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Capitulo 1

Introduccion

El objetivo del presente trabajo es la realizaciéon del modelado de un cuadri-
coptero y su simulacion en Modelica, un software de codigo libre orientado a la
simulacion de sistemas complejos cuyo uso es muy interesante, ya que permite la
conexion de todo tipo de subcomponentes. Para ello, en primer lugar y antes de
comenzar con el modelado fisico, se realiza una primera fase de aprendizaje con el
software a través de una serie de ejercicios propuestos por el tutor de este traba-
jo, Enrique Teruel. Estos ejercicios sirven de iniciacién para comenzar a manejar el
programa y familiarizarse con el uso del mismo.

Una vez finalizada esta primera fase de aprendizaje comienza la etapa de docu-
mentacion, en la que se investiga sobre el tema en cuestion, el modelado de cuadricop-
teros. Se comienza recabando informaciéon sobre los cuadricopteros para comprender
mejor su funcionamiento y los componentes de los que constan. Durante este periodo
se estudia documentacioén facilitada por el tutor de estudios previos que tratan sobre
una tematica similar, para comenzar a orientar el proyecto.

El siguiente paso es comenzar con el modelado fisico. Esta parte del trabajo con-
siste en modelar como se comporta un cuadricoptero, basicamente se trata de lograr
un modelo matematico que simule el comportamiento fisico de un cuadricoptero. El
objetivo es lograr una serie de ecuaciones que relacionen las entradas del sistema,
es decir, los cuatro motores con los movimientos que realiza el cuadricoptero en el
espacio.

Una vez se tiene disenado el modelo lo mas ajustado posible a la realidad, se van
a disenar diferentes controladores para lograr que el cuadricoptero se comporte como
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se desee. Por ejemplo, conseguir que se desplace a un punto concreto del espacio o
que gire un determinado angulo en una direccién.

Se van a disenar y simular varios controladores diferentes para compararlos y
ver las diferencias existentes entre ellos y si hay alguno que sea més interesante que
los demas y en qué situaciones lo es.

Por tltimo, se obtendra mediante linealizaciéon en torno al punto de trabajo
habitual un modelo fisico simplificado, mucho mas sencillo que el propuesto inicial-
mente, a partir del cual se disenara un controlador en el Espacio de Estados. Este
control es disenado a partir del modelo simplificado, y se simularéd también sobre
el modelo més realista para comprobar si es posible utilizar el modelo sencillo para
disenar el control e implementarlo en cuadricopteros reales. En caso de que la res-
puesta del sistema fuese buena, se buscaran las limitaciones que tiene el control, en
caso de que las tuviera.



Capitulo 2

Modelado fisico

A lo largo del presente capitulo, se va a presentar y explicar el modelo fisico
desarrollado para implementar y simular en Modelica durante todo el proyecto. En
primer lugar, y antes de comenzar con el desarrollo del modelo fisico, es necesario
definir las dos bases en las que se va a trabajar durante todo el proyecto. Todas las
magnitudes fisicas que se empleen a lo largo de este documento van a estar siempre
referidas a una de las dos bases.

Ambas estan formadas por tres ejes cartesianos. La primera, fija al suelo, se
denotara de ahora en adelante {g} = {Xp, Y5, Zg} y la segunda, movil, situada en
el centro de masas del cuadricoptero y que se mueve de manera solidaria a este, se
denominara {o} = {X,Y, Z}.

Para posicionar la base {o} respecto de {g}, se define el vector x = (x,y,2)"
que indica la posicion de la base movil respecto de la fija. Una vez posicionada la
base, se definen los tres angulos de Tait-Bryan necesarios para orientar la base mévil
{0} respecto de la base fija {g}. Estos tres angulos son ¢, que hace referencia al giro
en el eje X, el dngulo 0, que indica el giro en el eje Y y el angulo ¢ que es el giro
en el eje Z. Estos tres angulos se definen de tal manera que son positivos siguiento
el criterio de la regla de la mano derecha. Notese que estos dngulos también son
habitualmente denominados como ¢ = roll, § = pitch y ¢ = yaw.
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2.1 Cambios de base

Al trabajar en dos bases diferentes, es fundamental definir las matrices de cam-
bio de base para poder pasar de una a otra de manera agil y rapida. Primero se
construye la matriz de cambio con respecto a cada uno de los ejes, es decir, R(X, ¢),
R(Y,0) y R(Z, ).

10 0

R(X,9)= |0 cos¢ —sing (2.1)
|0 sing cos¢
[ cosf 0 sind

R(Y,0) = 0 1 0 (2.2)
| —sinf 0 cosf
[cosyp —siny 0

R(Z.¢) = |siny cosy 0 (2.3)

0 0 1

Una vez obtenidas las tres matrices de cambio elementales, construimos la ma-
triz de cambio global R(¢,0,1). Esta matriz se obtiene multiplicando las tres ma-
trices que se acaban de obtener, tal y como se detalla en la ecuacion 2.4.

R(¢,0,4) = R(X,¢)R(Y,0)R(Z,4) =

coscosf costpsinfsing — siny cos¢p cossinb cos ¢ + sin siny
sin¢cosf sinsinfsing 4+ cosy cos¢ siny sin 6 cos ¢ — cos Y sin ¢ (2.4)
—sinf cos @ sin ¢ cos f cos ¢

Esta matriz de cambio permite cambiar la velocidad lineal de la base moévil a
la base fija como se indica en la ecuaciéon 2.5.

&= R(,0,1)v (2.5)

Se procede ahora a calcular la matriz de cambio necesaria para cambiar de base
la velocidad angular. En esta ocasion para realizar el cambio usaremos la matriz
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R, = (¢,0,). A continuacién la ecuacion 2.6/* indica como calcular dicha matriz,
y en ecuacion 2.7 se muestra la relacion existente entre la velocidad angular en base
movil y base fija.

1 singtanf cos¢tanf

R ¢,0,¢) = |0 cos ¢ —sin ¢ (2.6)
0 sin¢/cosf cose@/ cosb

U =R,"(6,0,¢)R (2.7)

2.2 Modelado del movimiento lineal

Una vez definidos y explicados los dos sistemas de coordenadas y las matrices de
cambio, el siguiente paso es la definicion de las ecuaciones que describen la dinamica
del cuadricoptero. Se comienza definiendo el modelo dindmico para el movimiento
lineal. La ecuacion 2.81 plantea de forma general la contribuciéon de las distintas
fuerzas que se ejercen sobre el sistema en la dindmica del mismo.

sin 6 0
0=g |—singcosf| —Sv+ | 0 (2.8)
—cos ¢ cos b T /mqg

En la ecuacion 2.8, el vector v = (v, v,,v,) expresa la velocidad del cuadri-
coptero en la base {0} y el vector © = (0, 0y, 0.)" la aceleracion del mismo en dicha
base. T es el empuje que siempre va en la direccion positiva del eje Z en la base {o}
v ¢ la aceleracion de la gravedad, que lleva la direccion negativa del eje Zp en la
base {g}. Siendo el vector R = (R,, R,, R,)" la velocidad angular en la base {0}, la
matriz S se define segtin se indica en la ecuacion 2.9 En la Figura 2.2 se indican
las fuerzas T'y g y los pares 7,, 7, y 7. que actiian sobre el sistema. En la figura 2.3
se muestra como se definie la velocidad lineal (v) y angular (R) en la base {o}.
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ZA-,
v Y {0

0 -R. R,
S=|R. 0 =R, (2.9)
~R, R, 0

Sustituyendo en la ecuacion 2.8, se obtiene:

Uy sin ¢ 0 —-R, Ry Uy 0
Uy| =g |—singcostd| — | R, 0 —Ry| |v|+]| O (2.10)
U, — cos ¢ cos O —-R, R, 0 v, T /my
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Y desarrollando la expresion, quedan las siguientes 3 ecuaciones:

Uy = gsint + v, R, — v, R,
Uy = —gsingcosd + v, R, — v, R, (2.11)
U, = —gcospcost + v, R, —v,R, +T/my

Las tres ecuaciones obtenidas en la expresion 2.11 son las que se emplean para
definir los movimientos de traslacion del cuadricoptero.

2.3 Modelado del movimiento angular

Una vez obtenidas las ecuaciones que definen el modelo dindmico del movimien-
to lineal, se van a definir ahora las ecuaciones que modelan la dindmica rotacional
del cuadricéptero. Se parte de la ecuacion 2.121! en la que la matriz J es la formada
por los momentos de inercia. En este caso, y tal y como se ha definido la posicion
de los ejes (ver Figura 2.4), tiene la forma que se especifica en la ecuacion 2.13 y
J~! su inversa. El vector 7 = (7., 7, 7.) representa cada uno de los pares en los ejes
de la base {0}, .., es el momento de inercia del rotor y W, el termino giroscopico
que se define como se muestra en la ecuaciéon 2.14.

0
R=J'(7-SJIR-S| 0 (2.12)
Izszg
L. 0 0
J=10 1, 0 (2.13)
0 0 L.
W, = =0 4+ Qy — Q3+ Q (2.14)

Siendo Iz, I, y I.. los momentos de inercia respecto a los ejes X, Y y Z del
sistema local {0} de coordenadas. Para el calculo de los momentos de inercia, se
utilizan las ecuaciones! 2.15 y 2.16.
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2 M
Lo = I,y = 57” + 2ml? (2.15)
2 M2
I, = 57" T Ami? (2.16)

Por su parte, I,.,, se puede aproximar por medio de la ecuacion 2.17F.

myl?
]zzm: 1p2p (217)

Sustituyendo en la ecuacion 2.12 se obtiene la ecuacion 2.18 y desarrollando, se
deducen las 3 ecuaciones que se indican a continuacion (expresion 2.19) y que rigen
el comportamiento dindmico del movimiento rotacional del cuadricoptero.

R, = 0 0 Ta 0 —R., R,][L. 0 07]][R,
R,|=]0 £ 0 Wl -|R 0 -RJ||0 I, 0f|R| -
R, 0 0 =] \[= ~R, R, O 0 0 L.||R.
0 -R. R, 0
—|R. 0 -R, 0 (2.18)
-R, R, 0 | |L.aW,

LR, = R.R,(I.. — I,) + 7o — RyL.,Q
R,(Lyy — Iz) + 72

2.4 Fuerzas y momentos actuantes

Una vez definidas las ecuaciones que rigen el comportamiento dindmico del cua-
dricoptero, se procede a explicar como se calculan las fuerzas y momentos generados
por los motores en el cuadricoptero. Estas fuerzas y momentos son claves, ya que
modificando los valores de estas a través de las entradas de nuestro sistema, que son



2.4. FUERZAS Y MOMENTOS ACTUANTES 9

las tensiones de los cuatro motores, se puede lograr que acttien sobre el cuadricopte-
ro las fuerzas y momentos necesarios para que este se mueva como deseamos. En la
Figura 2.4 se muestra la numeracion y el sentido de giro de los motores del modelo
que se va a simular ademas de la posicion de los ejes de la base local de coordenadas.

Figura 2.4: Geometria del cuadricoptero. ]

A continuacion se calcula la fuerza ejercida por cada uno de los motores como
se indica en la ecuacion 2.20[7 siendo b = 9,9865 - 107N - s2/rad? la constante de
empuje. Estas fuerzas F; siempre van en la direccién positiva del eje Z.

F, = b2 (2.20)
P = b2
Fy = b3

2= b (2.21)
F4 - bQi

Por otra parte, cada uno de los motores produce un momento inducido que se
calcula segtin la ecuacion 2.22, siendo d = 1,5978 - 107" N - m - s*/rad? la constante
de arrastre de cada uno de los rotores.
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M; = d§)? (2.22)
M, = dO?
My = d23

? 2 (2.23)
M3 == dQ%
M4 - in

En la expresion 2.24%1 se muestran las expresiones utilizadas para calcular el
empuje 1"y los pares en cada uno de los ejes, 7,, 7, vy 7, en funcion de las fuerzas y
momentos obtenidos en las ecuaciones 2.21 y 2.23.

T, = l(Fy — F3)

1, = l(Fy — F3)
TZ:—M1+M2—M3+M4
T=F+F+F5+ Fy

(2.24)

Los pares en los ejes X e Y se consiguen haciendo girar los motores situados
sobre el eje contrario a diferentes velocidades, esta diferencia de velocidad provoca
una diferencia de fuerzas de empuje que a su vez es la que provoca que se genere el
par. Este par generado es igual a la diferencia de fuerzas multiplicada por la distancia
de aplicacion de esta fuerza, que en este caso es la longitud del brazo, [. El empuje
se calcula realizando el sumatorio de las fuerzas provocadas por cada uno de los
cuatro motores. Por ultimo, el par en el eje Z, al estar definido como positivo segtin
la regla de la mano derecha, se calcula sumando los momentos inducidos que van
en la misma direcciéon (motores 3 y 4) y restando los que van en direccion contraria
(motores 1y 2). En la figura 2.4 se muestra la direccion de giro de los motores, lo
que provoca que el momento inducido tenga la direcciéon contraria.

Se procede ahora a construir la matriz M, que relaciona el vector de velocidades
angulares de los rotores al cuadrado, 2, = [Q2,03, 032, Q37 con los pares en cada
uno de los ejes y el empuje. Con esta matriz, conocidas las velocidades de giro de
cada uno de los rotores, se obtienen directamente las fuerzas y pares que actian
sobre el cuadricoptero, como se muestra en la ecuacion 2.25.
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= MQ, (2.25)

Con las ecuaciones explicadas anteriormente podemos construir la matriz M,
quedando como se muestra en la ecuacion 2.26.

bbb b
o0 —b o

M=14 _y o wu (2.26)
4 d —d d

Teniendo b y d que tienen los valores anteriormente comentados, y la longitud
del brazo, que para el cuadricoptero que se simula tiene un valor de [ = 0,211 m, la
matriz M queda como se muestra en la expresion 2.27.

9,9865-10"¢  9.9865-107%  9,9865-10~% 9,9865 - 10~
2,1072- 1076 0 —2.1072 - 1076 0

0 ~2.1072 - 1076 0 2,1072 - 106
~1,5978-10~7  1,5978-10~7 —1,5978 -10~7 1,5978 - 10~7

M- (2.27)

2.5 Dindmica del motor

A lo largo de esta seccion se va a proceder a modelar los motores que lleva
montados el cuadricoptero que se va a simular. Lo habitual en cuadricopteros es que
se empleen motores eléctricos de corriente continua sin escobillas, también llamados
motores DC brushless. Estos motores son ideales para su aplicacion en drones, ya que
proporcionan un buen par con muy poca friccién. El modo de modelar la dinamica
para un motor DC brushless es el mismo que si se tratase de un motor de corriente
continua convencional.

Para comenzar con el modelado del motor, se muestra en la Figura 2.5 un
esquema del circuito eléctrico y mecanico equivalente.
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T ]llond

m

Figura 2.5: Esquema motor DC brushless. !

Aplicando la ley de Kirchhoff se obtiene la ecuacion 2.28. En la que R es la
resistencia del motor, L la inductancia, ¢ la corriente, v la tensién aplicada y el
término K, - €2 hace referencia a la fuerza contraelectromotriz generada.

y
v:R~z’+L«d—z+Km-Q (2.28)

El valor de la inductancia suele ser relativamente pequeno, y su efecto se suele
despreciarl®| quedando la expresion anterior como se muestra en la ecuacion 2.29.

v=R-i+ Ky -Q (2.29)

Despejando el valor de la corriente 7 se obtiene la siguiente expresion que después
serd de utilidad.

j=——m" (2.30)

El planteamiento de la ecuacién mecanica que modela el motor segtin la Figura
2.5 es el mostrado en la ecuacion 2.31, en la que 7, es el par producido por el motor
y es igual a la constante mecénica del motor multiplicada por la corriente K iy 1) es
el par resistente provocado por la carga y que se puede aproximar con la expresion
dQ?, que es la misma que la ecuacién 2.22.
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LomQ =T, —T (2.31)

LomQ=Kji—M (2.32)

Sustituyendo el valor de ¢ obtenido en la ecuacion 2.30 e introduciendolo en la
ecuacion 2.32 y generalizando para cada uno de los cuatro motores, se obtiene la
ecuaciéon 2.33.

. K, K K
Izzin = eQi = i Mz 2.
+ 7 7V (2.33)

Particularizando para cada uno de los cuatro motores, se obtienen las cuatro
ecuaciones que a continuacién se muestran.

Izzmgl KRK 0 Evl - M,
[zzmQQ = 692 —mU2 — M,
okl ,@m (2.34)
J— O3 = —-v3 — M;
R i
LGy 4 Bmfeq B M
( Lzzm> 24 R 4 R V4 4

2.6 Implementacién en Modelica

Una vez se ha presentado y explicado todo el modelo fisico que se va a utilizar
en el presente trabajo, el siguiente paso es introducir el modelo en el software en el
que se van a hacer las simulaciones, Modelica.

Para ello, y antes de comenzar, es necesario dar valores a todas las constantes
que se han numerado a lo largo del capitulo. Estos valores se muestran en la tabla
2.1.
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] Variable \ Valor \ Unidades ‘

. 0.0128 kg - m?
I, 0.0128 kg - m?
1., 0.0239 kg - m?
L. 4.3011 -10~° | kg-m?
R 0.1107 Q
K, 0.01 N-m/y
K. 0.01 V's/rad
mo 1.32 kg
m 0.125 kg
M 0.82 kg

r 0.07 m

Ly 0.065 m

g 9.80665 m/g2

Cuadro 2.1: Valores de las variables para la simulacion. [

Para simplificar la implementaciéon en Modelica, se va a dividir el modelo fisico
en varios bloques, conectados entre si a través de sus entradas y salidas. De este mo-
do, el funcionamiento del sistema es exactamente el mismo que si se agregasen todas
las ecuaciones en el mismo bloque, pero se simplifica notablemente la programacion
del bloque y ademas, se facilita la deteccion de posibles errores.

El bloque final obtenido, que incluye todas las ecuaciones desarrolladas a lo largo
del capitulo tiene como entradas el vector de tensiones, V = [vy, 9, v3, v4]7 formado
por las tensiones a las que se alimentan los cuatro motores y tiene como salidas
los vectores posicion, X = [x,y, 2]T, orientacion, ¥ = [¢,0,9]T y sus respectivas
derivadas X = [i,7, 2] y ¥ = [$,0,¢]". Ademas, también se define como salida la
velocidad de giro de los motores, 2 = [y, Q,, 23, U]T. Este bloque se llama MAV,
son las siglas de Multirotor Aerial Vehicle.

El primer bloque que se disena, incluye las ecuaciones que modelan el movi-
miento del cuadricoptero. Posee como entradas el vector de pares 7 = [, 7, 7|7
y el empuje T'. A este bloque se le conecta otro que incluye las ecuaciones de las
que se deducen los valores de los pares y el empuje y posee como entrada el vector
de velocidades de giro de los motores = [Q, 0, Q3, )7, Por tltimo, se afiade
un ultimo bloque en el que se incluye la dindmica de los motores (idénticos), que
tiene como entradas el vector tensiones V = [vy, v, v3,v4]7 v como salidas el vector
velocidad de giro de los motores.

Una vez se ha introducido todo el modelo en Modelica, se da paso al siguiente
capitulo, en el que se detalla el proceso que se va a seguir para llevar a cabo la
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verificacion del modelo, es decir, que el modelo es valido, se comporta como se
espera y no hay ningtn error en la programacion del mismo en el software.
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Capitulo 3

Verificacion del modelo fisico

Para verificar el modelo descrito en el capitulo anterior se van a realizar diferen-
tes simulaciones con valores concretos para las entradas, las tensiones de los cuatro
rotores, de tal manera que deberian de provocar que el cuadricoptero reaccionase de
un determinado modo. Se van a ensayar individualmente los giros en torno a los tres
ejes v los desplazamientos en los mismos. Si de todas estas pruebas se obtienen los
resultados esperados, se puede concluir que el modelo fisico es correcto y esta bien
implementado en Modelica.

Todas los ensayos que se hacen a lo largo de este capitulo son con todas las
variables inicializacas a cero excepto la velocidad de giro de los motores, que co-
mienzan girando a {2 = 569 rad/s, velocidadpara la que el empuje generado por los
rotores, se iguala a la accion de la gravedad. Esto supone que el cuadricoptero se
mantiene en su posicion inicial y ambos sistemas de coordenadas, el sistema fijo al
suelo {g} vy el solidario al cuadricoptero {o} son coincidentes. Antes de comenzar con
las simulaciones, en la Figura 3.1 se muestra como deben ser accionados los motores
del cuadricoptero para que haga los movimientos que se desean (desplazamientos y
rotaciones en cada uno de los tres ejes). Resumiendo lo que en la imagen se expli-
ca, para realizar movimientos en el eje 7, hay que accionar los cuatro motores a la
misma velocidad, si se quiere ascender, esta debera ser superior a 569 rad/s para
ascender, e inferior para descender. Para hacer rotaciones sobre el eje Z, se giran
a menor velocidad dos de los motores. Por iltimo, para desplazarse en X e Y, se
accionan 2 motores a la misma velocidad, uno a una velocidad superior y el otro
a una velocidad inferior, de manera que el cuadricoptero se inclina y avanza en la
direccién del motor que gira mas lento.

17
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Low spead High speed

Figura 3.1: Movimientos del cuadricoptero. !

3.1 Traslacién en el eje Z

En primer lugar se accionan los cuatro motores a la vez con una tension de
6.27 V, que supone una velocidad de giro 2 = 569,26 rad/s. Para esta velocidad de
giro de los motores, y encontrandose el dron en posiciéon inicial de reposo, la fuerza
de empuje deberia igualarse a la fuerza de la gravedad y el cuadricoptero mantenerse
en el aire, sin ascender ni descender en el eje Z, como se comprueba que sucede.

A continuacion, en la Figuras 3.3 se muestra como asciende el cuadricoptero en
el eje X cuando se alimentan los motores a 6.5 V.

Tensidn v, v2, v3, v [V] Posicién Eje Z

30
25—2
20—5
15—3

10

D_| T T " T " T T T " T " T " T " T " T " 1

time (s)

Figura 3.3: Desplazamiento en el eje Z.
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3.2 Rotacién sobre el eje Z

En la siguiente simulacién que se va a acometer se pretende verificar que el
cuadricoptero gira sobre su propio eje Z cuando se accionan en cruz dos motores a
una velocidad y otros dos a otra.

Los motores 1 y 3 se accionan durante los primeros 5 segundos a 5.98 V y los
motores 2y 4 a 6.54 V| estas tensiones son elegidas porque su promedio es 6.27 y de
esta manera, el cuadricoptero sigue estacionario en Z. Pasados los 5 segundos, los
cuatro motores se accionan a 6.27 V. Esta diferencia de tension entre los motores
durante los primeros 5 segundos, genera un par en el eje Z, 7., que provoca que el
cuadricoptero gire.

Tensién v1, v3 [V] Tensién v2, v4 [¥] — Rz [rad/s] Psi [rad]

time (s)

Figura 3.5: Rotacion en el eje Z.

Analizando el resultado obtenido que se muestra en la Figura 3.5, se observa
que una vez pasados los 5 segundos, el cuadricoptero sigue girando puesto que se
observa que el giro en el eje Z aumenta de forma lineal. Esto significa que una vez
ha desaparecido el par 7., el cuadricoptero sigue girando. Esto se debe a que en el
modelo fisico planteado anteriormente no se ha introducido el efecto del rozamiento
del aire en la rotaciéon y traslacién del dron.

Por lo tanto, se va a proceder a modificar los modelos dindmicos propuestos
durante el capitulo 2 y se van a tener en cuenta los efectos de rozamiento con el
aire, y se analizara hasta que punto es importante esta fuerza en el movimiento del
cuadricoptero. Las ecuaciones que se van a modificar son las ecuaciones 2.8 y 2.12,
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que describen los movimientos de traslacion y rotacion, a las que se les va a anadir
el efecto de friccion con el aire.

Asumiendo que las velocidades a las que se va a desplazar el dron son bajas, se
puede aproximar la fuerza de fricciéon del aire como una constante por la velocidad
lineal en cada uno de los tres ejes del sistema de referencia solidario al dron. En la
ecuacion 3.1 se muestra la expresion con la que se calcula esta fuerza F. Siendo
ar = 0,04 N - s/m la constante de friccion traslacional. !

ar 0 O Vg
FR = —ATU = — 0 ar 0 Uy (31)
0 0 ar]| |v,

Anadiendo esta fuerza a la ecuacién del modelo dinamico de traslacion calculada
en el capitulo anterior, se obtiene la ecuacion 3.2 y desarrollando las tres ecuaciones
siguientes.

sin 6 0
. : O —1
V=g |—sin¢cosd| — Sv+ o Fr (3:2)
— cos ¢ cos b — o
mo
Uy = gsinf + v, R, — v, R, — L
mo
Uy = —gsingcos + v, R, — v, R, — T (3.3)
mo
T P
U, = —gcospcost + v, Ry — v, Ry + — — e
mo mg

El célculo del efecto del rozamiento del aire a la rotacion del cuadricoptero se
realiza por medio de la ecuacién 3.4, que tiene la misma forma que la fuerza de
rozamiento traslacional. Siendo ap = 6,4 - 107* N - s/m la constante de friccion
rotacional. %!

ar 0 0 Rx
MR = —ARR = 0 ar 0 Ry (34)
0 0 apr Rz
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Agregando esta contribuciéon a la ecuaciéon del modelo dinamico de rotacion
calculada en el capitulo anterior, se obtiene la ecuacién 3.5 y desarrollando, las tres
ecuiaciones que se muestran seguidamente.

0

. 1

R=J'7-SJR-S| 0 + — Mg (3.5)
LW, Mo

r . Rx
LoRy = RoRy(L. — Ipy) + 7o — Ryl — &
oh
IRy = R.Ru(loe — L) + 7y + RylooyQ — -2 (3.6)
mo
. R,
L.R. = RyRo(I,y — Ipy) + 7 — &
\ mo

Una vez agregadas estas contribuciones al modelo en Modelica, se procede a
repetir la simulacién para comprobar la rotacion sobre el eje Z, cuyo resultado se
muestra en la Figura 3.6. Se comprueba que el rozamiento con el aire practicamente
no influye en la rotacion del cuadricoptero. Esto se debe a que la contribucion del
momento My en la ecuacion 3.5 es muy pequeno.

Tensidn v1, v3 [V] Tensidn w2, w4 [V] = Rz [rad/s] = Psi[rad]

16
14
12
10

a -

time (s)

Figura 3.6: Rotacion en el eje Z con el efecto del rozamiento Mpg.

A pesar de que el momento Mp es muy pequeno, si se ha modelado correctamen-
te, en alglin momento deberia apreciarse que la velocidad se ve reducida. Para ello,
en la Figura 3.7 se simulan 200 s. Como era de esperar se aprecia que la velocidad
se reduce ligeramente.
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Tensién v1, v3 [V] Tensién v2, v4 [V] = Rz [rad/s]

HIIL”JH L1

| M A N RS N
S R

T T T T T T T T T T T T T T T T T T T |
0 a0 100 150 200

time (s)

Figura 3.7: Rotacion en el eje Z con el efecto del rozamiento Mpg.

Por lo tanto, para frenar el movimiento iniciado en un tiempo razonable, sera
necesario aplicar un par negativo en torno a ese eje. Esto se muestra en la Figura
3.7, en la que tras llevar un tiempo girando el cuadricoptero a velocidad constante,
se alimentan los motores para generar el par inverso, lo que logra reducir a cero la
velocidad de rotacion en torno al eje Z, y el &ngulo de giro i) permanece constante.

Tensién v1, v3 [V] Tensidn v2, v4 [V] — Rz [radfs] — Psi[rad]

10

time (s)

Figura 3.7: Rotacion en el eje Z con freno.

3.3 Traslaciéon en el eje X

Antes de comenzar con la verificacion de la traslacion sobre el eje X es necesario
explicar como se produce el movimiento en este eje. Para que se produzca desplaza-
miento en X, es necesario que se produzca un par en torno al eje 7,, este par provoca
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que el cuadricoptero se incline y avance en la direccion del eje X, por lo tanto en
esta seccion, se va a verificar ademas de la traslacion en el eje X, el giro en el eje Y.

Para ello, al ser necesaria la actuacion de un par 7,, los motores 2 y 4 deben
girar a velocidades diferentes, en este caso se fija el motor 2 a 6 V y el motor 4 a
6.5 V, de este modo, se genera un par positivo 7, que provoca que el cuadricoptero
se desplace en el sentido positivo del eje X. En la Figura 3.8 se comprueba que los
resultados son los esperados y se grafica la posicion en el eje X, la velocidad en el
mismo y el angulo patch, ademas de las tensiones en los cuatro motores.

Tensidn v1, v3 [V] Tensidn v2 [V] Tensidn w4 [V] Posicidn Eje ¥ [m] wx [myfs] Theta [rad]

2
1—: /

T ———— T T T T T T T T T T T T T T T T 1
0 0.1 0.2 0.3 0.4 0.5 0.6
time (s)

Figura 3.8: Traslacion Eje X, rotacion Eje Y.

3.4 Traslaciéon en el eje Y

Por ultimo y para concluir este capitulo, se va a comprobar que la traslacion
en el eje Y es correcta. Siguiendo el mismo razonamiento que se ha explicado antes,
a la vez que se valida la traslaciéon en el eje Y, se valida también el giro roll.

En esta ocasiéon se necesita que actie sobre el cuadricoptero un par 7, para
lo cual, se accionan los motores 2 y 4 a 6.27 V, el motor 1 a6 Vy el 3 a 6.5V,
esto provoca un par 7, negativo, que dada la disposicion de los ejes, hace que el
cuadricoptero avance en la direccion positiva del eje Y (ver Figura 3.10).
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Tensidn v1 [V] Tensidn w2, v4 [V] Tensidn w3 [V] Posicién Eje Y [m] vy [mfs] = Phi [rad]

c——
0 0.1 0.2 0.3 0.4 0.5 0.6
time (s)

Figura 3.10: Traslacion Eje Y, rotacion Eje X.

Finalizadas todas las verificaciones, y habiendo sido el resultado de todas ellas
satisfactorio, se concluye que el modelo fisico disenado durante el primer capitulo, al
que se le anade posteriormente el efecto de la friccion con el aire a pesar de que no
tenga mucha influencia, es correcto, y su programacién en Modelica ha sido exitosa.
Por lo tanto se da por concluido este capitulo y se va a proceder a disenar el control
del cuadricoptero.



Capitulo 4

Diseno del control

A lo largo de este capitulo se pretende disenar y probar diferentes controles
para comprobar cuéles son capaces de controlar el cuadricoptero como se desea.

En primer lugar se disena un controlador de bajo nivel que actiia sobre cada
uno de los cuatro motores. Este control estaré siempre presente y se encarga de que
cada uno de los motores giren a la velocidad requerida y alcancen la misma en un
tiempo 6ptimo y con una sobreoscilacion aceptable. Para esta tarea se implementara
un controlador PI.

Posteriormente, se disena un primer controlador para regular la posicién en el
eje Z y los angulos de giro del cuadricoptero. Seguidamente se simulard un control
de posicion que permite mover el cuadricoptero a la posiciéon del espacio x,y, z que
se desee con la orientacion 1 que se requiera.

Tras probar estos dos controles, se realizar& una aproximacion del modelo fisico
desarrollado durante el capitulo 2, llevada a cabo a través de la linealizacion del
sistema en torno a un punto de operacion.

Por tltimo se calcula el control en espacio de estados apoyandose en el modelo
simplificado obtenido de la linealizacion del sistema.

El controlador calculado utilizando el espacio de estados sera simulado en el sis-
tema linealizado, posteriormente se hard lo propio en el sistema del modelo detallado
(mas realista) desarrollado a lo largo de los capitulos anteriores y se compararan los
resultados.

25
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4.1 Control de los motores

En esta seccién se va a presentar el controlador PI disenado para el control de
velocidad de cada uno de los cuatro motores, en la Figura 4.1 se muestra el esquema
de control.

omeqat et Omegat
Teedbackl
e
Omega?

]
g
]

Motores Omega

q—
Omeg
lesdbackd
- { - ﬁ

AVTAVAVAY

Figura 4.1: Esquema de control de los motores.

Las entradas del sistema son las velocidades de giro de cada uno de los cuatro
motores, vendran dadas por los diferentes controles de nivel superior que se imple-
mentaran posteriormente y las salidas van conectadas a la dinamica del sistema. El
bloque intermedio es el controlador PI cuya composicion se indica en la Figura 4.2.
Este controlador lleva incluido un saturador, para que la accién sobre los motores
nunca sea superior a 11.1 V ni inferior a 0 V. Al llevar el controlador incluido un
integrador, la colocacion de un saturador puede provocar que se produzca el inde-
seable efecto del wind-up, que ocurre cuando la salida se encuentra saturada pero
el integrador continua integrando y se acumula el error. Por ello, para evitar que
se produzca este fenémeno, se coloca un anti wind-up. Siguiendo procedimientos de
diseno clasico de controladores, se seleccionan los valores para el controlador PI, que

resultan ser K=63 y Ti=0.07.
1>

k=1/007

Figura 4.2: Controlador PI con anti Wind Up.
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4.2 Control PD y PID

Una vez implementado el control de los motores en el modelo, se procede al
disenio de los diferentes controladores que se van a simular. En primer lugar se va a
disenar un controlador PD. En este primer control, se pretenden controlar los tres
angulos de orientacion del cuadricoptero y la posicion del mismo en el eje Z. Para
ello, el controlador calculara la fuerza de empuje T y los diferentes pares, 7,, 7, ¥
T, necesarios para colocar el cuadricoptero en la posicion del eje Z y orientacion
deseada. Las entradas del controlador seran los errores de posicion y orientacion de
cada uno de los angulos, calculados como las referencias menos los valores actuales
de las variables, medidas a la salida del cuadricoptero y realimentadas.

En la expresion 4.1 se muestran las ecuaciones con las que se calcula el empuje
v los pares, también se incluyen en el controlador las ecuaciones necesarias para el
calculo del vector Q, = [Q2, Q3 Q2 Q3]7, que se conecta directamente al controlador
del motor y este a su vez al modelo fisico del cuadricoptero. La matriz M, calculada
en el capitulo 2 (ver ecuaciéon 2.27) relaciona el vector [T, 7., 7,,7.]* con el vector
(2], por lo tanto la inversa de esta matriz, sera incluida en el controlador, para
obtener el vector [Q] a partir de [T, 7,,7,,7.]7. Las salidas del cuadricoptero que
se van a realimentar en esta ocasion son los angulos ¢, 6, 1, la posiciéon en z y sus
respectivas derivadas, gﬁ 0, w y Z.

T = (9+ Krp(zr — 2) + Krp(3r — 2)) gy
= (Kup(dr — ) + Kup(or — 6)) I
= (Kyp(0r — 0) + Kyp(6r — 0))1,,
(K2P<¢R - ) + KzD(&R - ¢))Izz

(4.1)

Los valores seleccionados para las constantes se muestran en la tabla 4.1.

’ Constante \ Valor \ Constante \ Valor ‘

KTP 1.5 KTD 2.5
K.p 9 K.p 3.5
Kyp 9 Kyp 3.5
K.p 9 K.p 3.5

Cuadro 4.1: Valores de las constantes del controlador PD.
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Se anade este controlador al modelo del que ya disponemos en modelica, y se
realizan diferentes simulaciones. En primer lugar, en la Figura 4.3, se muestra la
respuesta de la posicion en el eje Z ante una referencia de 10 m en dicho eje.

—_—p — — 7T

Perturbacidn

10

15’\/ [P

0 5 10 15
time (s)

Figura 4.3: Control PD, simulacién posicion eje Z.

Como se observa en la imagen anterior, se ha incluido en la grafica el valor
del empuje T, para comprobar como varia a lo largo de la simulacion. El sistema
llega a la posicién deseada en menos de 5 s, lo que es una respuesta relativamente
rapida. Una vez se ha estabilizado la posicion, se incluye una perturbacion en forma
de de empuje T (modelando por ejemplo un aumento del viento en la direccion z
del cuadricoptero). Se visualiza como aumenta la fuerza de empuje para "frenar"
la perturbacién, pero como se comprueba, no existe rechazo de perturbaciones, ya
que pasado un tiempo, el cuadricoptero no vuelve a la posiciéon de referencia. Para
solucionar esto, se le incluiré posteriormente una componente integral al controlador,
de tal manera que pasara a ser un controlador PID y rechazara perturbaciones.

A continuacion, en la Figura 4.4 se muestra la siguiente simulacion, en la que se
les da referencias a los tres angulos. Cabe destacar que el transitorio de los angulos
¢ v 0 es igual, y el de 1 diferente, esto se debe a que fisicamente el eje X del
cuadricoptero es igual al Y, y los dos anteriores son distintos al eje Z. Se observa
que en esta ocasion el tiempo de respuesta es inferior a dos segundos y la SO de
aproximadamente un diez por ciento y como ocurria anteriormente, tampoco rechaza
las perturbaciones.
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— phi_R [rad] theta_R [rad] psi_R [rad] — phi [rad] theta [rad] psi [rad] taux [N.m] tauy [N.m] tauz [N.m]
0.35 5

0.3 f v
0.25 —E

0.2 f P i, S
0.15 3 / \

0.1 f
0.05 J \

0 — T
-0.05 _:| L e B e T T 1
0 1 2 3 4 5 6 7 8

time (s)

Figura 4.4: Control PD, simulacion angulos ¢, 6 y .

Tras verificar el funcionamiento del primer control simulado, y comprobado que
su funcionamiento es bueno, pero que no rechaza las perturbaciones, se incluye en
las ecuaciones 4.1 un término que consta de una constante por la integral del error,
quedando el anterior controlador como se muestra a continuacién.

T =(9+ Krp(zr — 2) + Krp(ir — 2) + K11 [ (28 — 2)) i
= (Kop(6r — ¢) + Kop(dp — @) + Kot J(¢r — @) Lss
(KyP(eR - ) + KyD(éR - 9) + Kyl I(QR - 9))Iyy
= (K.p(Yr — V) + K.p(¥r — ) + K.p [(br — V) L.

(4.2)

Tras varias simulaciones, se escogen los valores indicados en la Tabla 4.2 para
las constantes. Estos valores han sido elegidos para intentar optimizar la respuesta
del sistema, procurando que el tiempo de respuesta y el tiempo de rechazo de pertur-
baciones sean lo mas pequenos posibles, sin que esto provoque una sobreoscilacion
excesiva.

Modificando el controlador para incluirle la acciéon proporcional a la integral,
implementandolo en Modelica y simulando, se muestran las Figuras 4.5 y 4.6. Se
comprueba que las perturbaciones que antes no eran rechazadas, ahora si lo son. El
tiempo de respuesta se ha visto aumentado y ahora tarda mas en llegar al estado
estacionario. Se aprecia claramente como las acciones T', 7,, 7, ¥ 7. son menores que
en las anteriores simulaciones, motivo por el cual el tiempo de respuesta es mayor.
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’ Constante \ Valor \ Constante \ Valor \ Constante \ Valor ‘

KTP 4.5 KTD 3.7 KTI 1

K.p 6 K.p 3.5 K.1 1.5
K,p 6 K,p 3.5 K, 15
K.p 6 K.p 3.5 K.r 15

Cuadro 4.2: Valores de las constantes del controlador PD.

z_R [m]

z [m]

T

’ /\_/ 7

10

Perturbacion [M]

! ; ; ; ; ; ; ; ; ; ! ; ; ; ; ; ; ; ; ; !
0 5 10 15 20
time (s)

Figura 4.5: Control PID, simulacién posicion eje Z.

— phi_R [rad] theta_R [rad] psi_R [rad] — phi [rad] theta [rad] psi [rad] taux [N.m] tauy [N.m] tauz [N.m]
0.35 5
0.3 f
0.25 —E
0.2 P s S e,
0.15 —E / \ /
0.1 - S —_—
0.05 é/ \
0 —f . —
-0.05 _:| T T T T T T T T T T T T T T T T T T T T 1
0 3 10 15 20 25

time (s)

Figura 4.6: Control PID, simulacién angulos ¢, 6 y .

Por 1ltimo, en la Figura 4.7 de nuevo el controlador sobre el modelo detallado,
con el objetivo de comprobar que el funcionamiento es correcto cuando se introducen

las cuatro referencias a la vez. Los valores para las referencias en esta ocasion son
zr =1, ¢R =0,1, Or = 0,15y ¢R =0,
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z_R [m] phi_R. [rad] theta_R [rad] psi_R. [rad] z [m] phi [rad] theta [rad] —— psi [rad]

1
0.8
0.6
0.4
0.2 e T

MF
0T T T " T " T " T " T " T " T " T " T " T " T " 1
0 2 4 6 8 10 12
time (s)

Figura 4.7: Control PID, simulaciéon modelo detallado.

Con el controlador PID disenado, se pueden controlar correctamente las varia-
bles para las que ha sido ideado, pero con este control no se puede dar referencia
a la posicion del cuadricoptero en el plano XY. Para ello, se va a emplear otro
controlador que si que es capaz de controlar la posicién en X e Y.

4.3 Control de posicién

Tras disenar y simular el controlador PID anterior que permite controlar en
que posicion del eje Z y con que orientaciéon se encuentra, se va a probar otro
control que permite controlar a que punto del espacio se dirige el cuadricoptero y
en que orientacion 1. Es decir, en esta ocasion, las referencias que le introduciremos
al modelo serdan zg, yr, 2r v ¥r. Con las referencias de la posicion a la que se
tiene que dirigir, el controlador calculara los angulos ¢, y 6. necesarios para que el
cuadricétpero se desplace hacia la posicion deseada.

La idea de este controlador es la misma que el anterior, es decir, el controlador
dard como salidas las velocidades de giro de cada uno de los motores. Pero en esta
ocasion, los angulos ¢, v 6. en lugar de ser entradas de referencia, se calculan dentro
del propio controlador para desplazar el cuadricoptero al punto deseado que se le ha
indicado a través de las referencias.

Para ello, se comienza definiendo un controlador intermedio, considerando las
desviaciones de la posicion, velocidad y aceleracion del cuadricoptero. Estas ecua-
ciones se muestran en la expresion 4.300.
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KmP(l’R — l‘) + KmD(ij - l’) + K:pDD(.l.’R — Z‘)
Kyp(yr —y) + Kyp(9r — 9) + Kypp(Jr — ¥) (4.3)
KZP(ZR — Z) + KzD(zR - Z) + KzDD(éR — Z)

SIS~V W
Il

T
Y
z

Con las variables de las ecuaciones 4.3, se calculan ¢, 6. y T., que son los
angulos y empuje necesarios para llevar el cuadricoptero al punto deseado. El modo
de calculo de los mismos se indica en las ecuaciones!'? 4.4, 4.5 y 4.6. Siendo s(a) el
seno del angulo y ¢(«) el coseno.

¢ = arcsin ( d;zj—l(d;%- (dzch;)Q)) (4.4)
0. = arctan (d$608(1/}) il dysin(w)) (4.5)
d.+g

Con los angulos ¢. v 0. que se acaba de indicar como se calculan, y el angulo
de referencia g, se calcula con un PD los pares que se deben realizar sobre el
cuadricoptero para que se produzca el giro necesario para llevarlo a la posicion de
referencia. La forma de calculo de estos pares, 7., 7, y 7. se indica en la ecuaciéon
4.751'y es similar al controlador disefiado en la seccién anterior.

Ty = (K$P(¢c - ¢) + KwD(q.sc - gbc))]m:
Ty = (Kyp(fe — 6c) + KyD(écéC))Iyy (4.7)
Ty = (KZP<1/}R - w) + KZD('ILR - w))[zz

Ademas de todas estas ecuaciones, el controlador, igual que en el caso anterior,
también incluye las ecuaciones necesarias para transformar 7', 7,, 7, v 7. al vector
Q2;. Conocidas ya las velocidades de giro de cada motor, se conectan al control de
velocidad de los motores y la salida de este bloque se conecta a la dindmica del
sistema. De este ultimo bloque se extraen las salidas necesarias para realimentar el
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sistema y que funcione correctamente. En este caso se trata de las posiciones x, ,
z y el &ngulo .

Cabe mencionar que el controlador también necesita las derivadas y segundas
derivadas de los errores para calcular las acciones. Estas se calculan derivando los
errores de cada una de las variables realimentadas. En la Tabla 4.3 se indican los
valores de todas las constantes de las ecuaciones 4.3, y en la Tabla 4.4 las corres-
pondientes a las ecuaciones 4.7.

‘ Constante ‘ Valor ‘ Constante ‘ Valor ‘ Constante ‘ Valor ‘

Kop 6 K.p 10 K.op | 65
K,p 6 K,» 10 K,op | 65
K.p 6 K.p 10 K.op | 65

Cuadro 4.3: Valores de las constantes del controlador de posicion.

‘ Constante ‘ Valor ‘ Constante ‘ Valor ‘

Kyp 3 Ksp 0.75
KGP 3 KGD 0.75
Kwp 2 KwD 2

Cuadro 4.4: Valores de las constantes del controlador de posicién.

Una vez se ha introducido en Modelica el controlador, se procede a continuar
con las simulaciones. Se van a simular por separado las cuatro referencias que se
pueden dar al sistema y posteriormente se simularan todas juntas.

En primer lugar, se incluye una referencia de 5 m en el eje X, el resultado de
esta simulacion se muestra en la Figura 4.9. Se comprueba que llega al valor de la
referencia con una pequena sobreoscilaciéon, pero el tiempo de respuesta es bastante
bueno. También se han graficado el angulo 6 (es necesario que el cuadricoptero
gire en torno al eje Y para que se pueda desplazar en direccion x) y la velocidad
de desplazamiento en el eje x. En las Figuras 4.10, 4.11 y 4.12 se han realizado
las mismas simulaciones pero con la referencia en las diferentes variables que se
controlan. En todos los casos la respuesta es muy similar, obteniendose tiempos de
respuesta buenos y sobreoscilaciones muy pequenas. En la Figura 4.10 el angulo ¢
es negativo, a diferencia del resto de simulaciones, esto se debe a la forma en la que
estan definidos los ejes y los giros. Para que el cuadricoptero avance en el sentido
positivo del eje Y, debe girar el sentido negativo en torno al eje X. Mencion especial
requiere la simulacion de la Figura 4.12, cuyo comportamiento es algo diferente,
debido a que la dindmica de giro en torno a este eje es diferente a los otros dos. El
transitorio es diferente, pero los resultados siguen siendo muy buenos.
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*_R [m] x [m] theta [rad] v [mjfs]
e
/,,.---—-
/
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2 4
time (s)
Figura 4.9: Control de posicion, referencia en x.
—— y_Rm y [m] phi [rad] vy [mfs]
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Figura 4.10: Control de posicion, referencia en y.

z_R [m] z [m]

vz [mfs]

time (s)
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Figura 4.11: Control de posicion, referencia en z.
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psi_R [rad] psi [rad] = Rz [rad/s]

0.6

0.5 : —

0.4
0.3
0.2 ]

0.1

D__| T T T T T T T T T T T T T T T T T T

time (s)

Figura 4.12: Control de posicion, referencia en 9.

Tras comprobar que el cuadricoptero se comporta bien con cada una de las
referencias de forma individual, se va a simular ahora con valores distintos de cero
para todas las referencias a la vez. El resultado de la mencionada simulacién se
muestra en la Figura 4.13, se comprueba que el control sigue funcionando igual y es
capaz de llevar todas las variables controladas hasta las posiciones requeridas.

¥ R[m] —— y_R[m] z_R [m] psi_R [rad] % [m] y[m] = z[m] = philrad] theta [rad] —— psi [rad]
3.5 7
3]
2.5 /
2]
1.5 /
1]
3 / /
D {K
[ T T T T T T T T T T T 1
1] 2 4 G g 10

time (s)

Figura 4.13: Control de posicion sobre el modelo detallado.

4.4 Linealizaciéon modelo fisico

Se parte de las ecuaciones 3.3 y 3.6 y de las ecuaciones de cambio de bases
2.5 y 2.7. Estas ecuaciones describen los movimientos de traslacion y rotacion del
cuadricéptero.

10
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El vector de estados se define como z(t) = [¢,¢,0,0,¢, ¢, x, &, y,9, 2,27 y el
vector de entradas es u(t) = [T — gmo, Tz, 7, )7 . El punto en torno al cual se va
a linealizar es con el cuadricoptero en posicion inicial y "flotando" en el aire, es
decir, la fuerza de empuje generada por los motores se iguala con la gravedad y el
cuadricoptero y permanece inmovil en el espacio.

Suponiendo que los dngulos ¢, 6 vy ¢ son pequenos, se puede aproximar que el
seno de estos angulos es igual al angulo y los cosenos de los mismos son iguales a
la unidad [ (unidades de los angulos siempre en radianes). Esta aproximacion es
valida para angulos menores de 0.5 rad.

Teniendo en cuenta la aproximacion de dngulos pequenos y utilizando las ma-
trices de cambio de base 2.5 y 2.7, se pueden aproximar las componenetes de los
vectores X y W como se muestra en las ecuaciones 4.8 y 4.9 respectivamente.

T = v,
U=y, (4.8)
2=,
0 =R, (4.9)
'Lb =R,
De lo que se deducen también las siguientes aproximaciones.
T =1,
y = Uy (4.10)
Z=17,
0 = Ry (4.11)
lﬁ = Rz
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Contando con las aproximaciones que acaban de mencionarse y asumiendo que
al ser los angulos que definen la posicion del cuadricoptero muy pequenos, la velo-
cidad de rotacion también lo sera (por ser su derivada), se obtienen las expresiones
4.12 y 4.13 que aproximan la traslacién y rotaciéon del cuadricoptero en torno al
punto de linealizacion del sistema.

x:vx:ge—aTUz
T
=1y =—9¢— moy (4.12)
. arv, T
Z=0,=—g— —
mo mo
(- tau,,
¢ = g — Vi
.. tai,
0=R,=—" (4.13)
Iy,
& - _ tau,
\ - ]ZZ

Partiendo de las ecuaciones 4.12 y 4.13 se procede a calcular las matrices A,
B, C vy D que definen el sistema en espacio de estados, tal y como se indica en las
ecuaciones 4.14 y 4.15.

#(t) = A-2(t) + B - u(t) (4.14)

y(t) =C-x(t) + D - u(t) (4.15)
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—_ar
mo

(4.16)

o o O
TO
— a_m o
_
o o O
o o O
o o O
o o O
o o O
o o O
o o O
o o O
] ﬂu (@)
S D W

Las matrices A y B son las indicacas en la ecuacion 4.16, la matriz C' es la matriz
identidad de dimensiones 12x12 y la matriz D es una matriz de 12x4 compuesta por

Cceros.
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4.5 Control en el Espacio de Estados

Por ultimo se va a disenar un controlador en espacio de estados, para ello se va
a partir del modelo linealizado del cuadricoptero presentado en la primera seccion
de este capitulo. A partir de las matrices A, B, C y D que describen el sistema, es
posible diseniar una matriz de ganancias, K tal que al realimentar el vector de estados
se coloquen los polos en las posiciones deseadas. Ademas, también es necesario el
calculo de la matriz N a la que se conecta el vector de variables que queremos
controlar.

Antes de comenzar con el diseno, es necesario comentar que para el calculo
del controlador en espacio de estados se va a suponer que disponemos de todo el
vector de estados en todo momento, es decir, se supone que podemos medir todas
las variables de estado en todo momento. Esta suposiciéon puede no ajustarse a la
realidad, ya que hay variables de estado cuya mediciéon puede resultar complicada.
Ademas, los sensores con los que se miden dichas variables no son perfectos, y tienen
errores y ruido.

Adentrandonos ya en el diseno, para el calculo de las matrices K y N, es ne-
cesario en primer lugar escoger las variables que se desean controlar. Se van a
escoger las tres posiciones en el espacio, x, y y 2z y el angulo ¢. También ne-
cesitamos definir el vector de polos P, que en este caso serd [—2 + 1,96i, —2 —
1,964, —2, —2, —3, =3, —4, —4, —5, —5, —8, —8] 1. Con toda la informacién de la que
se dispone, ejecutando en Matlab la orden K = place(A, B, P) se obtiene la matriz
K, que es la que realimenta el vector de estados. Los valores de esta matriz son los
que se muestran en la ecuacion 4.17

[ 0,0000 1,4030  0,2388  —0,1452]
0,0000  0,2292  0,0146 —0,0120
—0,0000 —-0,3172 11,1007 —0,0872
—0,0000 -0,0226 0,2050 —0,0129
—0,0000 -0,0040 -0,0071 0,3602
—-0,0000 -0,0010 -0,0018 0,1916
—0,0000 -0,1551 0,2410  0,0028
—0,0000 —-0,1308 0,2569 —0,0119
—-0,0000 -0,3050 -0,1871 0,0736
—0,0000 -0,3538 —0,1224 0,0579
10,5600  0,0000  —0,0000 —0,0000
| 7,8800  0,0000 —0,0000 —0,0000 |

(4.17)
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Para el calculo de la matriz N, empleando también Matlab para su calculo se
obtiene la matriz indicada en la expresion 4.18. Para poder calcular la matriz N, es
necesario modificar la matriz C, y en lugar de ser una matriz identidad de dimension
12x12, al haber escogido las salidas antes mencionadas, pasa a tener la forma que
se muestra en la ecuacion 4.19.

—0,0000 —0,0000 10,5600 —0,0000
N = [-0,1551 —0,3050 0,0000 —0,0040 (4.18)
0,0028 0,0736 —0,0000 0,3602

0000O0O0OT1TO0OO0OO0®O0QO0
0000O0OO0OO0OO0OT1QO0®O0O0

¢= 0000O0OO0OO0OO0OOO0OT1TOQO0 (4.19)
000O01O0O0O0OO0OO0OO0OQ 0

Las referencias se multiplican por la matriz N, y a la salida de este bloque se
le resta la salida de la realimentacion del vector de estados por la matriz K. El
resultado de esta cuenta es el vector de entradas u(t) compuesto por T — gmyg, Ts, Ty
y 7. Como conocemos la relacion entre esta fuerza y pares y el vector de velocidades
de giro de los motores (), se calcula dicho vector y esas velocidades de referencia van
a los motores con su control de velocidad ya conocido y posteriormente al modelo
fisico del cuadricoptero.

Una vez se ha presentado el controlador y su forma de conexion, se van a
realizar las simulaciones. Se van a hacer las simulaciones sobre el modelo real y
sobre el modelo linealizado. Al haber calculado el controlador a partir del modelo
linealizado, deberia de funcionar bien en el modelo real para valores cercanos al
punto de linealizacion, es decir, para dngulos de giro pequenos.

En la Figuras 4.16 y 4.15 se muestran las simulaciones sobre el modelo real y el
linealizado respectivamente. Como era de esperar, en el modelo linealizado, al haber
sido diseniado el controlador sobre este modelo, el control funciona realmente bien.
Sobre el modelo real, existe una pequena sobreoscilacion pero el resulatado es muy
satisfactorio. Se puede concluir que la aproximaciéon para pequenos angulos de giro
es buena y se puede controlar el sistema real disenando el controlador a partir del
modelo linealizado.
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xLin [m] yLin [m]

zLin [m] = phiLin [rad]

thetalin [rad] psiLin [rad] ¥R — yR Z_R psi_R
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2.5 /
2-
1.5 _: ﬁ
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Figura 4.16: Control en espacio de estados, sistema linealizado.
xReal [m] yReal [m] zReal [m] phiReal [rad] thetaReal [rad] psifeal [rad] xR —vy_R R psi_R
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Figura 4.15: Control en espacio de estados, sistema detallado.

Para concluir con el capitulo, en la Figura 4.17 se muestra la simulacién de
ambos sistemas a la vez para un angulo de referencia de 1.5 rad. Este angulo esta
lejos del punto de linealizacion y por lo que en el modelo real no funciona bien,
va que se desestabiliza y la simulacion se detiene. Por lo tanto, se ha llegado a la
conclusion de que la linealizacion es valida y es posible disenar controladores sobre el
modelo simplificado y aplicarlos posteriormente sobre el cuadricoptero real, siempre
teniendo en cuenta que no es posible alejarse mucho del punto de linealizacion.
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psi_R [rad] psiLin[rad] psiReal [rad]
2
1.5 | /—— N
1 / /
0.5
0 1 2 3 4 5 ]

time (s)

Figura 4.17: Comparativa angulo .
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Conclusiones

Tras haber finalizado el proyecto, la valoracion que hago sobre el mismo es
positiva. He aprendido mucho sobre cuadricopteros y su funcionamiento, un tema
que desconocia por completo y me ha resultado muy interesante. Ademas, he puesto
en practica muchos conocimientos adquiridos durante el grado, especialmente de
disefio y tratamiento de sistemas. No solo he puesto en juego los conocimientos
adquiridos en las asignaturas de esta rama, sino que la realizacion de este trabajo
me ha sido muy 1til para ampliar y afianzar los conceptos que ya tenia adquiridos
y aprender mucho mas de lo que ya sabfa.

Entrando a valorar lo que ha sido el proyecto en si, creo que es una rama
con multitud de aplicaciones y un tremendo potencial. Se han logrado controlar
diferentes variables con diferentes controladores, v en todos ellos, los resultados
obtenidos y presentados en esta memoria han sido en general bastante satisfactorios,
llegando a simularse modelos en los que se podian controlar muy eficazmente las
posiciones en el espacio, que en mi opinién es lo mas interesante y el giro en torno
al eje z. Es el caso del control sencillo en el Espacio de Estados, los resultados del
controlador obtenido conectado al modelo mas realista han sido muy buenos, siempre
que el sistema que se desea controlar no se aleje en exceso del punto de linealizacion.

Aunque el propésito final de este trabajo es disponer de modelos detallados de
cuadricopteros para la simulacién de sistemas méas complejos que los contienen, el
trabajo realizado puede verse como las primeras fases del diseno y puesta en mar-
cha del control de un cuadricoptero. En cuanto a trabajo futuro, se pueden hacer
multitud de tareas, seguir disenando diferentes controles, disenar generadores de tra-
yectoria, avanzar en el modelado fisico introduciendo sensores mas realistas y que

43
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contengan error y ruido, discretizar el modelo, estudiar las conexiones y comunica-
ciones entre el controlador y el sistema, el modo en que el controlador hace llegar al
cuadricoptero la informaciéon de como debe accionar los motores para moverse como
se desea, la medicion y estimacion de las variables de estado, la aplicacion de otros
métodos de control mas avanzados... Existen muchisimos puntos de interés por los
que seguir trabajando en este dmbito.
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