenido.

Lematización
SNOMED-CT DeCS

Precisión 0.76 0.56
Recall 0.75 0.6

Tabla 4.11: Métricas de evaluación del detector tras lematizar el contenido.

Por otro lado, una gran parte de los términos no detectados son siglas de
procedimientos diagnósticos, terapéuticos, estructuras corporales o enferme-
dades. Las siglas son muy dif́ıciles de gestionar, ya que los médicos suelen
usarlas muy frecuentemente y no existe una estandarización clara; una mis-
ma sigla puede referirse a varios conceptos diferentes, o usarse en situaciones
diferentes, dependiendo del médico, como por ejemplo TEP puede hacer refe-
rencia tanto a Tromboembolismo Pulmonar como a Triángulo de Evaluación
Pediátrica. La aparición de siglas en ambos diccionarios es muy reducida,
mientras que en los textos cĺınicos usados como prueba aparecen con fre-
cuencia, lo que reduce la calidad de los resultados. Sin tener en cuenta las
siglas, los falsos negativos de SNOMED-CT se reducen a 62, obteniendo un
recall de 0.81.

Por último, no se puede pasar por alto el hecho de la ausencia de nombres
comerciales de medicamentos en ambos conjuntos de datos, por lo que hay
tratamientos que no se detectan como tal, al no estar escritos por el principio
activo del fármaco, que śı se recoge.

En general, los resultados de SNOMED-CT son ligeramente superiores con
respecto al baseline y presentan un mejor funcionamiento que DeCS, aunque
la aparición reducida de siglas en el diccionario de términos y la detección

40

errónea o la no detección de algunos elementos, según lo explicado anterior-
mente, reduce la calidad final obtenida.

4.3.3. Detector aproximado

En la Tabla 4.12 se muestran las matrices de confusión de la prueba del
detector aproximado con ambos conjuntos de datos. Se aprecia un aumento
en el número de elementos correctamente detectados, y como consecuencia
el número de no detectados se ha reducido. En contraste, el número de ele-
mentos detectados incorrectamente ha aumentado considerablemente debido
a que este método da pie a muchos errores en palabras como, por ejemplo,
hombre y hombro, que son dos términos con un significado semántico dife-
rente, pero muy parecidos dada su ráız, por lo que este detector detectaŕıa
hombre si en el texto aparece la palabra hombro.

SNOMED-CT
Detección

Positivo Negativo

R
e
a
l Positivo 293 62

Negativo 291 0

DeCS
Detección

Positivo Negativo

R
e
a
l Positivo 215 93

Negativo 120 0

Tabla 4.12: Matrices de confusión del detector aproximado.

Como consecuencia, y tal y como se refleja en la Tabla 4.13, el recall ha au-
mentado considerablemente en relación con los dos detectores anteriores. Sin
embargo, debido a estos errores en la aproximación de palabras, la precisión
ha disminuido vertiginosamente, sobre todo en el caso de SNOMED-CT, ya
que al contener muchos más términos que DeCS la probabilidad de presentar
palabras parecidas pero incorrectamente detectadas es mucho mayor.

Detector aproximado
SNOMED-CT DeCS

Precisión 0.50 0.64
Recall 0.83 0.70

Tabla 4.13: Métricas de evaluación del detector aproximado.

41

4.3.4. Evaluación de los resultados

Tras observar los resultados obtenidos de las distintas pruebas, se puede
apreciar cómo el conjunto de datos de SNOMED-CT en general proporcio-
na mejores resultados que DeCS, cosa que era de esperar debido a que el
contenido de SNOMED-CT es más amplio y completo.

En cuanto a las distintas pruebas de los detectores, los resultados no son
lo esperado inicialmente en ninguna de ellas, siendo el detector tras aplicar
lematización el que proporciona unos resultados más equilibrados en cuanto
a precisión y recall. Esto es debido, por un lado a una falta de contextuali-
zación del texto que da pie a que algunos términos no encajen dentro de un
determinado contexto, y por otro lado a la ausencia de términos entre ellos,
siglas y nombres comerciales de medicamentos.

En resumen, los resultados de la detección se ven mermados debido a la ausen-
cia de términos en el conjunto de datos; la eficacia del detector se ve limitada
por los términos del diccionario, hay palabras como osteofitosis que no se de-
tectan debido a que no aparecen en el diccionario de términos, incluyéndose
aqúı también el problema ya mencionado de los nombres comerciales de los
medicamentos, a la aparición de términos demasiado generales que la mayoŕıa
de veces son incorrectos debido a una falta de contextualización, la mayoŕıa
de ellos en formatos como preposición + verbo o conjunción + determinante
+ verbo, que al lematizar y eliminar palabras vaćıas se generalizan dema-
siado, y a la falta de siglas en los diccionarios de términos, reduciendo la
eficacia de los resultados ya que en los textos de prueba la aparición de siglas
es frecuente (35 ocurrencias en los 10 textos de pruebas).

42

Caṕıtulo 5

Detector de recomendaciones

De forma paralela al desarrollo del detector de entidades, se han investi-
gado posibles técnicas para la elaboración de un clasificador de textos que
sea capaz de identificar si en un fragmento de texto se está hablando de
una recomendación, sugerencia o evidencia dentro de un contexto médico, o
es simplemente informativo o divulgativo, siguiendo la misma metodoloǵıa
CRISP-DM descrita anteriormente. En la Sección 5.1 se muestra el análisis
realizado, en la Sección 5.2 se detalla el modelado diseñado y finalmente en
la Sección 5.3 se explican los resultados obtenidos.

5.1. Análisis

Esta fase engloba las tareas de estudio y comprensión de los datos y prepara-
ción de los datos de la metodoloǵıa CRISP-DM. Para esta tarea se cuenta con
una herramienta proporcionada por los directores del TFM que extrae tex-
tos de documentos en formato PDF, dividiendo el contenido del documento
por frases. También se han facilitado 65 gúıas cĺınicas en PDF que han sido
procesadas por la herramienta. Por lo que el conjunto de datos disponible
consiste en un listado de frases extráıda de estos protocolos.

43

Aunque el funcionamiento de la herramienta es correcto, también extrae ele-
mentos no deseados como bibliograf́ıa, algunos t́ıtulos o textos de marcas de
agua, por lo que el conjunto de datos puede contener una cantidad no muy
elevada de ruido. Tras procesar las gúıas cĺınicas, se obtiene un conjunto de
datos formado por 58.864 frases.

Para poder evaluar la calidad de las técnicas de clasificación a aplicar es
necesario contar con un conjunto de datos clasificados, por ello el primer
paso dado ha sido etiquetar manualmente un subconjunto de estos textos
extráıdos, diferenciándolos entre ‘recomendación’ o no. Para esta tarea se ha
hecho una especie de crowdsourcing, en el que compañeros han ayudado a eti-
quetar un subconjunto de datos para lograr conseguir más textos clasificados.
En total se han conseguido 5 anotadores contando el propio alumno.

Nótese que la clasificación entre ‘recomendación’ y ‘no recomendación’ en
algunos casos puede no ser trivial, ya que la concepción de lo que es reco-
mendación entre vaŕıas personas puede diferir en ciertos matices, por lo que
los textos clasificados obtenidos pueden estar sesgados por esta forma de
interpretación de cada anotador en particular.

Para valorar el acuerdo entre los anotadores, se han seleccionado al azar 100
textos y han sido clasificados por todos ellos. El ı́ndice de acuerdo se ha
calculado mediante un promedio de las coincidencias de la clasificación entre
todos los anotadores, usando la siguiente fórmula:

Índice de acuerdo =
N acuerdos

N elementos

Finalmente, se obtiene un ı́ndice de acuerdo de 0.63, lo que refleja cómo en
ciertas frases vaŕıa el decidir si algo es una recomendación o no. Algunos
casos conflictivos son los siguientes, donde unos anotadores consideraron que
no se estaba recomendando o sugiriendo nada y otros determinaron que śı:

1. “La presentación de TAG más complejos y graves en el inicio, el fracaso
en completar el tratamiento y la cantidad de tratamientos intermedios
durante el peŕıodo de seguimiento se asocian con peores resultados de
la TCC a largo plazo.”

44

En este texto, extráıdo de una de las gúıas cĺınicas utilizadas, el conflic-
to entre los observadores radicó en el hecho de la presencia, en el texto,
de una exposición de resultados. Algunos pensaron que por el mero
hecho de exponer un resultado, ya estaban recomendando (de forma
positiva o negativa, como seŕıa el caso) por lo que lo calificaron como
recomendación. Por otro lado, otros llegaron a la conclusión de que el
mero hecho de reflejar resultados no era una clara recomendación, por
lo que no lo consideraron como recomendación.

2. “Un modelo integrado en el que los médicos de familia son apoyados
por especialistas, que durante 8 semanas (4-8 sesiones) ayudan a los
pacientes a desarrollar habilidades cognitivo-conductuales a través de
relajación, reconocimiento de pensamientos ansiogénicos y de falta de
autoconfianza, búsqueda de alternativas útiles y entrenamiento en ac-
ciones para resolución de problemas, técnicas para mejorar el sueño y
trabajo en casa.”

En este caso, las diferentes opiniones sobre si el hecho de desarrollar
un concepto, en este caso el modelo integrado, es una recomendación o
no provocaron esta discordancia. Por un lado, unos observadores con-
sideraron que el hecho de explicar un término, por mucho que fuese
un tratamiento, no era suficiente para calificarlo como recomendación,
mientras que otros śı lo entendieron de ese modo.

Gracias a esta anotación, se ha conseguido obtener 4.519 textos clasificados
manualmente entre recomendación y no recomendación.

5.2. Modelado

En este apartado se detalla la fase de modelado de la metodoloǵıa CRISP-
DM.

Primero se ha implementado un modelo sencillo que será un baseline inicial, y
posteriormente se han implementado los algoritmos de aprendizaje automáti-
co más populares en mineŕıa de textos [11]: Support Vector Machine (SVM),
Naive Bayes (NB), Random Forest (RF) y K-Nearest Neightbour (KNN) .

45

Como baseline, se ha realizado una categorización de verbos que consiste en
identificar qué verbos se utilizan con mayor frecuencia en estas recomenda-
ciones médicas usando lenguaje natural y determinar, a partir de la aparición
o ausencia de cualquiera de estos verbos en el texto, si es, o no, una reco-
mendación. Se ha decidido centrarse en los verbos porque es la parte de las
oraciones que más información proporciona acerca del sentido de la frase
en este caso, además de que la lista de sustantivos o adjetivos existente es
mucho más amplia y menos fácil de analizar y categorizar ya que son mas
susceptibles a la subjetividad, dependiendo del resto de elementos del texto.
A continuación, se muestran los verbos elegidos:

actuar
administrar
aliviar
ayudar
afrontar
asesorar
advertir
argumentar
barajar
calmar
combatir
curar

concluir
consultar
contemplar
contrarrestar
deber
descartar
demostrar
desinfectar
estimar
evaluar
evidenciar
examinar

favorecer
garantizar
hallar
indicar
intervenir
justificar
manifestar
mediar
mejorar
optar
prevenir
prever

provocar
recibir
recomendar
solucionar
sugerir
suscribir
tomar
tratar
valorar

Los verbos presentes en los textos pueden estar conjugados en diferentes
tiempos verbales, por lo que se ha lematizado el contenido de los textos de
igual manera que con los textos del detector.

Por otra parte, para el desarrollo de los modelos de aprendizaje automático se
ha hecho uso de la libreŕıa scikit-learn [10], que cuenta con múltiples modelos
y funciones para el preprocesado, clasificación y análisis de resultados de las
técnicas utilizadas.

Los algoritmos de aprendizaje automático no pueden trabajar con los textos
en crudo directamente, sino que estos textos deben ser convertidos a vecto-
res de números, creando un modelo de espacio vectorial. Las técnicas más
comunes para realizar este proceso [33] son Bag of Words (BoW) y Term

46

Frequency - Inverse Document Frequency (TF-IDF).

El primer método, BoW, consiste en contar el número de apariciones de cada
palabra en el documento. El problema de este método es que no tiene en
cuenta el ruido, por lo que palabras que se repiten con frecuencia y que no
añaden ningún significado semántico pueden hacer que el modelo empeore
sus resultados.

En el segundo método, TF-IDF, mide la importancia de cada palabra en el
documento, normalizando la frecuencia de cada término (TF) en el documen-
to en función de su frecuencia relativa en todo el conjunto de datos (IDF),
permitiendo valorar la relevancia de cada palabra en el documento, por lo
que se ha elegido como métrica para la vectorización de los textos. Este valor
se calcula mediante las siguientes fórmulas [54]:

Frecuencia del término: número de veces que aparece una palabra en un
documento dividido por el total de palabras en el documento.

TFi,d =
|{i ∈ d}|
|d|

Donde |{i ∈ d}| es el número de apariciones de la palabra i en el documento
d y |d| es el número de palabras del documento.

Frecuencia inversa de documento: medida que indica si una palabra es
frecuente en la colección o no:

IDFi = log
|D|

1 + |{d ∈ D : i ∈ d}|

Donde |D| es el número de documentos en la colección y |{d ∈ D : t ∈ d}| es
el número de documentos en los que aparece la palabra i. Para evitar división
por cero se suma uno en el denominador.

Finalmente, la fórmula para calcular el valor TD-IDF es la siguiente:

47

TF -IDFi,j = TFi,f ∗ IDFi

TF -IDFi,j =
|{i ∈ d}|
|d|

∗ log |D|
1 + |{d ∈ D : i ∈ d}|

El valor TF-IDF aumenta en función de la frecuencia de un término en el
texto, pero se compensa por la frecuencia en la colección de documentos, lo
que permite manejar el hecho de que algunas palabras sean más comunes
que otras. Por otra parte, un inconveniente de este método es que no tiene
en cuenta la posición de las palabras, sino que únicamente asigna valores a
cada una de ellas de forma individual, y en algunos casos la posición de las
palabras śı que puede tener cierta relevancia. En resumen:

Si una palabra aparece con mucha frecuencia en muchos documentos,
la importancia se reduce.

Si una palabra aparece con mucha frecuencia en un conjunto reducido
de documentos, la importancia aumenta.

Si una palabra aparece con poca frecuencia, la importancia se reduce.

Una vez vectorizados los textos, ya se pueden aplicar como datos de entre-
namiento a los modelos, los cuales tienen diferentes parámetros que se puede
ajustar para obtener mejores resultados dependiendo del objetivo de clasifi-
cación.

Support Vector Machine [47]: trata de determinar el mejor hiperplano en
un espacio eucĺıdeo que separe los datos de entrenamiento en sus respectivas
clases. Una buena forma de seleccionarlo es elegir el hiperplano que deje el
máximo margen entre las clases, donde este margen es definido como la suma
de las distancias al hiperplano de los elementos más cercanos a éste, como
se puede apreciar en la Figura 5.1 donde se espera una mayor generalización
en el hiperplano con margen más amplio (b). A continuación, se detallan los
parámetros utilizados en las pruebas a realizar [7]:

C : Determina el nivel de optimización del modelo, de cuánto se desea
evitar clasificar cada dato de entrenamiento incorrectamente. Al ser

48

Figura 5.1: Ejemplo de posibles hiperplanos del modelo SVM. Extráıda de [47].

más elevado, menor será el margen del hiperplano seleccionado. Valores
muy altos de este parámetro pueden derivar en un sobreajuste de los
datos de entrenamiento.

Kernel : indica el tipo de hiperplano a utilizar para separar los datos.
Con la opción ‘linear’ se utilizará un hiperplano lineal y con ‘poly’ se
calcularán hiperplanos polinomiales.

Degree: es un parámetro utilizado cuando el kernel es ‘poly’. Indica el
grado del polinomio utilizado para calcular el hiperplano.

Multinomial Naive Bayes [57]: es un modelo probabiĺıstico basado en el
teorema de Bayes, muy usado para la clasificación de documentos. Según este
teorema, la probabilidad de que un documento d ∈ D pertenezca a una clase
c se calcula de la siguiente forma:

P (ci|dj) =
P (ci) ∗ P (dj|ci)

P (dj)

La probabilidad de un documento P (dj) no aporta información, al ser una
constante, por lo que suele omitirse. Este modelo asume que todos los pre-
dictores, en este caso palabras, son independientes entre śı, por lo que la
probabilidad de un documento dada su clase P (dj|ci) puede calcularse como
la probabilidad conjunta de todos los términos w ∈ dj del documento dada
su clase:

P (dj|ci) =

|D|∏
t=1

P (wt|ci)

49

Adicionalmente, este modelo tiene en cuenta la frecuencia de cada término en
el documento xt en vez de considerar únicamente si el término aparece o no.
Finalmente, la clasificación se realiza buscando el argumento que maximiza
la siguiente función:

c∗(d) = argmaxcip(ci)

|D|∏
t=1

P (wt|ci)xt

Random Forest [9]: consiste en construir un conjunto independiente de
árboles de decisión, basados en reglas. Este modelo está basado en dos con-
ceptos clave:

1. Muestreo aleatorio de datos de entrenamiento al construir árboles: cada
árbol aprende de un subconjunto de datos aleatorio extráıdo con reem-
plazo, conocido como bootstrapping, lo que significa que cada muestra
se utilizará únicamente en un árbol.

2. Subconjuntos aleatorios de caracteŕısticas al dividir los nodos: en cada
árbol, la reglas se aplican seleccionando un subconjunto aleatorio de
caracteŕısticas.

La predicción final se realiza mediante un promedio de las predicciones indi-
viduales de cada árbol. El número de árboles de decisión puede modificarse
mediante el parámetro n estimators de scikit-learn.

Las ventajas de este modelo se basan en que, al realizar el promedio de la
predicción de múltiples árboles no correlacionados entrenados con distintos
subconjuntos de datos, se reduce la varianza del modelo, aumentando la pre-
cisión, además de reducir la probabilidad de sobreajuste. Como desventajas,
este modelo es dif́ıcil de interpretar, siendo una especie de caja negra, además
de que requiere un elevado tiempo de ejecución y memoria comparado con
otros clasificadores.

K-Nearest Neightbours [2]: consiste en basar la clasificación de una ins-
tancia a partir de las clases de los K elementos más próximos a esta instancia
seleccionando la clase mayoritaria de los vecinos, en ocasiones, ponderando

50

los votos de acuerdo a la distancia de cada vecino. La Figura 5.2 muestra una
descripción gráfica de este modelo, donde la instancia del centro es clasificada
como rojo con K = 3, al tener, de sus tres vecinos más próximos, dos rojo y
uno verde. Sin embargo, para un valor de K = 5, 3 vecinos son verde y dos
rojo, por lo que seŕıa clasificada como verde.

Figura 5.2: Ejemplo de modelo KNN. Extráıda de [2].

Al transformar los documentos a un modelo TF-IDF, este algoritmo puede
calcular las distancias entre los documentos usando estos vectores. Existen
múltiples formas de calcular la distancia entre dos elementos [14]. Entre ellas,
se han seleccionado las siguientes, disponibles en la libreŕıa scikit-learn:

Distacia Eucĺıdea: es la distancia más popular, que se basa en el teorema
Pitágoras, midiendo la distancia como la longitud del segmento que une
los dos puntos y que se calcula con la siguiente fórmula:

Euclidean(a, b) =

√√√√ n∑
i=1

(xai − xbi)2

Distancia de Manhattan: se calcula sumando las distancias absolutas
de todas las respectivas coordenadas cartesianas de las dos instancias,
mediante la siguiente fórmula:

Manhattan(a, b) =
n∑

i=1

|xai − xbi|

Otras métricas muy conocidas, como la distancia del coseno o Jaccard, no
han podido ser aplicadas al no estar disponibles en esta libreŕıa. A parte de

51

la métrica utilizada para calcular la distancia, también se ha empleado el
parámetro K, que determina el número de vecinos más próximos a tener en
cuenta para las pruebas a realizar.

5.3. Resultados

Para evaluar los resultados de los modelos se ha hecho uso de la técnica de
validación cruzada [59], que consiste en dividir los datos de entrenamiento en
un número fijo de subconjuntos, determinados por un parámetro k, usando
iterativamente uno para testear y el resto como entrenamiento. De esta ma-
nera se asegura que los resultados son independientes de la partición entre
datos de entrenamiento y prueba. En la Figura 5.3 se muestra un ejemplo
gráfico.

Figura 5.3: Validación cruzada con k = 5. Extráıda de [59].

En la Tabla 5.1 se muestran los resultados obtenidos al aplicar los modelos
descritos, utilizando validación cruzada con k = 5. Se aprecia cómo los re-
sultados obtenidos son más elevados de lo que se esperaba con un ı́ndice de
acuerdo entre anotadores no muy alto.

Los resultados reflejan cómo la categorización de verbos no es muy efectiva
al compararse con el resto de clasificadores. Se observa un aumento de la
precisión y una disminución del recall a medida que se reduce el parámetro
C en el modelo SVM lineal. Usando un modelo no lineal, los resultados

52

Precisión Recall
Categorización de verbos 0.64 0.49

SVM-linear C=1 0.84 0.79
SVM-linear C=0.5 0.85 0.75
SVM-linear C=0.1 0.93 0.46

SVM-poly C=1 Degree=2 0.46 0.65
Näıve Bayes 0.81 0.73

RF n estimators=1000 0.86 0.78
RF n estimators=2000 0.86 0.78

KNN-3 Distancia Eucĺıdea 0.77 0.84
KNN-5 Distancia Eucĺıdea 0.78 0.83

KNN-3 Distancia Manhattan 0.94 0.39
KNN-5 Distancia Manhattan 0.91 0.43

Tabla 5.1: Resultados de los diferentes modelos para clasificar recomendacio-
nes.

empeoran significativamente, por lo que ha sido descartado. El modelo KNN
funciona mejor usando la distancia Eucĺıdea frente a la de Manhattan, no
habiendo mucha diferencia entre usar 3 vecinos como referencia a usar 5.
También puede verse cómo los resultados del modelo Random Forest no se
ven alterados al aumentar el número de árboles.

Finalmente, para el despliegue final, se ha escogido el modelo Random Forest
con 1000 árboles de decisión aleatorios al presentar unos resultados ligera-
mente superiores al resto de modelos.

53

54

Caṕıtulo 6

Despliegue

Como despliegue en la metodoloǵıa CRISP-DM, se ha desarrollado una in-
terfaz de usuario a modo de prueba de concepto implementada en Python.
En ella, el cliente tiene la posibilidad de escribir un texto en lenguaje natural
que será analizado por la aplicación, mostrándose los términos encontrados
en el mismo junto con la determinación de si es una recomendación o no.

Como detector para esta aplicación, se ha utilizado el que mejores resultados
ha mostrado, el detector con lematización y eliminación de palabras vaćıas.
Como clasificador para recomendaciones, se ha empleado Random Forest,
siendo de nuevo el que mejores resultados ha obtenido.

En la Figura 6.1, se observa un texto de ejemplo introducido en la pantalla
de inicio de esta interfaz. A su vez, en la Figura 6.2 se reflejan los resultados
obtenidos, es decir, tanto los términos detectados como la indicación de si es
o no una recomendación.

Ha sido necesario implementar lógica adicional para devolver el texto original
etiquetado, ya que el detector trabaja con el texto procesado en el que se han
eliminado palabras vaćıas y signos, se ha lematizado el contenido y convertido
a minúsculas.

55

Figura 6.1: Pantalla de inicio de la aplicación.

Figura 6.2: Pantalla de resultados de la aplicación.

56

Caṕıtulo 7

Conclusiones y trabajo futuro

En este Caṕıtulo se detallan las conclusiones del proyecto desarrollado y se
valoran posibles ĺıneas futuras de trabajo. En la Sección 7.1 se detallan las
conclusiones del trabajo tanto profesionales como personales. En la Sección
7.2 se explican posibles ĺıneas de trabajo futuro.

7.1. Conclusiones

El objetivo principal de este Trabajo de Fin de Máster ha consistido en ela-
borar una aplicación con dos funciones principales. Por un lado, la capacidad
de detectar términos médicos escritos en un texto redactado por un individuo
en lenguaje natural. Por otro lado, la identificación adecuada de si dicho tex-
to hace referencia a un acto recomendado, basado en la evidencia cient́ıfica,
o si, por el contrario, es un texto meramente informativo sin contenido de
recomendación diagnóstica o terapéutica.

Para conseguir estos objetivos, se ha realizado un arduo trabajo analizando
diferentes técnicas de mineŕıa de texto y basándose en dos conjuntos de da-
tos en forma de diccionario previamente formados, obtenidos de las fuentes
SNOMED-CT [60] y DeCS [20]. Además, se ha requerido el uso de numero-

57

sas gúıas cĺınicas para entrenar el modelo de detección de recomendaciones y
lograr diferenciar entre lo que es una recomendación y lo que no lo es. Con-
juntamente se ha requerido de varias historias cĺınicas anonimizadas para
poder comprobar la funcionalidad de los diferentes detectores y qué aspectos
pod́ıan ir mejorándose durante la realización del trabajo.

Finalmente, se ha conseguido alcanzar los objetivos descritos dentro de los
plazos indicados en el cronograma inicial. Se ha logrado obtener una herra-
mienta capaz de encontrar términos en un texto escrito en lenguaje natural
en castellano con una calidad aceptable teniendo en cuenta las limitaciones
de los conjuntos de datos disponibles (precisión y recall de 0,76 y 0,74 res-
pectivamente). Cabe mencionar que el desarrollo este módulo ha requerido
más tiempo del que se prevéıa inicialmente, en mayor medida debido a la
inexperiencia en este ámbito, teniendo que dedicar horas extra, cuando era
posible, tanto a la formación como a la aplicación de lo aprendido para poder
alcanzar los objetivos del proyecto.

Aśı mismo, se ha logrado crear un modelo que es capaz de detectar intención
de recomendación en una gúıa cĺınica con unos valores de precisión y recall
de 0,86 y 0,78, respectivamente. Este módulo ha requerido un menor número
de horas invertidas para su realización debido a la aparición de un número
inferior de dificultades en su elaboración.

Los resultados finales del proyecto han sido positivos, a pesar de las múltiples
dificultades que ha supuesto realizar este trabajo con datos en castellano, y
de los problemas encontrados en los conjuntos de datos que se han podido
obtener, lo que ha reducido parcialmente la efectividad final del detector.

Como conclusiones personales, el resultado final también ha sido satisfactorio.
Este trabajo ha proporcionado al alumno nuevas competencias al desarrollar
el proyecto en un ámbito del que no se teńıa conocimiento previo, y ha
ayudado a ampliar sus aptitudes tanto personales como profesionales.

58

7.2. Trabajo futuro

De cara a un trabajo futuro, estos módulos desarrollados podŕıan ser uti-
lizados en la herramienta de búsqueda de consultas médicas descrita en el
Caṕıtulo 1. A partir del detector de recomendaciones, podŕıan priorizarse los
resultados de este buscador que se estimen como recomendación. Por otra
parte, el detector de entidades médicas podŕıa utilizarse como base para de-
terminar que secciones de las gúıas cĺınicas encajan con la búsqueda escrita
por el usuario mediante los términos detectados.

Otro posible avance podŕıa consistir en investigar posibles alternativas para
lograr contextualizar el texto para mejorar la calidad de los resultados, ya
sea investigando diferentes opciones no contempladas en este proyecto, o
generando conjuntos de datos alternativos con esta información de contexto
mejor estructurada. Las modificaciones de la aplicación para adaptarla a un
nuevo conjunto de datos seŕıan mı́nimas y podŕıan mejorar la precisión y el
recall del detector. También se podŕıa enriquecer el diccionario añadiendo los
nombres de todos los medicamentos comerciales asociados a sus principios
activos aśı como las siglas asociadas a sus respectivos elementos.

Por último, otro experimento que podŕıa ser interesante contemplar, consis-
te en usar técnicas de Deep Learning [64] para el desarrollo del modelo de
detección de recomendaciones. Las redes neuronales son un sistema de clasifi-
cación que está actualmente en auge y utilizado en múltiples aplicaciones de
mineŕıa de textos y otros ámbitos con muy buenos resultados, pero debido a
que estos modelos necesitan un tiempo de entrenamiento muy elevado y una
mayor cantidad de datos en comparación con los que se han desarrollado no
ha sido posible utilizarlo en este proyecto.

Se espera que el trabajo desarrollado sirva como base para futuros trabajos e
investigaciones llevadas a cabo por grupos de investigación de la Universidad
de Zaragoza, en particular el grupo COSMOS (Computer Science for Com-
plex System modelling), aśı como al desarrollo de la Biblioteca Inteligente
GUÍA SALUD [29] (proyecto BIGS [30]). Además, podŕıan servir también
de aplicación en contextos docentes, como base de estudio en asignaturas
como Manipulación y Análisis de Grandes Volúmenes de Datos del Máster
Universitario en Ingenieŕıa Informática.

59

60

Anexos

Anexo A

Descripción del procesamiento
de datos de SNOMED-CT

SNOMED CT (Systematized Nomenclature of Medicine – Clinical Terms)
[60] es una terminoloǵıa cĺınica integral originalmente desarrollada en inglés.
Ha sido traducida, posteriormente, a otros idiomas, entre ellos el español. Ac-
tualmente contiene más de un millón de términos, denominados conceptos,
traducidos al español. A su vez, estos términos presentan ciertas relaciones
predefinidas entre ellos, es decir, que sólo permiten cierto tipo de relacio-
nes dependiendo de la clase de ambos términos. Una de las relaciones más
frecuentes es la de sinonimia, en la que un concepto es denominado como
principal o preferido (haciendo alusión al término más utilizado), y todos
los conceptos que hagan referencia a este principal estarán relacionados con
él. Por ejemplo deglute rápidamente (hallazgo) y traga rápidamente son dos
hallazgos relacionados como sinónimos, siendo el primero el principal.

Este conjunto de datos se puede obtener en su totalidad desde la página
del Ministerio de Sanidad tras realizar una petición de licencia. Se divide
en múltiples ficheros con varias extensiones. Para este caso, únicamente es
necesario el fichero donde se almacenan todos los conceptos con su respectiva
clase asociada y el fichero de relaciones obtenido de la versión en inglés, ya
que en la versión en castellano no se incluye dicho fichero.

63

En este fichero se informa de los términos de SNOMED, uno por ĺınea, es-
tando los campos separados por tabulaciones bajo la estructura detallada en
la Tabla A.1.

Campo Valor de ejemplo Descripción
id 845114013 Id único asociado a

cada término
effectiveTime 20031031 Fecha de inserción
active 1 Activo (1) o inacti-

vo (0)
moduleId 450829007 Igual para todos.

No relevante
conceptId 100005 Id único asociado a

cada concepto. Un
concepto puede te-
ner varios términos

languageCode es Término en español
typeId 900000000003001 Indica si es el

término princi-
pal o preferido
del concepto
(900000000003001)
o es un término
semejante
(900000000013009)

term concepto de SNOMED CT Texto con el nom-
bre del término

Tabla A.1: Descripción de campos informados en el fichero de términos de
SNOMED-CT.

Tras analizar el fichero, el primero paso a realizar es la separación de con-
ceptos por clase en diferentes carpetas para poder analizar cada una de estas
clases más detenidamente y aśı observar mejor la posible aportación de ca-
da clase. En el fichero no viene informado un campo con la clase de cada
término; sin embargo, en el nombre de los términos principales aparece entre
paréntesis el nombre de la clase de nivel superior en la jerarqúıa a la que

64

pertenecen, por lo que a partir de esta información ha sido posible obtener
la clase de los términos.

Para obtener la clase de los términos que no son principales se ha realizado
una búsqueda de su término principal por conceptId, donde el identificador
typeId sea el asociado a los términos principales (900000000000003000), y
extrayendo el texto que tiene este término principal entre paréntesis. En la
Tabla A.2, se muestran dos ejemplos de términos que hacen referencia al
mismo concepto, siendo el primero el término preferido o principal, y el resto
sinónimos.

conceptId termTypeId term
64882008 900000000000003000 fiebre (hallazgo)
64882008 900000000000013009 temperatura corporal elevada
64882008 900000000000013009 pirexia

Tabla A.2: Relación entre términos principales y sinónimos.

Finalmente, se han obtenido 98 clases diferentes; el principal problema de
esta división es la similitud que hay entre algunas clases, aśı como la poca
relevancia que tienen algunas de ellas para el dominio de este proyecto. Por
ejemplo, hay dos clases, trastorno y hallazgo, que parecen hacer referencia
a enfermedades, pero con matices ligeramente distintos. Hay clases como
sustancia, donde la mayoŕıa de elementos están registrados con su fórmula
qúımica (2,3-dihidroxibenzoato 3,4-dioxigenasa (sustancia)) en la que rara
vez se va a encontrar algo aśı escrito, por lo que su utilidad para esta tarea es
mı́nima. Por otro lado, se encuentran clases que contienen términos del mismo
tipo separadas por errores ortográficos, como es el caso de estructura corporal
al aparecer escrito de cinco formas diferentes (estrcutura coporal, estrcutura
corporal, estructura coporal, estructura corporal y erstructura corporal).

Tras analizar estas clases, se han eliminado algunas de contenido irrelevante,
como atributos (debido a, con, que causa, etc.), y se han juntado otras clases
de contenido similar como medicamento cĺınico y fármaco de uso cĺınico.
Cabe mencionar que en una de las clases, la de fármacos de uso cĺınico,
hab́ıa multitud de términos repetidos, pero descritos de forma demasiado
espećıfica, por lo que seŕıa muy poco probable que un detector pudiera llegar

65

a identificar estos términos. A continuación, se muestran algunos ejemplos:

compuesto con lactato de sodio, solución para infusión, bolsa de 1 l
compuesto con lactato de sodio, solución para infusión, bolsa de 1 l (fármaco
de uso cĺınico)
compuesto con lactato de sodio, solución para infusión, bolsa de 500 ml
compuesto con lactato de sodio, solución para infusión, bolsa de 500 ml
(fármaco de uso cĺınico)
compuesto con lactato de sodio, solución para infusión, frasco de polietileno
de 1 l
compuesto con lactato de sodio, solución para infusión, frasco de polietileno
de 1 l (fármaco de uso cĺınico)
compuesto con lactato de sodio, solución para infusión, frasco de polietileno
de 500 ml
compuesto con lactato de sodio, solución para infusión, frasco de polietileno
de 600 ml

Todos estos casos repetidos se han agrupado en un único término, mediante
expresiones regulares, con el nombre del fármaco, en este caso lactato de
sodio.

A continuación, se explica qué campos se han utilizado para crear el conjunto
de datos con el que se realiza el trabajo de detección de entidades:

Id: no es relevante, ya que simplemente es un identificador único para
cada término que no aporta ningún tipo de información.

effectiveTime: la fecha de inserción no es relevante.

active: se han seleccionado sólo los términos activos. Los términos inac-
tivos, son elementos ya repetidos (que existe ya un término con ese
nombre con el parámetro active a 1).

moduleID: no relevante, ya que es el mismo identificador para todos los
términos.

conceptId: identificador del concepto. Se ha seleccionado para saber
con qué concepto está relacionado cada término.

66

languageCode: no es relevante, ya que son todo términos en español.

typeId: se ha seleccionado para saber cuál es el término principal y
cuál es un sinónimo. En todos los términos principales se informa entre
paréntesis a qué clase corresponde, por lo que a partir de este identifi-
cador se sabrá de qué términos extraer la clase.

term: es necesario para saber el nombre de los términos.

Finalmente, el resultado es de 18 clases con 951.213 términos.

El contenido de estas clases se ha almacenado en una base de datos MongoDB
[41] mediante un script en Python para un acceso mas fácil y rápido a éstos
bajo la estructura de la Tabla A.3.

Campo Valor de ejemplo Descripción
conceptId 6232195 Id único asociado a

cada concepto. Un
concepto puede te-
ner varios términos.

typeId 9000013009 Indica si es el
término principal
o preferido del
concepto o es un
término semejante.

term pirexia Texto con el nom-
bre del término.

termType hallazgo Indica la clase del
término.

Tabla A.3: Información almacenada en base de datos.

67

68

Anexo B

Descripción del procesamiento
de datos de DeCS

DeCS (Descriptors de Ciencias de la Salud) [20] es un vocabulario médi-
co dinámico, totalizando 33.966 descriptores y calificadores, siendo de estos
29.431 de MeSH y 4.535 exclusivamente de DeCS, utilizado para servir como
un lenguaje único en la indización de art́ıculos de revistas cient́ıficas, libros,
anales de congresos, informes técnicos, y otros tipos de materiales, aśı como
para ser usado en la búsqueda y recuperación de asuntos de la literatura
cient́ıfica en las fuentes de información disponibles en la Biblioteca Virtual
en Salud, como LILACS, MEDLINE y otras. Al igual que SNOMED, los
datos de DeCS se puede obtener solicitando una licencia de uso.

La fuente de datos obtenida de DeCS también contiene múltiples ficheros,
de los cuales solamente uno va a ser de utilidad para este trabajo. En él
se recogen todos los términos que están incluidos en DeCS traducidos al
castellano en formato XML. En la Figura B.1, se muestra un ejemplo de la
estructura de un término de DeCS en formato XML.

Cada descriptor tiene asociada una lista de conceptos y cada concepto una
lista de términos. Las relaciones son bastante similares a las de SNOMED,
habiendo un nivel más, el de Descriptor, que agrupa diferentes conceptos,
siendo el nombre del descriptor igual al nombre del concepto principal o

69

preferido. En la Tabla B.1 se describe los campos más relevantes de este
fichero.

Campo Valor de ejemplo Descripción
descriptorName Calcimicina[Calcimycin] Nombre del des-

criptor.
descriptorUI D000001 Id asociado a cada

descriptor.
qualifiersAbs [.AA”, .AD”, .AE”,

.AG”, .AI”]
Abreviatura de ca-
lificadores asociada
a cada descriptor.

treeNumberList [
”D03.633.100.221.173”]

Id asociado a es-
te concepto en el
árbol de jerarqúıa
de DeCS. Estos ids
se usan para ob-
tener el Descriptor
ráız, que es el que
indicará la clase de
cada concepto.

conceptName Calcimicina[Calcimycin] Nombre del concep-
to asociado al des-
criptor.

conceptUI M0000001 Id asociado a cada
concepto.

conceptIsPrefered Y Indica si el concep-
to es el principal o
no.

termName Calcimicina Nombre del
término.

termUI spa0000586 Id asociado a cada
término.

termPrefered Y Indica si el término
es el preferido o no.

Tabla B.1: Descripción de campos informados en el fichero de términos de
DeCS.

70

Para obtener la clase de cada término, es necesario obtener su “descriptor
ráız”, es decir, el descriptor de nivel superior en la jerarqúıa, lo cual es posible
gracias al parámetro treeNumberList que viene informado, y a una aplicación
basada en servicios Web que ofrecen los desarrolladores de DeCS [19], me-
diante la cual se puede obtener diversa información de un término a través
de este parámetro, entre ella los descriptores predecesores de un término.

Mediante el siguiente enpoint se puede obtener toda esta información, a partir
del campo treeId donde se introduce el valor del parámetro treeNumberList :

http://decs.bvsalud.org/cgi-bin/mx/cgi=@vmx/decs/?tree id=123456

Este endpoint devuelve contenido en formato XML en el que se informan los
predecesores (ancestors) de un descriptor mediante la estructura de la Figura
B.1, en la que se puede apreciar que devuelve múltiples resultados, de los que
es necesario filtrar solo los considerados descriptores ráız. En la Tabla B.2 se
listan todos los posibles descriptores ráız que ofrece DeCS.

Se ha almacenado la información de este fichero a nivel de término, ya que
es la mı́nima granularidad y la que más información aporta. En la Tabla
B.3 se detalla los campos que se han almacenado en MongoDB procesando
este fichero mediante un script en Pyhton. Finalmente se obtienen 91.823
términos divididos en 20 clases diferentes.

71

treeId Descriptor

A ANATOMÍA
B ORGANISMOS
C ENFERMEDADES

D COMPUESTOS QUÍMICOS Y DROGAS

E TÉCNICAS Y EQUIPOS ANALÍTICOS,
DIAGNÓSTICOS Y TERAPÉUTICOS

F PSIQUIATRÍA Y PSICOLOGÍA

G FENÓMENOS Y PROCESOS
H DISCIPLINAS Y OCUPACIONES

HP HOMEOPATÍA

I ANTROPOLOGÍA, EDUCACIÓN, SOCIO-
LOGÍA Y FENÓMENOS SOCIALES

J TECNOLOGÍA, INDUSTRIA Y AGRI-
CULTURA

K HUMANIDADES

L CIENCIA DE LA INFORMACIÓN
M DENOMINACIONES DE GRUPOS

N ATENCIÓN DE SALUD
SH CIENCIA Y SALUD

SP SALUD PÚBLICA

V CARACTERÍSTICAS DE PUBLICACIO-
NES

VS VIGILANCIA SANITARIA

Z DENOMINACIONES GEOGRÁFICAS

Tabla B.2: Listado de descriptores ráız disponibles en DeCS.

72

Figura B.1: Estructura de un término de DeCS en formato XML.

73

Figura B.2: Estructura de la respuesta de la aplicación DeCS.

Campo Valor de ejemplo Descripción
termName Calcimicina Nombre del

término.
termUI spa0000586 Id asociado a cada

término.
termPrefered Y Indica si el término

es el preferido o no.
ancestor COMPUESTOS

QUÍMICOS Y DRO-
GAS

Descriptor ráız del
término actual. In-
dica la clase del
término.

Tabla B.3: Estructura de la información almacenada en base de datos del
fichero de términos de DeCS.

74

Anexo C

Instalación de Freeling

En el Anexo C.1 se muestran los problemas encontrados al intentar instalar
sin éxito una API para usar Freeling en Python. En el Anexo C.2 se detalla el
proceso de instalación bajo un entorno Linux donde si que pudo completarse
satisfactoriamente.

C.1. Instalación en Windows

Inicialmente se intentó instalar esta aplicación en un entorno Windows, ya
que es el que veńıa instalado por defecto en el ordenador del alumno. Para
ello se han seguido los pasos del manual de instalación disponibles en la
documentación de Freeling [23], en donde se explican los requisitos necesarios
para poder construir una API que pueda ser utilizada en Python.

El primer paso consiste en descargar el código fuente desarrollado en C++,
disponible en el manual de instalación, para posteriormente compilarlo y
crear una API utilizable en Python. Adicionalmente, es necesario instalar
MSVC (Microsoft Virtual C++, con compilador para C++), CMake (usada
para construir y empaquetar software) en su versión 3.8 o superior, zlib (li-
breŕıa utilizada para la compresión de datos) y SWIG (herramienta utilizada

75

para conectar programas escritos en C o C++ con lenguajes de scripting,
como en este caso Python).

Por último, también se requiere la descarga de unos binarios pre-compilados
de unas libreŕıas llamadas ICU y Boost en una versión espećıfica en función
del compilador utilizado, en este caso MSVC 2019, necesarios para la compi-
lación de la herramienta. Aqúı es donde surge el problema: en los links que
se facilitan en el manual de instalación para la descarga de estos binarios,
solo aparecen disponibles hasta la versión del compilador de MSVC 2017. Se
intentó usar la última versión de los binarios disponibles con el compilador
de MSVC 2019, pero la compilación falló, como era esperado. También se
intentó instalar MSVC 2017, pero en la página de Microsoft Visual Studio
sólo se permite la descarga completa de la última versión, la de 2019. Como
última prueba se intentó buscar en páginas externas los compilados de estas
versiones de las libreŕıas para MSVC 2019 sin éxito.

Debido al elevado tiempo necesario en investigar soluciones a estos problemas,
se decidió intentarlo en un entorno Linux, ya que todas las herramientas
restantes que se han utilizado para este proyecto, pueden ser instaladas y
aplicadas sin problemas en ambos entornos.

C.2. Instalación en Linux

Al igual que para el entorno Windows, el manual de instalación de Freeling
también detalla los pasos a seguir para la construcción de una API de Freeling
para Python en un entorno Linux, donde se consiguió completar la instalación
satisfactoriamente, más fácilmente y sin problemas de versiones como en
Windows.

El primer paso, al igual que en la Sección anterior, consiste en descargar el
código fuente de la aplicación. Posteriormente, es necesario instalar g++ y
sus dependencias (en una versión con compilador compatible con C++ 11),
CMake en su versión 3.8 o posterior, y SWIG. Estos tres paquetes pueden ser
instalados fácilmente en la mayoŕıa de distribuciones usando los siguientes
comandos:

76

apt-get install build-essentials

apg-get install cmake

apt-get install swig

Adicionalmente, es necesario instalar las libreŕıas libicu, libboost y libz, sien-
do en este entorno más sencillo que el Windows, únicamente instalando los
siguientes componentes: libicu, libboost-regex, libboost-system, libboost-thread,
libboost-program-options y zlib. Bajo los siguientes comandos, estas libreŕıas
estaŕıan instaladas correctamente (comandos espećıficos para la distribución
Ubuntu/Debian, para distribuciones diferentes pueden variar alguno de los
comandos utilizados):

apt-get install libboost-dev

apt-get install libboost-regex-dev

apt-get install libboost-system-dev

apt-get install libboost-filesystem-dev

apt-get install libboost-program-options-dev

apt-get install libboost-thread-dev

apt-get install libicu-dev

apt-get install zlib1g

Una vez instalados todos los componentes, para la compilación, es necesario
abrir un terminal, cambiar al directorio donde se encuentra el código fuente
descargado y ejecutar los siguientes comandos:

mkdir build

cd build

cmake ..

make install (esto instalará Freeling en /usr/local)

Si se desea instalar en otro directorio, añadir -DCMAKE INSTALL PREFIX=

$FLINSTALL al comando cmake. En este caso, será necesario configurar una
variable de entorno llamada FREELINGDIR con la ubicación de la instala-
ción para que la aplicación funcione correctamente.

En esta carpeta build, se creará, en el subdirectorio APIs/python3, un archivo
llamado pyfreeling.py con el que ya se podrá hacer uso de Freeling en Python.

77

Será necesario conocer el valor del directorio absoluto de este archivo, ya que
se utiliza como parámetro de entrada en la aplicación desarrollada para que
la herramienta Freeling funcione correctamente.

78

Anexo D

Código representativo de
pruebas realizadas

En el Anexo D.1 se muestra el código utilizado para realizar las pruebas de
evaluación del detector de entidades médicas. Por otra parte, en el Anexo D.2
se muestra el código utilizado para evaluar el detector de recomendaciones.

D.1. Código de pruebas del detector de térmi-

nos médicos

A continuación, se muestra el código realizado para evaluar la calidad del
detector de entidades médicas. En el código se usa el detector con lematiza-
ción, la estructura del código para realizar las pruebas de los dos restantes,
es similar al mostrado en esta sección.

Las libreŕıas Database, y TextProcessing importadas son libreŕıas propias
creadas para gestionar las tareas de almacenamiento y procesamiento de los
datos.

79

1 import time

2 from Database import Database

3 from TextProcessing import TextProcessing

4 from flashtext import KeywordProcessor

5 from NER import NER

6 import json

7

8 class LemaNER(NER):

9

10 def __init__(self ,source ,freeling_path):

11 NER.__init__(self ,source)

12 self.textProcessing = TextProcessing(freeling_path)

13 self.database = Database ()

14 self.processor = KeywordProcessor ()

15 #Cargar diccionario

16 with open("data/"+source+'LemaTermDict.json', 'r') as fp:

17 self.dicTerms= json.load(fp)

18 #A~nadir té rminos a FlashText

19 for d in self.dicTerms:

20 self.processor.add_keyword(d)

21

22 def findMatches(self ,file_path , res_path , mode =1):

23 classKey = 'termType '
24 matches = []

25 texts = self.database.getTextsFromFile(file_path)

26 cont = 0

27 start_time_global = time.time()

28 for textIn in texts:

29 start_time = time.time()

30 #Obtener texto eliminando car á cteres no deseados y lematizado

31 text = self.textProcessing.cleanText(textIn)

32 text = self.textProcessing.lematize(text)

33 text = self.textProcessing.removeAccentuation(text)

34 #Cá lculo de matches

35 found = self.processor.extract_keywords(text)

36 for f in found:

37 foundTerms = self.dicTerms[f]

38 for ft in foundTerms:

39 matches.append(ft)

40 #Ordenar resultados

41 matches = sorted(matches , key=lambda k: k['term'])
42 uniqueList = []

43 resultList = []

44 #Eliminar repetidos (Algunos té rminos aparecen repetidos)

45 for match in matches:

80

46 if self.source == 'snomed ':
47 result = match['termLematized '] + '-->'
48 + match[classKey]+"\n"

49 else:

50 result= match['termLematized '] + '-->'
51 + match['conceptName '] + '-->'
52 + match['descriptorName '] + '-->'+match[classKey]+"\n"
53 if result not in resultList:

54 resultList.append(result)

55 uniqueList.append(match)

56 #Eliminar té rminos que unicamente tienen número tras el lematizado

57 uniqueList = self.applyRules(uniqueList ,'termLematized ',classKey)
58 #Corrector ortogr áfico

59 correctedData = self.textProcessing.getMisspelledWords(text)

60 correctText = text

61 #No corregir las palabras detectadas(hay palabras tecnicas

62 #no recogidas en el diccionario del corrector)

63 for element in correctedData:

64 for item in element:

65 replace = True

66 for f in found:

67

68 if element[item] in f:

69 replace = False

70 if replace:

71 correctText=correctText.replace(element[item], item)

72 correctedFound = self.processor.extract_keywords(correctText)

73 correctedMatches = []

74 for f in correctedFound:

75 foundTerms = self.dicTerms[f]

76 for ft in foundTerms:

77 correctedMatches.append(ft)

78 correctUniquelist = []

79 correctResultList = []

80 for match in correctedMatches:

81 if self.source == 'snomed ':
82 result = match['termLematized '] + '-->'
83 + match[classKey] + "\n"

84 else:

85 result= match['termLematized '] + '-->'
86 + match['conceptName '] + '-->'+ match['descriptorName ']
87 + '-->'+ match[classKey] + "\n"

88 if result not in correctResultList:

89 correctResultList.append(result)

90 correctUniquelist.append(match)

81

91 newMatches = []

92 for mc in correctUniquelist:

93 add = True

94 for m in uniqueList:

95 if m['termLematized '] == mc['termLematized ']:
96 add = False

97 if add:

98 newMatches.append(mc)

99 res_file= open(res_path ,'a+','utf8')
100 res_file.write("\n")

101 res_file.write(text)

102 res_file.write("\n")

103

104

105 #A~nadir cada match al fichero

106 for u in uniqueList:

107 res_file.write(u)

108

109 #A~nadir diferencia entre el corrector y no

110 res_file.write("Detecciones tras pasar un corrector ortogr áfico\n")

111 for match in newMatches:

112 res_file.write("Probabilidad "+match['probability ']+"-->"
113 +match['termLematized ']
114 + '-->' +match['term']
115 + '-->' +match[classKey]+"\n")

116 res_file.write("***")

117 res_file.write("\n")

118 print("--- %s seconds processing actual text [%s]---"

119 % (time.time() - start_time ,str(cont)))

120 cont = cont +1

121

122 res_file.close ()

123 print("--- %s seconds processing all texts ---"

124 % (time.time() - start_time_global))

82

D.2. Código de pruebas del detector de reco-

mendaciones

A continuación, se muestra el código realizado para evaluar la calidad del
detector de recomendaciones.

1 import os

2 import codecs

3 import pandas as pd

4 import numpy as np

5 from sklearn.feature_extraction.text import TfidfVectorizer

6 from sklearn.model_selection import cross_validate

7 from sklearn.neighbors import KNeighborsClassifier

8 from sklearn.metrics import *

9 from sklearn.ensemble import RandomForestClassifier

10 from sklearn import svm , naive_bayes

11 import spacy

12 from flashtext import KeywordProcessor

13 from Freeling import Freeling

14 nlp = spacy.load("es")

15 np.random.seed (500)

16 freeling = Freeling(freeling_path)

17 '''
18 Preprocesar textos

19 '''
20 # Cargar datos de entrenamiendo

21 Corpus = pd.read_csv(r"test.csv",encoding='utf8')
22 #Carar y a~nadir a flashtext verbos

23 file = open("categorizacion de verbos.txt",'r',encoding='utf8')
24 processor = KeywordProcessor ()

25 for line in file:

26 processor.add_keyword(line.replace('\n',''))
27 # Eliminar filas vacias

28 Corpus['text']. dropna(inplace=True)
29 # Poner todo el texto en min ú sculas

30 Corpus['text'] = [entry.lower() for entry in Corpus['text']]
31 #Tokenization y lemmatizaci ón

32 for i,textrow in enumerate(Corpus['text']):
33 proc_words = []

34 #Tokenizar texto

35 for word in nlp(textrow):

36 if str(word).isalpha ():

37 #Limpiar y lematizar

83

38 proc_word = str(freeling.lemmatize_word(str(word)))

39 proc_word = re.sub('[^a-zA-Z~ná é ı́ ó ú Á É Í Ó Ú]+', ' ',proc_word)
40 proc_word = re.sub(' +',' ',proc_word)
41 proc_words.append(proc_word)

42 Corpus.loc[i,'text_final '] = str(proc_words)

43 tp=0

44 fp=0

45 fn=0

46 tn=0

47 '''
48 Categorizaci ón de textos

49 '''
50 for i, row in Corpus.iterrows ():

51 label = row['label ']
52 found = processor.extract_keywords(row['text_final '])
53 #True Positives

54 if str(label) == '1' and len(found) >0:

55 tp +=1

56 #False Positives

57 if str(label) == '0' and len(found) >0:

58 fp +=1

59 #False Negatives

60 if str(label) == '0' and len(found)==0:

61 fn+=1

62 #True Negatives

63 if str(label) == '1' and len(found)==0:

64 tn+=1

65 print("Categorizaci ón de verbos")

66 precision= tp/(tp+fp)

67 recall = tp/(tp+fn)

68 accuracy = (tp+tn)/(tp+fp+tn+fn)

69 f1 = 2 * (precision * recall) / (precision + recall)

70 print("Categorizaci ón de verbos Precision Score: "+ str(precision))

71 print("Categorizaci ón de verbos Recall Score: "+ str(recall))

72 print("Categorizaci ón de verbos F1 Score: "+ str(f1))

73 print("Categorizaci ón de verbos Accuracy Score: "+ str(accuracy))

74

75 '''
76 Modelos de aprendizaje autom ático

77 '''
78 #TF -IDF

79 Tfidf_vect = TfidfVectorizer(max_features =5000)

80 data = Tfidf_vect.fit_transform(Corpus['text_final '])
81 target = Corpus['label ']
82 #A~nadir modelos a testear

84

83 models = []

84 models.append (('SVM -linear C=1.0', svm.SVC(C=1.0, kernel='linear ') ,1))
85 models.append (('SVM -linear C=0.5', svm.SVC(C=0.5, kernel='linear ') ,2))
86 models.append (('SVM -linear C=0.1', svm.SVC(C=0.1, kernel='linear ') ,3))
87 models.append (('SVM -poly degree 2', svm.SVC(C=0.5, kernel='poly', degree =2)))

88 models.append (('NB',naive_bayes.MultinomialNB ()))
89 models.append (('RF 1000',RandomForestClassifier(n_estimators = 1000)))

90 models.append (('RF 2000',RandomForestClassifier(n_estimators = 2000)))

91 models.append (('KNN -3 euclidean ',KNeighborsClassifier(n_neighbors =3,
92 metric='euclidean ')))
93 models.append (('KNN -5 euclidean ',KNeighborsClassifier(n_neighbors =5,
94 metric='euclidean ')))
95 models.append (('KNN -3 manhattan ',KNeighborsClassifier(n_neighbors =3,
96 metric='manhattan ')))
97 models.append (('KNN -5 manhattan ',KNeighborsClassifier(n_neighbors =5,
98 metric='manhattan ')))
99

100 scoring = {'accuracy ' : make_scorer(accuracy_score),

101 'precision ' : make_scorer(precision_score),

102 'recall ' : make_scorer(recall_score),

103 'f1_score ' : make_scorer(f1_score)}

104 for n, m in models:

105 #Calcular mé tricas de evaluacion con kfold -cross validation con k =5

106 scores = cross_validate(m,data ,target ,cv=5,scoring=scoring)

107 print(n+" Precision Score -> ",np.mean(scores['test_precision ']))
108 print(n+" Recall Score -> ",np.mean(scores['test_recall ']))
109 print(n+" F1 Score -> ",np.mean(scores['test_f1_score ']))
110 print(n+" Accuracy Score -> ",np.mean(scores['test_accuracy ']))
111 print("\n")

85

86

Anexo E

Ejemplo de resultados del
detector

En el siguiente Anexo se muestran dos textos de ejemplo etiquetados utili-
zando la herramienta desarrollada en el presente trabajo, en el Anexo E.1
con el diccionario creado con datos de SNOMED-CT y en el Anexo E.2 con
el diccionario de términos de DeCS.

E.1. Resultados con datos de SNOMED-CT

- Ejemplo de texto

Leyenda

Detectado correctamente: VERDE

Detectado incorrectamente: ROJO

No detectado: AZUL

“ LUMBOCIATICA Descripción de la(s) exploración(es): - EXPLORACIÓN:
RM de columna lumbosacra , secuencias en ponderación T1 sagital, secuen-
cia DIXON sagital y T1 y T2 plano axial. Hallazgos: Pérdida de la lordosis

87

lumbar con rectificación. Abombamientos de platillos generalizados, pero con
correcta altura de cuerpos vertebrales. Alineación anteroposterior conserva-
da. Moderados signos espondilósicos con incipiente osteofitosis de predomi-
nio anterior. Salidas difusas circunferenciales discales. Disminución generali-
zada de intensidad de señal a nivel discal en T2 indicativo de deshidratación,
mucho más evidente en los últimos niveles lumbares. Esclerosis interapofisa-
ria asociada. - NIVEL L2-L3: bandas parcheadas de hiperseñal en T1 y T2
en platillos indicativos de cambios degenerativos tipo II. Salida difusa cir-
cunferencial discal. Leve deshidratación discal. Ligera esclerosis interapofisa-
ria. - NIVEL L3-L4: salida difusa circunferencial discal. Leve deshidratación
discal.Ligera esclerosis interapofisaria. - NIVEL L4-L5: salida difusa circun-
ferencial discal. Pequeña hernia posteromedial del núcleo pulposo. Marcada
deshidratación discal. Disminución del espacio intersomático. Marcada escle-
rosis interapofisaria, con hipertrofia. Se asocia con hipertrofia ligamentaria
que disminuyen el calibre transverso del canal. En su conjunto se reconoce
ligero compromiso de recesos laterales y de ambos forámenes secundario. -
NIVEL L5-S1: Grandes bandas de hiperseñal en T2 y T2 en platillos, funda-
mentalmente en el inferior de L5, que indican cambios degenerativos tipo II.
Importante disminución del espacio intersomático. Hiperintensidad de señal
discal en T1 y T2, que se suprime con la secuencia saturación grasa, que in-
dica recambio degenerativo graso discal. Marcada hipertrofia interapofisaria.
Osteofitosis y protrusión disco osteofitaria posteromedial. Ligera disminu-
ción del calibre del canal. Diagnóstico: Nombre Responsable 1: [1] - Fecha
de Firma: ZARAGOZA, N.Colegiado: Categoŕıa Profesional 1: - Informe de
Resultados de Pruebas de Imagen. Servicio de Radiodiagnóstico. Fecha de
Impresión: - Pérdida de la lordosis lumbar con rectificación. - Signos es-
pondilósicos con salidas difusas circunferenciales discales. Deshidratación es
discales asociadas y esclerosis interapofisaria. - L2-L3: cambios degenerativos
y II en platillos. - L4-5: disminución del espacio intersomático, esclerosis e
hipertrofia interapofisaria ligamentaria con disminución de calibre transverso
del canal. Compromiso de recesos laterales. Pequeña hernia posteromedial y
de núcleo pulposo. - L5-S1: cambios degenerativos tipo II en platillos. Re-
cambio graso discal. Marcada hipertrofia interapofisaria.”

Resultados
Estructura: “Término detectado”→“Clase/s asociada/s”

cambio degenerativo →anomaĺıa morfológica

88

canal →estructura corporal
cuerpo vertebral →estructura corporal

deshidratación →trastorno
disco →fármaco de uso cĺınico
disminución →anomaĺıa morfológica
esclerosis →anomaĺıa morfológica
exploración →procedimiento
grasa →sustancia, estructura corporal

hallazgo →hallazgo

hernia →anomaĺıa morfológica
hipertrofia →anomaĺıa morfológica

lordosis →trastorno
núcleo pulposo, L5 - S1 →estructura corporal

protrusión →anomaĺıa morfológica

prueba Con A →procedimiento
se reconoce →hallazgo
signo →hallazgo

Probabilidad media → espondilosis (trastorno) →trastorno

Nótese que prueba Con A es incorrectamente detectado porque al procesar
el término, y por tanto eliminar palabras vaćıas, éste se transforma en úni-
camente prueba.

El término espondilosis tiene una probabilidad media debido a que es un
término detectado tras pasar un detector ortográfico, sin el cual no se detec-
taŕıa este elemento en concreto.

89

E.2. Resultados con datos de DeCS - Ejemplo

de texto

Leyenda

Detectado correctamente: VERDE

Detectado incorrectamente: ROJO

No detectado: AZUL

“SINDROME CORONARIO AGUDO Paciente intervenido triple Bypass co-
ronario AMI a DA y vena safena a Dx yDp .- se copiainforme, (se encuentra
en OMI) le indican que han solicitado consulta en Cardiologia , pero no
consta en su historico. Motivo del Alta: Curación o mejoŕıa. Motivo inme-
diato del ingreso: Paciente de años de edad que ingresa procedente de Hos-
pital Miguel Servet para ciruǵıa coronaria urgente. Anamnesis: Anteceden-
tes personales: Dudosa alergia a Amoxcilina-Clavulanico . Exfumador. No
HTA . DM tipo 2 (ADO). Dislipemia. Poliquistosis renal y ectasia pieloca-

licial derecha. Esteatosis hepática. Bocio. Diagnosticado de SAOS . Reflujo
Gastroesofágico. Hipoacusia. Intervenido de septoplastia. Colelitiasis. Cole-
cistectomı́a. Historia Cardiológica: Estudiado por dolor torácico at́ıpico en
Medicina Interna, y Cardioloǵıa, con ergometŕıa no sugerente de isquemia con
10 METS de carga en . El acude a Urgencias por cĺınica de ángor de reposo de
algunas horas de duración, sin componente postural, y desencadenados por
esfuerzo hace unas semanas. A su llegada a Urgencias, nuevo dolor, realizan-
do ECG que evidencia pseudopositivización de onda T, que desaparece tras
comenzar pc de SLN + mı́nima elevación de TnUS (troponina pico 180), de-
cidiendo ingreso en UCI. El se realiza coronariograf́ıa que evidencia enferme-
dad multivaso, es presentado en sesión médico-quirúrgica decidiéndose ciruǵıa
en el ingreso. Exploraciones Complementarias: Ecocardiograma : Cavidades

cardiacas y Aorta ascendente de dimensiones normales. HVI ligera. Con-
tractilidad global conservada, sin apreciar alteraciones segmentarias. Patrón
de relajación disminuida, sin elevación de las PTDVI . Válvulas estructural
y funcionalmente normales (VAo trivalva) Contractilidad normal del VD .
Cava y suprahepáticas no dilatadas, sin inversión de flujos y normocolapso

inspiratorio. No signos indirectos de HTP . No afectación pericárdica Cate-
terismo: Tronco: Sin lesiones. DA en segmento proximal presenta estenosis

90

cŕıtica y luego estenosis significativa respectivamente. 1ra diagonal: 1 mm
con lesión significativa ostial. 2da diagonal. lesión significativa ostial. Lesión
significativa en tercio distal de CX que involucra ostium de rama marginal.
Arteria Intermedia: Estenosis en ĺımite de la significancia en segmento pro-
ximal. CD: Estenosis ligera tercio proximal. DP con estenosis ostial en ĺımite
de la significancia y lesión en tercio medio significativa. Procedimientos Te-
rapéuticos: Fecha de la intervención: . Cirujano. Se realiza bajo CEC triple
bypass coronario: AMI a DA y vena safena a Dx y DP. En quirófano inestabi-
lidad hemodinámica con bradicardia extrema que precisa de entrada urgente
en C.

Resultados
Estructura: “Término detectado”→“Clase/s asociada/s”
alergia →ENFERMEDADES - SALUD PÚBLICA

anamnesis →TÉCNICAS Y EQUIPOS ANALÍTICOS, DIAGNÓSTICOS Y
TERAPÉUTICOS
bocio →ENFERMEDADES - SALUD PÚBLICA
bradicardia →ENFERMEDADES
cec →TÉCNICAS Y EQUIPOS ANALÍTICOS, DIAGNÓSTICOS Y TE-
RAPÉUTICOS
cardiologia →→DISCIPLINAS Y OCUPACIONES

cateterismo →TÉCNICAS Y EQUIPOS ANALÍTICOS, DIAGNÓSTICOS
Y TERAPÉUTICOS
cirugia →DISCIPLINAS Y OCUPACIONES

cirujano →DENOMINACIONES DE GRUPOS - ATENCIÓN DE SALUD

colecistectomia →TÉCNICAS Y EQUIPOS ANALÍTICOS, DIAGNÓSTI-
COS Y TERAPÉUTICOS
colelitiasis →ENFERMEDADES
consulta →ATENCIÓN DE SALUD
dislipemia →ENFERMEDADES

dolor →ENFERMEDADES - PSIQUIATRÍA Y PSICOLOGÍA - FENÓME-
NOS Y PROCESOS
dolor toracico →ENFERMEDADES
ecg →TÉCNICAS Y EQUIPOS ANALÍTICOS, DIAGNÓSTICOS Y TE-

RAPÉUTICOS
ectasia →ENFERMEDADES

91

elevacion →FENÓMENOS Y PROCESOS
enfermedad →ENFERMEDADES - SALUD PUBLICA
ergometria →TÉCNICAS Y EQUIPOS ANALÍTICOS, DIAGNÓSTICOS

Y TERAPÉUTICOS
estenosis →ENFERMEDADES
hemodinamica →FENÓMENOS Y PROCESOS
hepatico →ORGANISMOS

hipoacusia →ENFERMEDADES

historia →HUMANIDADES
hospital →ATENCIÓN DE SALUD - VIGILANCIA SANITARIA - SALUD

PÚBLICA
ingreso →ATENCIÓN DE SALUD - SALUD PÚBLICA

inversion →ATENCIÓN DE SALUD - SALUD PÚBLICA
isquemia →ENFERMEDADES

lesion →ENFERMEDADES - SALUD PÚBLICA
medicina interno →DISCIPLINAS Y OCUPACIONES
medico →DENOMINACIONES DE GRUPOS - SALUD PÚBLICA - ATEN-
CIÓN DE SALUD
paciente →DENOMINACIONES DE GRUPOS

pico →ANATOMÍA

procedimiento terapeutico →TÉCNICAS Y EQUIPOS ANALÍTICOS, DIAGNÓSTI-

COS Y TERAPÉUTICOS - VIGILANCIA SANITARIA
quirofano →ATENCIÓN DE SALUD - VIGILANCIA SANITARIA

reflujo gastroesofagico →ENFERMEDADES

relajacion →ANTROPOLOGÍA, EDUCACIÓN, SOCIOLOGÍA Y FENÓME-
NOS SOCIALES
reposo →ANTROPOLOGÍA, EDUCACIÓN, SOCIOLOGÍA Y FENÓME-
NOS SOCIALES
signo →ENFERMEDADES

sindrome coronario agudo →ENFERMEDADES

troponina →COMPUESTOS QUÍMICOS Y DROGAS

uci →ATENCIÓN DE SALUD - VIGILANCIA SANITARIA
urgencia →ENFERMEDADES - ATENCIÓN DE SALUD

92

Bibliograf́ıa

[1] Allahyari, M., Pouriyeh, S., Assefi, M., Safaei, S., Trippe, E. D., Gutierrez,
J. B., and Kochut, K. (2017). A brief survey of text mining: Classification,
clustering and extraction techniques. arXiv preprint arXiv:1707.02919.

[2] Allibhai, E. (2018). Building a k-Nearest-Neighbors (k-NN) Model
with Scikit-learn. https://towardsdatascience.com/building-a-k-nearest-
neighbors-k-nn-model-with-scikit-learn-51209555453a. Accedido 15-09-
2019.

[3] Altman, R. (2017). Artificial intelligence (AI) systems for interpre-
ting complex medical datasets. Clinical Pharmacology & Therapeutics,
101(5):585–586.

[4] Anaconda Software Foundation (2016). Computer software. Vers. 2-2.4.0.
Anaconda, Nov. 2016. Web. https://anaconda.com.

[5] Arias, F. J. C. (2019). Fuzzy String Matching in Python.
https://www.datacamp.com/community/tutorials/fuzzy-string-python.
Accedido 15-08-2019.

[6] Babar, N. (2018). The Levenshtein Distance Algorithm.
https://dzone.com/articles/the-levenshtein-algorithm-1. Accedido
15-08-2019.

[7] Ben-Fraj, M. (2018). In Depth: Parameter tuning for SVC.
http://medium.com/. Accedido 20-08-2019.

[8] Bird, S., Klein, E., and Loper, E. (2009). Natural language processing with
Python: analyzing text with the natural language toolkit. O‘Reilly Media,
Inc.

93

[9] Breiman, L. (2001). Random forests. Machine learning, 45(1):5–32.

[10] Buitinck, L., Louppe, G., Blondel, M., Pedregosa, F., Mueller, A., Grisel,
O., Niculae, V., Prettenhofer, P., Gramfort, A., Grobler, J., Layton, R.,
VanderPlas, J., Joly, A., Holt, B., and Varoquaux, G. (2013). API design
for machine learning software: experiences from the scikit-learn project.
In ECML PKDD Workshop: Languages for Data Mining and Machine
Learning, pages 108–122.

[11] Caruana, R. and Niculescu-Mizil, A. (2006). An empirical comparison
of supervised learning algorithms. In 23rd international conference on
Machine learning, pages 161–168. ACM.

[12] Castano, J., Gambarte, M. L., Park, H. J., Williams, M. d. P. A., Perez,
D., Campos, F., Luna, D., Benitez, S., Berinsky, H., and Zanetti, S. (2016).
A machine learning approach to clinical terms normalization. In 15th
Workshop on Biomedical Natural Language Processing, pages 1–11.

[13] Chen, T., Dredze, M., Weiner, J. P., Hernandez, L., Kimura, J., and
Kharrazi, H. (2019). Extraction of Geriatric Syndromes From Electronic
Health Record Clinical Notes: Assessment of Statistical Natural Language
Processing Methods. JMIR Medical Informatics, 7(1):e13039.

[14] Chomboon, K., Chujai, P., Teerarassamee, P., Kerdprasop, K., and
Kerdprasop, N. (2015). An empirical study of distance metrics for k-
nearest neighbor algorithm. In 3rd International Conference on Industrial
Application Engineering, pages 1–6.

[15] Chowdhury, G. G. (2003). Natural language processing. Annual review
of information science and technology, 37(1):51–89.

[16] Christopher, D. M., Prabhakar, R., and Hinrich, S. (2008). Introduc-
tion to information retrieval. An Introduction To Information Retrieval,
151(177):5.

[17] Coppersmith, G., Leary, R., Crutchley, P., and Fine, A. (2018). Natural
language processing of social media as screening for suicide risk. Biomedical
Informatics Insights, 10.

[18] Costumero, R., Lopez, F., Gonzalo-Mart́ın, C., Millan, M., and Mena-
salvas, E. (2014). An approach to detect negation on medical documents

94

in Spanish. In International Conference on Brain Informatics and Health,
pages 366–375. Springer.

[19] DeCS (2018). Servicios DeCS. http://wiki.reddes.bvsalud.org. Accedido
01-08-2019.

[20] Descriptores de Ciencias de la Salud (2017). DeCS
[Internet]. Sao Paulo (SP): BIREME / OPS / OMS.
http://decs.bvsalud.org/E/homepagee.htm. Accedido 25-04-2019.

[21] Ferrández Escámez, Ó., Kozareva, Z. P., Montoyo, A., and Muñoz, R.
(2005). NERUA: sistema de detección y clasificación de entidades utili-
zando aprendizaje automático. Procesamiento del lenguaje natural, nº 35
(sept. 2005); pp. 37-44.

[22] FlashText 1.0 (2017). Flashtext documentation.
https://flashtext.readthedocs.io/. Accedido 20-05-2019.

[23] Freeling (2016). Freeling User Manual. https://freeling-user-
manual.readthedocs.io/en/v4.1/. Accedido 25-09-2019.

[24] Gutiérrez Fernández, R. (2017). La humanización de (en) la atención
primaria. Revista Cĺınica de Medicina de Familia, 10(1):29–38.

[25] Harris, Z. (1988). Language and information. Columbia University
Press.

[26] Hermitdave (2018). Frequency Words.
https://github.com/hermitdave/FrequencyWords. Accedido 01-09-2019.

[27] Honnibal, M. and Montani, I. (2017). spaCy 2: Natural language un-
derstanding with Bloom embeddings, convolutional neural networks and
incremental parsing. To appear.

[28] IBM (2012). Conceptos básicos de ayuda de CRISP-DM.
https://www.ibm.com/support/knowledgecenter/. Accedido 15-04-2019.

[29] Instituto Aragonés de Ciencias de la Salud (2019). Bibliote-
ca de Gúıas de Práctica Cĺınica del Sistema Nacional de Salud.
https://portal.guiasalud.es/. Accedido 01-04-2019.

95

[30] Instituto Aragonés de Ciencias de la Salud. (2019).
BiGS GuiaSalud Intelligent Library. http://www.iacs.es/wp-
content/uploads/2017/07/BiGS Background.pdf.

[31] JavaScript Programming Language Standard (2002). Introducing a
JSON. Web. http://www.json.org.

[32] Joshi, V. (2017). Trying to understand tries.
https://medium.com/basecs/trying-to-understand-tries-3ec6bede0014.
Accedido 01-09-2019.

[33] Lan, M., Tan, C. L., Su, J., and Low, H. B. (2007). Text representations
for text categorization: a case study in biomedical domain. In 2007 Inter-
national Joint Conference on Neural Networks, pages 2557–2562. IEEE.

[34] Leser, U. and Hakenberg, J. (2005). What makes a gene name? Named
entity recognition in the biomedical literature. Briefings in Bioinformatics,
6(4):357–369.

[35] Liu, B., Ma, Y., and Wong, C. K. (2000). Improving an association rule
based classifier. In European Conference on Principles of Data Mining and
Knowledge Discovery, pages 504–509. Springer.

[36] Magerman, D. M. (1995). Statistical decision-tree models for parsing. In
33rd annual meeting on Association for Computational Linguistics, pages
276–283. Association for Computational Linguistics.

[37] Mammothb (2019). Symspellpy. https://github.com/mammothb/symspellpy.
Accedido 15-09-2019.

[38] Marimon, M., Gonzalez-Agirre, A., Intxaurrondo, A., Rodrguez, H.,
Lopez Martin, J., Villegas, M., and Krallinger, M. (2019). Automatic
de-identification of medical texts in Spanish: the meddocan track, cor-
pus, guidelines, methods and evaluation of results. In Iberian Languages
Evaluation Forum (IberLEF 2019). CEUR Workshop Proceedings (CEUR-
WS.org), Bilbao, Spain (Sep 2019).

[39] Marrero, M., Sánchez-Cuadrado, S., Urbano, J., Morato, J., and Morei-
ro, J.-A. (2009). Sistemas de recuperación de información adaptados al
dominio biomédico. El profesional de la información, 19(3):246–254.

96

[40] McKinney, Wes and others (2010). Data structures for statistical com-
puting in Python. In 9th Python in Science Conference, volume 445, pages
51–56. Austin, TX.

[41] Mongo DB, Inc (2019). Vers 4.2.0. Web. https://www.mongodb.com/.

[42] Nadeau, D. and Sekine, S. (2007). A survey of named entity recognition
and classification. Lingvisticae Investigationes, 30(1):3–26.

[43] Névéol, A., Dalianis, H., Velupillai, S., Savova, G., and Zweigenbaum,
P. (2018a). Clinical natural language processing in languages other than
English: opportunities and challenges. Journal of biomedical semantics,
9(1):12.

[44] Névéol, A., Zweigenbaum, P., et al. (2016). Clinical natural langua-
ge processing in 2015: leveraging the variety of texts of clinical interest.
Yearbook of Medical Informatics, 25(01):234–239.

[45] Névéol, A., Zweigenbaum, P., et al. (2018b). Expanding the Diversity
of Texts and Applications: Findings from the Section on Clinical Natural
Language Processing of the International Medical Informatics Association
Yearbook. Yearbook of Medical Informatics, 27(01):193–198.

[46] Oliphant, T. (2006). Guide to NumPy.

[47] Osuna, E., Freund, R., and Girosit, F. (1997). Training Support Vec-
tor Machines: an application to face detection. In IEEE Conference on
Computer Vision and Pattern Recognition, pages 130–136. IEEE.

[48] Padró, L. (2011). Analizadores Multilingües en FreeLing. Linguamatica,
3(2):13–20.

[49] Pons, E., Braun, L. M., Hunink, M. M., and Kors, J. A. (2016). Na-
tural language processing in radiology: a systematic review. Radiology,
279(2):329–343.

[50] Porumb, M., Barbantan, I., Lemnaru, C., and Potolea, R. (2015). RE-
Med: automatic relation extraction from medical documents. In 17th In-
ternational Conference on Information Integration and Web-based Appli-
cations & Services, page 19. ACM.

97

[51] Python Software Foundation (2019). Python Language Reference, ver-
sion 3.7. Web. http://www.python.org.

[52] Python Standar Library (2019). re - Regular expression operations.
https://docs.python.org/3/library/re.html. Accedido 10-05-2019.

[53] Quimbaya, A. P., Múnera, A. S., Rivera, R. A. G., Rodŕıguez, J. C. D.,
Velandia, O. M. M., Peña, A. A. G., and Labbé, C. (2016). Named entity
recognition over electronic health records through a combined dictionary-
based approach. Procedia Computer Science, 100:55–61.

[54] Ramos, J. et al. (2003). Using TF-IDF to determine word relevance in
document queries. In First Instructional Conference on Machine Learning,
volume 242, pages 133–142.

[55] Román, J. V. (2018). CRISP-DM: La metodoloǵıa para poner or-
den en los proyectos. https://www.sngular.com/es/data-science-crisp-dm-
metodologia. Accedido 15-04-2019.

[56] Sarawagi, S. et al. (2008). Information extraction. Foundations and
Trends® in Databases, 1(3):261–377.

[57] Schneider, K.-M. (2005). Techniques for improving the performance of
Naive Bayes for text classification. In International Conference on In-
telligent Text Processing and Computational Linguistics, pages 682–693.
Springer.

[58] Sebastiani, F. (2002). Machine learning in automated text categoriza-
tion. ACM computing surveys (CSUR), 34(1):1–47.

[59] Shaikh, R. (2018). Cross validation explained: Evaluating estimator
performance. https://towardsdatascience.com/cross-validation-explained-
evaluating-estimator-performance-e51e5430ff85. Accedido 15-09-2019.

[60] SNOMED International (2019). SNOMED-CT.
http://www.snomed.org/snomed-ct/why-snomed-ct. Accedido 20-04-
2019.

[61] Wu, C., Xia, F., Deleger, L., and Solti, I. (2011). Statistical machine
translation for biomedical text: are we there yet? In AMIA Annual Sympo-
sium Proceedings, volume 2011, page 1290. American Medical Informatics
Association.

98

[62] Yang, J., Parikh, D., and Batra, D. (2016). Joint unsupervised lear-
ning of deep representations and image clusters. In IEEE Conference on
Computer Vision and Pattern Recognition, pages 5147–5156.

[63] Yim, W., Yetisgen, M., Harris, W. P., and Kwan, S. W. (2016). Natural
language processing in oncology: a review. JAMA oncology, 2(6):797–804.

[64] Zhang, Q., Yang, L. T., Chen, Z., and Li, P. (2018). A survey on deep
learning for big data. Information Fusion, 42:146–157.

[65] Zhou, G., Zhang, J., Su, J., Shen, D., and Tan, C. (2004). Recognizing
names in biomedical texts: a machine learning approach. Bioinformatics,
20(7):1178–1190.

99

	Introducción
	Motivación
	Objetivos
	Estructura de la memoria

	Estado del arte
	Estado del arte de la minería de textos médicos
	Estado del arte de la minería de textos médicos en español

	Planificación y gestión
	Metodología
	Herramientas utilizadas

	Detector de entidades
	Análisis
	SNOMED-CT
	DeCS

	Modelado
	Baseline
	Lematización
	Detector aproximado

	Resultados
	Búsqueda de contexto
	Lematización
	Detector aproximado
	Evaluación de los resultados

	Detector de recomendaciones
	Análisis
	Modelado
	Resultados

	Despliegue
	Conclusiones y trabajo futuro
	Conclusiones
	Trabajo futuro

	Anexos
	Descripción del procesamiento de datos de SNOMED-CT
	Descripción del procesamiento de datos de DeCS
	Instalación de Freeling
	Instalación en Windows
	Instalación en Linux

	Código representativo de pruebas realizadas
	Código de pruebas del detector de términos médicos
	Código de pruebas del detector de recomendaciones

	Ejemplo de resultados del detector
	Resultados con datos de SNOMED-CT - Ejemplo de texto
	Resultados con datos de DeCS - Ejemplo de texto

