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Abstract

0.1. Introduction to the Laplace transform

This first chapter begins with a historical introduction about the Laplace transform. This integral
transform had been studied by great mathematicians such as Euler, Lagrange, Laplace and Heavisi-
de.Then the Laplace transform of a f function is defined such as

F(s) = /0 e (0,

From this definition some results of existence of solution and linearity among others are stated, some
simple examples of calculating Laplace’s transformations are shown and finally Lerch’s theorem and
the definition of the inverse transform, is also stated.

0.2. Previous notions
First, we set several basic results in Lebesgue spaces. Namely dominated convergence theorem, the

Holder inequelity in integration theory and Plancherel theorem. We also state the definitions of norm in
a vector space, Banach space, Lebesgue space .Z’! among others.

Then, we introduce complex variable concepts such as Cauchy formula and the definition of analy-
tical function in vector space.

0.3. The Laplace transform in L' (R*) and semigroups
In the first section, we define the Laplace transform in the space L' (R*) and verify that it is well

defined, linear and continuous. Then, we highlight the relationship between the Laplace transform and
the Gelfand transform defining for this, the spectrum of Banach algebra.

In the second section, semigroups, we are going to see the definitions of semigroup and analytical
semigroup. Then we state some theorems without proof in order to prove interesting theorems in the
study of semigroups.

0.4. The Laplace transform in Hilbert’s space L>(R™)
In the first part of the chapter, we can see different results on Hilbert spaces and properties of these
spaces. Then we enunciate the Gram-Schmidt method to apply it later in a theorem that assures us the

existence that every Hilbert space has an orthonormal basis. Since L>(R™) is Hilbert’s space, we give a
example of a space basis.

In the second part of the chapter, we can see Paley Wiener’s theorem along with his detailed proof.
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v Abstract

0.5. Applications in the solution of differential equations

Finally, in this last chapter, at first we clarify the concept of Laplace transform for its real appli-
cations, since all the theory set forth above will not be usable in many cases because the functions are
defined in larger spaces than those studied in this TFG.

Then we show a table of Laplace transform.

In the end, we will make a brief comment about some applications in practical cases and then two
cases will be developed in greater detail.
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Capitulo 1

Introduccion a la Transformada de
Laplace

La motivacion principal de este trabajo es presentar la transformada de Laplace en el campo del
andlisis funcional y mostrar algunas de sus aplicaciones.

1.1. Introduccion historica

La transformada de Laplace ha sido en los dltimos afios de gran importancia en los estudios de areas
cientificas, ya que ademads de ser de gran interés en lo tedrico, proporciona una forma sencilla de resol-
ver problemas en ciencias e ingenierias.

En la transformada de Laplace trabajaron Leonhard Euler, quien ya plante6 la idea de utilizar inte-
grales de la forma [ ) (x)e® dx para la resolucion de ecuaciones diferenciales, Joseph-Louis Lagrange,
el cual también investigd este tipo de integrales pero vinculdndolas hacia la teoria de probabilidad.
Finalmente, en 1782, Laplace siguiendo la idea de Euler, comenz6 a estudiar este tipo de integrales
aplicadas a la resolucion de ecuaciones diferenciales hasta que en 1785 decidi6 reformular el problema,
lo que dio nacimiento a las transformadas de Laplace que se conocen actualmente. Pero el estudio de
este método tan util en la actualidad no qued6 ahi, fue a mediados del siglo XIX cuando Heaviside
descubrié que los operadores diferenciales pueden ser tratados como variables algebraicas, dandole asi
su aplicacion actual.

1.2. Definicion y propiedades de la transformada de Laplace

Como ya se ha mencionado, la transformada de Laplace es una herramienta muy util en la resolu-
cion de ecuaciones diferenciales. Comenzaremos por dar una definicién técnica y algunas propiedades
interesantes de la transformada de Laplace.

Definicion 1.1. Sea f : RT — R localmente integrable. Llamaremos transformada de Laplace de f, y la
denotaremos como .Z(f) = F, a la siguiente funcién:

+o0
F(s) = / e F(1)dt,
0
cuyo dominio, es el campo de convergencia de la integral paramétrica que la define.

Notemos que es una transformada de tipo integral.
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2 Capitulo 1. Introduccion a la Transformada de Laplace

Proposicion 1.2. Si la integral que define la transformada de Laplace de una funcion es absolutamente
convergente para s = sy, entonces también es absolutamente convergente para todo s > sy.

Definicion 1.3. Una funcién f : [0,.0) — C es de orden exponencial si existen k >0, ye Ry T >0
tales que |f(7)| < ke” paratodor >T.

Proposicion 1.4. Si f es de orden exponencial, entonces f tiene transformada de Laplace definida, al
menos, en el semiplano Re(s) > so.

En el dltimo capitulo se introducirdn mas propiedades sobre la transformada de Laplace, ademds de
mostrar algunos ejemplos.

Proposicion 1.5. Si fi y f> tienen transformada de Laplace y A1, Ay € C, entonces A fi + Ay fo tiene
transformada de Laplace y es, 11 Z(f1) + L-Z(f>).

Ejemplos. Célculo de la trasformada de Laplace de las siguientes funciones:

= fz) =" — F(s) =

, s > Re(a).

F(s) = /m emedt = /m e =g ' 1im e bs—a)r 4 L=
0 0

t—o s —a s—a s—a
» f(t—a)H(t—a) — e *“F(s),a >0, con H la funcion de Heaviside.

FOH() = { f(()i); 20

/O e f(—a)H (t —a)di — /0 0di + / e f(—a)H (1 — a)di /0 ") £ (p) g

= e_“"‘/ et f(t)dt = e *F(s).
0
Notemos que H(t —a) =0, sit < a.

El operador de Laplace es un operador lineal e invertible. La unicidad de la férmula inversa que
enunciaremos a continuacion estéd grantizada por efi siguiente teorema que podemos encontrar en [1]

Teorema 1.6. (Teorema de Lerch) Si f y g son funciones continuas a trozos en [0,) de orden expo-
nencial y existe sy € R tal que L (f)(t) = £ (g)(t), para todo s > s.
Entonces, f(t) = g(t) para todo t > 0, salvo en los puntos de discontinuidad.

La propiedad de ser invertible es necesaria para asi, una vez realizadas las correspondientes opera-
ciones con la transformada de Laplace, poder obtener la solucién que buscamos en el espacio inicial
donde vive nuestra ecuacion.

Definicién 1.7. Definiremos como transformada inversa de Laplace, . ~!(F), de una funcién F defini-
daen C* por la integral

1

LN F)) = o

(oo} . 1
/ N (a4 ib) du = — / e”F(p)dp,
. 2mi Jy,

donde hemos denotado por V}, a la recta vertical & + iR.

Veamos algunos resultados sobre la traslacién de la transformada de Laplace y la transformada de
las derivadas.

Proposicion 1.8. Si f(¢) es tal que existe su transformada de Laplace, F (s) = £ (f(t)) y a € R, enton-
ces se tiene que

L f(t)) =F(s—a).
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Demostracion. Sea f cumpliendo las hipétesis del enunciado, entonces

L (1)) = / e f(1)dt = / T -V f(1) di = F(s - a),

0 0

O

Proposicion 1.9. Sea f(t) derivable tal que existe su transformada de Laplace, F(s) = £ (f(t)), en-
tonces

Z(f'(t)) = sF(s) = £(0).

Demostracion.

.,S,”(f’(t)):/owe*“f’(t)dt: 1fm Ne*“f’(t)dt: {

u=e " du=—sedy
N—roo J0

dv=f'(t)dt, v= f(t)
-/ N(—S)e‘s’f(t)dt) - lim (e-st<N> -0~ | N(—S)e‘“f(t)dt>

t=N

= lim (e_“"f(t)

N—oo

= —f(0)+sF(s).

t=0

O

De manera andloga, si existe f™ con las sucesivas derivadas continuas para ¢ > 0, la transformada
de Laplace para las derivadas de mayor grado es:

Antes de enunciar la siguiente proposicion se debe recordar la definicién de la funcién de Heaviside.

Definicion 1.10. Sea H : R — {0, 1}, x — H(x) donde

1,:>0
H(x):{ 0, 1<0.

Esta funcidn recibe el nombre de escaldén unitario o funcién de Heaviside.

Proposicion 1.11. Si f(t) es tal que existe su transformada de Laplace, F(s) = Z(f(t)) y a > 0,
entonces se tiene que

ZL(f(t—a)H(t —a)) = e “F(s),
con H(t — a) la funcion de Heaviside.

Para la demostracién de esta proposicién basta con volver a aplicar la transformada de Laplace de
igual forma que los ejemplos realizados anteriormente.
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Capitulo 2

Conceptos previos

Con el objetivo de hacer mds sencilla la lectura de este trabajo de fin de grado, vamos a presentar
algunas definiciones y teoremas previos sin demostracién vistos en el grado de Matematicas en asigna-
turas tales como Anadlisis de Fourier, Integral de Lebesgue y Variable Compleja entre otros, asi como la
definicién de la transformada de Laplace y propiedades interesantes de la misma.

2.1. Resultados de espacios de Lebesgue

Los siguientes resultados se pueden encontrar en [9].

Definicion 2.1. Sea E un espacio vectorial sobre un cuerpo K. Una norma sobre E es una aplicacién
[|-|] : E— R™ que cumple:

a) ||x]|=0<=x=0.
b) [|Ax|| = |A|||x||, paratodox € E,A € K.

©) |lx+y| < |lx[| +|ly|l, para todo x,y € E (desigualdad triangular).

Definicion 2.2. Un espacio vectorial E, dotado de una norma, (E,||-||), lo denominaremos espacio
normado.
Dado (E, || - ||), diremos que una sucesién {a,} C E es de Cauchy si

Ve >0,3ny € Ntal que ||a, —an| < &,Yn,m> n,

abreviadamente, lo escribiremos ||a, — a,,|| — 0.
Ademds, si en (E,|| - ||) se cumple que toda sucesion de Cauchy es convergente a un elemento del
espacio, entonces éste recibe el nombre de espacio normado completo o espacio de Banach.

Daremos a continuacién las definiciones de los dos espacios en los que vamos a trabajar.

Definicién 2.3. Denotaremos por .Z' ([a,b]) al espacio de las funciones integrables Lebesgue en [a, b]
dado por

ZLY([a,b]) :={f : [a,b] — C f es medible en [a,b],y /b\f(t)| dt < +oo}.
Si f € Z!(|a,b]), definimos

1Al = /ab £ (t)] dt.

Por otro lado, denotemos N = {f : || f||1 = 0} es cero en casi todo punto en [a,b]}. Con esta notacién
definiremos L' ([a,b]) = £ ([a,b]) /N como la identificacién de todas las funciones que son iguales en
casi todo punto.
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Notemos, que en nuestro caso particular, trabajaremos con L!(R*), es decir, basta tomar a = 0 y
b = oo en la definiciones anteriores para tener nuestro espacio.
El siguiente espacio ya damos la definicidn para nuestro caso particular.

Definicién 2.4. Denotaremos por .#%(R™) al espacio de las funciones integrables Lebesgue en [a,b]
dado por Z?(R*) :={f :RT — C f es medibleen R",y / |f(t)|* dt < +o0}.

0
Teorema 2.5. EL par (L'([a,b]),||- ||1) es un espacio de Banach.

Definicién 2.6. Tomando como dominio R, definimos la norma en el espacio L' (R) como |[|f]|; :=

JZ @) dt.

De forma analoga podemos definir los siguientes espacios:

Definicion 2.7. Dado 1 < p < o0, denotamos
LP(RY) = {f:R* —C: / £ (D)7 di < +oo).
A

Para cada f € L’(R™"), definimos

1= ( [1rr ar)"”

Definicion 2.8. Un dlgebra normada, A, es un espacio normado sobre K con una segunda operacion
interna, producto, AXA — A, (x,y) — xy tal que

i) x(vz) = (xy)z,
i) x(y+z) =xy+xz, (x+y)z=xz+yz,
iii) A(xy) = (Ax)y = x(1y),

y |Jxy|| < K||x]]|[y|] con K >0, x,y,z€ A, y A € K.
Un algebra de Banach es un dlgebra normada completa.

Definiciéon 2.9. Denotemos por #(X,Y) al conjunto de las aplicaciones lineales y continuas entre los
espacios X e Y. Para el caso de aplicaciones entre un mismo espacio pondremos #(X,X) = #(X).
Sea X un espacio normado sobre K, 7 € #(X) e I la identidad sobre X.

» Se dice que A € K es un valor regular de 7 si T — AI es un operador invertible.

= [os valores no regulares de 7 se llaman valores espectrales de 7. El conjunto de los valores
espectrales de T se denomina espectro de 7', o(7T).

Definicion 2.10. (Integral de Gauss)
La integral de Gauss es la integral impropia de la funcién gaussiana e~
valor de dicha integral es:

G sobre toda la recta real. El

/ " e P du= /. 2.1)

Teorema 2.11. (Teorema de la convergencia dominada)

Sea (f,) una sucesion de funciones reales, (complejas), medibles sobre E que converge en casi todo
punto de E a una funcion real, (compleja), f.

Si existe una funcion g integrable sobre E tal que para todo n € N es |f,| < g en casi todo punto de E,
entonces fy cada una de las f, son integrables sobre E y

/fd,u:h’m/ fodu.
E n E
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Teorema 2.12. (Desigualdad de Holder)
Sean f, g : R" — C funciones medibles y 1 < p, g < oo tales que % —i—é = 1. Entonces

[ relax< ([ 17ax)" ([ lloax)” =1l el

Definicion 2.13. (Transformada de Fourier)
Definiremos la transformada de Fourier de una funcién f € L! de la siguiente manera: f:: ﬁ / f(x)e Mdx

paratodot € R.

Notemos que, una vez vista la definicién de la transformada de Fourier, hay gran relacién entre
ambas transformadas.

Proposicion 2.14. Sea f integrable, entonces la transformada de Laplace de f, £ (f) puede expresarse
en términos de la transformada de Fourier de la siguiente manera:

2+ i) =7 1) (57 )

La ventaja que proporciona la transformada de Laplace frente a la transformada de Fourier es la
utilizacion de las herramientas de variable compleja.
El siguiente resultado se conoce como Teorema de Plancherel.

Teorema 2.15. A cada f € L*(R") se le puede asociar una funcion ftal que se verifican las siguientes
propiedades:

a) Si f € L'(R")NL2(R"), entonces f(x) :/ f(t)e ™dm,(t), x € R".

n

b) Para toda d € L*(R"), ||fll2 = ||l

¢) La aplicacion § : L*(R") — L*>(R") que a cada f se le asocia fes un isomorfismo isométrico de
espacios de Hilbert.

d) Existe una relacion simétrica entre f'y f Sea A >0, si
A . A
oalx) = / (0 dm, (1) y alr) = / Fwe dmy(x) (x € RY)

entonces || Qs —sz —— 0y ||¥a—flla——=0.
A—o0 A—oo

2.2. Variable compleja

Los mayor parte de los resultados de esta seccidn se han visto en la asignatura de variable compleja
en el grado de matematicas.
Empecemos recordando las siguientes definiciones:

Definicion 2.16. Sea f una funcién compleja definida sobre un abierto no vacio de C, Q. Sizp € Q y si

existe
INIGENIC)

20 Z—20

= f'(z0) € C,

entonces a f’(zp) lo llamaremos derivada de f en zo.
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Definicion 2.17. Sea Q abierto de C. Sea f : Q — C. Diremos que f es holomorfa en un punto zg € Q
si f es derivable en todos los puntos de un entorno de z, para todo zg € Q.

Denotaremos por .77 (Q) al conjunto de todas las funciones holomorfas en Q.

Si Q = C entonces una funcién f : C — C holomorfa se dice entera.

Definicion 2.18. Un camino en C es una aplicaciéon I': [a,b] — C, cona,b € Ry a < b, continuay ¢ 1)
a trozos. Denotaremos por sop(I") = {I'(¢) : ¢ € [a,b]} al soporte del camino.
El soporte es compacto y conexo en C.

Definiciéon 2.19. Un conjunto A C C se dice estrellado si existe un punto a € A, al que llamaremos
centro, tal que para cualquier z € A se tiene que [a,z] C A.

Teorema 2.20. (Formula de Cauchy para abiertos estrellados)
Sea Q un abierto estrellado de C y f € 5 (Q). Si I' es un camino cerrado contenido en Q, para
cualquier z de Q que no esté en el soporte de I es

_ L fw)

= - dw.
2wi Jrw—z

f(2) Indr(2)

Veamos ahora la definicién de funcién analitica en el caso de espacios vectoriales, que nos serd de
utilidad en el estudio de semigrupos.

Definiciéon 2.21. Sea X un espacio vectorial, f : Q C C — X se dice que f es analitica si para todo
x' € X' se tiene que X' f es analitica, es decir, f se puede componer con cualquier funcién del espacio
dual y el resultado es analitico.



Capitulo 3

La transformada de Laplace en el algebra
L'(R™) y semigrupos

3.1. Resultados del espacio L' (R")

En la introduccién hemos visto que L' (R) junto con la norma || - || es un espacio de Banach, notemos
entonces que L' (R™) también es un espacio de Banach de funciones integrables en R* = [0, 40) con
la norma

7= [ 1£@]dr.

Si le afiadimos el producto de convolucién,

(re8)0) = [ s~
definido en casi todo punto, entonces L! (R™) es un dlgebra de Banach conmutativo sin identidad.

Teorema 3.1. La transformada de Laplace, £ : L'(R") — S4(C") estd bien definida, es lineal, con-
tinua y £ (f +8)(2) = Z(f)(2)Z(8)(2)-

Demostracion. Para ver que esta bien definida, tenemos que ver que .Z(f)(z) € 74(C™).
Por teoria de variable compleja tenemos que e*' es holomorfa. Falta ver que

lim [ €"f(t)dr=0.

s—o0 Jo

Para ello, basta aplicar el teorema de la convergencia dominada.
La linealidad se obtiene de la proposicién 1.5.
Veamos finalmente que .Z (f + g)(z) = -Z(f)(2)-Z(g)(z).

L(f*g)(s) = /(f*g edr = //ft—u e dudt

—//ft—u eMdtdu= | v=t—u //f )e =0 gy du

dv=dt

= [ e av [ glwe du=2(4)6) 2 (6) ().
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El espectro del dlgebra de Banach L' (R*), ¢, puede identificarse con el semiplano cerrado C* por
la aplicacion
Ct — ¢
A — P
donde ¢, viene definido por

0, (f) = - f(x) e dx,

para todo f € L'(R™).
En este caso, donde A € L' (R™) con el dlgebra L' (R") de convolucién del semiplano, tenemos que ¢
es homeomorfo a {z € C: Re(z) > 0}, la transformada de Gelfand de un elemento f € L' (R*) coincide

con la transformada de Laplace, . : L' (R*) — #(C*) donde (£ f) (1) = / f(x)e™* dw, porque
R+

~

F(02) = 02(f) = (Zf)(A). La transformada de Laplace es continua en C* y analitica en C.

El siguiente resultado sobre unidad aproximadamente acotada y otras definiciones del dlgebra se
encuentran en [5].
El dlgebra L!(R*) tiene unidad aproximadamente acotada por 1. Un ejemplo de esto es {e, |n € N}
donde 1
n(w) = { e St
0, para  <w.

El teorema de convolucién de Titchmarsh implica que L!'(R*) es un dominio integral, es decir, si
f,g € L"(R") con f*g =0 entonces f =0 0 g = 0. La demostracién de este teorema de puede en-
contrar en [7].

El dlgebra multiplicativa Mul(L'(R")) de L'(R™) es naturalmente isométrico e isomorfo con el
dlgebra de la medida de convolucién M(R*) en R*. Aqui M(R™) es el espacio de Banach de las medidas
de Borel regulares cerradas, i, en R™ con la norma ||u|| = |¢|(R") y el producto u * v definido por

(1 +V)E) = [[ Xelwu)op(m)dv(w),

donde xg es la funcion caracteristica del conjunto de Borel E. Tenemos que la transformada de Laplace
se puede definir como . : M(R") — ., (C") de manera que ala & — £ (8) = Ic+.
El isomorfismo isométrico de M(R™) sobre Mul(L'(R™)) estd definido por t — T f = p x f.

3.2. Semigrupos en L' (R™)

Comencemos por dar la definicién de semigrupo y semigrupo analitico.

Definicion 3.2. Sea X un espacio de Banach. Un semigrupo de X es una familia de operadores lineales
y continuos { ¢, } que dependen de un pardmetro ¢ > 0 tal que

D) [lo"|| <M().
ii) @° =1, con I la identidad.
iii) "2 =", 1,1, > 0.

. . . . t—0 . .
Se dice que un semigrupo es fuertemente continuo si || ¢’ x — x||p — 0 para todo x € B. Ademds, si ¢
es un semigrupo continuo, entonces existen M, w € R tales que

x| < Me""||x|| paratodov € B, t > 0.
| pex]| p

Definiendo ahora un sector del plano con dngulo 6, diremos que el semigrupo es analitico si cumple
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1) lim@, x = @, x para todo x € Z(X).
t—1p

2) la aplicacion x — ¢, (x) es analitica.

Esta primera definicién se puede encontrar en [4] y [12, pdginas 31-44]. Por otro lado, recordemos
que la funcién Gamma, I', estd definida por

F(t):/ w' e ™ dw,
0

para todo t € C", asint6ticamente,

[(t)=r¢ \/?exp(—t+0(|t|_l)), (3.1

cuando |f| — oo, para todo t € C*. Mds atin, I es analiticaen C*, I'(+1) =¢I'(¢) paratodo t € CT,
1
I'(n+1)=n! yF(2> =VT.

Todo esto nos ayudard en la demostracidn de teorema que enunciaremos después de enunciar los
dos siguientes lemas que nos facilitaran la demostracion del teorema.

La demostracién de ambos lemas se pueden encontrar en [ 13, Capitulo 2].

Lema 3.3. Sean (W,X, L) un espacio de medida con p medida positiva, | < p <o, yCxW — C:
(t,w) — F(t,w) una funcién medible, tal que la funcion w — F (t,w) estd en L (w) para cada t € C
yC—R:t+——||F(t,-)||p es continua. Si la funcion C — C : t — F(t,w) es analitica para cada
w € W, entonces C — LP (W) : t — F(t,-) es analitica.

Lema 3.4. Sea A un dlgebra de convolucion en L' (R"), y sea C — A : t — a' un semigrupo analitico
enA cond >0 en casitodo puntoy ||d'||; = 1 para todot > 0. Entonces (a' xA)~ = A para todot € C

siysolosi/| 6a’(w)dw—>0cuand0t—>0,t>0ypara todo & > 0.
wi<

Una vez enunciados los dos lemas podemos proceder a enunciar y demostrar el teorema.
La demostracion de este teorema, sin tanto detalle, se puede encontrar en [13, Capitulo 2].

Teorema 3.5. Sea I’ € L'(R™) definido por I'(w) = w'~'e ™ T'(¢t)~! para todow € (0,) y todo t € C,
entonces C — L'(R") : t —= I es un semigrupo analitico que denominamos semigrupo integral
fraccional, con las siguientes propiedades

1. (I'xLY(RT))” =LY (R") para todo t € C

i I'(x)
2 I = e

3.(L1")(z)=(z+1) " paratodoz€ CT t e Cyo(I')={0}U{(z+1)"|zeCt}.

, paratodox>0,yecR.

4. Sea x+iy € C, entonces

||Ix+iy||l :k(X) (1 _'_ny—z)—%‘i‘% exp (71-2”))“{'0( ’y|_l))7

donde k(x) es una constante que depende de x pero no de y, ademds O es independiente de x.

Demostracion. Seat =x+iyconx € RT e ye R . Entonces I’ es una funcién continua en (0, +o0) y

) o Wx+iy71 eV ) folefw 1 oo F(x)
== [ e [T Lty T
I =10 = o vy o T~ Tot o)l o T+ )]
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para todo x > 0 e y € R. Asi ya hemos demostrado (2).

Veamos que es semigrupo analitico. Por hipétesis, tenemos que I’ € L' (R™) para todot € C, y la
aplicacién  — ||I"]|; es continua.
Ademds, notemos que C — C : 7 —— I''(w) es analitica porque I'(¢), e
w1 = el=1loz(w) g analitica ya que por hipétesis tenfamos que w > 0.

Por otro lado tenemos que
ol Wt—le—w F/(l‘)
il =~ 1 _
a7 "= { YT T }

~" siempre son analiticas y

para cada w > 0.

Ahora, aplicando el Lema 3.3 sabemos que C — L' (R") : t — I" es analitica.
Veamos ahora que el producto equivale a la suma aplicando directamente el producto de convolucién:

Sean ahora s, ¢, w > 0, entonces:

w _ o \t—=1 ,—(w—u) ,,s—1,—u —w w
It*ls(w) _ / (W M) e u ‘e du — e(s>/ (W_u)z—leuus—le—udu
0 0

[(r)T(s) rHr
c.v
| u=wv,du=wdv | e ! 1 1 _
= 0 v 0 _F(I)F(s)/()(w_vw) (vw)’ wdv =
u=w—v=1

e /1 w A —v) sy hway = e twil /1 (1—v)~'vlay

I'(r)T(s) Jo I'(t)T(s) Jo

WtJrsflefw wt+sflwfw F(l‘) F(S) eH»sflefw s

= " t = =
FOTE) PO =TT Tars) — T
Por lo tanto, asi hemos visto que efectivamente es semigrupo analitico para todo ¢, s > 0, més atn,

como la funcién ¢ — I hemos probado que es analitica, entonces se cumple para todo sy ¢ en C.

. w\! w\ "
SlO<t<r=5e‘1<1y5§wveamosent0ncesquew’S(7> S(—).
r

Notemos que esta prueba no aparece en la referencia donde podemos encontrar la demostracion de

este teorema.

t t r
Es claro ver que w' < (%) por ser ¢ € (0,1). Para ver que (?) < (K) tenemos que estudiar el
r

comportamiento de crecimiento y decrecimiento de la funcién

s = (%)

X

(7 = () e () -1)

X
de donde es claro que (Y> > 0, para todo x > 0y w > 0. Nos falta ver qué pasa con la segunda parte
X

Derivamos dicha funcion:

del producto.

log<y>—1 >0(:>10g<y>—loge>0<:>log<l> >O<:>K>O(:>w>xe.
X X xe xe

Teniendo en cuentaque x >0y que 0 <t <r=38e" ! <1y & <wobtenemos que 0 < et < er=32,
de donde, si sustituimos en las implicaciones anteriores x = r obtenemos que w —re > 0y asi, quitando
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el caso w = & tenemos que todas las implicaciones son ciertas para nuestros valores de r y ¢t y por lo

. . . w\ ! w\’"
tanto nuestra funcién es creciente. Ademads, como ¢ < r obtenemos que (—t ) < (—) .
r

Considerando la derivabilidad de # — log (') y que w > 0 entonces:

—1 eV T oo
= w< —— wle™dw < r " T(r)(t) "L
/IM / <tw )} < T(PL()

Si hacemos ¢ — 0, entonces " ['(r)[(¢)~! — 0, para todo § > 0 ya que hr% I'(t) = oo.
r—

Como I’ >0y ||I'|| =1 para todo 7 > 0, se cumplen las hipétesis del lema 3.4 de donde podemos
deducir la propiedad (1) del teorema.

Como se ha mostrado en la introduccién a la seccién tenemos que en L!'(R™) la transformada de
Gelfand es esencialmente la transformada de Laplace:

o(I") = {0} Ul (®) = {0} U{LI'(z) : zeCT} Vt € C.
Luego para probar (3) basta probar que (£1")(z) = (z+1) ' paratodoz € C*,r e C.
Fijamos ¢ € C, las funciones z — (Z1")(z) y z+— (z+1)7" son analiticas en C y continuas
en C* y por las propiedades de las funciones analiticas s6lo tenemos que demostrar que .£1'(z) =

(z+1)" paratodot € Cyz>0.

Repitiendo el argumento, dejando fijo z > 0 y variando ¢ ya tenemos lo que queremos:

w le—w C'vu ol le—u
gﬂ(z):/ ———e Mdw = W= =(z+1)’/ ———du=(z+1)7",Vt>0.
0 F(t) 1 0 F(t)
dw Tzl du

Por la férmula asintética (3.1) para I'(x + iy) obtenemos:

1) = D)4y~ = (e iy) ™~ ‘>|\/> VIx+iylexp(x+ o(|x+iy| ™) =

_x, 1 1 N . . —
= (x*+y%) 15 TOV et iylexp (yArg(x+iy) +x-+o(x+ iy M,

siendo yArg(x+iy) = |y|5 —o(1) cuando |y| — oo, tenemos:

2
1P|y = k(x)(1+ i’fz)*%% exp (ng’ +o0(1)) para cada x > 0.

Asi queda demostrado el teorema. O

El semigrupo C' definido en R, es muy dtil en el estudio de las propiedades del semigrupo de Pois-
son, pero esto estd fuera del objetivo de este TFG debido a que este semigrupo se encuentra en L' (R) y
nosotros nos limitaremos a L' (R™).

Veamos un lema sobre una integral muy relacionada con la transformada de Laplace de C' donde
12
Cl(w)= ‘e ( ) e motivard la demostracion del siguiente lema.
(w) = 2\Fw xp () au V. gu
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Lema 3.6. Sea o > 0, entonces:

2

1 <1 o? o 3 a
e %= — [ =" Wdu= —/ u2e "% du.
\/ﬁ/o Vu 2vm Jo

Antes de proceder a la demostracion, notemos que el enunciado nos indica que el lema se cumple
para o > 0, aunque es claro ver que la primera igualdad se cumple para o > 0.

Demostracion. Definimos

2
a
—e " 4w du, paratodo o > 0.

1 < 1
o=z | 7

Aplicando el teorema de la convergencia dominada obtenemos la continuidad de F en el 0. Ahora,
derivando F:

dF L2 () (20 —a 7 ()
- —_ N U - d — 4u d .
da(a) \/E/o \/ﬁe o u 27 o u e u

Aplicando el cambio de variable w = Z‘—; y simplificando:

3
dF -1 /0 2\ 2=\ (w2 o S Y
—(a)=—F%= | «a . - e( 4W)a’w =— 2—e< 4“')dw =
da 2T S \ 4w 2Tl W

F
Asi, F satisface la ecuacién diferencial T +F =0, y por lo tanto, F (o) = Ce™%, para todo o > 0.

Como ya hemos visto que F es continua en 0, obtenemos que:

F(0) = \/lﬁ/omu—%e—”duz \/lﬁr (;) =1,

de donde obtenemos que Ce’ = 1 < C = 1. Asi quedan demostradas las igualdades y el teorema. [

Lema 3.7. Si C' € L'(R") estd definido por

para todow >0y paratodot € Sy)y ={z€C: z#0, |Argz| < T}, entonces la aplicacion que va de
Snja en L' (R") tal que a cada t le asocia C', es un semigrupo analitico con las siguientes propiedades:

1. (C"eLY(R"))” =LY (R"), para todo t € Sy/s.

x2—i-y2

1
2. ¢t = <7y2) } parat=x+ iy € Sy

2_
3. (LCN(z)=e V5 parat € SzjayzeCt,

Demostracion. Tomamos ¢ = x+iy € Sy /4, x ¢ y reales, entonces C " es una funcién continua en (0, ).

Vamos a calcular la norma 1 de C’:
0 2 oo - 2
r s t w0 t] _ (x+iy)
C[ :/ ——— 2 —_— d = — _—— d —
1= )0 \zz" exP( 4w>’ N exP( 4w v

[SI[]
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c.v
oo 2 .2

t : — 2.2

:L W_Zexp<_(xy)>dwz X4wy :uz —
2y/7 Jo 4w Lo o
dw=—55(x*—y")du
L / i gy @D x% 4 y?
V) VT X =y

Por tanto, C' € L' (R™) y la funcién Sz /4 — R : £ — ||C" ||| es continua.
t

aC t
Mas aun, la funcién de C en C tal que r — C’(w) es analitica y 5 (w) = (1 - 2—) C'(w), Vw>0.
w

Entonces, aplicando el lema 3.3, tenemos que la funcion S /4 — L'(R*), 1 — C' es analitica.

Sean 7,z > 0, calculamos la transformada de Laplace de C':

(ZCH(z / w 2exp<wz—t2)dw— wzciu / ( ) ;exp<u—zt2> lalu—
Z\f 4w dw — du Z\f 4u ) z
2
t t
W exp u— ) quteet gz
Z\f 4u

La analiticidad de las funciones (.£C")(z) y e~'VZ implica que son iguales para T € S, /4yz€Ch.

La propiedad de semigrupo se sigue de la inyectividad de la transformada de Laplace y

e TIH)VR) — o(=1V2) o(=5V2) para todo z € C,

por las propiedades de la exponencial.
Asi hemos visto que es semigrupo analitico.

Sean ahora ¢, 0 > 0, entonces:

(1> t 3 t
C'(w)dw < / w 2dw=—,
/w>5 () 2T Juss Vrd

este resultado tiende a cero conforme ¢ decrece hacia 0 para un § fijo.

La cota (1) se obtiene al ver el mdximo valor que puede alcanzar la parte exponencial de C’ ya que,
el exponente, —Af—z es menor que 0 dado que w > 0, por lo tanto, el maximo valor de la exponencial se
alcanzard cuando el exponente sea 0, y en consecuencia exp ( ) < ¢” = 1. Con esto queda probado
el lema. O
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Capitulo 4

La transformada de Laplace en el espacio
de Hilbert L*(R™)

4.1. Resultados de espacios de Hilbert y bases de L?(R™)

Definicion 4.1. Sea H un espacio vectorial sobre R. Un producto escalar sobre H es una aplicacion
(,):HxH— Rtal que

i) (x,x) >0parax€ Hy (x,x) =0siysélosix=0.

1

~

{

(x,y) = (y,x) para todos x,y € H.

iii) (Ax+ uy,z) = A{x,z) + u(y,z) paratodos x,y e Hy A, € R.
El par (H,(, )) se llama espacio pre-Hilbert.

Proposicion 4.2. (Desigualdad de Cauchy- Schwarz)
Sean x,y € H donde H es un espacio pre-Hilbert. Entonces

[ o) [ < [yl
Teorema 4.3. Sea (H,(, )) un espacio pre-Hilbert. Entonces (H, || -||) es un espacio vectorial normado
donde la aplicacion || - || : H — R estd definida mediante

]| = m, xeX.

Definicion 4.4. Un espacio pre-Hilbert (H,{ , )) se dice de Hilbert si es completo con la topologia
asociada al producto escalar, es decir, a la norma definida por éste.

Los dos teoremas que se enuncian a continuacion se encuentran en [9, Capitulo 2].

Teorema 4.5. (Método de Gram-Schmidt) Sea (x,),cn una coleccion contable (finito o numerable)
de vectores linealmente independientes en un espacio Hilbert, (H,{ , )). Si se define por induccion la
sucesion de vectores (uy), mediante las formulas

n—1

1 Yn
Y1 =X Vi =Xn— Y (Xp,uj))u; up = —— Uy = .
s Rl bl
paran > 2, entonces (u,), es una sucesion ortonormal en H, y para cada n se tiene que span{uy,--- ,u, } =
span{xi,- - X, }.

Teorema 4.6. Sea H un espacio Hilbert. Toda familia ortonormal estd contenida en una base. En
particular, todo espacio Hilbert tiene una base.

17
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Mostremos ahora una base del espacio de Hilbert L?(R™).

Definicion 4.7. Los polinomios de Laguerre son una familia de polinomios ortogonales {L,(x)}:_, en
el intervalo [0,e0). A partir de la formula de Rodrigues, se pueden definir los polinomios de Laguerre

mediante la expresion
n

a - ., _
L,(t) :etﬁ(t e).

Existe una generalizacion de estos polinomios que se puede encontrar en [3], pero para nuestro caso nos
basta con quedarnos con la expresion anterior. A través de los polinomios de Laguerre, las funciones de

Laguerre estan definidas por
Z(t):=e 2L,(1), t > 0.

Estas funciones definen una base ortonormal del espacio L?(R™).

4.2. Teorema de Paley-Wiener

En este apartado seguiremos la notacion tradicional, asociada a la transformada de Fourier, del
teorema de Paley-Wiener.

Definicion 4.8. Definimos por IT" al semiplano superior complejo, es decir,
N ={z=x+iyeC:y >0, xeR}.

Teorema 4.9. (Teorema de Paley-Wiener)
Supongamos que f € A (I1T) y que

1 oo
swp o [ |fx+in)dx = C <o @1
O<y<too 2T J oo

Entonces existe una F € L*(0,+o) tal que

Flo) = /OwF(t)ei’Zdt (zeT")y /Ooo|F(t)|2dt _c.

Antes de comenzar la demostracién, notemos que la funcién F que buscamos tiene que cumplir
la propiedad de que f(x+ iy) debe ser la transformada de Fourier de F(t)e™’, tomando y como una
constante positiva. Dicha F deberia ser de la forma

1 oo . 1 oo »
F(1) :e”g/iwf(x—f—iy)e dx = E/Jqf(z)e "2 dz.
Vamos a probar el Teorema 4.9:

Demostracion. Fijemos y tal que 0 <y < 4o0. Sea I'y, el camino rectangular con vértices en (0t +1) y
(£o +iy) para cada a > 0.

Casoy>1 Caso0<y<1
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Por el teorema de Cauchy sabemos que:

/ f(z)e " dz=0, (4.2)

a

por ser f(z) holomorfa en ITT y I'y, CIT.

Consideremos tnicamente los valores reales de 7. Sea 3 real y denotemos por ®(f) a la siguiente

integral:
B+iy .
/ f(z)efttz
B+i
Seal=[y,1]siy<lol=][l,y]siy> l.Entonces:
‘/fﬁ—l—lu 7ttﬁ+m /|fﬁ+lu ’2du/ 2eu gy,
Definimos

= /I\f(BJriu)lzdu-

Teniendo en cuenta (4.1) y aplicando el teorema de Fubini tenemos:

o [ JirBrioPaap = o [ [ 155 +ia)Pap a
/Iili;o)z/ B+ iu) 2dBdu:C/du cm(I),

o | A < Cnin),

donde m(I) es la medida de Lebesgue.
En consecuencia, A € L' (R) y de antes tenemos que A(8) > 0, para todo 8 € R.
Probemos entonces que existe una sucesion {o;} tal que

esto es,

oj =ty Ala;) + A(—a;) =20.
Para ello, definimos la funcién ¢(y) = A(y) + A(—y) para cada y € R.
Sea L= 1im ¢(x). Observemos que L =0 o L # 0 por ser A(y) > 0 paratodo y € R.

x| —ee

Supongamos primero que L = 0, entonces

0 = liminfe(x) = sup <1nf {p(x )}) = ‘i‘r;fn{(p(x)} = 0 para todo n.

[x[—>eo ntoo
Asi, existe x; € R de manera que |x;| > 1y |@(x;)| < 1. Como

inf {¢(x)} =0,

x| >[xi

se tiene que
in x)}=0
|x|>max{\x1|,2}{(p( =0,
entonces existe x; € R tal que |xz| > max{|x |,2} con ](p(xz)] < 1. Reiterando el proceso, se puede cons-
truir una sucesion {x,} tal que |x| < |x2| < ... < |x,[ <...,con [x,| >ny @(x,) < 1 paratodon € N.
Es decir, =Y (p(xn) — 0. Basta tomar a; = ]x]\
n—oo
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Supongamos ahora que L > 0, es decir,

0 < L = liminfe(x) = sup (mf{ (x )}>

e[ =reo neo \|X|>n

entonces existe ng € N tal que 1nf {q)( )} > % Tenemos que

[ AGIy <=y 9() = AG)+ A=),

luego / ¢(y)dy. Por tanto,

00 > /:o ¢(x)dx = /|;c|>n0 o (x)dx+ o(x)dx >

x[<ng

L
> / Q(x)dx+ —dx =C+ - dx = oo,
[x|>no

x|>ng 2 2 Jix>n

con C € [0,00), y asi llegamos a una contradiccion.

En consecuencia, L necesariamente tiene que se nula y finalmente ya tenemos probado que existe
una sucesién {a;} tal que

o — +ooy Alaj) + A(—) =20.
Teniendo en cuenta que A(f3) > 0 entonces, ademds podemos afirmar que A(o;) ey y A(—«;) =20,
Como en (4.2) hemos visto que:
D(B)| < AB) [ *du
1
se deduce que:
®(aj) = 0, P(—a;) — 0, cuando j — oo (4.3)
Notemos que esto tltimo se cumple para todo ¢ real y que la sucesién { o} no depende de .
Definamos la funcién:
gi(n1) =5 / (x+iy)e " dx. 4.4)
Aplicando (4.2) y (4.3) tenemos
(4 2) / f —ztzdZ — l/f o+ lW —ll (oj+iw) _ /f —aj+ lW) it(—otj+iw)
o
+ f(x+i)ef”(x+’)dx— f(x+yi)ef’t(x+y’)dx
—Qj —Qj
=i®(a;) —iP(—a;) +2me'g;(1,1) —2me” g (y,1).
Aplicando el limite cuando j — oo finalmente deducimos que
lim (e”g;(y,1) —€'gj(1,1)) =0, con —eo < < oo, 4.5)
e 4 4

Para simplificar notacién tomemos fy(x) = f(x+iy).
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Entonces, por hipétesis f, € L?(—o0,0) y el teorema de Plancherel afirma que

lim |fy( ) —8;(,1)|*d1 =0

Jj—°)

donde fy es la transformada de Fourier de f;. Tenemos asi que, existe una subsucesién de {g;(y,7)} que
converge puntualmente a f,(r) para casi todo 7.

Si definimos
F(t) =€ f(1),
de (4.5) se sigue que R
F(1r) =€V f,(t), Vy € (0,00).

Aplicando el teorema de Plancherel

oo o 1 oo
| _eIFoPa = [ 150Pa = [ 1fwPa<c (4.6)

Si en (4.6) hacemos y — oo y aplicamos el teorema de la convergencia dominada obtenemos:

y%oo —0Q

O (oo}
c>1im [ e 2|F()2dt + lim / 2 |F (1) 2dt
Y= JO

(oo} O
_ / lfme 2 |F (1) Pdi + / 1fm e 2|F (1) dr = / 1fm ¢~ 2| F (1)|2dt.
0 Yy oo y—re0

y—roo

Destaquemos que esta dltima integral es divergente, lo que nos lleva a una contradiccién salvo que
|F(t)] = 0 en casi todo 1 € (—e0,0), y por lo tanto F(¢) debe ser nula en casi todo ¢, para valores de ¢
negativos.

Reiterando el proceso, es decir, aplicando el teorema de la convergencia dominada y el limite, en
este caso, cuando y tiende a 0, sobre (4.6) tenemos

C > lim / e 2 F (1) Pt = / lfm &2 |F (1) Pdi — / F () 2dt
y—=0Jo 0 y=0 0
Uniendo ambos extremos de la desigualdad obtenemos
/ IF(¢)[2dr < C.
0
Observemos que F € L?(0, ) y junto con la desigualdad anterior, basta tomar
c— min{C|/ \F(¢)[2dt < C),
0

y asi obtenemos la igualdad.
Se sigue que, siy > 0,

[ Bwidi= [ leF@la= [T e EOL< IO Rl <

Por lo tanto, f)(t) € L! siempre que y > 0. Luego podemos aplicar el teorema de inversién de la trans-

formada de Fourier para obtener F(x) = / fAy(t)e”xdt. Y de aqui

1@ = [ Fwerena= [ Foear em),

Con esto damos por finalizada la demostracién del teorema. O



22 Capitulo 4. La transformada de Laplace en el espacio de Hilbert L>(R™)

Notemos que C* = —ilT*, lo que hace que los resultados obtenidos se puedan trasladar a C™".
Para concluir este capitulo, enunciaremos un teorema que esta muy ligado al que acabamos de

enunciar cuya demostracién omitiremos porque se va del objetivo inicial de este TFG.
La demostracion de este teorema puede encontrarse en [1 1, Capitulo 19].

Teorema 4.10. Sean A y C constantes positivas y [ una funcion entera tales que
7@ <C, vz y [ f)Pdr <o
Entonces existe una F € L*(—A,A) tal que
A .
1) = [ Foyear,
—A

para todo z.



Capitulo 5

Aplicacion en la resolucion de Ecuaciones
Diferenciales

Una vez vista la teoria de la transformada de Laplace, estudiemos el caso practico y el por qué de la
importancia de ésta en el mundo de las ecuaciones diferenciales.

Antes de nada, notemos que la transformada de Laplace se extiende a funciones mds generales que
L'(RT) o L*(R*). Lo cual permite resolver ecuaciones diferenciales cuya solucién no estd en estos
espacios. En el caso de que la solucion cae en los espacios citados se podrédn precisar mds propiedades a
través de la teoria anteriormente planteada. En primer lugar, se muestra una pequeiia tabla con algunas
transformadas elementales.

f) | 2w}

12 1
e ﬁ (s >a)

sen (ax) P

cos (ax) o

Cuadro 5.1: Tabla de la Transformada de Laplace.

Como ya sabemos, una ecuacion diferencial posee infinitas soluciones pero, en algunas ocasiones
como son los casos practicos, sélo interesa una de entre todas las soluciones. Este es el caso del estudio
de un fendmeno regido por dicha ecuacion diferencial y cuya realizacién supone una Unica solucién
concreta. Estos son los llamados problemas con condiciones iniciales. Las condiciones iniciales nos
proporcionan informacion adicional sobre la solucién deseada.

Este tipo de problemas pueden ser abarcados con la transformada de Laplace de la siguiente manera.
Lo ilustramos con un ejemplo préctico.

23
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Ejemplo.
Problema:
y=3y—-2y=t
y(0)=1
¥(0)=0
Resolucion:

ZL(§)=3201)-22(y) = Z1).

Aplicando la transformada de Laplace:

, 1
s?Y —sy(0) —(0) — 3(sY —y(0)) —2Y = 2
1 1—s3—3s2
2
35— == —5-3=>Y=— - >
(s"=35-2) A s2(s2—3s—2)
11 31 1 51 1 3 5
Y=-— 22 3 _Z — -2 43¢ e
22 a5 TO5i1 asy2 2l Tate T

Una vez calculado esto, para obtener la solucion del sistema haria falta calcular la antitransformada.
Pero como no nos interesa la solucién completa del sistema, s6lo desarrollamos hasta aqui el ejemplo.

Vamos a enunciar algunos problemas en la vida real donde interfieren las ecuaciones diferenciales
y en los que la transformada de Laplace es de gran interés. En primer lugar nombraremos ejemplos
donde se suelen aplicar las transformadas de Laplace y finalmente, desarrollaremos un par de ejemplos
particulares de forma més detallada.

= [anzamiento de un cuerpo
Este tipo de problema es un ejemplo esencial en la fisica. Se trata de estudiar el comportamiento
de un cuerpo lanzado hacia arriba verticalmente desde la superficie terrestre.

= Circuitos eléctricos
En este tipo de fendmenos la funcién mds habitual que encontraremos es la intensidad de una
corriente que pasa por un circuito. Este ejemplo se desarrollara después.

= Muelles
Otro problema baésico en la fisica es el estudio del comportamiento del muelle, el cudl se de-
duce de la ley de Hooke, segtin la cual la fuerza del muelle para volver a su posicién inicial es
proporcional al desplazamiento experimentado,y ademds en sentido contrario al desplazamiento.
La férmula de la ley de Hooke es f = —kx, donde k es una contante positiva propia del mue-
lle. Pero como podemos observar, esto no es una ecuacién diferencial que es lo que buscamos.
Recordemos que f = mx”, y sustituyendo ya tenemos el problema de ecuaciones diferenciales
para el comportamiento del muelle en el caso més sencillo en el que sélo hay presencia de fuerza
anterior.

Ejemplo. (Mecanica y circuitos eléctricos)

Antes de comenzar con las ecuaciones, se explican las componentes de un problema de este tipo de
manera bdsica.

Un circuito eléctrico siempre esta compuesto de un interruptor, una bateria, un inductor, una resis-
tencia y un capacitor. Cuando el interruptor esta cerrado se produce una corriente eléctrica que se denota
i(t) y la carga del capacitor de denota ¢(t). Por la segunda ley de Kirchhoff el voltaje que produce la
fuente, E, al circuito cerrado tiene que ser igual a la suma de caci? una de las caidas de voltaje. La

q

relacién entre la corriente eléctrica y la carga en el capacitor es i = 7R
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d
Definimos la caida de voltaje en una resistencia por iR = R <d§]> , la caida de voltaje en un inductor por

di d?
L (d;> =L <dt21> y la caida de voltaje en un capacitor por %. Con estos datos y aplicando la segunda
ley de Kirchhoff al circuito simple cerrado se obtiene una ecuacién diferencial de segundo orden que
describe el sistema y nos permite calcular el valor de g(r). Consideremos un circuito con condiciones

iniciales en la carga nulas. Entonces, la ecuacion diferencial ordinaria lineal, que modela el circuito es:

di(t) .. 1 o dq(r) | dg(r) 1
L R — = E(¢), o bien, L R —q(t) =E(1).
I + l(t)—i—cq(t) (1), o bien e + o +Cq() (1)
Aplicando Laplace, queda:
E(s
0(s) = —21
Ls?+Rs+ —

Ejemplo. (Funciones de impulso)

Estas funciones se utilizan para modelizar fenémenos en los que la transferencia del momento es
tan rdpida que sélo pueden observarse los instantes anterior y posterior. Por ejemplo, cuando excitamos
instantdneamente un determinado sistema.

Este tipo de fenémenos se modelizan con la llamada delta de Dirac. Si a > 0, definimos la funcién

delta de Dirac por
+oo sit =a;
%ult) = { 0 sit£a

Observemos que

L(8)(s) = /0 e S, (1)t = .

La funcién delta tiene su aplicacion en el contexto de las ecuaciones diferenciales lineales con coefi-
cientes constante. Consideremos, por ejemplo, el problema formal de condiciones iniciales

{ Y'+y=20(1);
¥(0)=0,y(0) =

Aplicando la transformada de Laplace obtenemos que

0.

L2006 = —

de donde la solucidn, tras aplicar la transformada inversa es

ys(t) = sent.

Esta solucién recibe el nombre de respuesta al impulso 6. Notemos que ys no satisface las condiciones
iniciales del problema. Notemos que esta solucién no cumple las condiciones iniciales, sin embargo, si
tomamos el problema

{ y'+y=f(1):
¥(0) =0,y'(0) =0,

su solucion es de la forma y(r) = (f *ys) (7).

1
Por ejemplo, si f(¢) = cos(¢) la solucién del problema seria y(r) = 5 Isent, la cual, si que cumple las
condiciones iniciales.

Estas y mas aplicaciones se pueden encontrar en [6] y [2].
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