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Lista de Símbolos

{g} = {XB, XY , XZ} Base de coordenadas �ja al suelo
{o} = {X,X,X} Base de coordenadas solidara al cuadricóptero
X = [x, y, z]T Vector posición en la base {g}

x Posición en el Eje XB [m]
y Posición en el Eje YB [m]
z Posición en el Eje ZB [m]

Ẋ = [ẋ, ẏ, ż]T Vector velocidad lineal en la base {g}
ẋ Velocidad lineal en el Eje XB [m/s]
ẏ Velocidad lineal en el Eje YB [m/s]
ż Velocidad lineal en el Eje ZB [m/s]

Ẍ = [ẍ, ÿ, z̈]T Vector aceleración lineal en la base {g}
ẍ Aceleración lineal en el Eje XB [m/s2]
ÿ Aceleración lineal en el Eje YB [m/s2]
z̈ Aceleración lineal en el Eje ZB [m/s2]

Ψ = [φ, θ, ψ]T Vector orientación en la base {g}
φ Orientación en el Eje XB [rad]
θ Orientación en el Eje YB [rad]
ψ Orientación en el Eje ZB [rad]

Ψ̇ = [φ̇, θ̇, ψ̇]T Vector velocidad angular en la base {g}
φ̇ Velocidad angular en el Eje XB [rad/s]

θ̇ Velocidad angular en el Eje YB [rad/s]

ψ̇ Velocidad angular en el Eje ZB [rad/s]

Ψ̈ = [φ̈, θ̈, p̈si] Vector aceleración angular en la base {g}
φ̈ Aceleración angular en el Eje XB [rad/s2]

θ̈ Aceleración angular en el Eje YB [rad/s2]

ψ̈ Aceleración angular en el Eje ZB [rad/s2]
v = [vx, vy, vz]

T Vector velocidad lineal en la base {o}
vx Velocidad lineal en el Eje X [m/s]
vy Velocidad lineal en el Eje Y [m/s]
vz Velocidad lineal en el Eje Z [m/s]
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ii

v̇ = [v̇x, v̇y, v̇z]
T Vector aceleración lineal en la base {o}

v̇x Aceleración lineal en el Eje X [m/s2]
v̇y Aceleración lineal en el Eje Y [m/s2]
v̇z Aceleración lineal en el Eje Z [m/s2]

R = [Rx, Ry, Rz]
T Vector velocidad angular en la base {o}

Rx Velocidad angular en el Eje X [rad/s]
Ry Velocidad angular en el Eje Y [rad/s]
Rz Velocidad angular en el Eje Z [rad/s]

Ṙ = [Ṙx, Ṙy, Ṙz]
T Vector aceleración angular en la base {o}

Ṙx Velocidad angular en el Eje X [rad/s2]

Ṙy Velocidad angular en el Eje Y [rad/s2]

Ṙz Velocidad angular en el Eje Z [rad/s2]
J Tensor de inercia del cuadricóptero
Ixx Momento de inercia en torno al Eje X [kg ·m2]
Iyy Momento de inercia en torno al Eje Y [kg ·m2]
Izz Momento de inercia en torno al Eje Z [kg ·m2]

τ = [τx, τy, τz]
T Vector de pares

τx Par en torno al Eje X [N ·m]
τy Par en torno al Eje Y [N ·m]
τz Par en torno al Eje Z [N ·m]
T Empuje [N]
g Gravedad [m/s2]

Ω = [Ω1,Ω2,Ω3,Ω4]
T Vector velocidad de giro de los rotores

Ωs = [Ω2
1,Ω

2
2,Ω

2
3,Ω

2
4]
T Vector velocidad de giro de los rotores al cuadrado

Ω1 Velocidad de giro del rotor 1 [rad/s]
Ω2 Velocidad de giro del rotor 2 [rad/s]
Ω3 Velocidad de giro del rotor 3 [rad/s]
Ω4 Velocidad de giro del rotor 4 [rad/s]

Ω̇1 Derivada velocidad de giro del rotor 1 [rad/s2]

Ω̇1 Derivada velocidad de giro del rotor 2 [rad/s2]

Ω̇1 Derivada velocidad de giro del rotor 3 [rad/s2]

Ω̇1 Derivada velocidad de giro del rotor 4 [rad/s2]
Wg Término giroscópico [rad/s]
b Constante de empuje de los rotores [N·s2/rad2]
F1 Fuerza del rotor 1 [N]
F2 Fuerza del rotor 2 [N]
F3 Fuerza del rotor 3 [N]
F4 Fuerza del rotor 4 [N]
d Constante de arrastre de los rotores [N·m·s2/rad2]
M1 Momento inducido por el rotor 1 [N ·m]
M2 Momento inducido por el rotor 2 [N ·m]
M3 Momento inducido por el rotor 3 [N ·m]
M4 Momento inducido por el rotor 4 [N ·m]



iii

m0 Masa total del cuadricóptero [kg]
m Masa de cada uno de los rotores [kg]
M Masa del cuerpo del cuadricóptero [kg]
r Radio del cuerpo del cuadricóptero [m]
lp Diámetro del rotor [m]
l Longitud del brazo del cuadricóptero [m]
v1 Tensión de entrada del motor 1 [V]
v2 Tensión de entrada del motor 2 [V]
v3 Tensión de entrada del motor 3 [V]
v4 Tensión de entrada del motor 4 [V]
Km Constante mecánica del motor [N·m/A]
Ke Constante eléctrica del motor [V·m/rad]
R Resistencia [Ω]
FR Fuerza de rozamiento traslacional [kg·m/s2]
AR Fuerza de rozamiento rotacional [N·s/m]
AT Matriz coe�cientes rozamiento traslacional [N·s/m]
AR Matriz coe�cientes rozamiento rotacional [N·s/m]
aT Coe�ciente de fricción traslacional [N·s/m]
aR Coe�ciente de fricción rotacional [N·s/m]
L Inductancia de la bobina [H]
i Corriente [A]
Tm Par generador por el motor [kg ·m]
Tl Par resistente de la carga [kg ·m]
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Capítulo 1

Introducción

El objetivo del presente trabajo es la realización del modelado de un cuadri-
cóptero y su simulación en Modelica, un software de código libre orientado a la
simulación de sistemas complejos cuyo uso es muy interesante, ya que permite la
conexión de todo tipo de subcomponentes. Para ello, en primer lugar y antes de
comenzar con el modelado físico, se realiza una primera fase de aprendizaje con el
software a través de una serie de ejercicios propuestos por el tutor de este traba-
jo, Enrique Teruel. Estos ejercicios sirven de iniciación para comenzar a manejar el
programa y familiarizarse con el uso del mismo.

Una vez �nalizada esta primera fase de aprendizaje comienza la etapa de docu-
mentación, en la que se investiga sobre el tema en cuestión, el modelado de cuadricóp-
teros. Se comienza recabando información sobre los cuadricópteros para comprender
mejor su funcionamiento y los componentes de los que constan. Durante este periodo
se estudia documentación facilitada por el tutor de estudios previos que tratan sobre
una temática similar, para comenzar a orientar el proyecto.

El siguiente paso es comenzar con el modelado físico. Esta parte del trabajo con-
siste en modelar como se comporta un cuadricóptero, básicamente se trata de lograr
un modelo matemático que simule el comportamiento físico de un cuadricóptero. El
objetivo es lograr una serie de ecuaciones que relacionen las entradas del sistema,
es decir, los cuatro motores con los movimientos que realiza el cuadricóptero en el
espacio.

Una vez se tiene diseñado el modelo lo mas ajustado posible a la realidad, se van
a diseñar diferentes controladores para lograr que el cuadricóptero se comporte como

1



2 CAPÍTULO 1. INTRODUCCIÓN

se desee. Por ejemplo, conseguir que se desplace a un punto concreto del espacio o
que gire un determinado ángulo en una dirección.

Se van a diseñar y simular varios controladores diferentes para compararlos y
ver las diferencias existentes entre ellos y si hay alguno que sea más interesante que
los demás y en qué situaciones lo es.

Por último, se obtendrá mediante linealización en torno al punto de trabajo
habitual un modelo físico simpli�cado, mucho más sencillo que el propuesto inicial-
mente, a partir del cual se diseñará un controlador en el Espacio de Estados. Este
control es diseñado a partir del modelo simpli�cado, y se simulará también sobre
el modelo más realista para comprobar si es posible utilizar el modelo sencillo para
diseñar el control e implementarlo en cuadricópteros reales. En caso de que la res-
puesta del sistema fuese buena, se buscarán las limitaciones que tiene el control, en
caso de que las tuviera.



Capítulo 2

Modelado físico

A lo largo del presente capítulo, se va a presentar y explicar el modelo físico
desarrollado para implementar y simular en Modelica durante todo el proyecto. En
primer lugar, y antes de comenzar con el desarrollo del modelo físico, es necesario
de�nir las dos bases en las que se va a trabajar durante todo el proyecto. Todas las
magnitudes físicas que se empleen a lo largo de este documento van a estar siempre
referidas a una de las dos bases.

Ambas están formadas por tres ejes cartesianos. La primera, �ja al suelo, se
denotará de ahora en adelante {g} = {XB, YB, ZB} y la segunda, móvil, situada en
el centro de masas del cuadricóptero y que se mueve de manera solidaria a este, se
denominará {o} = {X, Y, Z}.

Para posicionar la base {o} respecto de {g}, se de�ne el vector x = (x, y, z)T

que indica la posición de la base móvil respecto de la �ja. Una vez posicionada la
base, se de�nen los tres ángulos de Tait-Bryan necesarios para orientar la base móvil
{o} respecto de la base �ja {g}. Estos tres ángulos son φ, que hace referencia al giro
en el eje X, el ángulo θ, que indica el giro en el eje Y y el ángulo ψ que es el giro
en el eje Z. Estos tres ángulos se de�nen de tal manera que son positivos siguiento
el criterio de la regla de la mano derecha. Nótese que estos ángulos también son
habitualmente denominados como φ ≡ roll, θ ≡ pitch y ψ ≡ yaw.

3



4 CAPÍTULO 2. MODELADO FÍSICO

2.1 Cambios de base

Al trabajar en dos bases diferentes, es fundamental de�nir las matrices de cam-
bio de base para poder pasar de una a otra de manera ágil y rápida. Primero se
construye la matriz de cambio con respecto a cada uno de los ejes, es decir, R(X,φ),
R(Y, θ) y R(Z, ψ).

R(X,φ) =

1 0 0
0 cosφ − sinφ
0 sinφ cosφ

 (2.1)

R(Y, θ) =

 cos θ 0 sin θ
0 1 0

− sin θ 0 cos θ

 (2.2)

R(Z, ψ) =

cosψ − sinψ 0
sinψ cosψ 0

0 0 1

 (2.3)

Una vez obtenidas las tres matrices de cambio elementales, construimos la ma-
triz de cambio global R(φ, θ, ψ). Esta matriz se obtiene multiplicando las tres ma-
trices que se acaban de obtener, tal y como se detalla en la ecuación 2.4.

R(φ, θ, ψ) = R(X,φ)R(Y, θ)R(Z, ψ) =cosψ cos θ cosψ sin θ sinφ− sinψ cosφ cosψ sin θ cosφ+ sinψ sinψ
sinφ cos θ sinψ sin θ sinφ+ cosψ cosφ sinψ sin θ cosφ− cosψ sinφ
− sin θ cos θ sinφ cos θ cosφ

 (2.4)

Esta matriz de cambio permite cambiar la velocidad lineal de la base móvil a
la base �ja como se indica en la ecuación 2.5.

ẋ = R(φ, θ, ψ)v (2.5)

Se procede ahora a calcular la matriz de cambio necesaria para cambiar de base
la velocidad angular. En esta ocasión para realizar el cambio usaremos la matriz



2.2. MODELADO DEL MOVIMIENTO LINEAL 5

R−1
A = (φ, θ, ψ). A continuación la ecuación 2.6 [10] indica como calcular dicha matriz,

y en ecuación 2.7 se muestra la relación existente entre la velocidad angular en base
móvil y base �ja.

R−1
A (φ, θ, ψ) =

1 sinφ tan θ cosφ tan θ
0 cosφ − sinφ
0 sinφ/ cos θ cosφ/ cos θ

 (2.6)

Ψ̇ = R−1
A (φ, θ, ψ)R (2.7)

2.2 Modelado del movimiento lineal

Una vez de�nidos y explicados los dos sistemas de coordenadas y las matrices de
cambio, el siguiente paso es la de�nición de las ecuaciones que describen la dinámica
del cuadricóptero. Se comienza de�niendo el modelo dinámico para el movimiento
lineal. La ecuación 2.8 [9] plantea de forma general la contribución de las distintas
fuerzas que se ejercen sobre el sistema en la dinámica del mismo.

v̇ = g

 sin θ
− sinφ cos θ
− cosφ cos θ

− Sv +

 0
0

T/m0

 (2.8)

En la ecuación 2.8, el vector v = (vx, vy, vz)
T expresa la velocidad del cuadri-

cóptero en la base {o} y el vector v̇ = (v̇x, v̇y, v̇z)
T la aceleración del mismo en dicha

base. T es el empuje que siempre va en la dirección positiva del eje Z en la base {o}
y g la aceleración de la gravedad, que lleva la dirección negativa del eje ZB en la
base {g}. Siendo el vector R = (Rx, Ry, Rz)

T la velocidad angular en la base {o}, la
matriz S se de�ne según se indica en la ecuación 2.9 [9]. En la Figura 2.2 se indican
las fuerzas T y g y los pares τx, τy y τz que actúan sobre el sistema. En la �gura 2.3
se muestra como se de�nie la velocidad lineal (v) y angular (R) en la base {o}.
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Figura 2.2: Fuerzas y pares actuando sobre el sistema. [4]

Figura 2.3: Velocidad lineal (v) y angular (R) sobre la base {o}. [4]

S =

 0 −Rz Ry

Rz 0 −Rx

−Ry Rx 0

 (2.9)

Sustituyendo en la ecuación 2.8, se obtiene:

v̇xv̇y
v̇z

 = g

 sinφ
− sinφ cos θ
− cosφ cos θ

−
 0 −Rz Ry

Rz 0 −Rx

−Ry Rx 0

vxvy
vz

+

 0
0

T/m0

 (2.10)
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Y desarrollando la expresión, quedan las siguientes 3 ecuaciones:


v̇x = g sin θ + vyRz − vzRy

v̇y = −g sinφ cos θ + vzRx − vxRz

v̇z = −g cosφ cos θ + vxRy − vyRx + T/m0

(2.11)

Las tres ecuaciones obtenidas en la expresión 2.11 son las que se emplean para
de�nir los movimientos de traslación del cuadricóptero.

2.3 Modelado del movimiento angular

Una vez obtenidas las ecuaciones que de�nen el modelo dinámico del movimien-
to lineal, se van a de�nir ahora las ecuaciones que modelan la dinámica rotacional
del cuadricóptero. Se parte de la ecuación 2.12 [4], en la que la matriz J es la formada
por los momentos de inercia. En este caso, y tal y como se ha de�nido la posición
de los ejes (ver Figura 2.4), tiene la forma que se especi�ca en la ecuación 2.13 y
J−1 su inversa. El vector τ = (τx, τy, τz) representa cada uno de los pares en los ejes
de la base {o}, Izzm es el momento de inercia del rotor y Wg el termino giroscópico
que se de�ne como se muestra en la ecuación 2.14.

Ṙ = J−1

τ − SJR− S
 0

0
IzzmWg

 (2.12)

J =

Ixx 0 0
0 Iyy 0
0 0 Izz

 (2.13)

Wg = −Ω1 + Ω2 − Ω3 + Ω4 (2.14)

Siendo Ixx, Iyy y Izz los momentos de inercia respecto a los ejes X, Y y Z del
sistema local {o} de coordenadas. Para el cálculo de los momentos de inercia, se
utilizan las ecuaciones [4] 2.15 y 2.16.
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Ixx = Iyy =
2Mr2

5
+ 2ml2 (2.15)

Izz =
2Mr2

5
+ 4ml2 (2.16)

Por su parte, Izzm se puede aproximar por medio de la ecuación 2.17 [9].

Izzm =
mpl

2
p

12
(2.17)

Sustituyendo en la ecuación 2.12 se obtiene la ecuación 2.18 y desarrollando, se
deducen las 3 ecuaciones que se indican a continuación (expresión 2.19) y que rigen
el comportamiento dinámico del movimiento rotacional del cuadricóptero.

Ṙx

Ṙy

Ṙz

 =

 1
Ixx

0 0

0 1
Iyy

0

0 0 1
Izz

τxτy
τz

−
 0 −Rz Ry

Rz 0 −Rx

−Ry Rx 0

Ixx 0 0
0 Iyy 0
0 0 Izz

Rx

Ry

Rz

 −

−

 0 −Rz Ry

Rz 0 −Rx

−Ry Rx 0

 0
0

IzzmWg

 (2.18)


IxxṘx = RzRy(Izz − Iyy) + τx −RyIzzmΩ

IyyṘy = RzRx(Ixx − Izz) + τy +RxIzzmΩ

IzzṘz = RyRx(Iyy − Ixx) + τz

(2.19)

2.4 Fuerzas y momentos actuantes

Una vez de�nidas las ecuaciones que rigen el comportamiento dinámico del cua-
dricóptero, se procede a explicar cómo se calculan las fuerzas y momentos generados
por los motores en el cuadricóptero. Estas fuerzas y momentos son claves, ya que
modi�cando los valores de estas a través de las entradas de nuestro sistema, que son
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las tensiones de los cuatro motores, se puede lograr que actúen sobre el cuadricópte-
ro las fuerzas y momentos necesarios para que este se mueva como deseamos. En la
Figura 2.4 se muestra la numeración y el sentido de giro de los motores del modelo
que se va a simular además de la posición de los ejes de la base local de coordenadas.

Figura 2.4: Geometría del cuadricóptero. [4]

A continuación se calcula la fuerza ejercida por cada uno de los motores como
se indica en la ecuación 2.20 [7], siendo b = 9,9865 · 10−6N · s2/rad2 la constante de
empuje. Estas fuerzas Fi siempre van en la dirección positiva del eje Z.

Fi = bΩ2
i (2.20)


F1 = bΩ2

1

F2 = bΩ2
2

F3 = bΩ2
3

F4 = bΩ2
4

(2.21)

Por otra parte, cada uno de los motores produce un momento inducido que se
calcula según la ecuación 2.22, siendo d = 1,5978 · 10−7N ·m · s2/rad2 la constante
de arrastre de cada uno de los rotores.
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Mi = dΩ2
i (2.22)


M1 = dΩ2

1

M2 = dΩ2
2

M3 = dΩ2
3

M4 = dΩ2
4

(2.23)

En la expresión 2.24 [2] se muestran las expresiones utilizadas para calcular el
empuje T y los pares en cada uno de los ejes, τx, τy y τz en función de las fuerzas y
momentos obtenidos en las ecuaciones 2.21 y 2.23.


τx = l(F1 − F3)

τy = l(F4 − F2)

τz = −M1 +M2 −M3 +M4

T = F1 + F2 + F3 + F4

(2.24)

Los pares en los ejes X e Y se consiguen haciendo girar los motores situados
sobre el eje contrario a diferentes velocidades, esta diferencia de velocidad provoca
una diferencia de fuerzas de empuje que a su vez es la que provoca que se genere el
par. Este par generado es igual a la diferencia de fuerzas multiplicada por la distancia
de aplicación de esta fuerza, que en este caso es la longitud del brazo, l. El empuje
se calcula realizando el sumatorio de las fuerzas provocadas por cada uno de los
cuatro motores. Por último, el par en el eje Z, al estar de�nido como positivo según
la regla de la mano derecha, se calcula sumando los momentos inducidos que van
en la misma dirección (motores 3 y 4) y restando los que van en dirección contraria
(motores 1 y 2). En la �gura 2.4 se muestra la dirección de giro de los motores, lo
que provoca que el momento inducido tenga la dirección contraria.

Se procede ahora a construir la matriz M, que relaciona el vector de velocidades
angulares de los rotores al cuadrado, Ωs = [Ω2

1,Ω
2
2,Ω

2
3,Ω

2
4]
T con los pares en cada

uno de los ejes y el empuje. Con esta matriz, conocidas las velocidades de giro de
cada uno de los rotores, se obtienen directamente las fuerzas y pares que actúan
sobre el cuadricóptero, como se muestra en la ecuación 2.25.
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
T
τx
τy
τz

 = MΩs (2.25)

Con las ecuaciones explicadas anteriormente podemos construir la matriz M,
quedando como se muestra en la ecuación 2.26.

M =


b b b b
bl 0 −bl o
0 −bl 0 bl
−d d −d d

 (2.26)

Teniendo b y d que tienen los valores anteriormente comentados, y la longitud
del brazo, que para el cuadricóptero que se simula tiene un valor de l = 0,211 m, la
matriz M queda como se muestra en la expresión 2.27.

M =


9,9865 · 10−6 9,9865 · 10−6 9,9865 · 10−6 9,9865 · 10−6

2,1072 · 10−6 0 −2,1072 · 10−6 0
0 −2,1072 · 10−6 0 2,1072 · 10−6

−1,5978 · 10−7 1,5978 · 10−7 −1,5978 · 10−7 1,5978 · 10−7

 (2.27)

2.5 Dinámica del motor

A lo largo de esta sección se va a proceder a modelar los motores que lleva
montados el cuadricóptero que se va a simular. Lo habitual en cuadricópteros es que
se empleen motores eléctricos de corriente continua sin escobillas, también llamados
motores DC brushless. Estos motores son ideales para su aplicación en drones, ya que
proporcionan un buen par con muy poca fricción. El modo de modelar la dinámica
para un motor DC brushless es el mismo que si se tratase de un motor de corriente
continua convencional.

Para comenzar con el modelado del motor, se muestra en la Figura 2.5 un
esquema del circuito eléctrico y mecánico equivalente.
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Figura 2.5: Esquema motor DC brushless. [3]

Aplicando la ley de Kirchho� se obtiene la ecuación 2.28. En la que R es la
resistencia del motor, L la inductancia, i la corriente, v la tensión aplicada y el
término Km · Ω hace referencia a la fuerza contraelectromotriz generada.

v = R · i+ L · di
dt

+Km · Ω (2.28)

El valor de la inductancia suele ser relativamente pequeño, y su efecto se suele
despreciar [8], quedando la expresión anterior como se muestra en la ecuación 2.29.

v = R · i+Km · Ω (2.29)

Despejando el valor de la corriente i se obtiene la siguiente expresión que después
será de utilidad.

i =
v −KmΩ

R
(2.30)

El planteamiento de la ecuación mecánica que modela el motor según la Figura
2.5 es el mostrado en la ecuación 2.31, en la que Tm es el par producido por el motor
y es igual a la constante mecánica del motor multiplicada por la corriente Kei y Tl es
el par resistente provocado por la carga y que se puede aproximar con la expresión
dΩ2, que es la misma que la ecuación 2.22.
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IzzmΩ̇ = Tm − Tl (2.31)

IzzmΩ̇ = Kei−M (2.32)

Sustituyendo el valor de i obtenido en la ecuación 2.30 e introduciendolo en la
ecuación 2.32 y generalizando para cada uno de los cuatro motores, se obtiene la
ecuación 2.33.

IzzmΩ̇i +
KmKe

R
Ωi =

Km

R
vi −Mi (2.33)

Particularizando para cada uno de los cuatro motores, se obtienen las cuatro
ecuaciones que a continuación se muestran.



IzzmΩ̇1 +
KmKe

R
Ω1 =

Km

R
v1 −M1

IzzmΩ̇2 +
KmKe

R
Ω2 =

Km

R
v2 −M2

IzzmΩ̇3 +
KmKe

R
Ω3 =

Km

R
v3 −M3

IzzmΩ̇4 +
KmKe

R
Ω4 =

Km

R
v4 −M4

(2.34)

2.6 Implementación en Modelica

Una vez se ha presentado y explicado todo el modelo físico que se va a utilizar
en el presente trabajo, el siguiente paso es introducir el modelo en el software en el
que se van a hacer las simulaciones, Modelica.

Para ello, y antes de comenzar, es necesario dar valores a todas las constantes
que se han numerado a lo largo del capítulo. Estos valores se muestran en la tabla
2.1.
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Variable Valor Unidades

Ixx 0.0128 kg ·m2

Iyy 0.0128 kg ·m2

Izz 0.0239 kg ·m2

Izzm 4.3011 ·10−5 kg ·m2

R 0.1107 Ω
Km 0.01 N·m/A
Ke 0.01 V·s/rad
m0 1.32 kg
m 0.125 kg
M 0.82 kg
r 0.07 m
lp 0.065 m
g 9.80665 m/s2

Cuadro 2.1: Valores de las variables para la simulación. [4]

Para simpli�car la implementación en Modelica, se va a dividir el modelo físico
en varios bloques, conectados entre sí a través de sus entradas y salidas. De este mo-
do, el funcionamiento del sistema es exactamente el mismo que si se agregasen todas
las ecuaciones en el mismo bloque, pero se simpli�ca notablemente la programación
del bloque y además, se facilita la detección de posibles errores.

El bloque �nal obtenido, que incluye todas las ecuaciones desarrolladas a lo largo
del capítulo tiene como entradas el vector de tensiones, V = [v1, v2, v3, v4]

T formado
por las tensiones a las que se alimentan los cuatro motores y tiene como salidas
los vectores posición, X = [x, y, z]T , orientación, Ψ = [φ, θ, ψ]T y sus respectivas
derivadas Ẋ = [ẋ, ẏ, ż]T y Ψ̇ = [φ̇, θ̇, ψ̇]T . Además, también se de�ne como salida la
velocidad de giro de los motores, Ω = [Ω1,Ω2,Ω3,Ω4]

T . Este bloque se llama MAV,
son las siglas de Multirotor Aerial Vehicle.

El primer bloque que se diseña, incluye las ecuaciones que modelan el movi-
miento del cuadricóptero. Posee como entradas el vector de pares τ = [τx, τy, τz]

T

y el empuje T . A este bloque se le conecta otro que incluye las ecuaciones de las
que se deducen los valores de los pares y el empuje y posee como entrada el vector
de velocidades de giro de los motores Ω = [Ω1,Ω2,Ω3,Ω4]

T . Por último, se añade
un último bloque en el que se incluye la dinámica de los motores (idénticos), que
tiene como entradas el vector tensiones V = [v1, v2, v3, v4]

T y como salidas el vector
velocidad de giro de los motores.

Una vez se ha introducido todo el modelo en Modelica, se da paso al siguiente
capítulo, en el que se detalla el proceso que se va a seguir para llevar a cabo la
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veri�cación del modelo, es decir, que el modelo es válido, se comporta como se
espera y no hay ningún error en la programación del mismo en el software.
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Capítulo 3

Veri�cacion del modelo físico

Para veri�car el modelo descrito en el capítulo anterior se van a realizar diferen-
tes simulaciones con valores concretos para las entradas, las tensiones de los cuatro
rotores, de tal manera que deberían de provocar que el cuadricóptero reaccionase de
un determinado modo. Se van a ensayar individualmente los giros en torno a los tres
ejes y los desplazamientos en los mismos. Si de todas estas pruebas se obtienen los
resultados esperados, se puede concluir que el modelo físico es correcto y está bien
implementado en Modelica.

Todas los ensayos que se hacen a lo largo de este capítulo son con todas las
variables inicializacas a cero excepto la velocidad de giro de los motores, que co-
mienzan girando a Ω = 569 rad/s, velocidadpara la que el empuje generado por los
rotores, se iguala a la acción de la gravedad. Esto supone que el cuadricóptero se
mantiene en su posición inicial y ambos sistemas de coordenadas, el sistema �jo al
suelo {g} y el solidario al cuadricóptero {o} son coincidentes. Antes de comenzar con
las simulaciones, en la Figura 3.1 se muestra cómo deben ser accionados los motores
del cuadricóptero para que haga los movimientos que se desean (desplazamientos y
rotaciones en cada uno de los tres ejes). Resumiendo lo que en la imagen se expli-
ca, para realizar movimientos en el eje Z, hay que accionar los cuatro motores a la
misma velocidad, si se quiere ascender, esta deberá ser superior a 569 rad/s para
ascender, e inferior para descender. Para hacer rotaciones sobre el eje Z, se giran
a menor velocidad dos de los motores. Por último, para desplazarse en X e Y, se
accionan 2 motores a la misma velocidad, uno a una velocidad superior y el otro
a una velocidad inferior, de manera que el cuadricóptero se inclina y avanza en la
dirección del motor que gira más lento.

17
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Figura 3.1: Movimientos del cuadricóptero. [1]

3.1 Traslación en el eje Z

En primer lugar se accionan los cuatro motores a la vez con una tensión de
6.27 V, que supone una velocidad de giro Ω = 569,26 rad/s. Para esta velocidad de
giro de los motores, y encontrándose el dron en posición inicial de reposo, la fuerza
de empuje debería igualarse a la fuerza de la gravedad y el cuadricóptero mantenerse
en el aire, sin ascender ni descender en el eje Z, como se comprueba que sucede.

A continuación, en la Figuras 3.3 se muestra como asciende el cuadricóptero en
el eje X cuando se alimentan los motores a 6.5 V.

Figura 3.3: Desplazamiento en el eje Z.
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3.2 Rotación sobre el eje Z

En la siguiente simulación que se va a acometer se pretende veri�car que el
cuadricóptero gira sobre su propio eje Z cuando se accionan en cruz dos motores a
una velocidad y otros dos a otra.

Los motores 1 y 3 se accionan durante los primeros 5 segundos a 5.98 V y los
motores 2 y 4 a 6.54 V, estas tensiones son elegidas porque su promedio es 6.27 y de
esta manera, el cuadricóptero sigue estacionario en Z. Pasados los 5 segundos, los
cuatro motores se accionan a 6.27 V. Esta diferencia de tensión entre los motores
durante los primeros 5 segundos, genera un par en el eje Z, τz, que provoca que el
cuadricóptero gire.

Figura 3.5: Rotación en el eje Z.

Analizando el resultado obtenido que se muestra en la Figura 3.5, se observa
que una vez pasados los 5 segundos, el cuadricóptero sigue girando puesto que se
observa que el giro en el eje Z aumenta de forma lineal. Esto signi�ca que una vez
ha desaparecido el par τz, el cuadricóptero sigue girando. Esto se debe a que en el
modelo físico planteado anteriormente no se ha introducido el efecto del rozamiento
del aire en la rotación y traslación del dron.

Por lo tanto, se va a proceder a modi�car los modelos dinámicos propuestos
durante el capítulo 2 y se van a tener en cuenta los efectos de rozamiento con el
aire, y se analizará hasta que punto es importante esta fuerza en el movimiento del
cuadricóptero. Las ecuaciones que se van a modi�car son las ecuaciones 2.8 y 2.12,
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que describen los movimientos de traslación y rotación, a las que se les va a añadir
el efecto de fricción con el aire.

Asumiendo que las velocidades a las que se va a desplazar el dron son bajas, se
puede aproximar la fuerza de fricción del aire como una constante por la velocidad
lineal en cada uno de los tres ejes del sistema de referencia solidario al dron. En la
ecuación 3.1 se muestra la expresión con la que se calcula esta fuerza FR. Siendo
aT = 0,04 N · s/m la constante de fricción traslacional. [6]

FR = −ATv = −

aT 0 0
0 aT 0
0 0 aT

vxvy
vz

 (3.1)

Añadiendo esta fuerza a la ecuación del modelo dinámico de traslación calculada
en el capítulo anterior, se obtiene la ecuación 3.2 y desarrollando las tres ecuaciones
siguientes.

v̇ = g

 sin θ
− sinφ cos θ
− cosφ cos θ

− Sv +

 0
0
T

m0

+
1

m0

FR (3.2)


v̇x = g sin θ + vyRz − vzRy −

aTvx
m0

v̇y = −g sinφ cos θ + vxRz − vzRx −
aTvy
m0

v̇z = −g cosφ cos θ + vxRy − vyRx +
T

m0

− aTvz
m0

(3.3)

El cálculo del efecto del rozamiento del aire a la rotación del cuadricóptero se
realiza por medio de la ecuación 3.4, que tiene la misma forma que la fuerza de
rozamiento traslacional. Siendo aR = 6,4 · 10−4 N · s/m la constante de fricción
rotacional. [6]

MR = −ARR =

aR 0 0
0 aR 0
0 0 aR

Rx

Ry

Rz

 (3.4)
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Agregando esta contribución a la ecuación del modelo dinámico de rotación
calculada en el capítulo anterior, se obtiene la ecuación 3.5 y desarrollando, las tres
ecuaciones que se muestran seguidamente.

Ṙ = J−1

τ − SJR− S
 0

0
IzzmWg

+
1

m0

MR (3.5)


IxxṘx = RzRy(Izz − Iyy) + τx −RyIzzmΩ− aRRx

m0

IyyṘy = RzRx(Ixx − Izz) + τy +RxIzzmΩ− aRRy

m0

IzzṘz = RyRx(Iyy − Ixx) + τz −
aRRz

m0

(3.6)

Una vez agregadas estas contribuciones al modelo en Modelica, se procede a
repetir la simulación para comprobar la rotación sobre el eje Z, cuyo resultado se
muestra en la Figura 3.6. Se comprueba que el rozamiento con el aire prácticamente
no in�uye en la rotación del cuadricóptero. Esto se debe a que la contribución del
momento MR en la ecuación 3.5 es muy pequeño.

Figura 3.6: Rotación en el eje Z con el efecto del rozamiento MR.

A pesar de que el momentoMR es muy pequeño, si se ha modelado correctamen-
te, en algún momento debería apreciarse que la velocidad se ve reducida. Para ello,
en la Figura 3.7 se simulan 200 s. Como era de esperar se aprecia que la velocidad
se reduce ligeramente.
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Figura 3.7: Rotación en el eje Z con el efecto del rozamiento MR.

Por lo tanto, para frenar el movimiento iniciado en un tiempo razonable, será
necesario aplicar un par negativo en torno a ese eje. Esto se muestra en la Figura
3.7, en la que tras llevar un tiempo girando el cuadricóptero a velocidad constante,
se alimentan los motores para generar el par inverso, lo que logra reducir a cero la
velocidad de rotación en torno al eje Z, y el ángulo de giro ψ permanece constante.

Figura 3.7: Rotación en el eje Z con freno.

3.3 Traslación en el eje X

Antes de comenzar con la veri�cación de la traslación sobre el eje X es necesario
explicar como se produce el movimiento en este eje. Para que se produzca desplaza-
miento en X, es necesario que se produzca un par en torno al eje τy, este par provoca
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que el cuadricóptero se incline y avance en la dirección del eje X, por lo tanto en
esta sección, se va a veri�car ademas de la traslación en el eje X, el giro en el eje Y.

Para ello, al ser necesaria la actuación de un par τy, los motores 2 y 4 deben
girar a velocidades diferentes, en este caso se �ja el motor 2 a 6 V y el motor 4 a
6.5 V, de este modo, se genera un par positivo τy que provoca que el cuadricóptero
se desplace en el sentido positivo del eje X. En la Figura 3.8 se comprueba que los
resultados son los esperados y se gra�ca la posición en el eje X, la velocidad en el
mismo y el ángulo patch, además de las tensiones en los cuatro motores.

Figura 3.8: Traslación Eje X, rotación Eje Y.

3.4 Traslación en el eje Y

Por último y para concluir este capítulo, se va a comprobar que la traslación
en el eje Y es correcta. Siguiendo el mismo razonamiento que se ha explicado antes,
a la vez que se valida la traslación en el eje Y, se valida también el giro roll.

En esta ocasión se necesita que actúe sobre el cuadricóptero un par τx para
lo cual, se accionan los motores 2 y 4 a 6.27 V, el motor 1 a 6 V y el 3 a 6.5 V,
esto provoca un par τx negativo, que dada la disposición de los ejes, hace que el
cuadricóptero avance en la dirección positiva del eje Y (ver Figura 3.10).
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Figura 3.10: Traslación Eje Y, rotación Eje X.

Finalizadas todas las veri�caciones, y habiendo sido el resultado de todas ellas
satisfactorio, se concluye que el modelo físico diseñado durante el primer capítulo, al
que se le añade posteriormente el efecto de la fricción con el aire a pesar de que no
tenga mucha in�uencia, es correcto, y su programación en Modelica ha sido exitosa.
Por lo tanto se da por concluido este capítulo y se va a proceder a diseñar el control
del cuadricóptero.



Capítulo 4

Diseño del control

A lo largo de este capítulo se pretende diseñar y probar diferentes controles
para comprobar cuáles son capaces de controlar el cuadricóptero como se desea.

En primer lugar se diseña un controlador de bajo nivel que actúa sobre cada
uno de los cuatro motores. Este control estará siempre presente y se encarga de que
cada uno de los motores giren a la velocidad requerida y alcancen la misma en un
tiempo óptimo y con una sobreoscilación aceptable. Para esta tarea se implementará
un controlador PI.

Posteriormente, se diseña un primer controlador para regular la posición en el
eje Z y los ángulos de giro del cuadricóptero. Seguidamente se simulará un control
de posición que permite mover el cuadricóptero a la posición del espacio x, y, z que
se desee con la orientación ψ que se requiera.

Tras probar estos dos controles, se realizará una aproximación del modelo físico
desarrollado durante el capítulo 2, llevada a cabo a través de la linealización del
sistema en torno a un punto de operación.

Por último se calcula el control en espacio de estados apoyándose en el modelo
simpli�cado obtenido de la linealización del sistema.

El controlador calculado utilizando el espacio de estados será simulado en el sis-
tema linealizado, posteriormente se hará lo propio en el sistema del modelo detallado
(más realista) desarrollado a lo largo de los capítulos anteriores y se compararán los
resultados.

25
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4.1 Control de los motores

En esta sección se va a presentar el controlador PI diseñado para el control de
velocidad de cada uno de los cuatro motores, en la Figura 4.1 se muestra el esquema
de control.

Figura 4.1: Esquema de control de los motores.

Las entradas del sistema son las velocidades de giro de cada uno de los cuatro
motores, vendrán dadas por los diferentes controles de nivel superior que se imple-
mentarán posteriormente y las salidas van conectadas a la dinámica del sistema. El
bloque intermedio es el controlador PI cuya composición se indica en la Figura 4.2.
Este controlador lleva incluido un saturador, para que la acción sobre los motores
nunca sea superior a 11.1 V ni inferior a 0 V. Al llevar el controlador incluido un
integrador, la colocación de un saturador puede provocar que se produzca el inde-
seable efecto del wind-up, que ocurre cuando la salida se encuentra saturada pero
el integrador continua integrando y se acumula el error. Por ello, para evitar que
se produzca este fenómeno, se coloca un anti wind-up. Siguiendo procedimientos de
diseño clásico de controladores, se seleccionan los valores para el controlador PI, que
resultan ser K=63 y Ti=0.07.

Figura 4.2: Controlador PI con anti Wind Up.
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4.2 Control PD y PID

Una vez implementado el control de los motores en el modelo, se procede al
diseño de los diferentes controladores que se van a simular. En primer lugar se va a
diseñar un controlador PD. En este primer control, se pretenden controlar los tres
ángulos de orientación del cuadricóptero y la posición del mismo en el eje Z. Para
ello, el controlador calculará la fuerza de empuje T y los diferentes pares, τx, τy y
τz necesarios para colocar el cuadricóptero en la posición del eje Z y orientación
deseada. Las entradas del controlador serán los errores de posición y orientación de
cada uno de los ángulos, calculados como las referencias menos los valores actuales
de las variables, medidas a la salida del cuadricóptero y realimentadas.

En la expresión 4.1 [5], se muestran las ecuaciones con las que se calcula el empuje
y los pares, también se incluyen en el controlador las ecuaciones necesarias para el
cálculo del vector Ωs = [Ω2

1,Ω
2
2,Ω

2
3,Ω

2
4]
T , que se conecta directamente al controlador

del motor y este a su vez al modelo físico del cuadricóptero. La matriz M , calculada
en el capítulo 2 (ver ecuación 2.27) relaciona el vector [T, τx, τy, τz]

T con el vector
[Ωs], por lo tanto la inversa de esta matriz, será incluida en el controlador, para
obtener el vector [Ωs] a partir de [T, τx, τy, τz]

T . Las salidas del cuadricóptero que
se van a realimentar en esta ocasión son los ángulos φ, θ, ψ, la posición en z y sus
respectivas derivadas, φ̇, θ̇, ψ̇ y ż.


T = (g +KTP (zR − z) +KTD(żR − ż)) m0

cos(φ)sin(θ)

τx = (KxP (φR − φ) +KxD(φ̇R − φ̇))Ixx

τy = (KyP (θR − θ) +KyD(θ̇R − θ̇))Iyy
τz = (KzP (ψR − ψ) +KzD(ψ̇R − ψ̇))Izz

(4.1)

Los valores seleccionados para las constantes se muestran en la tabla 4.1.

Constante Valor Constante Valor

KTP 1.5 KTD 2.5
KxP 9 KxD 3.5
KyP 9 KyD 3.5
KzP 9 KzD 3.5

Cuadro 4.1: Valores de las constantes del controlador PD.
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Se añade este controlador al modelo del que ya disponemos en modelica, y se
realizan diferentes simulaciones. En primer lugar, en la Figura 4.3, se muestra la
respuesta de la posición en el eje Z ante una referencia de 10 m en dicho eje.

Figura 4.3: Control PD, simulación posición eje Z.

Como se observa en la imagen anterior, se ha incluido en la grá�ca el valor
del empuje T, para comprobar cómo varía a lo largo de la simulación. El sistema
llega a la posición deseada en menos de 5 s, lo que es una respuesta relativamente
rápida. Una vez se ha estabilizado la posición, se incluye una perturbación en forma
de de empuje T (modelando por ejemplo un aumento del viento en la dirección z
del cuadricóptero). Se visualiza como aumenta la fuerza de empuje para "frenar"
la perturbación, pero como se comprueba, no existe rechazo de perturbaciones, ya
que pasado un tiempo, el cuadricóptero no vuelve a la posición de referencia. Para
solucionar esto, se le incluirá posteriormente una componente integral al controlador,
de tal manera que pasará a ser un controlador PID y rechazará perturbaciones.

A continuación, en la Figura 4.4 se muestra la siguiente simulación, en la que se
les da referencias a los tres ángulos. Cabe destacar que el transitorio de los ángulos
φ y θ es igual, y el de ψ diferente, esto se debe a que físicamente el eje X del
cuadricóptero es igual al Y, y los dos anteriores son distintos al eje Z. Se observa
que en esta ocasión el tiempo de respuesta es inferior a dos segundos y la SO de
aproximadamente un diez por ciento y como ocurría anteriormente, tampoco rechaza
las perturbaciones.
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Figura 4.4: Control PD, simulación ángulos ψ, θ y ψ.

Tras veri�car el funcionamiento del primer control simulado, y comprobado que
su funcionamiento es bueno, pero que no rechaza las perturbaciones, se incluye en
las ecuaciones 4.1 un término que consta de una constante por la integral del error,
quedando el anterior controlador como se muestra a continuación.


T = (g +KTP (zR − z) +KTD(żR − ż) +KTI

∫
(zR − z)) m0

cos(φ)sin(θ)

τx = (KxP (φR − φ) +KxD(φ̇R − φ̇) +KxI

∫
(φR − φ))Ixx

τy = (KyP (θR − θ) +KyD(θ̇R − θ̇) +KyI

∫
(θR − θ))Iyy

τz = (KzP (ψR − ψ) +KzD(ψ̇R − ψ̇) +KzI

∫
(ψR − ψ))Izz

(4.2)

Tras varias simulaciones, se escogen los valores indicados en la Tabla 4.2 para
las constantes. Estos valores han sido elegidos para intentar optimizar la respuesta
del sistema, procurando que el tiempo de respuesta y el tiempo de rechazo de pertur-
baciones sean lo mas pequeños posibles, sin que esto provoque una sobreoscilación
excesiva.

Modi�cando el controlador para incluirle la acción proporcional a la integral,
implementándolo en Modelica y simulando, se muestran las Figuras 4.5 y 4.6. Se
comprueba que las perturbaciones que antes no eran rechazadas, ahora si lo son. El
tiempo de respuesta se ha visto aumentado y ahora tarda más en llegar al estado
estacionario. Se aprecia claramente como las acciones T , τx, τy y τz son menores que
en las anteriores simulaciones, motivo por el cual el tiempo de respuesta es mayor.
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Constante Valor Constante Valor Constante Valor

KTP 4.5 KTD 3.75 KTI 1
KxP 6 KxD 3.5 KxI 1.5
KyP 6 KyD 3.5 KyI 1.5
KzP 6 KzD 3.5 KzI 1.5

Cuadro 4.2: Valores de las constantes del controlador PD.

Figura 4.5: Control PID, simulación posición eje Z.

Figura 4.6: Control PID, simulación ángulos ψ, θ y ψ.

Por último, en la Figura 4.7 de nuevo el controlador sobre el modelo detallado,
con el objetivo de comprobar que el funcionamiento es correcto cuando se introducen
las cuatro referencias a la vez. Los valores para las referencias en esta ocasión son
zR = 1, φR = 0,1, θR = 0,15 y ψR = 0,1.
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Figura 4.7: Control PID, simulación modelo detallado.

Con el controlador PID diseñado, se pueden controlar correctamente las varia-
bles para las que ha sido ideado, pero con este control no se puede dar referencia
a la posición del cuadricóptero en el plano XY. Para ello, se va a emplear otro
controlador que sí que es capaz de controlar la posición en X e Y.

4.3 Control de posición

Tras diseñar y simular el controlador PID anterior que permite controlar en
que posición del eje Z y con que orientación se encuentra, se va a probar otro
control que permite controlar a que punto del espacio se dirige el cuadricóptero y
en que orientación ψ. Es decir, en esta ocasión, las referencias que le introduciremos
al modelo serán xR, yR, zR y ψR. Con las referencias de la posición a la que se
tiene que dirigir, el controlador calculará los ángulos φc y θc necesarios para que el
cuadricótpero se desplace hacia la posición deseada.

La idea de este controlador es la misma que el anterior, es decir, el controlador
dará como salidas las velocidades de giro de cada uno de los motores. Pero en esta
ocasión, los ángulos φc y θc en lugar de ser entradas de referencia, se calculan dentro
del propio controlador para desplazar el cuadricóptero al punto deseado que se le ha
indicado a través de las referencias.

Para ello, se comienza de�niendo un controlador intermedio, considerando las
desviaciones de la posición, velocidad y aceleración del cuadricóptero. Estas ecua-
ciones se muestran en la expresión 4.3 [5].
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
dx = KxP (xR − x) +KxD(ẋR − ẋ) +KxDD(ẍR − ẍ)

dy = KyP (yR − y) +KyD(ẏR − ẏ) +KyDD(ÿR − ÿ)

dz = KzP (zR − z) +KzD(żR − ż) +KzDD(z̈R − z̈)

(4.3)

Con las variables de las ecuaciones 4.3, se calculan φc, θc y Tc, que son los
ángulos y empuje necesarios para llevar el cuadricóptero al punto deseado. El modo
de cálculo de los mismos se indica en las ecuaciones [12] 4.4, 4.5 y 4.6. Siendo s(α) el
seno del ángulo y c(α) el coseno.

φc = arcsin

(
dxsin(ψ)− dycos(ψ)

d2x + d2y + (dz + g)2

)
(4.4)

θc = arctan

(
dxcos(ψ) + dysin(ψ)

dz + g

)
(4.5)

T = m0(dx(s(θ)c(ψ)c(φ) + s(ψ)s(φ)) +dy(s(θ)s(ψ)c(φ)− c(ψ)s(φ) + (dz + g)c(θ)c(φ)
(4.6)

Con los ángulos φc y θc que se acaba de indicar como se calculan, y el ángulo
de referencia ψR, se calcula con un PD los pares que se deben realizar sobre el
cuadricóptero para que se produzca el giro necesario para llevarlo a la posición de
referencia. La forma de cálculo de estos pares, τx, τy y τz se indica en la ecuación
4.7 [5] y es similar al controlador diseñado en la sección anterior.


τx = (KxP (φc − φ) +KxD(φ̇c − φ̇c))Ixx
τy = (KyP (θc − θc) +KyD(θ̇cθ̇c))Iyy

τz = (KzP (ψR − ψ) +KzD(ψ̇R − ψ̇))Izz

(4.7)

Además de todas estas ecuaciones, el controlador, igual que en el caso anterior,
también incluye las ecuaciones necesarias para transformar T , τx, τy y τz al vector
Ωs. Conocidas ya las velocidades de giro de cada motor, se conectan al control de
velocidad de los motores y la salida de este bloque se conecta a la dinámica del
sistema. De este último bloque se extraen las salidas necesarias para realimentar el
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sistema y que funcione correctamente. En este caso se trata de las posiciones x, y,
z y el ángulo ψ.

Cabe mencionar que el controlador también necesita las derivadas y segundas
derivadas de los errores para calcular las acciones. Estas se calculan derivando los
errores de cada una de las variables realimentadas. En la Tabla 4.3 se indican los
valores de todas las constantes de las ecuaciones 4.3, y en la Tabla 4.4 las corres-
pondientes a las ecuaciones 4.7.

Constante Valor Constante Valor Constante Valor

KxP 6 KxD 10 KxDD 6.5
KyP 6 KyD 10 KyDD 6.5
KzP 6 KzD 10 KzDD 6.5

Cuadro 4.3: Valores de las constantes del controlador de posición.

Constante Valor Constante Valor

KφP 3 KφD 0.75
KθP 3 KθD 0.75
KψP 2 KψD 2

Cuadro 4.4: Valores de las constantes del controlador de posición.

Una vez se ha introducido en Modelica el controlador, se procede a continuar
con las simulaciones. Se van a simular por separado las cuatro referencias que se
pueden dar al sistema y posteriormente se simularan todas juntas.

En primer lugar, se incluye una referencia de 5 m en el eje X, el resultado de
esta simulación se muestra en la Figura 4.9. Se comprueba que llega al valor de la
referencia con una pequeña sobreoscilación, pero el tiempo de respuesta es bastante
bueno. También se han gra�cado el ángulo θ (es necesario que el cuadricóptero
gire en torno al eje Y para que se pueda desplazar en dirección x) y la velocidad
de desplazamiento en el eje x. En las Figuras 4.10, 4.11 y 4.12 se han realizado
las mismas simulaciones pero con la referencia en las diferentes variables que se
controlan. En todos los casos la respuesta es muy similar, obteniendose tiempos de
respuesta buenos y sobreoscilaciones muy pequeñas. En la Figura 4.10 el ángulo φ
es negativo, a diferencia del resto de simulaciones, esto se debe a la forma en la que
estan de�nidos los ejes y los giros. Para que el cuadricóptero avance en el sentido
positivo del eje Y, debe girar el sentido negativo en torno al eje X. Mención especial
requiere la simulación de la Figura 4.12, cuyo comportamiento es algo diferente,
debido a que la dinámica de giro en torno a este eje es diferente a los otros dos. El
transitorio es diferente, pero los resultados siguen siendo muy buenos.
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Figura 4.9: Control de posición, referencia en x.

Figura 4.10: Control de posición, referencia en y.

Figura 4.11: Control de posición, referencia en z.
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Figura 4.12: Control de posición, referencia en ψ.

Tras comprobar que el cuadricóptero se comporta bien con cada una de las
referencias de forma individual, se va a simular ahora con valores distintos de cero
para todas las referencias a la vez. El resultado de la mencionada simulación se
muestra en la Figura 4.13, se comprueba que el control sigue funcionando igual y es
capaz de llevar todas las variables controladas hasta las posiciones requeridas.

Figura 4.13: Control de posición sobre el modelo detallado.

4.4 Linealización modelo físico

Se parte de las ecuaciones 3.3 y 3.6 y de las ecuaciones de cambio de bases
2.5 y 2.7. Estas ecuaciones describen los movimientos de traslación y rotación del
cuadricóptero.
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El vector de estados se de�ne como x(t) = [φ, φ̇, θ, θ̇, ψ, ψ̇, x, ẋ, y, ẏ, z, ż]T y el
vector de entradas es u(t) = [T − gm0, τx, τy, τz]

T . El punto en torno al cual se va
a linealizar es con el cuadricóptero en posición inicial y "�otando" en el aire, es
decir, la fuerza de empuje generada por los motores se iguala con la gravedad y el
cuadricóptero y permanece inmóvil en el espacio.

Suponiendo que los ángulos φ, θ y ψ son pequeños, se puede aproximar que el
seno de estos ángulos es igual al ángulo y los cosenos de los mismos son iguales a
la unidad [11] (unidades de los ángulos siempre en radianes). Esta aproximación es
válida para ángulos menores de 0.5 rad.

Teniendo en cuenta la aproximación de ángulos pequeños y utilizando las ma-
trices de cambio de base 2.5 y 2.7, se pueden aproximar las componenetes de los
vectores Ẋ y Ψ̇ como se muestra en las ecuaciones 4.8 y 4.9 respectivamente.


ẋ = vx

ẏ = vy

ż = vz

(4.8)


φ̇ = Rx

θ̇ = Ry

ψ̇ = Rz

(4.9)

De lo que se deducen también las siguientes aproximaciones.


ẍ = v̇x

ÿ = v̇y

z̈ = v̇z

(4.10)


φ̈ = Ṙx

θ̈ = Ṙy

ψ̈ = Ṙz

(4.11)



4.4. LINEALIZACIÓN MODELO FÍSICO 37

Contando con las aproximaciones que acaban de mencionarse y asumiendo que
al ser los ángulos que de�nen la posición del cuadricóptero muy pequeños, la velo-
cidad de rotación también lo será (por ser su derivada), se obtienen las expresiones
4.12 y 4.13 que aproximan la traslación y rotación del cuadricóptero en torno al
punto de linealización del sistema.


ẍ = v̇x = gθ − aTvx

m0

ÿ = v̇y = −gφ− aTvy
m0

z̈ = v̇z = −g − aTvz
m0

+
T

m0

(4.12)


φ̈ = Ṙx =

taux
Ixx

θ̈ = Ṙy =
tauy
Iyy

ψ̈ = Ṙz =
tauz
Izz

(4.13)

Partiendo de las ecuaciones 4.12 y 4.13 se procede a calcular las matrices A,
B, C y D que de�nen el sistema en espacio de estados, tal y como se indica en las
ecuaciones 4.14 y 4.15.

ẋ(t) = A · x(t) +B · u(t) (4.14)

y(t) = C · x(t) +D · u(t) (4.15)
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

φ̇

φ̈

θ̇

θ̈

ψ̇

ψ̈

ẋ

ẍ

ẏ

ÿ

ż

z̈



=



0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0

0 0 g 0 0 0 0 − aT
m0

0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0

−g 0 0 0 0 0 0 0 0 − aT
m0

0 0

0 0 0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0 0 0 − aT
m0





φ

φ̇

θ

θ̇

ψ

ψ̇

x

ẋ

y

ẏ

z

ż



+



0 0 0 0

0 1
Ixx

0 0

0 0 0 0

0 0 1
Iyy

0

0 0 0 0

0 0 0 1
Izz

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

1
m0

0 0 0




T − gm0

τx

τy

τz

 (4.16)

Las matrices A y B son las indicacas en la ecuación 4.16, la matriz C es la matriz
identidad de dimensiones 12x12 y la matriz D es una matriz de 12x4 compuesta por
ceros.
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4.5 Control en el Espacio de Estados

Por último se va a diseñar un controlador en espacio de estados, para ello se va
a partir del modelo linealizado del cuadricóptero presentado en la primera sección
de este capítulo. A partir de las matrices A, B, C y D que describen el sistema, es
posible diseñar una matriz de ganancias, K tal que al realimentar el vector de estados
se coloquen los polos en las posiciones deseadas. Además, también es necesario el
cálculo de la matriz N a la que se conecta el vector de variables que queremos
controlar.

Antes de comenzar con el diseño, es necesario comentar que para el cálculo
del controlador en espacio de estados se va a suponer que disponemos de todo el
vector de estados en todo momento, es decir, se supone que podemos medir todas
las variables de estado en todo momento. Esta suposición puede no ajustarse a la
realidad, ya que hay variables de estado cuya medición puede resultar complicada.
Además, los sensores con los que se miden dichas variables no son perfectos, y tienen
errores y ruido.

Adentrándonos ya en el diseño, para el cálculo de las matrices K y N, es ne-
cesario en primer lugar escoger las variables que se desean controlar. Se van a
escoger las tres posiciones en el espacio, x, y y z y el ángulo ψ. También ne-
cesitamos de�nir el vector de polos P, que en este caso será [−2 + 1,96i,−2 −
1,96i,−2,−2,−3,−3,−4,−4,−5,−5,−8,−8] [11]. Con toda la información de la que
se dispone, ejecutando en Matlab la orden K = place(A,B, P ) se obtiene la matriz
K, que es la que realimenta el vector de estados. Los valores de esta matriz son los
que se muestran en la ecuación 4.17

K =



0,0000 1,4030 0,2388 −0,1452
0,0000 0,2292 0,0146 −0,0120
−0,0000 −0,3172 1,1007 −0,0872
−0,0000 −0,0226 0,2050 −0,0129
−0,0000 −0,0040 −0,0071 0,3602
−0,0000 −0,0010 −0,0018 0,1916
−0,0000 −0,1551 0,2410 0,0028
−0,0000 −0,1308 0,2569 −0,0119
−0,0000 −0,3050 −0,1871 0,0736
−0,0000 −0,3538 −0,1224 0,0579
10,5600 0,0000 −0,0000 −0,0000
7,8800 0,0000 −0,0000 −0,0000



T

(4.17)
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Para el cálculo de la matriz N, empleando también Matlab para su cálculo se
obtiene la matriz indicada en la expresión 4.18. Para poder calcular la matriz N, es
necesario modi�car la matriz C, y en lugar de ser una matriz identidad de dimensión
12x12, al haber escogido las salidas antes mencionadas, pasa a tener la forma que
se muestra en la ecuación 4.19.

N =

−0,0000 −0,0000 10,5600 −0,0000
−0,1551 −0,3050 0,0000 −0,0040
0,0028 0,0736 −0,0000 0,3602

 (4.18)

C =


0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 1 0 0 0 0 0 0 0

 (4.19)

Las referencias se multiplican por la matriz N, y a la salida de este bloque se
le resta la salida de la realimentacion del vector de estados por la matriz K. El
resultado de esta cuenta es el vector de entradas u(t) compuesto por T − gm0, τx, τy
y τz. Como conocemos la relación entre esta fuerza y pares y el vector de velocidades
de giro de los motores Ωs, se calcula dicho vector y esas velocidades de referencia van
a los motores con su control de velocidad ya conocido y posteriormente al modelo
físico del cuadricóptero.

Una vez se ha presentado el controlador y su forma de conexión, se van a
realizar las simulaciones. Se van a hacer las simulaciones sobre el modelo real y
sobre el modelo linealizado. Al haber calculado el controlador a partir del modelo
linealizado, debería de funcionar bien en el modelo real para valores cercanos al
punto de linealización, es decir, para ángulos de giro pequeños.

En la Figuras 4.16 y 4.15 se muestran las simulaciones sobre el modelo real y el
linealizado respectivamente. Como era de esperar, en el modelo linealizado, al haber
sido diseñado el controlador sobre este modelo, el control funciona realmente bien.
Sobre el modelo real, existe una pequeña sobreoscilación pero el resulatado es muy
satisfactorio. Se puede concluir que la aproximación para pequeños ángulos de giro
es buena y se puede controlar el sistema real diseñando el controlador a partir del
modelo linealizado.
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Figura 4.16: Control en espacio de estados, sistema linealizado.

Figura 4.15: Control en espacio de estados, sistema detallado.

Para concluir con el capítulo, en la Figura 4.17 se muestra la simulación de
ambos sistemas a la vez para un ángulo de referencia de 1.5 rad. Este ángulo esta
lejos del punto de linealización y por lo que en el modelo real no funciona bien,
ya que se desestabiliza y la simulación se detiene. Por lo tanto, se ha llegado a la
conclusión de que la linealización es válida y es posible diseñar controladores sobre el
modelo simpli�cado y aplicarlos posteriormente sobre el cuadricóptero real, siempre
teniendo en cuenta que no es posible alejarse mucho del punto de linealización.
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Figura 4.17: Comparativa ángulo ψ.



Capítulo 5

Conclusiones

Tras haber �nalizado el proyecto, la valoración que hago sobre el mismo es
positiva. He aprendido mucho sobre cuadricópteros y su funcionamiento, un tema
que desconocía por completo y me ha resultado muy interesante. Además, he puesto
en práctica muchos conocimientos adquiridos durante el grado, especialmente de
diseño y tratamiento de sistemas. No solo he puesto en juego los conocimientos
adquiridos en las asignaturas de esta rama, sino que la realización de este trabajo
me ha sido muy útil para ampliar y a�anzar los conceptos que ya tenía adquiridos
y aprender mucho más de lo que ya sabía.

Entrando a valorar lo que ha sido el proyecto en sí, creo que es una rama
con multitud de aplicaciones y un tremendo potencial. Se han logrado controlar
diferentes variables con diferentes controladores, y en todos ellos, los resultados
obtenidos y presentados en esta memoria han sido en general bastante satisfactorios,
llegando a simularse modelos en los que se podían controlar muy e�cazmente las
posiciones en el espacio, que en mi opinión es lo más interesante y el giro en torno
al eje z. Es el caso del control sencillo en el Espacio de Estados, los resultados del
controlador obtenido conectado al modelo más realista han sido muy buenos, siempre
que el sistema que se desea controlar no se aleje en exceso del punto de linealización.

Aunque el propósito �nal de este trabajo es disponer de modelos detallados de
cuadricópteros para la simulación de sistemas más complejos que los contienen, el
trabajo realizado puede verse como las primeras fases del diseño y puesta en mar-
cha del control de un cuadricóptero. En cuanto a trabajo futuro, se pueden hacer
multitud de tareas, seguir diseñando diferentes controles, diseñar generadores de tra-
yectoria, avanzar en el modelado físico introduciendo sensores más realistas y que
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contengan error y ruido, discretizar el modelo, estudiar las conexiones y comunica-
ciones entre el controlador y el sistema, el modo en que el controlador hace llegar al
cuadricóptero la información de cómo debe accionar los motores para moverse como
se desea, la medición y estimación de las variables de estado, la aplicación de otros
métodos de control más avanzados... Existen muchísimos puntos de interés por los
que seguir trabajando en este ámbito.
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