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Prologue

What is Cryptography?

Cryptography is the art and science of secret writing. Cryptography enables you to store sensitive
information or transmit it across insecure networks so that it cannot be read by anyone except the
intended recipient.

To carry out this process we need: Encrypt and decrypt. Data that can be read and understood
without any special measures is called plaintext. The method of disguising plaintext in such a way as
to hide its substance is called encryption. Encrypting plaintext results in unreadable gibberish called
ciphertext. You use encryption to ensure that information is hidden from anyone for whom it is not
intended, even those who can see the encrypted data. The process of reverting ciphertext to its original
plaintext is called decryption.

Encrypting: ciphertext = cipher (key, plaintext)

Decrypting: plaintext = cipher (key, ciphertext)

Cryptography has a sister discipline called Cryptanalysis, which is the science of analyzing and
breaking secure communication. Classical cryptanalysis involves an interesting combination of analytical
reasoning, application of mathematical tools, pattern finding, patience, determination, and luck.

Why is Cryptography important?

If you reveal your secrets to the wind you should not blame the wind for revealing them to the trees.

- Kalil Gibran, Sand and Foam [2].

Cryptography is important because on the surface it is about making something secret, but it is also
about controlling access, specifying who can get to information under what terms.

Cryptography seems closely linked to modern electronic communication. However, cryptography is
not an invention of the last few years, in fact, its birth dates back 2000 B.C when non-standard "secret"
hieroglyphics were used in ancient Egypt. Since Egyptian days cryptography has been used in one form
or the other in many, if not most, cultures that developed written language.
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iv Prologue

600 BC
Hebrew scribes used the
reverse alphabet, which is a 
simple coded by
monoalphabetics substitution.

100 BC
Cesar code: The method was to 
replace each character of the
original message with another
one placed three positions after
it in a certain alphabet.

1595
Vigenere: It consisted of 
assigning a number to each letter
of the alphabet and adding the
corresponding numbers to a key
with those of the message to 
obtain the cryptogram

1940
Lorenz machine. Machine 
similar to Enigma but with a 
more complex mechanism. 

1975
Birth of modern cryptography.

2000 BC
Non- standard “secret” 

hieroglyphics were used in 
ancient Egypt.

500 BC
Scytale: The Greeks created

an instrument to encrypt
messages, it consisted of a 

wooden cylinder in which a 
papyrus or cloth tape was

wound. 

1466
Lorem León Battista Alberti 

invented an encryption disk 
using concentric disks divided
into 24 boxes where each one

contained a caracter. 

1918
The German Enigma encryption

machine which had a rotary
encryption mechanism. 

1960
Start of quantum cryptography

by Stephen wiesner.

Figure 1: Timeline based in [5].

Until the onset of modern cryptography, conventional cryptography was used.
In conventional cryptography, also called secret-key or symmetric-key encryption, one key is used

both for encryption and decryption. The Data Encryption Standard (DES) is an example of a conventional
cryptosystem that is widely employed by the Federal Government.

Throughout the history of cryptography, there has been one problem that has made the practical use
of cryptography difficult and unwieldy, the problem of key distribution. The best cipher is only as strong
as its keys.
With Whitfield Diffie and Martin Hellman born the public key cryptography in 1975 and with it, the
modern Cryptography.
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Public key cryptography is an asymmetric scheme that uses a pair of keys for encryption: a public
key, which encrypts data, and a corresponding private, or secret key for decryption. It is computationally
infeasible to deduce the private key from the public key.

Some examples of public-key cryptosystems are Elgamal, RSA, Diffie-Hellman and DSA, the
Digital Signature Algorithm.
Public key encryption is the technological revolution that provides strong cryptography to the adult
masses.

The most widely deployed public key cryptosystem nowadays is without any doubt the RSA cryptosystem.

The success of this method lies in the difficulty of factoring large integers, of the form N = pq where
p and q are prime numbers between 1024 and 2048 bits.

But, despite not being able to develop efficient algorithms that break the RSA encryption system, a
new advance threatens to destroy it: It is quantum computers.

Under the assumption that quantum computers can be built, Shor in 1997,discovered an algorithm
that could factor an integer in polynomial time in terms of its size in bits, thus rendering the RSA
cryptosystem useless and this algorithm can also break essentially all number theoretic based public
key cryptosystem. There have been great efforts dedicated to the construction of quantum computers
and although nobody has built such computersable to attack the RSA or the discrete logarithm based
cryptosystems, definitely there is a need for other efficient and secure cryptosystems.

There are currently a few families of cryptosystems that could potentially resist future quantum
computers: these are the cryptosystems based on error-correcting codes, the public key cryptosystems
based on lattices, and the multivariate public key cryptosystems. The class of multivariate cryptosystems
is a special class of schemes whose security is related to the hardness of solving sets of multivariate
equations. The way of solving them is to compute a Gröbner basis.

The multivariate polynomials that constitute the system are generally chosen to be quadratic polynomials
defined over a small finite field which is ranging from F2 to F28 .

The security of the scheme has to be assessed by mounting a specially crafted algebraic attack that
exploits the underlying algebraic structure.

The current proposals for multivariate asymmetric cryptosystems might be classified into three main
categories:

• Matsumoto-Imai like schemes

• Oil and Vinegar like schemes

• Tepwise triangular schemes

All of the schemes from the first three categories rely on the hardness of system solving, but some
of them additionally rely on other hard problems such as finding rational mappings between polynomial
maps or finding a linear combination of small rank of a given set of matrices.

Because of this, in this document we will focus on the study of the Matsumoto-Imai Scheme.





Resumen

Este trabajo está constituido por 3 capítulos distribuidos de la siguiente forma:

- Capítulo 1: Conceptos previos.

- Capítulo 2: Bases de Gröbner.

- Capítulo 3: Técnicas de criptoanálisis en criptografía de clave pública multivariable.

En el primero de ellos, comenzamos dando al lector los conceptos necesarios para la comprensión
de los posteriores capítulos. Entre estos conceptos se incluyen definiciones como las de monomio,
polinomio, máximo común divisor y mínimo común múltiplo de monomios, ideal y variedad entre
otras.
También revisamos la existencia de un algoritmo de la división para polinomios en una variable, que
posteriormente ampliaremos a varias variables. El contenido de este capítulo está basado en su totalidad
en [4].

Una vez completada la parte anterior, abordamos la parte principal de este trabajo, pues en el
segundo capítulo se desarrolla la construcción de las bases de Gröbner, a través del algoritmo de
Buchberger. Para ello, definiremos orden monomial y estableceremos el algoritmo de la división en
k[x1, ...,xn].

Gracias a los conceptos anteriores concluiremos que el resto de la división de un polinomio entre
una base de Gröbner es único independientemente del orden monomial establecido.
Sin abandonar este capítulo enunciamos y demostramos resultados de gran importancia como son el
Lema de Dickson, el Teorema de las bases de Hilbert y el Teorema de unicidad de las bases de
Gröbner reducidas.

Para finalizar esta segunda parte, daremos solución a cuatro problemas que somos capaces de
resolver gracias a las bases de Gröbner:

1. Problema de descripción de un ideal, es decir, saber sí un ideal está generado por un conjunto
finito.

2. Problema de pertenencia a un ideal.

3. Problema referente a la resolución de sistemas de ecuaciones de polinomios.

4. Problema de Implicitación, de obtención de un sistema de ecuaciones a partir de sus soluciones.

Con ayuda de la herramienta SageMath [6] implementamos los algoritmos incluidos en los anexos
para poder calcular de manera eficaz los ejemplos propuestos a lo largo de la extensión del capítulo. La
teoría de dicho capítulo se halla en los textos referentes a [1] y [4].
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viii Resumen

En el último capítulo nos centramos en los sistemas criptográficos multivariables, más conocidos
como MPK. En él establecemos el esquema general para la construcción de la clave pública en este tipo
de criptosistemas.

Seguidamente desarrollamos el primer MPK propuesto en la historia de la griptografía: El esquema
A de Matsumoto-Imai, también conocido como esquema en C*. El cual está basado en la representación
oscura de polinomios y fue presentado por primera vez en 1985.

Para finalizar este capítulo, y con él, este trabajo; planteamos un ataque a este criptosistema mediante
bases de Gröbner.

En los ejemplos de ataque al criptosistema de Matsumoto-Imai estudiados comprobamos que la
dificultad de éxito crece rápidamente al aumentar el número de variables involucradas.

Para este último capítulo nos basamos en el árticulo que da comienzo en [3, pag. 263].
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Chapter 1

Previous concepts

In this chapter we will introduce the necessary concepts and definitions to tackle for later, the rest of the
chapters.

1.1 Polynomials and Affine Space

Definition 1. A monomial in x1, ...,xn is a product of the form

xα1
1 · x

α2
2 · ... · x

αn
n

where all of the exponents α1, ...,αn are non-negative integers. The total degree of this monomial is
the sum of its exponents.
We can simplify the notation for monomials as follows: let α =(α1, ...,αn) be an n-tuple of non-negative
integers. When α = (0, ...,0), note that xα = 1. We also let |α| = α1 + ...+αn denote the total degree
of the monomial xα .

Definition 2. A polynomial f in x1, ...,xn with coefficients in k is a finite linear combination of monomials.
We will write a polynomial f in the form

f = ∑
α

aαxα , aα ∈ k

where the sum is over a finite number of n-tuples α = (α1, ...,αn). The set of all polynomials in x1, ...,xn

with coefficients in k is denoted k[x1, ...,xn].

Definition 3. Let f = ∑α aαxα be a polynomial in k[x1, ...,xn].

i) We call aα the coefficient of the monomial xα .

ii) If aα 6= 0, then we call aαxα a term of f .

iii) The total degree of f , denoted deg( f ), is the maximun |α | such that the coefficient aα is nonzero.

Example 1. Let’s see an example, a polynomial

f = 2
3 x2y3z2 + 3

2 x4z3−3xyz+ y2 ∈Q[x,y,z].

The polynomial has four terms and total degree is seven. In this case, there are two terms of maximal
total degree, which is something that can’t happen for polynomials of one variable.

Definition 4. Given a field k and a positive integer n, we define the n-dimensional affine space over k
to be the set

kn = {(a1, ...,an)|a1, ...,an ∈ k}.
Proposition 1.1. Let k be an infinite field, and let f ∈ k[x1, ...,xn]. Then f = 0 in k[x1, ...,xn] if and only
if f : kn −→ k is the zero function.

1



2 Chapter 1. Previous concepts

1.2 Affine Varieties

Definition 5. Let k be a field, and let f1, ..., fs be the polynomials in k[x1, ...xn].
Then we set

V ( f1, ..., fs) = {(a1, ...,an) ∈ kn| fi(a1, ...,an) = 0 for all 1≤ i≤ s}.
We call V ( f1, ..., fs) the affine variety defined by f1, ..., fs.

Thus, an affine variety V ( f1, ..., fs) ⊂ kn is the sest of all solutions of the system of equations
f1(x1, ...xn) = ...= fs(x1, ...xn) = 0

Lemma 1.2. If V,W ⊂ kn are varieties, then so are V ∩W and V ∪W.

1.3 Ideals

The goal of this section is to introduce the reader to some naturally ocurring ideals and to see how iedals
relate to affine varieties.

Definition 6. A subset I ⊂ k[x1, ...,xn] is an ideal if it satisfies:

i) 0 ∈ I.

ii) If f ,g ∈ I, then f +g ∈ I.

iii) If f ∈ I and h ∈ K[x1, ...,xn], then h f ∈ I.

Definition 7. Let f1, ..., fs be polynomials in k[x1, ...xn], the set generated by

〈 f1, ..., fs〉=
{ s

∑
i=1

hi fi : h1, ...,hs ∈ k[x1, ...,xn]

}
is an ideal.

Lemma 1.3. If f1, ..., fs ∈ K[x1, ...,xn], then 〈 f1, ..., fs〉 is an ideal of K[x1, ...,xn].

Definition 8. We will call 〈 f1, ..., fs〉 the ideal generated by f1, ..., fs.

Also, given f1, ..., fs ∈ K[x1, ...,xn], we set the system of equations

f1 = 0
...

fs = 0.

If we multiply the first equation by h1 ∈ K[x1, ...,xn], the second by h2 ∈ k[x1, ...,xn] and so on; then
add the resulting equations, we obtain:

h1 f1 +h2 f2 + ...+hs fs = 0,

wich is a consequence of our original system. Notice that the left-hand side of this equation is an element
of the ideal 〈 f1, ..., fs〉. Thus, we can think of 〈 f1, ..., fs〉 as consisting of all "polynomial consequences"
of the equations f1 = f2 = ...= fs = 0.

Proposition 1.4. If f1, ..., fs and g1, ...gr are bases of the same ideal in K[x1, ...,xn], so that 〈 f1, ..., fs〉=
〈g1, ...,gr〉, then V ( f1, ..., fs) =V (g1, ...,gt).

Definition 9. Let V ⊂ kn be an affine variety. Then we set

I(V ) = { f ∈ K[x1, ...,xn] : f (a1, ...,an) = 0 ∀ (a1, ...,an) ∈V}.

Where I(V ) is an ideal.
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1.4 Polynomials of One Variable

Definition 10. Given a non zero polynomial f ∈ k[x], let

f = a0xm +a1xm−1 + ...+am

where a0 is not null and all ai ∈ k.
Then we say that a0xm is the leading term of f, written LT ( f ) = a0xm.

Example 2. If f = 2x3 + x2−3x+1, then LT ( f ) = 2x3.

Proposition 1.5. deg( f )≤ deg(g)⇐⇒ LT ( f ) divides LT (g).

Proposition 1.6. The Division Algorithm

Let k be a field and let g be a non zero polynomial in k[x]. Then every f ∈ k[x] can be written as

f = q ·g+ r,

where q,r ∈ k[x], and either r = 0 or deg(r)< deg(g). Furthermore, q and r are unique, and there is an
algorithm for finding q and r.

Here is the algorithm for finding q and r, presented in pseudocode:

Input: g, f
Out put : q,r
q := 0;r := f
WHILE r 6= 0 AND LT (g) divides LT (r) DO

q := q+LT (r)/LT (g)
r− (LT (r)/LT (g))g

Corollary 1. If k is a field and f ∈ k[x] is a nonzero polynomial, then f has a most deg( f ) roots in k.

Corollary 2. If k is a field, then every ideal of k[x] can be written in the form 〈 f 〉 for some f ∈ k[x].
Furthermore, f is unique up to multiplication by a nonzero constant in k.

Definition 11. A greatest common divisor of polynomials f ,g ∈ k[x] is a polynomial h such that:

• h divides f and g.

• If p is another polynomial which divides f and g, then p divides h.

When h has these propierties, we write h = GCD( f ,g).

Proposition 1.7. These are the main properties of GCDs. Let f, g ∈ k[x]. Then:

• GCD( f ,g) exists and is unique up to multiplication by a nonzero constant in k.

• GCD( f ,g) is a generator of the ideal 〈 f ,g〉.

• There is an algorithm for finding GCD( f ,g).
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Example 3. Let’s see an example of how the Euclidean algorithm works, for x8−1 and x12−1.

• We use de division algorithm:

x8−1 = 0(x12−1)+(x8−1)

x12−1 = x4(x8−1)+(x4−1)

x8−1 = (x4 +1)(x4−1)+0.

Then, by the last equation, we have:

GCD(x8−1,x12−1) = GCD(x12−1,x8−1) and

GCD(x8−1,x12−1) = GCD(x8−1,x4−1) = GCD(x4−1,0) = x4−1.

• This GCD computation answers our earlier question of findin a generator for
the ideal 〈x8−1,x12−1〉 and for the proposition 1.7 we have:

GCD(x8−1,x12−1) = x4−1.

Definition 12. A greatest common divisor of polynomial f1, ..., fs ∈ k[x] is a polynomial h such that:

• h divides f1, ..., fs.

• If p is another polynomial which divides f1, ..., fs, then p divides h.

When h has these propierties, we write h = GCD( f1, ..., fs).

Proposition 1.8. Let f1, ..., fs ∈ k[x], where s≥ 2. Then:

• GCD( f1, ..., fs) exists and is unique up to multiplication by a nonzero constant in k.

• GCD( f1, ..., fs) is a generator of the ideal 〈 f1, ..., fs〉.

• If s≥ 3, then GCD( f1, ..., fs) = GCD( f1,GCD( f2, ..., fs)).

• There is an algorithm for finding GCD( f1, ..., fs).

Example 4. Consider the ideal

〈x3−3x+2,x4−1,x6−1〉 ⊂ k[x].

We know that GCD(x3−3x+2,x4−1,x6−1) is a generator. But also we can check that

GCD(x3−3x+2,x4−1,x6−1)=GCD(x3−3x+2,GCD(x4−1,x6−1))=GCD(x3−3x+2,x2−1)= x−1.

It follows that 〈x3−3x+2,x4−1,x6−1〉= 〈x−1〉.

Proposition 1.9. Given f1, .., fs ∈ k[x], is there an algorithm for deciding whether a given polynomial
f ∈ k[x] lies in the ideal 〈 f1, ..., fs〉
To answer this question we will describe the following algorithm: The first step is use GCDs to find
a generator h of 〈 f1, .., fs〉 is equivalent to f ∈ 〈h〉, we need only use the division algorithm to write
f = qh+ r, where deg(r)< deg(h). It follows that is in the ideal if an olnly if r = 0.

Example 5. Suppose we wanted to know whether x3 +4x2 +3x−7 ∈ 〈x3−3x+2,x4−1,x6−1〉.
We saw above that x− 1 is a generator of this ideal so that our question can be rephrased as whether
x3 +4x2 +3x−7 ∈ 〈x−1〉
Dividing, we find that

x3 +4x2 +3x−7 = (x2 +5x+8)(x−1)+1

and it follows that x3 +4x2 +3x−7 is not in the ideal 〈x3−3x+2,x4−1,x6−1〉.



Chapter 2

Gröbner Bases

2.1 Problems

Through Gröbner bases we will solve the following problems:

a. The IDEAL DESCRIPTION PROBLEM:
Does every ideal I ⊆ k[x1, ...,xn] have a finite basis? In other words, can we write I = 〈 f1, ..., fs〉
for fi ∈ k[x1, ...,xn]?.

b. The IDEAL MEMBERSHIP PROBLEM:
Given f ∈ k[x1, ...,xn] and an ideal I = 〈 f1, ..., fs〉, determine if f ∈ I. Geometrically, this is closely
related to the problem of determining whether V ( f1, ..., fs) lies on the variety V ( f ).

c. The PROBLEM OF SOLVING POLYNOMIAL EQUATIONS:
Find all common solutions in kn of a system of polynomial equations

f1(x1, ...,xn) = · · ·= fs(x1, ...,xn) = 0.

This is the same as asking for the points in the affine variety V ( f1, ..., fs).

d. The IMPLICITIZATION PROBLEM:
Let V ⊆ kn be given parametrically as

x1 = g1(t1, ..., tm),

...

xn = gn(t1, ..., tm).

If the gi are polynomials (or rational functions) in the variables t j, then V will be an affine variety
or part of one. Find a system of polynomial equations (in the xi) that defines the variety.

5



6 Chapter 2. Gröbner Bases

2.2 Finite Fields

Definition 13. A field F is finite if there is a finite number of elements.

Definition 14. Let Fq be a finite field of characteristic p-prime, q = pn.

Definition 15. The field F2 = {0,1} is given by the following operation tables.

+ 0 1
0 0 1
1 1 0

· 0 1
0 0 0
1 0 1

Figure 2.1: Addition and multiplication tables in F2.

F2 is also denoted by GF(2), the Galois field of two elements, and it is the smallest field.

Properties of F2:

• Every element x of F2 satisfies x+ x = 0 and therefore −x = x, this means that the characteristic
of F2 is 2.

• Since 1 ·1 = 1 and 0 ·0 = 0, then x2 = x for all elements of F2. Likewise, xk = x for all k > 0 =⇒ x
is idempotent with respect to multiplication.

From now on, all the examples will be done on F2.

2.3 Ordering on the Monomials

Definition 16. A monomial ordering on k[x1, ...,xn] is any relation > on Zn
≥0, or equivalently, any

relation on the set of monomials xα , α ∈Zn
≥0, satisfying:

• > is a total (or linear) ordering on Zn
≥0.

• If α > β and γ ∈Zn
≥0, then α + γ > β + γ .

• > is a well ordering on Zn
≥0. This means that every nonempty subset of Zn

≥0 has a smallest
element under >.

Lemma 2.1. An order relation > on Zn
≥0 is a well ordering if and only if every strictly decreasing

sequence in Zn
≥0

α(1)> α(2)> α(3)> ...

must be finite. That is, there are no strictly decreasing infinite chains.

Definition 17. Lexicographic Order
Let α = (α1, ...,αn) and β = (β1, ...,βn) ∈Zn

≥0.
We say α >lex β if, in the vector difference α−β ∈Zn, the left-most nonzero entry is positive. We will
write xα >lex β .

Proposition 2.2. The lex ordering on Zn
≥0 is a monomial ordering.

Definition 18. Graded Lex Order
Let α , β ∈Zn

≥0. We say α >grlex β if

|α|=
n

∑
i=1

αi > |β |=
n

∑
i=1

βi, or |α|= |β | and α >lex β .



Gröbner bases and applications... - Marta Centellas 7

Definition 19. Graded Reverse Lex Order
Let α , β ∈Zn

≥0. We say α >grvlex β if

|α|=
n

∑
i=1

αi > |β |=
n

∑
i=1

βi, or |α|= |β |

and, in α−β ∈Zn, the right-most nonzero entry is negative.

Example 6. Let a polynomial f (x,y,z) = x+ y+ x2 + z2 + x3 in F2[x,y,z]. We rewrite f , ordering the
terms with x > y > z using lex order, grlex order and grevlex order.

We write each of the terms of the polynomial f as a vector with three componentes:

x→ (1,0,0), y→ (0,1,0), x2→ (2,0,0),
z2→ (0,0,2), x3→ (3,0,0).

• Lexicographic Order: We must subtract the vectors and will be the greater, it will be greater that
in this subtraction the term has more to the left is not null and positive.

f = x3 + x2 + x+ y+ z2.

• Graded Lex Order: The greater term is the term that when add the components of the vector is
greater and if two are equal we take the lexicographic order.

In this case, we add the components of each vector:

x→ 1+0+0 = 1, y→ 0+1+0 = 1,
x2→ 2+0+0 = 2, z2→ 0+0+2 = 2,
x3→ 3+0+0 = 3.

In cases where the value of the sum is the same, we will apply lexicographic order, and then we
have the polynomial rewrite:

f = x3 + x2 + z2 + x+ y.

• Graded Reverse Lex Order: The greater term is the term that when add the components of the
vector is greater and if two are equal the one that when we doing the subtraction has the term
more to the right not null negative.
The solution is:

f = x3 + x2 + z2 + x+ y.

Definition 20. Let f = ∑α aαxα be a nonzero polynomial in k[x1, ...,xn] and let > be a monomial order.

i) The multidegree of f is

multideg( f ) = max(α ∈Zn
≥0 : aα 6= 0).

ii) The leading coefficient of f is
LC( f ) = amultideg( f ) ∈ k.

iii) The leading monomial of f is
LM( f ) = xmultideg( f ).

iv) The leading term of f is
LT ( f ) = LC( f ) ·LM( f ).
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Example 7. To illustrate, let f = x4y5z+ x3y2z− xy2z4 ∈ F2[x,y,z] as before and let > denote the lex
order. Then:

multideg( f ) = (4,5,1),
LC( f ) = 1,

LM( f ) = x4y5z,
LT ( f ) = x4y5z.

Lemma 2.3. Let f ,g ∈ k[x1, ...,xn] be nonzero polynomials. Then:

i) multideg( f g) = multideg( f )+multideg(g).

ii) If f +g 6= 0, then multideg( f +g)≤ max(multideg( f ),multideg(g)).

If, in addition, multideg( f ) 6= multideg(g), then equality occurs.

2.4 Division Algorithm in K[x1, ...,xn]

We saw how the division algorithm could be used to solve the ideal membership problem for polynomials
of one variable. To study this problem when there are more variables, we will formulate a division
algorithm for polynomials in k[x1, ...,xn] that extends the algorithm for k[x]. In the general case, the goal
is to divide f ∈ k[x1, ...,xn] by f1, ..., fs ∈ k[x1, ...,xn]. As we will see, this means expressing f in the
form

f = q1 f1 + ...+qs fs + r,

where the quotients q1, ...,qs and remainder r lie in k[x1, ...,xn].

Theorem 2.4. Division Algorithm in k[x1, ...,xn]
Fix a monomial order > on Zn

≥0, and let F = ( f1, ..., fs) be an ordered s-tuple of polynomials in
k[x1, ...,xn]. Then every f ∈ k[x1, ...,xn] can be written as

f = q1 f1 + ...+qs fs + r,

where qi,r∈ k[x1, ...,xn], and either r = 0 or r is a linear combination, with coefficients in k, of monomials,
none of which is divisible by any of LT ( f1), ...,LT ( fs).
We will call r a remainder of f on division by F. Furthermore, if qi fi 6= 0, then we have

multideg( f )≥ multideg(qi fi).

The structure of the algorithm would be:

Input : f1, ..., fs, f
Output: q1, ...,qs,r
q1 := 0; ...;qs := 0;r := 0
p := f
WHILE p 6= 0 DO

i := 1
divisionoccurred := f alse
WHILE i≤ s AND divisionoccurred = f alse DO

IF LT ( fi) divides LT (p) THEN
qi := qi +LT (p)/LT ( fi)
p := p− (LT (p)/LT ( fi)) fi

divisionoccurred := true
ELSE

i := i+1
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IF divisionoccurred = f alse THEN
r := r+LT (p)
p := p−LT (p)

RETURN q1, ...,qs,r

There are two possiblities:

• DIVISION STEP: If some LT ( fi) divides LT (p), then the algorithm proceeds as in the one-variable
case.

• REMAINDER STEP: If no LT ( fi) divides LT (p), then the algorithm adds LT (p) to the remainder.

Example 8. We will first divide f = xy3+xy+y2+x+1 by f1 = xy+1 and f2 = x+1, using lex order
in F2[x,y].
We want to employ the same scheme as for division of one variable polynomials, the difference being
that there are now several divisors and quotients.

Look at the leading terms LT ( f1) = xy and LT ( f2) = x, in this case both divide the leading term of
f wich is LT ( f ) = xy3. Since f1 is listed first, we will use it.
Thus, we divide xy3 into xy, leaving y2, so that when you divide f by f1 the leaving y2 + 1 and the
remainder x.
Now, we repeat the same process on x. This time we must use f2 because LT ( f1) = xy does not divide
LT (x) = x, and then we obtain a new quotient,which is 1 and new rest, which is 1.

Since LT ( f1) and LT ( f2) do not divide 1, the remainder is r = 1 and we are done.
Finally, we obtain:

xy3 + xy+ y2 + x+1 = (y2 +1)(xy+1)+1(x+1)+1.

For other more complex examples we will use the alghorithm A that we have programmed in
SageMath [6].

Example 9. In this example, we will see that order matters. So we will make the same division in
differents orders.
Let f = xy2z+ xz+ y+ z , f1 = xy+1 , f2 = y2 +1 and f3 = y+ z in F2[x,y,z] with lex order.

• Dividing f by F = ( f1, f2, f3), the result is:

xy2z−2xz+ y = yz(xy+1)+0(y2 +1)+(z+1)(y+ z)+(xz+ z2)

f = yz · f1 +0 · f2 +(z+1) · f3 +(xz+ z2).

• Dividing f by F = ( f2, f1, f3), the result is:

xy2z−2xz+ y = xz(y2 +1)+0(xy+1)+1(y+ z)+0

f = xz · f2 +0 · f1 +1 · f3 +0.

• Dividing f by F = ( f3, f2, f1), the result is:

xy2z−2xz+ y = (xyz+ xz2 +1)(y+ z)+0(y2 +1+0(xy+1)+(xz3 + xz)

f = (xyz+ xz2 +1) · f3 +0 · f2 +0 · f1 +(xz3 + xz).

Thus, we have verified that the remainder is not unique, since it varies depending on the order in
which the dividers are taken.

As in the previous example, we can do the operations with an algorithm A.
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2.5 Monomial Ideals and Dickson’s Lemma

Definition 21. An ideal I ⊂ k[x1, ...,xn] is a monomial ideal if there a subset A ⊂ Zn
≥0 (possibly

infinite) such that I consists of all polynomials which are finite sums of the form ∑α∈A hαxα , where
hα ∈ k[x1, ...,xn]. In this case, we write I = 〈xα : α ∈ A〉.

Lemma 2.5. Let I = 〈xα : α ∈ A〉 be a monomial ideal. Then a monomial xβ lies in I and only if xβ is
divisible by xα for some α ∈ a.

Lemma 2.6. Let I be a monomial ideal, and let f ∈ k[x1, ...,xn]. Then the following are equivalent:

i) f ∈ I.

ii) Every term of f lies in I.

iii) f is a k-linear combination of the monomials in I.

Corollary 3. Two monomial ideals are the same if and only if they contain the same monomials.

Theorem 2.7. Dickson’s Lemma
A monomial ideal I = 〈xα : α ∈ A〉 ⊂ k[x1, ...,xn] can be written down in the form I = 〈xα(1),...,α(s)〉,
where α(1), ...,α(s) ∈ A. In particular, I has a finite basis.

Proof. We proceed by induction on n.

• Let n = 1⇒ I is generated by the monomials xα
1 , where α ∈ A ⊂ Z≥0. Let β be the smallest

element of A⊂ Z≥0.

• Now assume n> 1 and that the theorem is true for n−1. We will write the variables as x1, ...,xn−1,y,
so that monomials in k[x1, ...,xn−1,y] can be written as xαym, where α = (α1, ...,αn−1)∈Zn−1

≥0 and
m ∈ Z≥0.

Suppose that I ⊂ k[x1, ...,xn−1,y] is a monomial ideal. To find generators for I, let J be the ideal
in k[x1, ...,xn−1] generated by the monomials xα for which xαym ∈ I for some m≥ 0.
Since J is a monomial ideal in k[x1, ...,xn−1], our inductive hypothesis implies that finitely many
of the xα generate J , say J =< xα(1), ...,xα(s) >.

For each i between 1 and s, the definition of J tells us that xα(i)ymi ∈ I for some mi ≥ 0. Let m be
the largest of the mi and then, for each k between 0 and m−1, consider the ideal Jk ⊂ k[x1, ...,xn−1]
generated by the monomials xβ such that xβ yk ∈ I.

Using our inductive hypothesis again, Jk has a finite generating set of monomials, say
Jk =< xαk(1), ...,xαk(sk) >.

We claim that I is generated by the monomials in the following list:

J : xα(1)ym, ...,xα(s)ym,

J0 : xα0(1), ...,xα0(s0),

J1 : xα1(1), ...,xα1(s1)y,

...

Jm−1 : xαm−1(1)ym−1, ...,xαm−1(sm−1)ym−1.

First note that every monomial in I is divisible by one on the list. To see why, let xαyp ∈ I :
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- If p≥ m, thenxαyp is divisible by some xα(i)ym by the construction of J.

- If p≤ m−1, then xαyp is divisible by some xα
p ( j)yp by the construction of Jp.

So by the lemma 2.5 we have that the above monomials generate an ideal having the same
monomials as I and by corollary 3 we appreciate that they must be the same.

To complete the proof of the theorem, we need to showthat the finite set of generators can be chosen
from a given set of generators for the ideal. If we switch back to writing the variables as x1, ...,xn, then
our monomial ideal is I =< xα : α ∈ A >⊂ k[x1, ...,xn].
We need to show that I is generated by finitely many of the xα ’s, where α ∈ A.

But previously , we have seen that I =< xβ (1), ...,xβ (s) for some monomials xβ (i) in I, as xβ (i) ∈
I =< xα : α ∈ A > that implies that each xβ (i) is divisible by xβ (i) for some α(i)∈ A. And for this reason
we have I =< xα(1), ...,xα(s) >.

2.6 The Hilbert Basis Theorem and Gröbner Bases

Definition 22. Let I ⊂ k[x1, ...,xn] be an ideal other than {0}.

i) We denote by LT (I) the set of leading terms of elements of I. Thus,

LT (I) = {cxα : there exists f ∈ with LT ( f ) = cxα}.

ii) We denote by 〈LT (I)〉 the ideal generated by the elements of LT (I).

Proposition 2.8. Let I ⊂ k[x1, ...,xn] be an ideal.

i) 〈LT (I)〉 is a monomial ideal.

ii) There are g1, ...,gs ∈ I such that 〈LT (I)〉= 〈LT (g1), ...,LT (gt)〉.

Theorem 2.9. Hilbert Basis Theorem
Every ideal I ⊂ k[x1, ...,xn] has a finite generating set. That is, I = 〈g1, ...,gs〉 for some g1, ...,gs ∈ I

Proof. We separate in two cases:

• In the first case, let I = 0, we take our generating set to be 0, which is certainly finite.

• If I 6= {0}, that is, contains some nonzero polynomial, then a generating set g1, ...,gs for I can
be constructed as follows. By Proposition 2.8 , there are g1, ...,gs ∈ I such that < LT (I) >=<
LT (g1), ...,LT (gt)>, which it invovles I =< g1, ...,gs >. Let’s see it for double content:

- It is clear that < g1, ...,gs >⊂ I since each gt ∈ I .

- Conversely, let f ∈ I be any polynomial. If we apply the division algorithm to divide f by
< g1, ...,gs >, then we get an expression of the form

f = a1g1 + ...+atgt + r

where no term of r is divisible by any of LT (g1), ...,LT (gt). We claim that r = 0. To see
this, note that

r = f −a1g1− ...−atgt ∈ I.
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If r 6= 0, then LT (r)∈< LT (I)>=< LT (g1), ...,LT (gt)>, and by Lemma 2.5, it follows that
LT (r) must be divisible by some LT (gi). This contradicts what it means to be a remainder,
and, consequently, r must be zero. Thus,

f = a1g1 + ...+atgt +0 ∈< g1, ...,gs >,

which shows that I ⊂< g1, ...,gs >.

This completes the proof.

Definition 23. Fix a monomial order. A finite subset G = {g1, ...,gs} of an ideal I is said to be a
Gröbner basis if

〈LT (g1), ...,LT (gt)〉= 〈LT (I)〉.

Corollary 4. Fix a monomial order. Then every ideal I ⊂ k[x1, ..,xn] other than {0} has a Gröbner basis.
Furthermore, any Gröbner basis for an ideal I is a basis of I.

Theorem 2.10. The Ascending Chain Condition
Let

I1 ⊂ I2 ⊂ I3 ⊂ ...

be an ascending chain of ideals in k[x1, ...,xn]. Then where exists an N ≥ 1 such that

IN = IN+1 = IN+2 = ... .

Definition 24. Let I ⊂ k[x1, ...,xn] be an ideal. We will denote by V (I) the set

V (I) = {(a1, ...,an) ∈ kn : f (a1, ...,an) = 0 for all f ∈ I}.

Proposition 2.11. V (I) is an affine variety. In particular, if I = 〈 f1, ..., fs〉, then V (I) =V ( f1, ..., fs).

2.7 Propierties of Gröbner Bases

Proposition 2.12. Let G = {g1, ...,gs} be a Gröbner basis for an ideal I ⊂ k[x1, ...,xn] and let f ∈
k[x1, ...,xn] . Then there is a unique r ∈ k[x1, ...,xn] with the following two propierties:

i) No term of r is divisible by any of LT (g1), ...,LT (gt).

ii) There is g ∈ I such that f = g+ r.

In particular, r is the remainder on division of f by G no matter how the elements of G are listed when
using the division algorithm.

Example 10. Let f = xy and G = { f1, f2} a Gröbner basis with f1 = x+ z and f2 = y− z in F2[x,y,z] .
We use G to study the uniquess of the division algorithm. We should get the same remainder, but the
quotients should be different for the two divisions (lex order).

• Divide xy by { f1, f2} with a lex order.

f = y · f1 + z · f2 + z2⇒ The remainder is + z2.

• Divide xy by { f2, f1} with a lex order.

f = x · f2 + z · f1 + z2⇒ The remainder is + z2.
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Corollary 5. Let G = {g1, ...,gs} be a Gröbner basis for an ideal I ⊂ k[x1, ...,xn] and let f ∈ k[x1, ...,xn].
Then f ∈ I if and only if the remainder on division of f by G is zero.

Definition 25. We will write f F for the remainder on division of f by the ordered s-tuple F =( f1, ..., fs).
If F is a Gröbner basis for 〈 f1, ..., fs〉 , then we can regard F as a set.

Example 11. For instance, we take the same function, and the same basis of the example 10.

xyG = z2

Definition 26. Let f ,g ∈ k[x1, ...,xn] be nonzero polynomials.

i) If multideg( f ) = α and multideg(g) = β , then let γ = (γ1, ...,γn), where γi = max(αi,βi) for each
i. We call xγ the least common multiple of LM( f ) and LM(g), written xγ =LCM(LM( f ),LM(g)).

ii) The S-polynomial of f and g is the combination

S( f ,g) =
xγ

LT ( f )
· f − xγ

LT (g)
·g .

Example 12. Let f = x3y2− x2y3 + x and g = 3x4y+ y2 in F2[x,y] with the grlex order.
Then γ = (4,2)⇒ xγ = x4y2 and

S( f ,g) =
x4y2

x3y2 · f − x4y2

x4y
·g = x · f + y ·g = x3y3 + x2 + y3.

An S-polynomial S( f ,g) is "designed " to produce cancellation of leading terms.

Proposition 2.13. Let I ⊂ k[x1, ...,xn] be an ideal, and let G be a Gröbner basis of I. Then:

i) f G
= gG if and only if f −g ∈ I.

ii) f +gG
= f G

+gG.

iii) f gG
= f GgG.

Proposition 2.14. Let f ,g ∈ k[x1, ...,xn] and xα ,xβ be monomials. Verify that

S(xα f ,xβ g) = xγS( f ,g)

where

xγ =
LCM(xαLM( f ),xβ LM(g))

LCM(LM( f )LM(g))
.

Lemma 2.15. Suppose we have a ∑
s
i=1 ci fi, where ci ∈ k and multideg( fi) = γ ∈ Zn

≥0 for all i. If
multideg(∑s

i=1 ci fi)< δ , then ∑
s
i=1 ci fi is a lineal combination , with coefficientes in k, of the S-polynomials

S( f j, fk) for 1≤ j,k ≤ s. Furthermore, each S( fi, fk) has multidegree < δ .

Theorem 2.16. Buchberger’s S-pair criterion
Let I be a polynomial ideal. Then a basis G = {g1, ...,gs} for I is a Gröbner basis for I if and only if for
all pairs i 6= j, the remainder of the division of S(gi,g j) by G is zero.
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2.8 Buchberger’s Algorithm

Example 13. Consider the ring F2[x,y] with grlex order, and let

I =< f1, f2 >=< x2y+1,xy2 + x > .

We see that { f1, f2} is not a Gröbner basis for I because LT (S( f1, f2)) = x2 /∈< LT ( f1),LT ( f2) >. To
produce a Gröbner basis, one easy idea is to try first to extend tge ordiginal generating set to a Gröbner
basis by adding more polynomials in I. What generators should we add?
We have S( f1, f2) = x2 + y and the remainder on division by F =< f1, f2 >=< x2y+ 1,xy2 + x > is
x2 + y, which is non zero. Hence, we should to add that remainer in oir generating set, as a new
generator f3 = x2 + y. But,

S( f1, f2) = f3⇒ S( f1, f2)
F
= 0

S( f1, f3) = y2−1⇒ S( f1, f3)
F
= y2 +1

After that, we can see F is not a Gröbner basis yet. Hence, we will add f4 = y2+1 to our generating
set,

F =< f1, f2, f3, f4 >=< x2y+1,xy2 + x,x2 + y,y2 +1 > .

And we obtain:
S( fi, f j)

F
= 0 f or all 1≤ i≤ j ≤ 4.

It follows that a grlex Gröbner basis for I is:

< f1, f2, f3, f4 >=< x2y+1,xy2 + x,x2 + y,y2 +1 > .

The above example suggests than in general, one should try to extend a basis F to a Gröbner basis
by successively adding nonzero remainders S( f1, ..., f j)

F
to F .

Theorem 2.17. Let I = 〈 f1, ..., fs〉 6= 0 be a polynomial ideal. Then a Gröbner basis for I can be
constructed in a finite number of steps by the following algorithm:

Input: F = ( f1, ..., fs)
Output: a Gröbner basis G = (g1, ...,gt) for I, with F ⊂ G
G := F
REPEAT

G′ := G
FOR each pair {p,q}, p 6= q in G’ DO

S := S(p,q)
G′

IF S 6= 0 THEN G := G∪{S}
UNTIL G = G′.

Lemma 2.18. Let G be a Gröbner basis for the polynomial ideal I. Let p ∈ G be a polynomial such
that LT (p) ∈ 〈LT (G−{p})〉. Then G−{p} is also a Gröbner basis for I.

Definition 27. A minimal Gröbner basis for a polynomial ideal I is a Gröbner basis G for I such that:

i) LC(p) = 1 for all p ∈ G.

ii) For all p ∈ G, LT (p) /∈ 〈LT (G−{p})〉.

Example 14. In this example, we going to construct a minimal Gröbner basis. We return once again to
the ideal I studied in the example 13.

• In this case, any of the leading coefficients are different from 1, so we already have the first
condition of the previous definition.
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• Now, we going to eliminate any unneeded generators that might have been including.

LT ( f1) = x2y = y · x2 = y ·LT ( f3).

So, we can dispense with f1 in the minimal Gröbner basis.

LT ( f2) = xy2 = x · y2 = x ·LT ( f4).

We can also eliminate f2.

For this reason, the minimal Gröbner basis is: G =< f3, f4 >=< x2 + y,y2 +1 > .

Proposition 2.19. Given a monomial order, if G and G̃ be minimal Gröbner bases for the ideal I,then:

i) LT (G) = LT (G̃).

ii) G and G̃ have the same number of elements.

Definition 28. A reduced Gröbner basis for a polynomial ideal I is a Gröbner basis G for I such that:

i) LC(p) = 1 for all p ∈ G.

ii) For all p ∈ G , no monomial of p lies in 〈LT (G−{p})〉.

Proposition 2.20. Let I 6= {0} be a polynomial ideal. Then, for a given monomial ordering, I has unique
reduced Gröbner basis.

Proof. Let G be a minimal Gröbner basis for I . We say that g ∈ G is reduced for G provided that no
monomial of g is in < LT (G−{g})>.
Our goal is to modify G until all of its elements are reduced.
A first observation is that if g is reduced for G, then g is also reduced for any other minimal Gröbner
basis of I that contains g and has the same set of leading terms. This follows because the definition of
reduced only involves the leading terms.
Next, given g∈G, let g′ = gG−{g} and set G′ = (G−{g})∪{g′}. We claim that G′ is a minimal Gröbner
basis for I . To see this, first note that LT (g′) = LT (g), for when we divide g by G−{g},LT (g) goes to
the remainder since it is not divisible by any element of LT (G−{g}).
This shows that < LT (G′) >=< LT (G) >. Since G′ is clearly contained in I , we see that G′ is a
Gröbner basis, and minimality follows.
Finally, note that g′ is reduced for G′.
Now, take the elements of G and apply the above process until they are all reduced.
The Gröbner basis may change each time we do the process, but our earlier observation shows that once
an element is reduced, it stays reduced since we never change the leading terms. Thus, we end up with
a reduced Gröbner basis.

Finally, to prove uniquenes, suppose that G and G̃ are reduced Gröbner bases for I . Then in
particular, G and G̃ are minimal Gröbner bases, we will show that this implies they have the same
leading terms, i.e., LT (G) = LT (G̃). Thus, given g ∈ G, there is g̃ ∈ G̃ such that LT (g) = LT (g̃). If we
can show that g = g̃, it will follow that G = G̃, and uniqueness will be proved.

Fix a monomial order, and let G and G̃ be minimal Gröbner bases for the ideal I. Prove that
LT (G) = LT (G̃). Conclude that G and G̃ have the same number of elements.

To show g= g̃, consider g− g̃. This is in I , and since G is a Gröbner basis, it follows that g− g̃G
= 0.

But we also know LT (g) = LT (g̃). Hence, these terms cancel in g− g̃, and the remaining terms are
divisible by none of LT (G) = LT (G̃) since G and G̃ are reduced. This shows that g− g̃G

= g− g̃, and
then g− g̃ = 0 follows. This completes the proof.
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2.9 First Applications of Gröbner Bases

In this section, we going to solve the last three problems about ideals and varieties using Gröbner bases.

2.9.1 The Ideal Membership Problem

Theorem 2.21. f ∈ I if and only if f G
= 0

Example 15. Now, we can decide whether a given polynomial f lies in I as folows:

• Determine whether f = xy3+ z2+y5+ z3 is in the ideal I =< x3+y,x2y− z >∈Q[x,y,z]. Use the
grlex.

First, we check if I is a Gröbner basis. In this case it isn’t. So, we begin by computing a Gröbner
basis for I and we find:

G = ( f1, f2, f3, f4, f5) =
(
y5 + z3,xy3 + z2,x3 + y,x2y+ z,xz+ y2) .

Also, that is a reduced Gröbner basis.

Dividing, f above by G, we find:

f = 1 · f1 +1 · f2 +0 · f3 +0 · f4 +0 · f5 +0.

Where, we can see the remiander is zero, because of we have f ∈ I.

• Let I =< xz− y,xy+ z2,y− z >∈ F2[x,y,z], and use the grlex. Let f = x3z . We want to know if
f ∈ I.

Following the above method, we get:

G = ( f1, f2, f3) =
(
xz+ z,z2 + z,y+ z

)
.

And then,

f = (x2 + z · f1 + x · f2 + z · f3 + z2.

The remainder not is zero, for this reason: f /∈ I.

2.9.2 The Problem of Solving Polynomial Equations

We will study how the Gröbner basis technique can be applied to solve systems of polynomial equations
in several variables.

Example 16.

• Find the points in F2[x,y,z] on the variety V (I) = (xz+ yz+1,xy+ z+1,y+1).

We will a compute a Gröbner basis on I respect to the lex order.

G = (g1,g2,g3) =
(
x+ z+1,y+1,z2 +1

)
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If we examine these polynomials, we find somethig remarkable. The polynomial g2 depends on y
alone, we can solve it:

y = 1

And the polynomial g3 depends on z alone. Equalizing to zero, we get:

z = 1

So, we obtains the following solution:

y = 1,z = 1⇒ x+ z+1 = 0⇒ x+1+1 = 0⇒ x = 0

• Repeat the above exercise for V (x2y− z3,xy− z−1,z− y2,x3− zy).

In this case, we get:

G = (g1,g2,g3) = 1

These examples indicate that finding a Gröbner basis for an ideal with respect to the lex order simplifies
the form of the equations considerably. A system of equations in this form is easy to solve, especially
when the last equation contains only one variable.

2.9.3 The Implicitization Problem

Example 17. Consider the parametric curve V

x = t4

y = t3

z = t2

in F2. We compute a Gröbner basis G of I =< t4 + x, t3 + y, t2 + z > with respect to the lex order in
F2[t,x,y,z] and we find

G = {g1,g2,g3,g4,g5}= {t2 + z, ty+ z2, tz+ y,x+ z2,y2 + z3}.
The last two polynomials depends only on x,y,z so they define an affine variety of C3 containing

our curve V
x+ z2 = 0

y2 + z3 = 0.

Example 18. Now, consider the superface parametrized by

x = t +u− x

y = t2 + tu− y

z = t3 + t2u− z.

We compute a Gröbner basis G for this ideal relative to the lex order, and we obtain:

G = (t +u+ x,ux+ x2 + y,uy+ xy+ z,xz+ y2)

The last polynomial depends only on x,y,z:

xz+ y2 = 0

So this polynomial defined a variety.





Chapter 3

Cryptanalysis Techniques in Multivariate
Public Key Cryptography

Aulthought we know that there are several multivariate authentication schemes, in this chapter we
hereafter focus on multivatiate asymmetric encryption schemes and multivariate signature schemes.

The multivariate public key cryptosystems (MPK) is a special class of schemes whose security
is based on the difficulty of solving a set of multivariate polynomial equations. MPK cryptosystem’s
public keys are a set of multivariate polynomials.

The standard way of building these systems is the next:

1. Fix a finite field Fq (usually a field of characteristic 2).

2. Fix a quadratic polynomial map Q.

3. Two invertible linear maps S and T are chosen.

4. With the previous steps, we produce the public key P = T ◦Q◦S.

input x
Private Key S ↓

x′

Private Key Q ↓
y′

Private Key T ↓
output y


P Public Key

Definition 29. Let Fq be the finite field and Fqn an extension field of size qn. Let f (x) be an irreducible
polynomial of degree n in Fq[x] and let a represent one of its roots. The field Fq(a) is isomorphic to

Fq[x]
( f )

.

Lemma 3.1. Let the finite field

Fqn =
Fq[x]
( f )

where f is an irreducible polyomial of degree n in Fq[x].
Then, if a is a root of f we can choose as a basis of Fn

p over Fp the set {1,a, ...,an−1}.
With this kind of bases the products between elements of the field are very fast it their coordinates

are known with respect to that basis.

19
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Definition 30. We denote a multivariable public key by a polynomial mapping from the vector space
Kn to the vector space Km:

f : Kn −→ Km

x = (x0, ...,xn−1) 7−→ y = (p0(x), ..., pm−1(x))

where pi with 1≤ i≤ m are multivariate polynomials defined over K[x0, ...,xn−1].

Notation.

- We denote the base field by K.

- We use x and y to respectively denote the input and the output of a public key function. In other
words, x and y respectively denote the plain text and the cipher text.

3.1 Matsumoto - Imai Scheme A

The first MPK was proposed in 1985 by Matsumoto and Imai, who presented a scheme "based on
obscure representation of polynomials", often called C* and hereafter called Matsumoto-Imai scheme A.

This Scheme uses exponentiation over an extension E of degree n of a base finite field K of size q,
that is, K= Fq and it is defined as follows:

Kn S // Kn ϕ // E ∧
(1+qθ )
// E

ϕ−1
// Kn T // Kn (3.1)

where:

i) S : Kn −→ Kn and T : Kn −→ Kn are linear transformations, that is, aplications which are fixed
and easy to invert whose function is to conceal the exponentiation.

ii) ϕ : Kn −→ E is the canonical embedding of Kn into E and x = ϕ(x).
In this case, this map transforms a n-tuple in a polynomial, as follows:

ϕ : Kn −→ E

x = (x0, ...,xn−1) 7−→ ϕ(x) =
n

∑
i=0

xiai = x0 + x1a+ ...+ xn−1an−1.

iii) ϕ−1 : E−→Kn transform one plynomial in a n-tuple.

iv) ∧(1+qθ ) : E −→ E it is a internal transformation, being E an extension of fields. The exponent is
chosen of the form 1+qθ and prime to qn−1 so as to allow efficient inversion.

In other words, the public key is therefore given by the n-tuple (p0, ..., pn−1) of polynomials in n
unknowns x0, ...,xn−1 defined over K via:

p : Kn −→ Kn

x = (x0, ...,xn−1) 7−→ p0(x), ..., pn−1(x)) = T ◦ ϕ−1((ϕ ◦ S(x))1+qθ

)

Proposition 3.2. Given the map

∧(1+qθ ) : E −→ E
x 7−→ x1+qθ

we define its inverse as:

(
∧(1+qθ )

)−1
: E −→ E

y 7−→ ye
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Proof. We are going to see that the reverse map is well defined:

(1+qθ )e≡ 1 mod(qn−1)⇒ (1+qθ )e = k(qn−1)+1

Then,

x(1+qθ )e = xk(qn−1)+1 = xk(qn−1)x (3.2)

We know #E= qn, because of Fermat’s little theorem A.1 we have:

xk(qn−1) = (xqn−1)k = 1k = 1

Thus replacing this in equation (3.2), we have:

x(1+qθ )e = xk(qn−1)+1 = xk(qn−1)x = 1 · x = x.

One key fact allowing an eficient representation of the public key as the n-tuple of polynomials
(p0, ..., pn−1) is that the mapping x 7→ xq is a K-linear mapping, which brings us to the next result.

Proposition 3.3. The exponential map x 7→ x(1+qθ ) is K-quadratic.

Proof. For the Frobenius Endomorphism A.3 we have :

x 7→ xq =⇒ x+ y 7→ (x+ y)q = xq + yq⇒ It is a linear map. (3.3)

Now, in this case:

x 7→ x1+qθ

= x(xq)θ = (xq0
)(xqθ

) = φ0(x) ·φθ (x)

where φi(x) = xqi
and for (3.3) φi is linear since φi(x+ y) = (x+ y)qθ

. Thus φ0(x) and φθ (x) are linear,
and for this reason x 7→ x1+qθ

is quadratic.
Let’s see the addition:

(x+ y) 7→ (x+ y)1+qθ

= (x+ y)(x+ y)qθ︸ ︷︷ ︸
xqθ

+yqθ

= (x+ y)(xqθ

+ yqθ

) =

= x · xqθ

+ x · yqθ

+ y · xqθ

+ y · yqθ

= x · x+ x · y+ y · x+ y · y⇒ (x+ y) 7→ (x+ y)1+qθ

is quadratic.

This completes the proof.

The end result of the map (3.1) is a non-linear system of equations in several variables:
p0(x0, ...,xn−1) = y0
...
pn−1(x0, ...,xn−1) = yn−1

(3.4)

for every n-tuple y = (y0, ...,yn−1). To recover the plaintext, the given system must be resolved.
To do this, the owner of the secret key uses their knowledge of S and T and an exponent e such that

e(1+qθ )≡ 1 (mod qn−1)
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to invert each component of the public map in turn, which is equivalent to the following calculation:

x = S−1 ◦ϕ
−1((ϕ ◦T−1(y))e).

The name obscure representation comes from the assumption that the input and output coordinate
systems are unknown to anyone but the secret key owner. Hence, the security of the cryptosystem not
only relies on the hardness of solving (3.4), but also on the hardness of recovering any pair of mappings
S0 and T0 such that:
∀x ∈Kn,

T0 ◦ϕ
−1((ϕ ◦S0(x))1+qθ

) = T ◦ϕ
−1((ϕ ◦S(x))1+qθ

).

Example 19. Fix the field F3
2 and its extension E=F23 with θ = 7 and S and T invertible, that is regular,

matrices, say:

S =

 1 1 1
0 1 0
1 1 0

=⇒ S(x0,x1,x2) = (x0 + x1 + x2,x1,x0 + x1),

T =

 0 0 1
0 1 1
1 0 1

=⇒ T (x0,x1,x2) = (x2,x1 + x2,x0 + x2).

Thus, we have:

F3
2

S // F3
2

ϕ // F23
∧(1+27)

// F23
ϕ−1
// F3

2
T // F3

2 .

If we take as plain text the vector (1,0,0) and we apply the public key we, obtain:

p : F3
2

S−→ F3
2

ϕ−→ F23
∧1+qθ

−→ F23
ϕ−1

−→ F3
2

T−→ F3
2

(1,0,0) −→ (1,0,1) −→ 1+a2 −→ (1+a2)(1+27) = a2 +a −→ (0,1,1) −→ (1,0,1).

In the same way, from the encrypted text we obtain the plaintext. We take the vector (0,1,1). But,
this time we use the exponent e, S−1 and T−1. For this reason, the first step is calculate them:

(1+qθ )e≡ 1 mod(qn−1)⇒ (1+27)e≡ 1 mod(23−1)⇒ e = 5

S−1 =

 0 1 1
0 1 0
1 0 1

=⇒ S−1(x0,x1,x2) = (x1 + x2,x1,x0 + x2),

T−1 =

 1 0 1
1 1 0
1 0 0

=⇒ T−1(x0,x1,x2) = (x0 + x2,x0 + x1,x0).

And then, we calculate the inverse map, with help of the secret key:

F3
2

S−→ F3
2

ϕ−→ F23
∧1+qθ

−→ F23
ϕ−1

−→ F3
2

T−→ F3
2

(1,0,0) ←−[ (1,0,1) ←−[ a2 +1 = (a+a2)5 ←−[ a+a2 ←−[ (0,1,1) ←−[ (1,0,1).

Finally, we have obtained the plaintext (1,0,0).

Example 20. With the same data from the previous example, we calculate the following:

- The plaintext is (1,0,0) and the ciphertext is (1,0,1).

- The plaintext is (0,1,0) and the ciphertext is (0,1,0).

We going to see that the proposition 3.3 is true:
If we add both plaintexts, we obtain (1,1,0) whereas the ciphertext is (0,1,1) 6= (1,0,1)+(0,1,0).
This shows that the map is not linear.
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3.2 Direct Inversion Attacks

Our goal in this section is to propose a method to decrypt a ciphertext whithout using the private key.

The mapping p constitutes the public key and an attacker can directly search for a value x verifying
p(x) = y in order to decrypt y or to forge a signature x.
Such attacks consist in solving the proposed system of quadratic equations of low degree (3.4) and there
have been several algorithms designed to solve this task. The most famous is Buchberger’s algorithm.

This is a system that depends on the variables (x0, ...,xn−1), since the y = (y0, ...,yn−1) is known,
where y is an ciphertext that has been intercepted.
We are going to see that it can be solved by computing Gröbner bases.

To optimize the search for the solution, we will include in the original system the polynomial
equations satisfied by all polynomial maps coming from the coefficient field, that is,

xq
i − xi = 0 i = 0, ...,n−1.

This only works when the size of the field is small, because this way you can limit the exponents
of the monomials during the search for a Gröbner Basis. If the field size is large the limitation of the
exponents will not affect and, therefore, we will be adding equations that hinder in the intermediate
calculations. Thus, we have to solve:

p0(x0, ...,xn−1) = y0
...
pn−1(x0, ...,xn−1) = yn−1
xq

0− x0 = 0
...
xq

n−1− xn−1 = 0

(3.5)

So solving this system is equivalent to calculating a Gröbner basis G for the following ideal

I = 〈p0(x0, ...,xn−1)+ y0, . . . , pn−1(x0, ...,xn−1)+ yn−1,x
q
0− x0, . . . ,x

q
n−1− xn−1〉

and then we solve the new system generated by G as explained in 2.9.2.

3.2.1 Examples

Example 21. In this example, first we going to do de public key in general step by step with the
following values:

p : F3
2 −→ F3

2

θ = 7

S(x0,x1,x2) = (x0 + x2,x0,x0 + x1 + x2)

T (x0,x1,x2) = (x1,x1 + x2,x0 + x2)

And then, we will attack the cryptosystem assuming that the intercepted message is (0,1,1).

Let (x0,x1,x2) ∈ F3
2:

S(x) = (x0 + x2,x0,x0 + x1 + x2) 7−→ x0 + x2 + x0a+(x0 + x1 + x2)a2 7−→
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ax129
0 +

(
a2 +a+1

)
x128

0 x1 +a2x0x128
1 +

(
a2 +1

)
x129

1 +a2x128
0 x2+

+(a+1)x128
1 x2 +(a+1)x0x128

2 + x1x128
2 +

(
a2 +a

)
x129

2 .

Applying the equations of the field x2
i − xi = 0 i = 0, ...,n−1 , we have:

(a+1)x0x1 +(a2 +1)x2
1 +(a2 +a+1)x0x2 +ax1x2 +(a2 +a)x2

2 +ax0 7−→(
x0x1 + x2

1 + x0x2, x0x1 + x0x2 + x1x2 + x2
2 + x0, x2

1 + x0x2 + x2
2
)

Finally, we apply T to the previous result:(
x0x1 + x0x2 + x1x2 + x2

2 + x0, x0x1 + x2
1 + x1x2 + x0, x0x1 + x2

2
)

Thus the public key is given by the following system:
x0x1 + x0x2 + x1x2 + x2

2 + x0 = y0
x0x1 + x2

1 + x1x2 + x0 = y1
x0x1 + x2

2 = y2

Now, we begin the attack on the cryptosystem. For this reason, we substitute y and we add the
equations of the field: 

x0x1 + x0x2 + x1x2 + x2
2 + x0 = 0

x0x1 + x2
1 + x1x2 + x0 = 1

x0x1 + x2
2 = 1

x2
0− x0 = 0

x2
1− x1 = 0

x2
2− x2 = 0

To solve the system, we calculate a Gröbner basis G for the ideal that generates its equations, and
we obtain G = {x0 +1,x1 +1,x2}. Now solving the next system is very easy:

x0 +1 = 0
x1 +1 = 0
x2 = 0

And so, we can say that the plaintext was (1,1,0).

Example 22. We attack other cryptosistem with p : F8
2 −→ F8

2, θ = 8 and S, T the following matrices:

S =



1 0 0 1 0 0 0 0
1 0 0 0 0 1 0 1
0 0 1 1 0 1 0 0
1 0 0 1 1 1 1 0
0 1 0 0 1 0 0 1
1 0 1 0 0 0 1 1
0 0 1 1 0 0 0 0
1 0 1 1 0 1 1 1


T =



1 0 1 0 0 1 1 1
0 0 1 1 1 1 0 0
0 0 1 0 0 1 0 1
0 0 1 0 0 1 1 1
1 1 1 1 0 0 0 1
0 0 1 0 0 0 1 0
0 1 0 0 0 0 1 1
1 1 0 0 0 1 0 1


The public key is: 

x0 + x4 + x6 = y0
x0 + x2 + x3 + x5 + x6 = y1
x0 + x3 = y2
x0 + x1 + x7 = y3
x2 + x3 + x4 + x5 + x7 = y4
x2 + x4 + x5 + x6 = y5
x0 + x1 + x2 + x3 + x4 + x6 + x7 = y6
x0 + x2 + x4 + x5 + x6 = y7
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Now, we begin the attack on the cryptosystem again for the ciphertext (0,0,1,1,0,0,1) and the
Gröbner basis obtained is: {x0 +1,x1 +1,x2,x3,x4 +1,x5 +1,x6,x7 +1}.

Thus, the plaintext was:
(1,1,0,0,1,1,0,1).

3.2.2 Computational cost

The rationale behind the design of multivariate asymmetric cryptosystems is that the complexity of
solving systems of randomly generated quadratic multivariate equations defined over a finite field is
exponential in the number of unknowns on the average.

Thanks to the software package SageMath [6] we have been able to create a code that allows the
attack to this cryptosystem, thus studying the computational cost in each case as shown in Table 3.1.

q n t time (s)
2 2 2 0.004393
2 3 7 0.004138
2 4 8 0.003899
2 5 28 0.031937
2 6 20 0.214858
2 7 64 10.543728
2 7 93 15.183119
2 7 102 16.04270
2 8 176 0.003543
2 8 224 0.0046949
2 16 32640 0.0041968

q n t time (s)
22 2 10 0.0021162
22 2 14 0.0035309
23 2 22 0.00455713
23 2 50 0.00455808
23 3 246 0.0053930
23 3 370 0.0529861
24 2 224 0.002377
24 3 2773 1.63645
25 2 732 0.0050449
25 3 3799 91.092567
25 3 17390 738.2297

Figure 3.1: Computational cost in seconds.

The used code can be found in Appendix.

Performing the above calculations we have found that we are not able to crack the cryptosystem
through Gröbner bases for the following fields among others:

F9
2,F10

2 ,F11
2 ,F12

2 ,F13
2 ,F14

2 ,F15
2 .

In addition, there are cases in which we are not able to generate the public key due to the large size
of the field.

For this reason in this type of systems the choice of the field is important. It is not interesting that
the size of the field is very large so that the size of the key does not shoot, but on the other hand, it
is interesting that the size of the field is not very small so that the attacker cannot use the simplifying
equations mentioned above coming from the field in an effective way.
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Appendix A

In this chapter we have written some theorems that have been known throughout the text. We also
include their respective demonstrations too.

Theorem A.1. Fermat’s Little Therorem
Let p be a prime. Then for any integer n with p - n we have np−1 ≡ 1 modulo p.

Proof. Let G be the group of units of Zp. As Zp is a field, G = Zp−{0} thus G is a finite group of
order p−1. For any n with p - n, the coset n is an element of G thus

np−1 = 1.

Proposition A.2. Let p ∈ N prime and q ∈ N with q < p . Then,
(

p
q

)
is multiple of p.

Proof. (
p
q

)
=

p!
q!(p−q)!

=
(p−1)!

q!(p−q)!
· p

p prime and
{

p > q
p > p−q

⇒
{

p - q!
p - (p−q)!

⇒
(

p
q

)
is multiple of p.

Theorem A.3. Frobenius Endomorphism

Let F be a commutative ring with prime characteristic p,then the application φ : F −→ F given by
α 7−→ φ(α) = α p ∀α ∈ F is called Frobenius Endomorphism.

Proof. For all α and β ∈ F , developing for Newton’s binomial we have:

(α +β )p = α
p +

(
p
1

)
α

p−1
β + ...+

(
p
i

)
α

p−i
β

i + ...+

(
p

p−1

)
αβ

p−1 +β
p

We know: (
p
i

)
=

p(p−1) · · ·(p− i+2)(p− i+1)
i(i−1) · · ·2 ·1

∈ N.

But, p is prime and by A.2 each factor of denominator is less than p, then p divides
(p

i

)
for all

i = 1,2, ..., p−1 and also F has characteristic p,
(

p
i

)
α

p−i
β

i = 0. Then:

φ(α +β ) = (α +β )p = α
p +β

p = φ(α)+φ(β ).

Now,

φ(αβ ) = (αβ )p = α
p
β

p = φ(α)φ(β ).

Thus, we have seen that φ is a homomorphism of ring, and with this the proof is ends.
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ALGORITHMS
Below are the algorithms which are used in the chapter on rings and Gröbner bases.

Division Algorithm in 
Input : Where  is a polinomial Ring,  a polynomial and  a polynomial list.
Output : Where  is a tuple with the quotients and  is the remainder of  on division by .

def div(f,g,R): 
    n = len(g) 
    p, r, a = R(f),R(0),n*[R(0)] 
    while p != 0:  
        i, divisionoccured = 0, False 
    
        while i < n and divisionoccured == False: 
            if g[i].lt().divides(p.lt()): 
                a[i] = a[i] + p.lt()//g[i].lt() 
                p = p - (p.lt()//g[i].lt())*g[i] 
                divisionoccured = True 
            else: 
                i = i + 1 
        if divisionoccured == False: 
            r = r + p.lt() 
            p = p - p.lt() 
    return   a, r 

       

S-Polynomial
Input : Where R is a polynomial ring and  and  two polynomials.
Output : Where  is the sought polynomial.

def mcm(f,g,R): 
    return (f*g).quo_rem(gcd(f,g))[0] 

       
def Spol(f,g,R): 
    p=mcm(f.lt(),g.lt(),R) 
    S=(p.quo_rem(f.lt())[0])*f-(p.quo_rem(g.lt())[0])*g 
    return S 

       

Buchberger's Algorithm
Input : Where  is a polynomial ring ang  a polynomial list.
Output : That is, a Gröbner basis.

def buch(g,R): 
    n=len(g) 
    i=0 
    j=0 
    for i in [0..n-2]: 
        for j in [i+1..n-1]: 
            S=Spol(g[i],g[j], R) 
            #print S 
            r=div(S,g,R) 
            #print r 
            if r!=0: 
                return buch(g+[r],R) 
    return g 

       

k[ , . . . , ]x1 xn

(f, g, R) R f g

(a, r) a r f g

(f, g, R) f g

(S) S

(g, R) R g

(g)
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PLAINTEXT AND CIPHERTEXT
In this paper, we found the code for  encrypting and decrypting a known tuple in a finite field.

We define:

 a finite field with  elements.
 as the extension .

 the vector space  .
 as the extension .

The function  is given by  and its inverse is given by .

We select the following dates, for this example:

plaintext 

n=3 
q=2 
K=GF(q) 
E=FiniteField(q^n) 
listax=[var('x%d'%i) for i in range(n)] 
E2=PolynomialRing(E,listax) 
Kn, from_Kn, to_Kn = E.vector_space(K, map=True) 

       

We choose  like  in the paper,  which must be that   is prime with .

And then,  from the previous data we calculate  which is the inverse of , in the document it corresponds to .

t=2 
gcd(1+q^t,q^n-1) 
t1=ZZ(mod(1/(1+q^t),(q^n-1))) 
show(t) 
show(t1) 

       

follow=True 
while follow: 
    T=random_matrix(K,n) 
    if det(T)<>0: 
        follow=False 
follow=True 
while follow: 
    S=random_matrix(K,n) 
    if det(S)<>0: 
        follow=False 
T,S 

K = Fq q = 2m

E Fqn

Kn K
n

E Fqn

φ from_Kn() to_Kn()

n = 3
q = 2
t = 2

= (1, 1, 0)

t θ 1 + q t − 1qn

t1 t e

2

3
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The function  is defined as a polynomial.

R.<x>=PolynomialRing(E2) 

       

Let encrypt:

Input : Where  is a plaintext (vector),  and  the matrix associated with the 
and  linear morphisms respectively and,   previously defined.
Output : Vector corresponding to the ciphertext.

 

Let decrypt:

Input : Where  is a ciphertext (vector),  and  the matrix associated with the 
 and  linear morphisms respectively and,   previously defined.

Output : Vector corresponding to the plaintext.

def encrypt(v,M1,M2,q,t): 
    f=x^(1+q^t) 
    return M2*to_Kn(f(x=from_Kn(M1*v))) 
def decrypt(v,M1,M2,q,t,t1): 
    f=x^t1 
    return M1^(-1)*to_Kn(f(x=from_Kn(M2^(-1)*v))) 

       
v=vector([1,1,0]) 
w=encrypt(v,S,T,q,t) 
w,decrypt(w,S,T,q,t,t1) 

       

,
⎛

⎝
⎜
⎛

⎝
⎜

1

1

0

1

0

0

0

0

1

⎞

⎠
⎟
⎛

⎝
⎜

0

1

1

0

0

1

1

1

1

⎞

⎠
⎟
⎞

⎠
⎟

x(1+ )qθ

(v, M1, M2, q, t) v M1 M2 S
T q, t

(v, M1, M2, q, t, t1) v M1 M2
S T q, t, t1

((0, 1, 1) , (1, 1, 0))
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MATSUMOTO - IMAI ATTACK
We define the necessary fields and extensions for then, attack the cryptosystem.

 

 a finite field with  elements.
 as the extension .

 the vector space  .
 as the extension .

 is a polynomial ring with variables  and coefficientes over .

 is a quotient ring .

 is a polynomial ring with variables as  and coefficients in , that say .
 is a polynomial ring with a variable over  and coefficientes in , .
 is a polynomial ring with a variables of  and , and coefficients in , thus 

.
 is a polynomial ring with a variables of  and , and coefficients in , thus 

.
 is a polynomial ring of the form .
 is the last polynomial ring, and it a field that contains the variables corresponding to the ciphertext and

plaintext.

import time 
n=3 
q=2^5 
K=GF(q) 
E=FiniteField(q^n) 
listax=[var('x%d'%i) for i in range(n)]  
listay=[var('y%d'%i) for i in range(n)] 
E2aux=PolynomialRing(E,listax) 
eqs0=[E2aux(_^q-_) for _ in listax] 
E2=E2aux.quotient_ring(eqs0) 
E22=PolynomialRing(E,E2.gens()) 
Ka=PolynomialRing(K,E.variable_name()) 
E3=PolynomialRing(Ka,listax) 
varsx=list(E3.variable_names()) 
vars=[Ka.variable_name()]+varsx 
E4=PolynomialRing(K,vars) 
E5=PolynomialRing(K,varsx) 
E6=PolynomialRing(K,varsx+listay,order='lex') 
z3=E4.variable_names()[0] 
aes=[Ka(Ka.variable_name())^i for i in range(n)] 
Kn = E.vector_space(K, map=True) 

       

We choose  like  in the paper,  which must be that   is prime with .

follow=True 
while follow: 
    taux=randint(0,q^n-1) 
    if gcd(1+q^taux,q^n-1)==1: 
        t=taux 
        follow=False 
t 

K = Fq q = 2m

E Fqn

Kn K
n

E Fqn

E2aux , . . . ,x0 xn−1 E

E2
E2aux

< − , . . . , − >x
q
0 x0 x

q
n−1 xn−1

E22 E2 E [ , . . . , ]Fqn X0 Xn−1

Ka E K F
n
2

E3 E2aux Ka ka
E3 = K[a][ , . . . , ]x0 xn−1

E4 E2aux Ka ka
E4 = K[a, , . . . , ]x0 xn−1

E5 [ , . . , ]F2n x1 xn−1

E6

t θ 1 + q t − 1qn
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       11479
j=sum([E2(listax[i])*E2(aes[i]) for i in range(n)]) 
j2=j^(1+q^t) 

       
eqs1aux=[E5(_) for _ in 
(E4(E3(E22(j2))).polynomial(E4(z3))).coefficients()[::-1]] 
eqs1=[E6(eqs1aux[i])+E6(listay[i]) for i in range(n)] 
eqs2=[E5(_^q-_) for _ in listax] 
eqs=eqs1+eqs2 
I=E6.ideal(eqs) 

       

Now, we already have the system of equations that make up our cryptosystem(in our paper (3.5)). 

And, now we are going to attack it with Gröbner bases.

w1=walltime() 
gb=I.groebner_basis() 
w2=walltime() 
w2-w1 

       91.24908399581909
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