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Prologue

What is Cryptography?

Cryptography is the art and science of secret writing. Cryptography enables you to store sensitive
information or transmit it across insecure networks so that it cannot be read by anyone except the
intended recipient.

To carry out this process we need: Encrypt and decrypt. Data that can be read and understood
without any special measures is called plaintext. The method of disguising plaintext in such a way as
to hide its substance is called encryption. Encrypting plaintext results in unreadable gibberish called
ciphertext. You use encryption to ensure that information is hidden from anyone for whom it is not
intended, even those who can see the encrypted data. The process of reverting ciphertext to its original
plaintext is called decryption.

Encrypting: ciphertext = cipher (key, plaintext)

Decrypting: plaintext = cipher (key, ciphertext)

Cryptography has a sister discipline called Cryptanalysis, which is the science of analyzing and
breaking secure communication. Classical cryptanalysis involves an interesting combination of analytical
reasoning, application of mathematical tools, pattern finding, patience, determination, and luck.

Why is Cryptography important?

If you reveal your secrets to the wind you should not blame the wind for revealing them to the trees.

- Kalil Gibran, Sand and Foam [2].

Cryptography is important because on the surface it is about making something secret, but it is also
about controlling access, specifying who can get to information under what terms.

Cryptography seems closely linked to modern electronic communication. However, cryptography is
not an invention of the last few years, in fact, its birth dates back 2000 B.C when non-standard "secret"
hieroglyphics were used in ancient Egypt. Since Egyptian days cryptography has been used in one form
or the other in many, if not most, cultures that developed written language.

il



v Prologue

CRYPTOGRAPHY
TIMELINE

2000 BC

Non- standard “secret”
hieroglyphics were used in
ancient Egypt.

600 BC

Hebrew scribes used the
reverse alphabet, which is a
simple coded by
monoalphabetics substitution.

100 BC

Cesar code: The method was to
replace each character of the
original message with another
one placed three positions after
itin a certain alphabet.

500 BC

Scytale: The Greeks created

an instrument to encrypt

messages, it consisted of a

wooden cylinder in which a

papyrus or cloth tape was

wound.
1>

1466

Lorem Leén Battista Alberti
invented an encryption disk
using concentric disks divided
into 24 boxes where each one
contained a caracter.

>

1918

The German Enigma encryption
machine which had a rotary
encryption mechanism.

1595

Vigenere: It consisted of
assigning a number to each letter
of the alphabet and adding the
corresponding numbers to a key
with those of the message to
btain the cryptogram

1940
Lorenz machine. Machine

similar to Enigma but with a
more complex mechanism.

1960

Start of quantum cryptography
by Stephen wiesner.

1915

Birth of modern cryptography.

Figure 1: Timeline based in [5].

Until the onset of modern cryptography, conventional cryptography was used.

In conventional cryptography, also called secret-key or symmetric-key encryption, one key is used
both for encryption and decryption. The Data Encryption Standard (DES) is an example of a conventional
cryptosystem that is widely employed by the Federal Government.

Throughout the history of cryptography, there has been one problem that has made the practical use
of cryptography difficult and unwieldy, the problem of key distribution. The best cipher is only as strong
as its keys.

With Whitfield Diffie and Martin Hellman born the public key cryptography in 1975 and with it, the
modern Cryptography.
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Public key cryptography is an asymmetric scheme that uses a pair of keys for encryption: a public
key, which encrypts data, and a corresponding private, or secret key for decryption. It is computationally
infeasible to deduce the private key from the public key.

Some examples of public-key cryptosystems are Elgamal, RSA, Diffie-Hellman and DSA, the
Digital Signature Algorithm.
Public key encryption is the technological revolution that provides strong cryptography to the adult
masses.

The most widely deployed public key cryptosystem nowadays is without any doubt the RSA cryptosystem.

The success of this method lies in the difficulty of factoring large integers, of the form N = pg where
p and ¢ are prime numbers between 1024 and 2048 bits.

But, despite not being able to develop efficient algorithms that break the RSA encryption system, a
new advance threatens to destroy it: It is quantum computers.

Under the assumption that quantum computers can be built, Shor in 1997,discovered an algorithm
that could factor an integer in polynomial time in terms of its size in bits, thus rendering the RSA
cryptosystem useless and this algorithm can also break essentially all number theoretic based public
key cryptosystem. There have been great efforts dedicated to the construction of quantum computers
and although nobody has built such computersable to attack the RSA or the discrete logarithm based
cryptosystems, definitely there is a need for other efficient and secure cryptosystems.

There are currently a few families of cryptosystems that could potentially resist future quantum
computers: these are the cryptosystems based on error-correcting codes, the public key cryptosystems
based on lattices, and the multivariate public key cryptosystems. The class of multivariate cryptosystems
is a special class of schemes whose security is related to the hardness of solving sets of multivariate
equations. The way of solving them is to compute a Grobner basis.

The multivariate polynomials that constitute the system are generally chosen to be quadratic polynomials
defined over a small finite field which is ranging from Fy to F,s.

The security of the scheme has to be assessed by mounting a specially crafted algebraic attack that
exploits the underlying algebraic structure.

The current proposals for multivariate asymmetric cryptosystems might be classified into three main
categories:

e Matsumoto-Imai like schemes
e Oil and Vinegar like schemes

e Tepwise triangular schemes
All of the schemes from the first three categories rely on the hardness of system solving, but some
of them additionally rely on other hard problems such as finding rational mappings between polynomial

maps or finding a linear combination of small rank of a given set of matrices.

Because of this, in this document we will focus on the study of the Matsumoto-Imai Scheme.






Resumen

Este trabajo estd constituido por 3 capitulos distribuidos de la siguiente forma:
- Capitulo 1: Conceptos previos.
- Capitulo 2: Bases de Grobner.

- Capitulo 3: Técnicas de criptoandlisis en criptografia de clave publica multivariable.

En el primero de ellos, comenzamos dando al lector los conceptos necesarios para la comprension
de los posteriores capitulos. Entre estos conceptos se incluyen definiciones como las de monomio,
polinomio, maximo comun divisor y minimo comuin miltiplo de monomios, ideal y variedad entre
otras.

También revisamos la existencia de un algoritmo de la divisién para polinomios en una variable, que
posteriormente ampliaremos a varias variables. El contenido de este capitulo estd basado en su totalidad
en [4].

Una vez completada la parte anterior, abordamos la parte principal de este trabajo, pues en el
segundo capitulo se desarrolla la construccién de las bases de Grobner, a través del algoritmo de
Buchberger. Para ello, definiremos orden monomial y estableceremos el algoritmo de la divisién en
k[x1y ..oy xn).

Gracias a los conceptos anteriores concluiremos que el resto de la divisién de un polinomio entre
una base de Grobner es tnico independientemente del orden monomial establecido.
Sin abandonar este capitulo enunciamos y demostramos resultados de gran importancia como son el
Lema de Dickson, el Teorema de las bases de Hilbert y ¢l Teorema de unicidad de las bases de
Grobner reducidas.

Para finalizar esta segunda parte, daremos solucién a cuatro problemas que somos capaces de
resolver gracias a las bases de Grobner:

1. Problema de descripcion de un ideal, es decir, saber si un ideal estd generado por un conjunto
finito.

2. Problema de pertenencia a un ideal.
3. Problema referente a la resolucién de sistemas de ecuaciones de polinomios.
4. Problema de Implicitacién, de obtencion de un sistema de ecuaciones a partir de sus soluciones.

Con ayuda de la herramienta SageMath [6] implementamos los algoritmos incluidos en los anexos
para poder calcular de manera eficaz los ejemplos propuestos a lo largo de la extensién del capitulo. La
teoria de dicho capitulo se halla en los textos referentes a [1] y [4].

vii



viil Resumen

En el dltimo capitulo nos centramos en los sistemas criptograficos multivariables, mds conocidos
como MPK. En €l establecemos el esquema general para la construccion de la clave publica en este tipo
de criptosistemas.

Seguidamente desarrollamos el primer MPK propuesto en la historia de la griptografia: El esquema
A de Matsumoto-Imai, también conocido como esquema en C*. El cual estd basado en la representacién
oscura de polinomios y fue presentado por primera vez en 1985.

Para finalizar este capitulo, y con él, este trabajo; planteamos un ataque a este criptosistema mediante
bases de Grobner.

En los ejemplos de ataque al criptosistema de Matsumoto-Imai estudiados comprobamos que la
dificultad de éxito crece rapidamente al aumentar el nimero de variables involucradas.
Para este tltimo capitulo nos basamos en el 4rticulo que da comienzo en [3, pag. 263].
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Chapter 1

Previous concepts

In this chapter we will introduce the necessary concepts and definitions to tackle for later, the rest of the
chapters.

1.1 Polynomials and Affine Space

Definition 1. A monomial in xi,...,x, is a product of the form

O

al. az. .
XXy Xy

where all of the exponents ..., ¢y, are non-negative integers. The total degree of this monomial is
the sum of its exponents.

We can simplify the notation for monomials as follows: let & = (i, ..., 0, ) be an n-tuple of non-negative
integers. When a = (0, ...,0), note that x* = 1. We also let |@| = a; + ... + o, denote the total degree
of the monomial x*.

Definition 2. A polynomial f in x1, ..., x, with coefficients in k is a finite linear combination of monomials.
We will write a polynomial f in the form

f= Zaaxa, ag €k
o
where the sum is over a finite number of n-tuples & = (¢, ..., @, ). The set of all polynomials in xy, ..., x,
with coefficients in k is denoted k[x1, ..., x,].
Definition 3. Let f =Y, aqx® be a polynomial in k[xy, ..., x,].
i) We call aq the coefficient of the monomial x%.
ii) If ag # 0, then we call agx® a term of f.
iii) The total degree of f, denoted deg(f), is the maximun | & | such that the coefficient a, is nonzero.
Example 1. Let’s see an example, a polynomial
=322+ 322 — 3z +y? € Q[ y,2).

The polynomial has four terms and total degree is seven. In this case, there are two terms of maximal
total degree, which is something that can’t happen for polynomials of one variable.

Definition 4. Given a field £ and a positive integer n, we define the n-dimensional affine space over k
to be the set

k' ={(ai,...,an)|ai,...,a, € k}.
Proposition 1.1. Let k be an infinite field, and let f € k[xy,...,x,|. Then f =0 in k[x,...,x,| if and only
if f: k" — k is the zero function.
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1.2 Affine Varieties

Definition 5. Let k be a field, and let f1, ..., f; be the polynomials in k[xj, ...x,).
Then we set
V(fi,... fs) ={(a1,...,an) € k"|fi(ai,...,a,) =0forall 1 <i<s}.

We call V(f1,..., fs) the affine variety defined by fi, ..., f;.

Thus, an affine variety V(fi,...,fs) C k" is the sest of all solutions of the system of equations
filxr,..xy) = .. = fi(x1,..0,) =0
Lemma 1.2. IfV.W C k" are varieties, then so are VW and V UW.

1.3 Ideals

The goal of this section is to introduce the reader to some naturally ocurring ideals and to see how iedals
relate to affine varieties.

Definition 6. A subset I C k[xy,...,x,] is an ideal if it satisfies:
Hoel
i) If f,gel, then f+gel.
iii) If f € 1 and h € K[x1,...,x,], then hf € 1.
Definition 7. Let fi,..., f; be polynomials in k[x], ...x,], the set generated by

N
(flyeorr fs) = { Y hifi:hy,..hg€ k[xl,...,xn]} is an ideal.
i=1

Lemma 1.3. If fi, ..., fs € K[x1,...,xn), then (f1,..., fs) is an ideal of K[x1,...,X,].
Definition 8. We will call (fi, ..., f;) the ideal generated by fi, ..., fs.

Also, given fi,..., fy € K[x1,...,x,], we set the system of equations

fi=0

fs =0.
If we multiply the first equation by & € K|[xy,...,x,], the second by h; € k[xy,...,x,]| and so on; then
add the resulting equations, we obtain:

hfi+hofo+...+hgfs =0,

wich is a consequence of our original system. Notice that the left-hand side of this equation is an element
of the ideal (f1, ..., f;). Thus, we can think of (fi, ..., f;) as consisting of all "polynomial consequences"
of the equations f| = f, = ... = f; =0.

Proposition 1.4. If fi,..., fs and g1, ...g, are bases of the same ideal in K[xy, ...,x,), so that {f1,..., ;) =
(81y.s8r), then V(f1,.... fs) =V(g1,-,8)-
Definition 9. Let V C k" be an affine variety. Then we set

I(V)={f€Kxi,...x) : f(ai,....a,) =0 ¥V (a1,...,an) € V}.
Where I(V) is an ideal.
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1.4 Polynomials of One Variable
Definition 10. Given a non zero polynomial f € k[x], let
f=apxX+aixX" '+ ... +an

where ag is not null and all a; € k.
Then we say that apx™ is the leading term of f, written LT (f) = aox™.

Example 2. If f = 2x° +x%> — 3x+ 1, then LT (f) = 2x°.
Proposition 1.5. deg(f) < deg(g) <= LT(f) divides LT(g).

Proposition 1.6. The Division Algorithm

Let k be a field and let g be a non zero polynomial in k[x|. Then every f € k[x] can be written as
f=q-8+r

where q,r € k[x|, and either r =0 or deg(r) < deg(g). Furthermore, q and r are unique, and there is an
algorithm for finding q and r.

Here is the algorithm for finding q and r, presented in pseudocode:

Input: g, f

Output : q,r

q=0r:=f

WHILE r # 0 AND LT (g) divides LT (r) DO
q:=q+LT(r)/LT(g)
r—(LT(r)/LT(g))g

Corollary 1. If k is a field and f € k[x] is a nonzero polynomial, then f has a most deg( f) roots in k.

Corollary 2. If k is a field, then every ideal of k[x] can be written in the form (f) for some f € kl[x].
Furthermore, f is unique up to multiplication by a nonzero constant in k.

Definition 11. A greatest common divisor of polynomials f,g € k[x] is a polynomial h such that:
e hdivides f and g.
e If p is another polynomial which divides f and g, then p divides /.

When h has these propierties, we write h = GCD(f, g).

Proposition 1.7. These are the main properties of GCDs. Let f, g € k|x|. Then:

e GCD(f,g) exists and is unique up to multiplication by a nonzero constant in k.
e GCD(f,g) is a generator of the ideal (f,g).

e There is an algorithm for finding GCD(f,g).
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Example 3. Let’s see an example of how the Euclidean algorithm works, for x3 — 1 and x'? — 1.

e We use de division algorithm:

B—1=0x2-1)
x2—1=x8—1)

S—1="+ D) -1)+0.
Then, by the last equation, we have:
GCD(x* —1,x"* —1) = GCD(x"* — 1,x®* — 1) and
GCD(x* —1,x"* 1) =GCD(x® — 1,x* — 1) = GCD(x* — 1,0) =x* — 1.

e This GCD computation answers our earlier question of findin a generator for
the ideal (x® — 1,x!2 — 1) and for the proposition 1.7 we have:

GCD(x®* —1,x2 —1) =x*—1.
Definition 12. A greatest common divisor of polynomial f, ..., f; € k[x] is a polynomial / such that:
e hdivides f1,..., f;.
o If p is another polynomial which divides fi, ..., f;, then p divides h.

When £ has these propierties, we write h = GCD(f1, ..., fs).
Proposition 1.8. Let fi,..., f; € k|x|, where s > 2. Then:

GCD(f1,..., fs) exists and is unique up to multiplication by a nonzero constant in k.
GCD(f1,..., fs) is a generator of the ideal (f, ..., f5).
If s > 3, then GCD(f, ..., fs) = GCD(f1,GCD(fa,..., fy)).

e There is an algorithm for finding GCD(f1, ..., f5).
Example 4. Consider the ideal

o =3x4+2,x* — 1,60 — 1) C k[x].
We know that GCD(x* —3x+2,x* — 1,x% — 1) is a generator. But also we can check that
GCD(x* —3x+2,x* —1,x°—1) = GCD(x* - 3x+2,GCD(x* — 1,x° — 1)) = GCD(x* = 3x+2,x* = 1) =x— 1.
It follows that (x* —3x+2,x* — 1,20 — 1) = (x - 1).

Proposition 1.9. Given f,.., f; € k[x], is there an algorithm for deciding whether a given polynomial
f € k|x] lies in the ideal (fi, ..., fs)

To answer this question we will describe the following algorithm: The first step is use GCDs to find
a generator h of (fi1,.., fs) is equivalent to f € (h), we need only use the division algorithm to write
f=qh+r, where deg(r) < deg(h). It follows that is in the ideal if an olnly if r = 0.

Example 5. Suppose we wanted to know whether x> +4x>4+3x—7 € <x3 —3x4+2,x* —1,x°— 1).
We saw above that x — 1 is a generator of this ideal so that our question can be rephrased as whether
B+ax?+3x—7€ (x—1)
Dividing, we find that
B 4dx? +3x—T=(F*+5x+8)(x—1)+1
and it follows that x* +4x? + 3x — 7 is not in the ideal (x> —3x+2,x* —1,x6 —1).



Chapter 2

Grobner Bases

2.1

Problems

Through Grobner bases we will solve the following problems:

a.

The IDEAL DESCRIPTION PROBLEM:
Does every ideal I C k[xy,...,x,]| have a finite basis? In other words, can we write I = (fi,..., f5)
for f; € klx1,...,x,]?.

The IDEAL MEMBERSHIP PROBLEM:
Given f € k[xy,...,x,| and an ideal I = (f1, ..., fs), determine if f € I. Geometrically, this is closely
related to the problem of determining whether V (fi, ..., f;) lies on the variety V (f).

. The PROBLEM OF SOLVING POLYNOMIAL EQUATIONS:

Find all common solutions in k" of a system of polynomial equations

fl (xl,...,x,,) == fs(xl,...,xn) =0.
This is the same as asking for the points in the affine variety V(f,..., f5).

The IMPLICITIZATION PROBLEM:
Let V C k" be given parametrically as

X1 :gl(tl,---7tm)7

Xp = gn(t1,stm)-

If the g; are polynomials (or rational functions) in the variables ¢;, then V will be an affine variety
or part of one. Find a system of polynomial equations (in the x;) that defines the variety.
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2.2 Finite Fields

Definition 13. A field [ is finite if there is a finite number of elements.
Definition 14. Let I, be a finite field of characteristic p-prime, g = p".

Definition 15. The field F, = {0, 1} is given by the following operation tables.

+ 101 <101
001 0/0]0
110 1101

Figure 2.1: Addition and multiplication tables in [F;.

IF; is also denoted by GIF(2), the Galois field of two elements, and it is the smallest field.

Properties of IF;:

e Every element x of I, satisfies x +x = 0 and therefore —x = x, this means that the characteristic
of [F, 1s 2.

e Since 1-1=1and 0-0=0, then x2 = x for all elements of F,. Likewise, x** = x forall k > 0 = x
is idempotent with respect to multiplication.

From now on, all the examples will be done on F,.

2.3 Ordering on the Monomials

Definition 16. A monomial ordering on k[xy,...,x,] is any relation > on 7, or equivalently, any
relation on the set of monomials x%, a € Z~ ), satisfying:

e > is atotal (or linear) ordering on Z%,.
e Ifoao>fandyeZy thenaa+y>p+7y.

e > is a well ordering on Z%. This means that every nonempty subset of Z%, has a smallest
element under >.

Lemma 2.1. An order relation > on 7%, is a well ordering if and only if every strictly decreasing
sequence in 7.2,
o(l) >a(2) > a3) > ..
must be finite. That is, there are no strictly decreasing infinite chains.

Definition 17. Lexicographic Order

Leta = (a1,...,a) and B = (Bi, ..., Ba) € Z,,.
We say o >, B if, in the vector difference oo — B € Z", the left-most nonzero entry is positive. We will
write x%* >, B.

Proposition 2.2. The lex ordering on Z\, is a monomial ordering.

Definition 18. Graded Lex Order
Leta, B € Z%,. We say & > g B if

n n
la|=Y 0;>(B|=Y B, or |a|=|B| and o > B.
i=1 i=1



Grobner bases and applications... - Marta Centellas 7

Definition 19. Graded Reverse Lex Order
Leta, B € Z%,. We say a >gyex B if

|af = [BI

~

n n
lal =Y o> B|=Y.B;, o
i=1 i=1

and, in oo — B € Z", the right-most nonzero entry is negative.

Example 6. Let a polynomial f(x,y,z) = x+y+x> 42> +x> in F1[x,y,z]. We rewrite f, ordering the
terms with x > y > z using lex order, grlex order and grevlex order.
We write each of the terms of the polynomial f as a vector with three componentes:

x— (1,0,0), y—(0,1,0), x? = (2,0,0)
72— (0,0,2), x> —(3,0,0).

e Lexicographic Order: We must subtract the vectors and will be the greater, it will be greater that
in this subtraction the term has more to the left is not null and positive.

f=x++x+y+2

e Graded Lex Order: The greater term is the term that when add the components of the vector is
greater and if two are equal we take the lexicographic order.

In this case, we add the components of each vector:

x—>14+0+0=1, y—=0+14+0=1,
¥ —=24+04+0=2, 2 —-04+0+2=2,
X —=340+0=3.

In cases where the value of the sum is the same, we will apply lexicographic order, and then we
have the polynomial rewrite:
f=xX+ 4+ +x+y.

e Graded Reverse Lex Order: The greater term is the term that when add the components of the
vector is greater and if two are equal the one that when we doing the subtraction has the term
more to the right not null negative.

The solution is:
f=X4++2+x+y.

Definition 20. Let f =Y, aqx® be a nonzero polynomial in k[xj, ..., x,] and let > be a monomial order.
i) The multidegree of f is
multideg(f) = max(a € Z2 : ag # 0).
ii) The leading coefficient of f is
LC(f) = Quyltideg(f) € k.

iii) The leading monomial of f is
LM(f) _ xmultideg(f).

iv) The leading term of f is

LT(f) = LC(f)-LM(f).



8 Chapter 2. Grobner Bases

Example 7. To illustrate, let f = x*y’z + x*y?z — xy?*z* € F,[x,y,7] as before and let > denote the lex
order. Then:

multideg(f) = (4,5,1),
() =1,
LM(f) = x*y’z,
LT(f) =x*yz.

Lemma 2.3. Let f,g € k|xy,...,x,] be nonzero polynomials. Then:
i) multideg(fg) = multideg(f)+ multideg(g).
ii) If f+g #0, then multideg(f + g) < max(multideg(f), multideg(g)).

If, in addition, multideg(f) # multideg(g), then equality occurs.

2.4 Division Algorithm in K[x1, ..., x,]

We saw how the division algorithm could be used to solve the ideal membership problem for polynomials
of one variable. To study this problem when there are more variables, we will formulate a division
algorithm for polynomials in k[xy, ..., x,] that extends the algorithm for k[x]. In the general case, the goal
is to divide f € k[x1,...,x,] by fi,..., fs € k[x1,...,xn]. As we will see, this means expressing f in the
form

f=afit...taqfst+r

where the quotients ¢, ...,gs; and remainder r lie in k[xy, ..., Xx,].

Theorem 2.4. Division Algorithm in k[x|, ..., x,]
Fix a monomial order > on 77, and let F = (f1,---, fs) be an ordered s-tuple of polynomials in
k[xi,...,xn|. Then every f € k[x1,...,X,] can be written as

f=ah+..+qsfs+r,

where q;,r € k|x1,...,x,], and either r =0 or r is a linear combination, with coefficients in k, of monomials,
none of which is divisible by any of LT (f1), ...,LT (f;).
We will call r a remainder of f on division by F. Furthermore, if q;f; # 0, then we have

multideg(f) > multideg(q;f;).

The structure of the algorithm would be:

Input : f1,....fs, f
Output: q1,...,qs, 1
q1:=0;..;9;,:=0;r:=0
p=r
WHILE p # 0 DO
ii=1
divisionoccurred := false
WHILE i < s AND divisionoccurred = false DO
IF LT (f;) divides LT (p) THEN
qi = qi+LT (p)/LT(f)
p:=p—(LT(p)/LT(f))fi
divisionoccurred := true
ELSE
i=i+1
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IF divisionoccurred = false THEN
r:=r+LT(p)
p:=p—LT(p)

RETURN qy,...,q5, 1

There are two possiblities:

e DIVISION STEP: If some LT (f;) divides LT (p), then the algorithm proceeds as in the one-variable
case.

o REMAINDER STEP: Ifno LT (f;) divides LT (p), then the algorithm adds LT (p) to the remainder.

Example 8. We will first divide f = xy* +xy+y> +x+ 1 by fi =xy+ 1 and f> = x+ 1, using lex order
in Fy[x,y].

We want to employ the same scheme as for division of one variable polynomials, the difference being
that there are now several divisors and quotients.

Look at the leading terms LT (f;) = xy and LT (f>) = x, in this case both divide the leading term of
f wich is LT (f) = xy*. Since f; is listed first, we will use it.
Thus, we divide xy* into xy, leaving y?, so that when you divide f by f; the leaving y*> + 1 and the
remainder x.
Now, we repeat the same process on x. This time we must use f, because LT (f1) = xy does not divide
LT (x) = x, and then we obtain a new quotient,which is 1 and new rest, which is 1.

Since LT (f) and LT (f>) do not divide 1, the remainder is » = 1 and we are done.
Finally, we obtain:
P Fxy+y a1 =07 D)y + D)+ 1+ 1)+ 1

For other more complex examples we will use the alghorithm A that we have programmed in
SageMath [6].

Example 9. In this example, we will see that order matters. So we will make the same division in
differents orders.
Let f =xy’z+xz+y+2z, fi=xy+1, p=y*+1and f3 = y+zinFax,y,z] with lex order.

e Dividing f by F = (f1, f2, f3), the result is:
2z —2xz+y =yz(xy+ 1) +002 + 1) + (z+ 1) (y +2) + (xz+2°)
f=yz- fi4+0-fo+(z+ 1) f34 (xz+72%).
e Dividing fby F = (f2, f1, f3), the result is:
vz —2xz+y=x2(° + 1)+ 0(xy+ 1)+ 1(y+2) +0
f=xzf2+0-fi+1-f3+0.
e Dividing f by F = (f3, f2, f1), the result is:
22— 2xz+y = (xyz+x2 + 1) (y+2) +0(7 + 1 +0(xy + 1) + (x2° 4 x2)
f=@yz+x?+1)- f3+0- 40 fi + (x2° +x2).

Thus, we have verified that the remainder is not unique, since it varies depending on the order in
which the dividers are taken.

As in the previous example, we can do the operations with an algorithm A.
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2.5 Monomial Ideals and Dickson’s Lemma

Definition 21. An ideal I C k[xi,...,x,] is a monomial ideal if there a subset A C ZZ, (possibly
infinite) such that I consists of all polynomials which are finite sums of the form Y ,c4 hgx®, where
he € klxi, ...,x,). In this case, we write [ = (x* : @ € A).

Lemma 2.5. Let [ = (x® : o € A) be a monomial ideal. Then a monomial xP lies in I and only if X8 is
divisible by x* for some o € a.

Lemma 2.6. Let I be a monomial ideal, and let f € k[xy,...,x,]. Then the following are equivalent:
i) fel
ii) Every term of f lies in I.
iii) fis a k-linear combination of the monomials in I.
Corollary 3. Two monomial ideals are the same if and only if they contain the same monomials.

Theorem 2.7. Dickson’s Lemma

where (1), ...,0(s) € A. In particular, I has a finite basis.

Proof. We proceed by induction on n.

e Let n =1 =1 is generated by the monomials x{, where & € A C Z>¢. Let B be the smallest
element of A C Z>y.

e Now assume n > 1 and that the theorem is true for n — 1. We will write the variables as x1, ..., X,—1,,
so that monomials in k[xy, ..., x,_,y] can be written as x*y™, where a = (0, ...,0,—1) € Z’;)] and
me ZZO-

Suppose that I C k[xy,...,x,—1,y] is a monomial ideal. To find generators for I, let J be the ideal
in k[xy,...,x,—1] generated by the monomials x* for which x*y" € I for some m > 0.

Since J is a monomial ideal in k[xy, ..., x,_1], our inductive hypothesis implies that finitely many
of the x* generate J , say J =< x*(1) . x*() >

For each i between 1 and s, the definition of J tells us that x40 y™ € I for some m; > 0. Let m be
the largest of the m; and then, for each k between 0 and m — 1, consider the ideal J; C k[xy, ..., X, 1]
generated by the monomials x# such that Xfy* € 1.

Using our inductive hypothesis again, Jj has a finite generating set of monomials, say
Jp =< x| x%(sk) >

We claim that I is generated by the monomials in the following list:

Jo :xao(l),...,xao(s())

Ji :xa‘(l),...,xal(“)y,

Oy—1 (1) m—1 On—1(Sm—1) mfl'

In—1:x DA y

First note that every monomial in / is divisible by one on the list. To see why, let x*y” €I :
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- If p > m, thenx®y” is divisible by some x*(i)y™ by the construction of J.

- If p <m— 1, then x%yp is divisible by some x7(j)y” by the construction of J,,.

So by the lemma 2.5 we have that the above monomials generate an ideal having the same
monomials as I and by corollary 3 we appreciate that they must be the same.

To complete the proof of the theorem, we need to showthat the finite set of generators can be chosen
from a given set of generators for the ideal. If we switch back to writing the variables as x1, ..., x,, then
our monomial ideal is / =< x%* : « € A >C klxy,...,x,].

We need to show that I is generated by finitely many of the x*’s, where a € A.

But previously , we have seen that I =< xB() .. xB(s) for some monomials xP() in I, as xP (i) €
I=<x%:a € A > that implies that each x#() is divisible by xf(!) for some (i) € A. And for this reason
we have I =< x®(1) . x%() >, O

2.6 The Hilbert Basis Theorem and Grobner Bases

Definition 22. Let I C k[xy, ..., x,] be an ideal other than {0}.

i) We denote by LT () the set of leading terms of elements of /. Thus,

LT(I) = {cx® : there exists f € with LT (f) = cx*}.

ii) We denote by (LT (I)) the ideal generated by the elements of LT (1).
Proposition 2.8. Ler I C k[xy,...,x,]| be an ideal.

i) (LT(I)) is a monomial ideal.

ii) There are g1, ...,8gs € I such that (LT (I)) = (LT (g1),...,LT(g:))-

Theorem 2.9. Hilbert Basis Theorem
Every ideal I C k[xy,...,x,] has a finite generating set. That is, [ = (g1, ...,&s) for some gi,...,gs € I

Proof. We separate in two cases:

o In the first case, let I = 0, we take our generating set to be 0, which is certainly finite.

e If 7 # {0}, that is, contains some nonzero polynomial, then a generating set gi,...,gs for I can
be constructed as follows. By Proposition 2.8 , there are g1, ...,gs € I such that < LT () >=<
LT(g1),...,LT(g;) >, which it invovles I =< gi,...,gs >. Let’s see it for double content:

- Itis clear that < gy,...,gs >C I sinceeach g, €1 .

- Conversely, let f € I be any polynomial. If we apply the division algorithm to divide f by
<gi,..-,8 >, then we get an expression of the form

f=aig1+...+ag+r

where no term of r is divisible by any of LT (g;),...,LT(g/). We claim that r = 0. To see
this, note that

r=f—ag1—...—ag €1.
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If r #0, then LT (r) e< LT (I) >=< LT (g1),...,LT(g;) >, and by Lemma 2.5, it follows that
LT (r) must be divisible by some LT (g;). This contradicts what it means to be a remainder,
and, consequently, r must be zero. Thus,

f=agi+ .. +ag+0e<gr, ... 8 >,
which shows that I C< gy, ..., g5 >.
This completes the proof.
O

Definition 23. Fix a monomial order. A finite subset G = {gi,...,gs} of an ideal I is said to be a
Grobner basis if

(LT (g1),..-,LT(g:)) = (LT (I)).

Corollary 4. Fix a monomial order. Then every ideal I C k[xy, .., x,] other than {0} has a Grobner basis.
Furthermore, any Grobner basis for an ideal / is a basis of /.

Theorem 2.10. The Ascending Chain Condition
Let
LchChcC..

be an ascending chain of ideals in k[x),...,x,|. Then where exists an N > 1 such that
Iyn=Iny1=Iy2= ...
Definition 24. Let  C k[xy, ..., x,] be an ideal. We will denote by V (I) the set
V(I)={(ai,...,a,) €K": f(a1,...,an) =0 forall f €l}.

Proposition 2.11. V(1) is an affine variety. In particular, if I = (fi,..., f;), then V(I) =V (f1,.... f5)-

2.7 Propierties of Grobner Bases

Proposition 2.12. Let G = {gi,...,&s} be a Gréobner basis for an ideal I C k|xy,...,x,| and let f €
k[x1,...,xn| . Then there is a unique r € k[xy, ...,x,| with the following two propierties:

i) No term of r is divisible by any of LT (g1),...,LT (g;).
ii) Thereis g € I such that f =g+r.

In particular, r is the remainder on division of f by G no matter how the elements of G are listed when
using the division algorithm.

Example 10. Let f = xy and G = {f1, f2} a Grobner basis with fi =x+zand f, =y —zin Fa[x,y,2] .
We use G to study the uniquess of the division algorithm. We should get the same remainder, but the
quotients should be different for the two divisions (lex order).

e Divide xy by {f1, f>} with a lex order.

f=yh +Z'f2+Z2 = The remainder is + z>.

e Divide xy by {f2, f1} with a lex order.

f=x-fr+z-fi+2* = The remainder is +z°.
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Corollary 5. Let G ={gy,...,gs} be a Grobner basis for an ideal I C k[x1, ..., x,] and let f € k[xy, ..., x,].
Then f € I if and only if the remainder on division of f by G is zero.

Definition 25. We will write fF for the remainder on division of f by the ordered s-tuple F = (f1, ..., f5)-
If F is a Grobner basis for (f1, ..., fs) , then we can regard F as a set.

Example 11. For instance, we take the same function, and the same basis of the example 10.

0 = 2

Definition 26. Let f, g € k[x),...,x,] be nonzero polynomials.

i) If multideg(f) = a and multideg(g) = B, then let y= (71, ..., Yu), where ¥, = max( o, B;) for each
i. We call x” the least common multiple of LM (f) and LM (g), written x¥ = LCM (LM (f),LM(g)).

ii) The S-polynomial of f and g is the combination

x7 xV

o T

S(fg) g

Example 12. Let f = x*y> — x>y + x and g = 3x*y +y? in F,[x,y] with the grlex order.
Then y = (4,2) = x¥ = x*y? and

4.2
X X
- ﬁfy-gzx-f+y~g=x3y3+x2+y3.
Y
An S-polynomial S(f,g) is "designed " to produce cancellation of leading terms.
Proposition 2.13. Ler I C k[xy,...,x,]| be an ideal, and let G be a Gribner basis of I. Then:
. 76 _g . .
i) f =g ifandonlyif f—gel.
i) frg  =7f +%C°
N Sy, G
iii) fg~ =1"g".

Proposition 2.14. Let f,g € k|x, ..., x,] and x*,xP be monomials. Verify that

S(x*f,xPg) =x7S(f,g)

where

Y

_ LCM(x*LM(f),xP LM (g))
- LCM(LM(f)LM(g))

Lemma 2.15. Suppose we have a Y}, cifi, where c; € k and multideg(f;) =y € 75 for all i. If

multideg(Y;_, cifi) <6, then Y'!_, cifi is a lineal combination , with coefficientes in k, of the S-polynomials
S(fj, fi) for 1 < j,k <s. Furthermore, each S(f;, fr) has multidegree < O.

Theorem 2.16. Buchberger’s S-pair criterion
Let I be a polynomial ideal. Then a basis G ={gy,...,gs} for I is a Grobner basis for I if and only if for
all pairs i # j, the remainder of the division of S(gi,g;) by G is zero.



14 Chapter 2. Grobner Bases

2.8 Buchberger’s Algorithm

Example 13. Consider the ring F,[x, y] with grlex order, and let
[=<fi,fo >=<x*y+1xy* +x>.

We see that {1, f2} is not a Grobner basis for I because LT (S(f1, f2)) = x> ¢< LT (f1),LT(f>) >. To
produce a Grébner basis, one easy idea is to try first to extend tge ordiginal generating set to a Grobner
basis by adding more polynomials in /. What generators should we add?

We have S(f1,f>) = x*> +y and the remainder on division by F =< fi, f» >=< x’y + 1,xy? +x > is
x>+ y, which is non zero. Hence, we should to add that remainer in oir generating set, as a new
generator f3 = x> +y. But,

S(fi, ) =1 imF =0
S f5) =y — 1= S50, f3) =y +1

After that, we can see F is not a Grobner basis yet. Hence, we will add f; = y? + 1 to our generating

set,
F=< f17f2af3af4 >:<x2y+ laxy2+xax2+y7y2+l >

And we obtain: .
S(fi,fj) =0 for all 1<i<j<4.

It follows that a grlex Grobner basis for / is:
< i oo fa >=<Fy+ 1,07 +x,87 4y, + 1>

The above example suggests than in general, one should try to extend a basis F' to a Grobner basis

——F
by successively adding nonzero remainders S(fi, ..., fj) to F.

Theorem 2.17. Let I = (fi,..., f;) # 0 be a polynomial ideal. Then a Grébner basis for I can be
constructed in a finite number of steps by the following algorithm:

Input: F = (f1,..., fs)
Output: a Grobner basis G = (g1, ...,& ) for I, with F C G

G:=F
REPEAT
G =G
FOR each pair {p,q},p/;é qin G’ DO
$:=S(p.a)°
IF S #0THEN G := GU{S}
UNTIL G =G'.

Lemma 2.18. Let G be a Grobner basis for the polynomial ideal 1. Let p € G be a polynomial such
that LT (p) € (LT(G —{p})). Then G —{p} is also a Gribner basis for I.

Definition 27. A minimal Grobner basis for a polynomial ideal / is a Grobner basis G for [ such that:
i) LC(p) =1forall p € G.
ii) Forall pe G, LT (p) ¢ (LT(G—{p})).

Example 14. In this example, we going to construct a minimal Grébner basis. We return once again to
the ideal / studied in the example 13.

e In this case, any of the leading coefficients are different from 1, so we already have the first
condition of the previous definition.
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e Now, we going to eliminate any unneeded generators that might have been including.

LT(fi) =x’y=y-2* =y-LT(f3).

So, we can dispense with f] in the minimal Grobner basis.

LT(f2) =xy* =x-y* =x-LT(fa).
We can also eliminate f5.
For this reason, the minimal Grobner basis is: G =< f3, f3 >=< x> +y,y> +1 > .
Proposition 2.19. Given a monomial order, if G and G be minimal Grobner bases for the ideal I,then:
i) LT(G) =LT(G).
ii) G and G have the same number of elements.
Definition 28. A reduced Grobner basis for a polynomial ideal / is a Grobner basis G for [ such that:
i) LC(p) =1forall p € G.
ii) For all p € G, no monomial of p lies in (LT (G — {p})).

Proposition 2.20. Let I # {0} be a polynomial ideal. Then, for a given monomial ordering, I has unique
reduced Grobner basis.

Proof. Let G be a minimal Grobner basis for / . We say that g € G is reduced for G provided that no
monomial of g isin < LT (G —{g}) >.

Our goal is to modify G until all of its elements are reduced.

A first observation is that if g is reduced for G, then g is also reduced for any other minimal Grobner
basis of 7 that contains g and has the same set of leading terms. This follows because the definition of
reduced only involves the leading terms.

Next, given g € G, let g = g% {8} and set G’ = (G— {g})U{g'}. We claim that G’ is a minimal Grébner
basis for I . To see this, first note that LT (g') = LT (g), for when we divide g by G — {g},LT (g) goes to
the remainder since it is not divisible by any element of LT (G — {g}).

This shows that < LT (G') >=< LT(G) >. Since G’ is clearly contained in I , we see that G’ is a
Grobner basis, and minimality follows.

Finally, note that g’ is reduced for G'.

Now, take the elements of G and apply the above process until they are all reduced.

The Grobner basis may change each time we do the process, but our earlier observation shows that once
an element is reduced, it stays reduced since we never change the leading terms. Thus, we end up with
a reduced Grobner basis.

Finally, to prove uniquenes, suppose that G and G are reduced Grobner bases for 7 . Then in
particular, G and G are minimal Grobner bases, we will show that this implies they have the same
leading terms, i.e., LT (G) = LT(G). Thus, given g € G, there is § € G such that LT (g) = LT (g). If we
can show that g = g, it will follow that G = G, and uniqueness will be proved.

Fix a monomial order, and let G and G be minimal Grobner bases for the ideal I. Prove that
LT(G) = LT(G). Conclude that G and G have the same number of elements.

To show g = g, consider g — g. Thisisin/, and since G is a Grobner basis, it follows that HG =0.
But we also know LT (g) = LT(g). Hence, these terms cancel in g — g, and the remaining terms are
divisible by none of LT (G) = LT (G) since G and G are reduced. This shows that ﬁG =g—g,and
then g — & = 0 follows. This completes the proof. O
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2.9 First Applications of Grobner Bases

In this section, we going to solve the last three problems about ideals and varieties using Grobner bases.

2.9.1 The Ideal Membership Problem
Theorem 2.21. f € I if and only if f° =0

Example 15. Now, we can decide whether a given polynomial f lies in I as folows:

e Determine whether f = xy 4272 +y° 473 is in the ideal I =< x> +y, x>y —z >€ Q[x, y,7]. Use the
grlex.

First, we check if  is a Grobner basis. In this case it isn’t. So, we begin by computing a Grobner
basis for I and we find:

G= (f17f27f37f4>f5) = (yS +Z3>xy3 +22’x3 +y7X2y+Z,xz+y2) .

Also, that is a reduced Grobner basis.

Dividing, f above by G, we find:

f=1-fi+1-fo+0-f3+0-f4+0-f5+0.

Where, we can see the remiander is zero, because of we have f € I.

o Let I =< xz—y,xy+22,y—z>€ Fy[x,y,z], and use the grlex. Let f = x>z . We want to know if
fel

Following the above method, we get:
G=(f1,fr.13) = (42,2 +2,y+2).
And then,
=@+ fitx pt+z fi+2
The remainder not is zero, for this reason: f ¢ I.

2.9.2 The Problem of Solving Polynomial Equations

We will study how the Grobner basis technique can be applied to solve systems of polynomial equations
in several variables.

Example 16.

e Find the points in F,[x,y,z] on the variety V (I) = (xz+yz+ 1,xy+z+ 1,y +1).

We will a compute a Grobner basis on I respect to the lex order.

G= (g]7g27g3) = ()C+Z+ 17y+17Z2+1)
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If we examine these polynomials, we find somethig remarkable. The polynomial g, depends on y
alone, we can solve it:

y=1

And the polynomial g3 depends on z alone. Equalizing to zero, we get:

z=1
So, we obtains the following solution:
y=1z=1=2x4+7z2+1=0=x+14+1=0=x=0

e Repeat the above exercise for V (x’y — 23, xy —z— 1,z —y*, x> — zy).

In this case, we get:

G=(g1,8,8)=1

These examples indicate that finding a Grébner basis for an ideal with respect to the lex order simplifies
the form of the equations considerably. A system of equations in this form is easy to solve, especially
when the last equation contains only one variable.

2.9.3 The Implicitization Problem

Example 17. Consider the parametric curve V

x=1t*
y=1
z=1?

in F,. We compute a Grébner basis G of I =< t* +x, 1> +y,1% +z > with respect to the lex order in
Ft,x,y,z] and we find

G= {g17g27g3ag4ag5} = {tz+Zaty+z27tz+y7x+zz7y2+ZS}'

The last two polynomials depends only on x,y,z so they define an affine variety of C? containing
our curve V

x+72=0
y2+z3 =0.

Example 18. Now, consider the superface parametrized by

xX=t4+u—=x
y:tz—I—tu—y
=P +tru—1z

We compute a Grobner basis G for this ideal relative to the lex order, and we obtain:

G = (t+u+x,ux+x*+y,uy+xy +z,xz+y*)

The last polynomial depends only on x,y, z:

xz+y2 =0

So this polynomial defined a variety.






Chapter 3

Cryptanalysis Techniques in Multivariate
Public Key Cryptography

Aulthought we know that there are several multivariate authentication schemes, in this chapter we
hereafter focus on multivatiate asymmetric encryption schemes and multivariate signature schemes.

The multivariate public key cryptosystems (MPK) is a special class of schemes whose security
is based on the difficulty of solving a set of multivariate polynomial equations. MPK cryptosystem’s
public keys are a set of multivariate polynomials.

The standard way of building these systems is the next:

1. Fix a finite field IF, (usually a field of characteristic 2).
2. Fix a quadratic polynomial map Q.
3. Two invertible linear maps S and 7" are chosen.

4. With the previous steps, we produce the publickey P=ToQoS.

input x
Private Key § |
xl

Private Key O | » P Public Key
y/
Private Key T |
output y

Definition 29. Let I, be the finite field and F» an extension field of size ¢". Let f(x) be an irreducible
polynomial of degree n in IF,[x] and let a represent one of its roots. The field F,(a) is isomorphic to

Lemma 3.1. Let the finite field
Fylx]

(f)

where f is an irreducible polyomial of degree n in Fx].
Then, if a is a root of f we can choose as a basis of T, over IF), the set {1,a,...,a"'}.

With this kind of bases the products between elements of the field are very fast it their coordinates
are known with respect to that basis.

Fqn =
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Definition 30. We denote a multivariable public key by a polynomial mapping from the vector space
K" to the vector space K"

f: Kt — K™
X = (X0, Xn—1) —> Y= (po(x),..c, pm—1(x))

where p; with 1 <i < m are multivariate polynomials defined over K[xo, ...,x,—1].
Notation.

- We denote the base field by K.

- We use x and y to respectively denote the input and the output of a public key function. In other
words, x and y respectively denote the plain text and the cipher text.

3.1 Matsumoto - Imai Scheme A

The first MPK was proposed in 1985 by Matsumoto and Imai, who presented a scheme "based on
obscure representation of polynomials”, often called C* and hereafter called Matsumoto-Imai scheme A.

This Scheme uses exponentiation over an extension [E of degree n of a base finite field K of size g,
that is, K = [, and it is defined as follows:

K S O g 9

K" (3.1
where:

i) §: K" — K" and T : K" — K" are linear transformations, that is, aplications which are fixed
and easy to invert whose function is to conceal the exponentiation.

ii) ¢ : K" — E is the canonical embedding of K" into E and x = ¢(x).
In this case, this map transforms a n-tuple in a polynomial, as follows:

Q: Kt — E
n
X=(X0,.0sXp—1) +— @(x)= Zx,-a’ =xo+xia+...+x,_1d" .
i=0
iii) @~!:E — K" transform one plynomial in a n-tuple.
iv) A0+¢") B — E it is a internal transformation, being [E an extension of fields. The exponent is
chosen of the form 1 + ¢? and prime to ¢" — 1 so as to allow efficient inversion.

In other words, the public key is therefore given by the n-tuple (po, ..., pn—1) of polynomials in n
unknowns Xy, ..., X, defined over K via:

p: K" — K"
X=(X0s s Xn1) = POX)sen Pa1 (X)) =T o @ ((@o S(x))'+4")

Proposition 3.2. Given the map

we define its inverse as:
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Proof. We are going to see that the reverse map is well defined:

(1 +q6)ez 1 mod(q"—1)= (1+q9)€:k(q”—1)+1
Then,

(1400 k@ =D+1 _ jkla"=1) (3.2)

We know #E = ¢", because of Fermat’s little theorem A.1 we have:

xk(q”fl) _ (xq"fl)k —1k =1
Thus replacing this in equation (3.2), we have:
LHa%)e — kg =D+1 _ (k@' =1) ) 1 —
O

One key fact allowing an eficient representation of the public key as the n-tuple of polynomials
(Po, ..., pu—1) is that the mapping x — x7 is a K-linear mapping, which brings us to the next result.

Proposition 3.3. The exponential map x — x(1+4°) s K-quadratic.

Proof. For the Frobenius Endomorphism A.3 we have :
x—=x! = x+y— (x+y)? =x74y? = It is a linear map. (3.3)
Now, in this case:

0 0 0
X xt T =x(x0)? = (1) (xT) = go(x) - P (x)
where ¢;(x) = x? and for (3.3) ¢; is linear since ¢;(x+y) = (x+ y)qe. Thus ¢o(x) and @g(x) are linear,
and for this reason x — x4 is quadratic.
Let’s see the addition:
1+q0 o qﬂ o qB qe o
(ty) = ()T = (et y) ()T = () +y7T) =
———
4P +y‘19
—x-x +x~yq9 +y~xq6 +y-yq9 =xX+x-y+y-X+y-y=(x+y)— (x+y)l+q6 is quadratic.

This completes the proof. O

The end result of the map (3.1) is a non-linear system of equations in several variables:
Po(X0; -+ Xn—1) = Yo
: 3.4
Pn—1(X05 -, Xn—1) = Yn—1

for every n-tuple y = (yo,...,yu—1). To recover the plaintext, the given system must be resolved.
To do this, the owner of the secret key uses their knowledge of S and T and an exponent e such that

e(1+¢°) =1 (mod ¢" — 1)
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to invert each component of the public map in turn, which is equivalent to the following calculation:

x=85"o (90T (y))).

The name obscure representation comes from the assumption that the input and output coordinate
systems are unknown to anyone but the secret key owner. Hence, the security of the cryptosystem not
only relies on the hardness of solving (3.4), but also on the hardness of recovering any pair of mappings
So and Tj such that:

Vx € K", , ,

Too ™' ((poSo(x)) ™) =T o™ ((poS(x))").
Example 19. Fix the field IF‘% and its extension [E = F»3 with 6 =7 and S and T invertible, that is regular,
matrices, say:

1 1 1
S = 010 :>S(XO,X1,)C2): (x0+x1+x2,x1,xo+x1),
1 1 0
00
T=| 011 = T (x0,x1,%2) = (x2,x1 +Xx2,X0 +x2).
1 0
Thus, we have:
s ® AU+27) ¢! T
I BN WSy N B -

If we take as plain text the vector (1,0,0) and we apply the public key we, obtain:

(7] -1
) 3 s 3 ¢ At ¢ 3 T 3
pe B2 B S R S Fn B LR

(1,0,00 — (1,0,1) — 1+a® — (1+)"*=d+a — (0,1,1) — (1,0,1).

In the same way, from the encrypted text we obtain the plaintext. We take the vector (0, 1,1). But,
this time we use the exponent e, S~' and T~!. For this reason, the first step is calculate them:

(1+¢%e=1mod(q"—1) = (1+2e=1mod(2> —1) = e=5

01 1

St=10 1 0 | = 5" (x0,x1,%2) = (x1 +x2,%1,%0 +x2),
1 01
1 0 1

77! = 1 10 = 7! (xo,xl,xz) = (X() +Xx2,X0 —|—x1,xo).
1 00

And then, we calculate the inverse map, with help of the secret key:

LA | . AN Fs AL S |
(1,0,0) «— (1,0,1) «+— a®+1=(a+a*)® <+— a+a® < (0,1,1) «— (1,0,1).
Finally, we have obtained the plaintext (1,0,0).
Example 20. With the same data from the previous example, we calculate the following:
- The plaintext is (1,0,0) and the ciphertext is (1,0,1).
- The plaintext is (0, 1,0) and the ciphertext is (0,1,0).

We going to see that the proposition 3.3 is true:
If we add both plaintexts, we obtain (1,1,0) whereas the ciphertext is (0,1,1) # (1,0,1) + (0, 1,0).
This shows that the map is not linear.
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3.2 Direct Inversion Attacks

Our goal in this section is to propose a method to decrypt a ciphertext whithout using the private key.

The mapping p constitutes the public key and an attacker can directly search for a value x verifying
p(x) =y in order to decrypt y or to forge a signature x.
Such attacks consist in solving the proposed system of quadratic equations of low degree (3.4) and there
have been several algorithms designed to solve this task. The most famous is Buchberger’s algorithm.

This is a system that depends on the variables (xo, ...,x,—1), since the y = (yo,...,y,—1) is known,
where y is an ciphertext that has been intercepted.
We are going to see that it can be solved by computing Grobner bases.

To optimize the search for the solution, we will include in the original system the polynomial
equations satisfied by all polynomial maps coming from the coefficient field, that is,

q _ P
x,—xi=0 i=0,...,n—1.

This only works when the size of the field is small, because this way you can limit the exponents
of the monomials during the search for a Grobner Basis. If the field size is large the limitation of the
exponents will not affect and, therefore, we will be adding equations that hinder in the intermediate
calculations. Thus, we have to solve:

Po(X05 -3 Xn—1) =0
Pn—1(X0; -, Xn—1) = Yn—1

3.5
xg—x9=0 (3-5)
xZ_l —X,—1 =0

So solving this system is equivalent to calculating a Grobner basis G for the following ideal

I= <P0(X0,---,Xn—1) +yo,--- 7pn—1(xo, -~-,Xn—1) +yn_1,x8 —X0,~--,XZ_1 —Xn—1>

and then we solve the new system generated by G as explained in 2.9.2.

3.2.1 Examples

Example 21. In this example, first we going to do de public key in general step by step with the
following values:
p:F3—TF

0=7
S(x0,x1,%2) = (x0 + x2,%0,X0 + X1 +x2)
T (x0,%1,X2) = (X1,X1 +X2,X0 +X2)
And then, we will attack the cryptosystem assuming that the intercepted message is (0,1, 1).

Let (X(),xl,XQ) S F%Z

S(x) = (x0 4 x2,X0,X0 + X1 +X2) — X0+ X2 4+ x0a + (x0 + X1 +X2)a* —>
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ax(1)29 + (a2 +a+ 1) x(l)zgxl + azxox%28 + (a2 + 1) x{29 + a2x628x2+
+ (a+ 1) x{**x0+ (a+ 1) xox3® + x10% + (a* +a) x3%.

Applying the equations of the field xiz —x;=0 i=0,...,n—1, we have:

(a+ Dxoxt + (a® + D)3 + (a® +a+ Dxoxz + ax1x2 + (a* + a)x3 + axg —
(xox1 + X7 + XoX2, X0X1 + XX2 + X1X2 -+ X3 -+ X0, XT +X0x2 + X3 )

Finally, we apply T to the previous result:

(xox1 + Xxox2 +x1x2 +x§ —+ X0, XoX1 +x% + x1x2 + X0, X0X1 +x§)

Thus the public key is given by the following system:

XoX1 +Xox2 +Xx1X2 —i—x% +Xx0 =Yyo
XoX1 +x% +x1x +x0 = y1

2 _
XoX1+Xx5 =2

Now, we begin the attack on the cryptosystem. For this reason, we substitute y and we add the
equations of the field:
( xox1 +XoX2 +X1X2 + X3 +x0 =0
X0X1 +x% +x1x0+x0=1

X0X1 —i—x% =1

x(z)—xozo
¥—x1=0
x%—xzzo

To solve the system, we calculate a Grobner basis G for the ideal that generates its equations, and
we obtain G = {xo + 1,x; + 1,x2}. Now solving the next system is very easy:

x0+1=0
x1+1=0
XQ:()

And so, we can say that the plaintext was (1, 1,0).

Example 22. We attack other cryptosistem with p : F§ — FS, 6 = 8 and S, T the following matrices:

1 00100O0O0 1 0100111
1 000O0T1O0°1 001 11100
00110100 0010O0T1O0°1
g 1 0011110 T 001 0O0T1T1°1
01 001001 11110001
1 0100011 0010O0O0T10O0
001 100O0O0 01 000O0T11
1 0110111 1 1000101
The public key is:

X0+ X4 +X6 = Y0

X0 +Xx2 +X3+Xx5+X6 = Y1

Xp+Xx3 =y

Xot+x1+x7=y3

X2+ X3+ X4 +X5+X7 =4

X2 +X4+X5+X6 = Y5

X0 +X1+X2+Xx3+X4+X6+X7 =Y
L X0+ X2 +X4+X5+X6 =Y7
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Now, we begin the attack on the cryptosystem again for the ciphertext (0,0,1,1,0,0,1) and the
Grobner basis obtained is: {xo+ 1,x1 + 1,x2,x3,x4 + 1,x5 + 1, x6,x7 + 1}.
Thus, the plaintext was:
(1,1,0,0,1,1,0,1).

3.2.2 Computational cost

The rationale behind the design of multivariate asymmetric cryptosystems is that the complexity of
solving systems of randomly generated quadratic multivariate equations defined over a finite field is
exponential in the number of unknowns on the average.

Thanks to the software package SageMath [6] we have been able to create a code that allows the
attack to this cryptosystem, thus studying the computational cost in each case as shown in Table 3.1.

q| n t time (s) q | n t time (s)

212 2 0.004393 2212 10 0.0021162
213 7 0.004138 222 14 0.0035309
2] 4 8 0.003899 22121 22 10.00455713
2|5 28 0.031937 2221 50 |0.00455808
2] 6 20 0.214858 22 3] 246 | 0.0053930
217 64 | 10.543728 231 3] 370 | 0.0529861
217 93 | 15.183119 24 2] 224 0.002377
2 7] 102 | 16.04270 241 3] 2773 1.63645

2] 8 | 176 | 0.003543 22 [ 2] 732 | 0.0050449
2| 8 | 224 |0.0046949 2> [ 3] 3799 | 91.092567
2] 16 | 32640 | 0.0041968 22 [ 3117390 | 738.2297

Figure 3.1: Computational cost in seconds.
The used code can be found in Appendix.

Performing the above calculations we have found that we are not able to crack the cryptosystem
through Grobner bases for the following fields among others:

9 w10 1l w12 13 w14 iS5
F 7F2 7IF2 7F2 7IF2 7F2 7F2 .

In addition, there are cases in which we are not able to generate the public key due to the large size
of the field.

For this reason in this type of systems the choice of the field is important. It is not interesting that
the size of the field is very large so that the size of the key does not shoot, but on the other hand, it
is interesting that the size of the field is not very small so that the attacker cannot use the simplifying
equations mentioned above coming from the field in an effective way.
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Appendix A

In this chapter we have written some theorems that have been known throughout the text. We also
include their respective demonstrations too.

Theorem A.1. Fermat’s Little Therorem
Let p be a prime. Then for any integer n with p{n we have n”~! = 1 modulo p.

Proof. Let G be the group of units of Z,. As Z,, is a field, G = Z, — {0} thus G is a finite group of
order p — 1. For any n with p { n, the coset 7z is an element of G thus

Pl =1.
O
Proposition A.2. Let p € N prime and g € N with g < p . Then, (p) is multiple of p.
q
Proof.
<p> _ o (p=1) .
q) 9 (p—q) q'(p—9q)!
. P>q rtq! <p> . .
rime and = = is multiple of p. O
PP { p>p—q { pt(p—9q)! q peotp

Theorem A.3. Frobenius Endomorphism

Let F be a commutative ring with prime characteristic p,then the application ¢ : F — F given by
o— ¢(a) =aP Yo € F is called Frobenius Endomorphism.

Proof. For all o and B € F, developing for Newton’s binomial we have:

(a+B) =af + G) o’ B4 (f) a’ B4+ (pf 1)05[31’1 + B

We know:

p\_plp—1)(p—i+2)(p—it+l)
<i>_ i(i—1)---2-1 €.

But, p is prime and by A.2 each factor of denominator is less than p, then p divides (*) for all

i=1,2,...,p—1 and also F has characteristic p, (p) aP~'B" = 0. Then:

¢(a+p)=(a+pB)’ =a’+p"=¢(a)+90(B).

Now,

¢(aB) = (aB)’ = a’B’ = o(a)p(B).

Thus, we have seen that ¢ is a homomorphism of ring, and with this the proof is ends.
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ALGORITHMS

Below are the algorithms which are used in the chapter on rings and Grobner bases.

o Division Algorithm in k[zq, ..., z,]
e Input (f, g, R): Where R is a polinomial Ring, f a polynomial and g a polynomial list.
e Output (a,r): Where a is a tuple with the quotients and r is the remainder of f on division by g.

def div(f,q,R):
n = len(qg)
p, r, a = R(f),R(0),n*[R(0)]
while p != 0:
i, divisionoccured = 0, False

while i < n and divisionoccured == False:
if g[i].1lt().divides(p.lt()):
a[i] = a[i] + p.lt()//g[i].1t()
P=p - (pP-1t()//g[i].1t())*g[i]
divisionoccured = True
else:
i=1i+1
if divisionoccured == False:
r =r + p.1lt()
p=p - p.1t()
return a, r

o S-Polynomial
e Input (f, g, R): Where R is a polynomial ring and f and g two polynomials.
e Output (S): Where S is the sought polynomial.

def mcm(£f,g,R):
return (f*g).quo rem(gcd(£f,g9))[0]

def Spol(f,g,R):
p=mcm(f.1lt(),g.1t(),R)
S=(p.quo_rem(f.1t())[0])*f-(p.quo_rem(g.1lt())[0])*g
return S

o Buchberger's Algorithm
e Input (g, R): Where R is a polynomial ring ang g a polynomial list.
e Output (g): That is, a Grobner basis.

def buch(g,R):
n=len(g)
i=0
j=0
for i in [0..n-2]:
for j in [i+l..n-1]:
S=spol(g[i],g[]j], R)
#print S
r=div(S,qg,R)
#print r
if r!=0:
return buch(g+[r],R)
return g

https://sage-mtm.unizar.es:8001/home/568219/86/print
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PLAINTEXT AND CIPHERTEXT

In this paper, we found the code for encrypting and decrypting a known tuple in a finite field.

We define:

K = F, a finite field with ¢ = 2™ elements.
[E as the extension [Fyn .

Kn the vector space K" .
[E as the extension [y .

O O O o

The function ¢ is given by from_Kn () and its inverse is given by to_Kn ().

We select the following dates, for this example:

on=3
o qg=2
ot=2
o plaintext = (1,1, 0)

n=3

g=2

K=GF(q)

E=FiniteField(g”n)

listax=[var('x%d'%i) for i in range(n)]
E2=PolynomialRing(E, listax)

Kn, from Kn, to Kn = E.vector space(K, map=True)

We choose t like 0 in the paper, which must be that 1 + ¢° is prime with ¢" — 1.

And then, from the previous data we calculate ¢t1 which is the inverse of ¢, in the document it corresponds to e.

t=2

gcd(l+g™t,g”n-1)
t1=2Z(mod(1l/(1+g"t), (g"n-1)))
show(t)

show(tl)

2

3

follow=True
while follow:
T=random matrix(K,n)
if det(T)<>0:
follow=False
follow=True
while follow:
S=random matrix(K,n)
if det(S)<>0:
follow=False
T,S

https://sage-mtm.unizar.es:8001/home/568219/87/print
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The function z(1+4") is defined as a polynomial.

R.<x>=PolynomialRing(E2)

Let encrypt:

o Input (v, M1, M2,q,t): Where v is a plaintext (vector), M1 and M2 the matrix associated with the S
and 7' linear morphisms respectively and, gq,t previously defined.
o QOutput : Vector corresponding to the ciphertext.

Let decrypt:

o Input (v, M1, M2,q,t,t1): Where v is a ciphertext (vector), M1 and M2 the matrix associated with the
S and T linear morphisms respectively and, g, t,t1 previously defined.
o Output : Vector corresponding to the plaintext.

def encrypt(v,M1,M2,q,t):
f=x"(1+q"t)
return M2*to Kn(f(x=from Kn(M1l*v)))
def decrypt(v,M1,M2,q,t,tl):
f=x"t1
return M1”"(-1)*to Kn(f(x=from Kn(M2" (-1)*v)))

v=vector([1,1,0])
w=encrypt(v,S,T,q,t)
w,decrypt(w,S,T,q,t,tl)

((0,1,1),(1,1,0))

https://sage-mtm.unizar.es:8001/home/568219/87/print
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MATSUMOTO - IMAI ATTACK

We define the necessary fields and extensions for then, attack the cryptosystem.

o K = F, a finite field with ¢ = 2™ elements.
o [E as the extension Fyn .
o Kmn the vector space K" .
o [E as the extension Fyn .
o E2auz is a polynomial ring with variables o, . .., ,—1 and coefficientes over [£.

) ) ) E2aux
o K2 is a quotient ring p p .

< Ty —Toy---5L, 1 — Tp—1 >

o E?22 is a polynomial ring with variables as E2 and coefficients in E, that say Fg» [Xo, ..., Xn_1].

o Ka is a polynomial ring with a variable over E and coefficientes in K, Fy.

o FE3 is a polynomial ring with a variables of F2aux and Ka, and coefficients in ka, thus
E3 = Kla][zo, ..., Tn-1].

o F4 is a polynomial ring with a variables of E2aux and K a, and coefficients in ka, thus
E4A = Kla,zo,...,ZTn-1].

o E5 is a polynomial ring of the form Fon [21, .., Zp1].
o FE6 is the last polynomial ring, and it a field that contains the variables corresponding to the ciphertext and
plaintext.

import time

n=3

g=2"5

K=GF (q)

E=FiniteField(g”"n)

listax=[var('x%d'%i) for i in range(n)]
listay=[var('y%d'%i) for i in range(n)]
E2aux=PolynomialRing(E, listax)
egs0=[E2aux(_"g-_ ) for  in listax]
E2=E2aux.quotient ring(egs0)
E22=PolynomialRing(E,E2.gens())
Ka=PolynomialRing(K,E.variable name())
E3=PolynomialRing(Ka,listax)
varsx=list(E3.variable names())
vars=[Ka.variable name() ]+varsx
E4=PolynomialRing(K,vars)
E5=PolynomialRing(K,varsx)
E6=PolynomialRing(K,varsx+listay,order="'1lex"')
z3=E4.variable names()[0]
aes=[Ka(Ka.variable name())"i for i in range(n)]
Kn = E.vector_ space(K, map=True)

We choose t like 6 in the paper, which must be that 1 + g¢ is prime with g™ — 1.

follow=True
while follow:
taux=randint(0,g"n-1)
if gecd(l+g”taux,q”n-1)==1:
t=taux
follow=False
t

https://sage-mtm.unizar.es:8001/home/568219/88/print
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j=sum([E2(listax[i])*E2(aes[i]) for i in range(n)])
j2=3" (1+q"t)

egslaux=[E5(_) for _ in

(E4(E3(E22(j2))).polynomial (E4(z3))).coefficients()[::-1]]
eqsl=[E6(egslaux[i])+E6(listay[i]) for i in range(n)]
eqs2=[E5(_"g-_) for _ in listax]

egs=eqgsl+eqgs2

I=E6.ideal(egs)

Now, we already have the system of equations that make up our cryptosystem(in our paper (3.5)).

And, now we are going to attack it with Grobner bases.

wl=walltime()
gb=I.groebner basis()
w2=walltime()

w2-wl

91.24908399581909

https://sage-mtm.unizar.es:8001/home/568219/88/print 2/2
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