
 

Trabajo Fin de Grado 

 

 

 
 

 

 

 

 

 

Estudio del papel de los supercomplejos 
respiratorios y los ROS en los procesos de 
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ROS: Reactive Oxygen Species; Especies reactivas de oxígeno 

SC: Supercomplejo 
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1. RESUMEN 

El sistema de fosforilación oxidativa, presente en la membrana interna de la 

mitocondria, es el encargado de producir la mayor parte de la energía metabólica en 

células eucariotas. En el proceso de transformación tumoral, las células modifican su 

metabolismo hacia la degradación anaeróbica de glucosa en detrimento de la 

respiración mitocondrial. Esto suele ir acompañado de un aumento en los niveles de 

especies reactivas de oxígeno (ROS), que actúan como mutágenos y mitógenos. 

Estos ROS presentan una clara relación recíproca con los SCs respiratorios, que ha 

comenzado a estudiarse recientemente en los procesos oncogénicos y metastásicos.  

En este contexto, nos proponemos estudiar el papel de los SCs y los ROS en los 

procesos tumorales y metastásicos, trabajando con tres líneas celulares de cáncer de 

mama con diferentes capacidades de invasión. Con este objetivo principal hemos 

estudiado la funcionalidad de su sistema OXPHOS y el patrón de ensamblaje de los 

supercomplejos respiratorios. También se determinaron los niveles de ROS y la 

capacidad detoxificadora de las células y, por último, se evaluaron los efectos en el 

mtDNA y la biogénesis mitocondrial.  

Los resultados indican que las células más invasivas tienen una deficiencia en la 

funcionalidad de su sistema OXPHOS y una menor formación de supercomplejos, 

siendo el patrón de organización distinto en cada línea celular. La línea más 

metastásica también presenta unos elevados niveles de ROS, mientras que las células 

de estadio intermedio cuentan con una mayor defensa antioxidante. Además, 

conforme aumenta la capacidad de invasión de las células observamos una 

disminución del número de copias de mtDNA y de biogénesis mitocondrial. 

1. ABSTRACT 

The oxidative phosphorylation system, located in the mitochondrial inner membrane, is 

responsible of producing most metabolic energy in eukaryotic cells. In the process of 

tumor transformation, cells modify their metabolism towards anaerobic degradation of 

glucose in detriment of mitochondrial respiration. This change is usually accompanied 

by an increase in the levels of reactive oxygen species (ROS), which act as mutagens 

and mitogens. ROS have a clear reciprocal relationship with respiratory SCs, which 

has recently begun to be studied in oncogenic and metastatic processes. 

In this context, we propose to study the role of respiratory SCs and ROS in tumour and 

metastatic processes, working with three metastatic breast cancer cell lines with 

different invasion capabilities. With this main objective, we have analysed their 

OXPHOS system functionality and the respiratory supercomplexes assembly pattern. 

ROS levels and the detoxifying capacity of cells were also determined and, finally, the 

effects on mtDNA and mitochondrial biogenesis were evaluated.  

The results indicate that highly-invasive cells show OXPHOS deficiency and lower 

formation of supercomplexes, with the complex organization pattern being different in 

each cell line. Highly-metastatic cell line also shows increased ROS levels, while 

intermediate-stage cells have a greater antioxidant defence. As the tumour cells 

invasion capacity increases, the mtDNA copy number and mitochondrial biogenesis 

decreases. 
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Figura 1. Características 

principales del cáncer. 

Imagen adaptada de (4). 

2. INTRODUCCIÓN 
 

2.1. Oncogénesis y metástasis 

‘Cáncer’ es un término muy amplio que engloba un gran conjunto de enfermedades 

cuya característica principal es una proliferación celular descontrolada. Cada uno de 

los tipos celulares del organismo puede desarrollar un determinado tipo de cáncer, 

llegando a existir más de 200, con notables diferencias entre ellos. 

La oncogénesis o carcinogénesis comienza con la transformación de una célula 

normal en una tumoral debido a la acumulación de mutaciones en su DNA. Estas 

células pierden el control de su ciclo vital y comienzan a proliferar de forma autónoma, 

generando un nuevo tumor o neoplasia. Las mutaciones genéticas “fundadoras” que 

dan origen al crecimiento tumoral producen la pérdida de actividad de genes 

supresores de tumores y de reparación del DNA, o la ganancia de función de 

oncogenes y la enzima telomerasa. Conforme el tumor va evolucionando, aumenta la 

inestabilidad genética y se van acumulando nuevas mutaciones “accesorias” que 

ayudan a su progresión (1). 

Se habla de tumores benignos cuando se produce un crecimiento anormal, pero sin 

capacidad de invadir otros tejidos, transformándose en malignos cuando adquieren la 

capacidad de metastatizar. El proceso de metástasis es complicado y normalmente 

ocurre en fases avanzadas del tumor. En el caso de los carcinomas, que corresponden 

al 80-90% de tumores clínicos, como el cáncer de mama, las células tienen que 

realizar la transición epitelio-mesénquima, convirtiéndose en células mesenquimales 

con capacidad de hidrolizar la matriz extracelular, invadir los vasos sanguíneos y viajar 

hasta los capilares de otro tejido u órgano, donde extravasan y forman un núcleo de 

crecimiento secundario. Allí realizan la transición inversa mesénquima-epitelio, 

convirtiéndose de nuevo en células epiteliales que invaden el tejido (2).  

A pesar de ser una enfermedad altamente heterogénea, hay unas características que 

se consideran generales en todos los casos: evasión de la apoptosis, potencial 

replicativo ilimitado, angiogénesis, autosuficiencia de señales de crecimiento, 

insensibilidad a señales inhibitorias de crecimiento y capacidad de invasión de los 

tejidos y metástasis (3). Posteriormente se añadieron otras cuatro características: 

inflamación, inestabilidad genómica, evasión de la respuesta inmunitaria y 

desregulación del metabolismo energético. En esta revisión queda plasmada la 

importancia del metabolismo energético en el desarrollo del cáncer, dando un papel 

esencial a la mitocondria (4) 
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2.2. Mitocondrias y su metabolismo en el cáncer 

Las mitocondrias son orgánulos celulares esenciales en la mayoría de las células 

eucariotas. Su origen es endosimbiótico, tienen un genoma propio y una maquinaria 

de traducción distinta a la encargada de la expresión del genoma nuclear, y son muy 

dinámicas, encontrándose en constante fisión y fusión en respuesta a diferentes 

estímulos. La mitocondria presenta dos membranas, la externa es permeable gracias a 

las porinas, mientras que la interna es altamente selectiva, quedando entre ambas el 

espacio intermembrana. La membrana interna forma unas invaginaciones que 

constituyen las crestas mitocondriales, en las cuales se encuentran los componentes 

de la fosforilación oxidativa o sistema OXPHOS. 

El DNA mitocondrial (mtDNA) es circular, poliploide, sin intrones, y se transmite por vía 

maternal y no de forma mendeliana. En humanos, consta de 16569 pares de bases 

que codifican 13 proteínas del sistema OXPHOS, además de 2 rRNAs y 22 tRNAs, 

localizándose la información para el resto de las proteínas mitocondriales en el DNA 

nuclear. 

Las mitocondrias son cruciales en muchas funciones celulares, principalmente la 

generación de energía en forma de ATP mediante la fosforilación oxidativa, siendo los 

integradores principales del metabolismo energético. Otros muchos parámetros 

celulares están controlados por la mitocondria, como el estado de oxidación-reducción 

(redox), los niveles de calcio citosólico (Ca2+), la generación de especies de oxígeno 

reactivas (ROS), la generación de precursores biosintéticos para diferentes rutas 

bioquímicas, y la iniciación de la apoptosis por la salida del citocromo c. Cambios en 

estos parámetros pueden alterar el estado celular y están relacionados con diversas 

patologías, incluida la transformación tumoral (5). 

En el estudio del metabolismo mitocondrial, Otto Warburg describió una elevada tasa 

glucolítica en células tumorales, independientemente de los niveles de oxígeno 

disponible, que llevan a cabo principalmente la fermentación láctica como fuente de 

energía, lo que se denominó «efecto Warburg» (6). Al mismo tiempo, en estas células 

disminuye la respiración mitocondrial y la fosforilación oxidativa.  De esta manera, las 

células obtienen energía a la vez que generan metabolitos destinados a otras rutas 

biosintéticas para continuar con su elevada tasa de proliferación. Muchas células 

tumorales presentan otros cambios, como disminución de sustratos de oxidación, 

alteraciones funcionales y estructurales en los complejos respiratorios, mutaciones en 

el mtDNA, sobreproducción de ROS, y desregulación de la apoptosis  (5,7). Aunque la 

glucólisis anaerobia se considera una característica general de todos los tumores, hay 

excepciones en las que aumenta la respiración mitocondrial (8). 

A lo largo del tiempo, se ha trabajado con las hipótesis contradictorias de que la 

disfunción mitocondrial promueve el desarrollo del cáncer, o que es la mitocondria en 

sí misma, esencial para este (9). Por una parte, las células tumorales requieren 

mitocondrias funcionales, lo cual se estudió mediante la eliminación de su mtDNA, que 

resultó en un crecimiento celular reducido y menor formación de tumores (10). Sin 

embargo, mutaciones en el mtDNA o reducciones en su número de copias son 

características comunes en el cáncer. Además, se ha demostrado que las 

mitocondrias de células tumorales están alteradas tanto genética como funcionalmente 

estudiando cíbridos transmitocondriales (11). 
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La disfunción mitocondrial puede ser causada por defectos en genes nucleares o 

mitocondriales que codifican proteínas implicadas en rutas metabólicas, potencial de 

membrana, la biogénesis mitocondrial, el sistema OXPHOS, o vías de transducción de 

señales. Normalmente la transformación comienza con una desregulación causada por 

oncogenes o genes supresores de tumores, pero las condiciones del microambiente 

tumoral también afectan al metabolismo y pueden potenciar este proceso. 

Por tanto, se considera que las alteraciones mitocondriales tienen un papel en el 

desarrollo del cáncer importante pero complejo y diferente en cada tipo de tumor y 

estadio. Debido a la multitud de estudios que atribuyen un papel esencial a la 

mitocondria, se han ensayado y aprobado inhibidores del metabolismo mitocondrial 

como terapia anticancerígena. Estos se dirigen contra el ciclo de Krebs, la cadena de 

electrones, la fisión mitocondrial, o inducen la apoptosis por la vía mitocondrial (9). 

 

2.3. Sistema de fosforilación oxidativa OXPHOS 

El sistema de fosforilación oxidativa o sistema OXPHOS está compuesto por la cadena 

de transporte electrónico mitocondrial (mETC) y la ATP-sintasa, tratándose de dos 

tipos de reacciones diferentes acopladas entre sí. Se produce un flujo de electrones 

desde donantes hasta aceptores a través de la mETC, proceso en el cual los 

complejos respiratorios llevan a cabo reacciones redox en las que se libera energía, 

empleándola para el bombeo protones al espacio intermembrana, creando un 

gradiente electroquímico. Esta energía se libera seguidamente por quimiosmosis 

cuando la ATP-sintasa permite el paso de protones de nuevo hacia el interior de la 

mitocondria, y la utiliza para sintetizar ATP. 

Los componentes del sistema OXPHOS son cuatro complejos respiratorios (CI-IV), 

más los transportadores de electrones coenzima Q (CoQ) o ubiquinona y citocromo C, 

y la ATP-sintasa, también denominada complejo CV. También existen otros factores y 

proteínas mitocondriales con funciones estructurales, regulatorias o de ensamblaje 

que contribuyen al funcionamiento de dicho sistema. 

El proceso comienza con la entrada de electrones a través de nucleótidos de 

nicotinamida (NADH) o flavina (FADH2) reducidos, que provienen de diferentes rutas 

metabólicas (principalmente ciclo de Krebs y/o beta-oxidación). El CI o NADH-

ubiquinona reductasa cataliza la oxidación del NADH y transfiere dos electrones en 

forma de ion hidruro a la ubiquinona, translocando cuatro protones desde la matriz 

mitocondrial al espacio intermembrana. El CII o succinato-coenzima Q reductasa es el 

único que forma parte del ciclo de Krebs, oxida succinato a fumarato reduciendo la 

ubiquinona a ubiquinol a través de su cofactor FAD reducido, sin translocación de 

protones. El CIII o ubiquinol-citocromo c reductasa cataliza la oxidación de una 

molécula de ubiquinol y la reducción de dos moléculas de citocromo c mediante un 

mecanismo de reducción denominado ciclo Q. En este caso también se translocan 

cuatro protones al espacio intermembrana. El CIV es la enzima citocromo c oxidasa, 

que transfiere los electrones transportados por los citocromos al oxígeno, el aceptor 

final, reduciéndolo a H2O. En este caso se translocan cuatro y se utilizan otros cuatro 

en la generación de dos moléculas de agua contribuyendo al gradiente electroquímico. 
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Figura 2. Sistema OXPHOS. 

La organización de los componentes del sistema OXPHOS ha sido objeto de un 

extenso debate, existiendo principalmente dos modelos que tratan de explicarla. El 

primer modelo de organización de la mETC o modelo rígido propuesto en 1947, la 

describe como una entidad fija compuesta por los diferentes complejos respiratorios, 

en la que estos permanecen unidos, permitiendo una cadena catalítica altamente 

eficiente (12). 

El modelo rígido se consolidó hasta 1961, con la propuesta del modelo quimiosmótico, 

que dio origen al modelo fluido o de colisión al azar. Este describía la mETC como una 

secuencia funcional de los 4 complejos, distribuidos al azar y con libertad de 

movimiento por  la membrana interna mitocondrial (13). 

Este nuevo modelo fue aceptado hasta que se publicó el análisis de los complejos 

respiratorios en geles de BN-PAGE (Blue Native Polyacrylamide Gel Electrophoresis), 

en los que se veía, además de los complejos individuales, asociaciones entre ellos 

creando los llamados supercomplejos (SCs), recuperando el modelo rígido (14). El CI 

se encuentra mayoritariamente asociado al CIII o al CIII y CIV a la vez, formando el 

respirasoma. El CIII también se encuentra mayormente asociado con el CI, mientras 

que el CIV esta principalmente en forma libre y una parte asociado al CIII o al CI y al 

CIII. El CII no forma parte de ninguno de estos supercomplejos. La proporción de 

supercomplejos y complejos libres depende del tipo y estado metabólico de la célula. 

En 2008 el grupo de investigación en el que se desarrolla este trabajo demostró la 

actividad del respirasoma aislado probando que los supercomplejos son funcionales 

(15), aunque eso no excluye la posibilidad de otras asociaciones o de que los 

complejos funcionen también en forma libre. Así, se propuso un nuevo modelo de 

organización de la mETC, el modelo de plasticidad, que integra ambos modelos 

anteriores (16,17). 

 

2.4. Especies reactivas de oxígeno (ROS) 

La mitocondria, además de generar ATP y precursores biosintéticos, también es 

responsable de la producción de especies reactivas de oxígeno o ROS a partir de los 

electrones liberados en la cadena de transporte electrónico. Estas moléculas incluyen 

iones, radicales libres y peróxidos de oxígeno, que tienen distintas propiedades y se 

producen en diferentes condiciones. 
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Los ROS llevan a cabo importantes funciones celulares actuando como mensajeros 

intracelulares, con especial importancia en la biogénesis mitocondrial. Por otra parte, 

son moléculas inestables de vida corta y alta reactividad que reaccionan con 

proteínas, lípidos y nucleótidos causando daños oxidativos, siendo su exceso 

notablemente perjudicial para la célula y sobre todo para su DNA, ya que pueden 

provocar mutaciones que contribuyen al desarrollo de patologías, como la oncogénesis 

y el desarrollo tumoral. Además de ser agentes mutágenos, también actúan como 

mitógenos contribuyendo a la progresión del tumor (18). El estrecho balance de los 

niveles celulares de ROS es controlado por enzimas antioxidantes como la catalasa, 

glutatión peroxidasa y superóxido dismutasa, además de antioxidantes de bajo peso 

molecular como vitaminas y oligo-elementos. 

Una de las funciones propuestas para los supercomplejos respiratorios es la 

prevención del exceso de ROS, encontrándose una relación entre alteraciones en su 

formación y diversas patologías en las cuales se encuentran elevados niveles de ROS 

(17). Entre estas enfermedades se encuentra el cáncer, siendo el aumento en la 

producción de ROS una propiedad general de las células tumorales con mitocondrias 

disfuncionales, debido a un descenso de la actividad de la cadena de transporte 

electrónico, ya sea por mutaciones en mtDNA y por tanto daños en los complejos 

respiratorios, o como consecuencia de la hipoxia.   

Diversos estudios apuntan que los ROS tienen un doble papel antagónico en el 

desarrollo tumoral, contribuyendo tanto a la proliferación como a la apoptosis de 

células tumorales, y se ha propuesto que su concentración y por tanto su papel cambie 

conforme evoluciona la enfermedad. En los primeros estadios del cáncer, los ROS 

tendrían un papel pro-oncogénico al producir daño en el DNA y promover el cambio 

metabólico, llevando a la vascularización y metástasis del tumor. La evolución de un 

estado neoplásico a uno más avanzado se asocia con el aumento progresivo de ROS, 

por lo que en estadios más avanzados la excesiva acumulación de ROS podría 

promover la muerte celular, y éstos tomarían un papel de supresor de tumores 

induciendo apoptosis. Relacionado con ello, en algunos cánceres como el de mama, la 

expresión y actividad de enzimas antioxidantes disminuyen durante los estados 

neoplásicos, favoreciendo el daño oxidativo y la oncogénesis, pero aumentan en 

estados malignos e invasivos, ayudando así a los tumores a escapar de la apoptosis 

(19,20). 

 

Figura 3. Niveles de ROS y defensas antioxidantes en la progresión tumoral (19) 
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3.  ANTECEDENTES Y OBJETIVOS 

La relación entre la mitocondria, la producción de ROS y el desarrollo tumoral es 

compleja y los mecanismos implicados no están claros o son contradictorios en 

muchos casos. Sin embargo, estas asociaciones se muestran cada vez más 

evidentes, siendo necesarios estudios que profundicen en sus características y su 

regulación. 

Concretamente, existe una clara relación recíproca entre los supercomplejos 

respiratorios (SCs) y ROS: los ROS afectan a la función de los complejos y SCs 

causando daño oxidativo, y la organización en SCs puede afectar a la producción de 

ROS, cuyos niveles aumentan en ausencia del ensamblaje de SCs (16). Estudios in 

vitro han demostrado que la producción de ROS a nivel del CI aumenta cuando la 

formación del supercomplejo I+III se altera o se impide (21). 

Analizando esta relación bidireccional en procesos de tumorigénesis, se ha observado 

un incremento en la producción de ROS asociado a una alteración en el patrón de SCs 

(22). Siguiendo esta línea de investigación, estudios recientes del grupo han 

demostrado una variación en la organización de SCs en líneas celulares con diferente 

capacidad metastásica (23).  

Este proyecto se enmarca en el contexto general de una investigación en curso para 

tratar de dilucidar el papel de los supercomplejos respiratorios en situaciones que 

modifican el metabolismo celular y la producción de ROS, en particular en los 

procesos de tumorigénesis y metástasis.  

 

Los objetivos concretos que se plantean para este TFG son los siguientes:  

• Evaluar la funcionalidad del sistema OXPHOS de líneas celulares tumorales 

con distinta capacidad metastásica. 

 

• Estudiar el patrón de organización de los complejos respiratorios en procesos 

tumorales y metastásicos. 

 

• Analizar los niveles de producción de ROS y su detoxificación en líneas 

celulares con diferente capacidad de invasión. 
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4. MATERIALES Y MÉTODOS 

 

4.1. Cultivos celulares 

4.1.1. Líneas celulares y medios de cultivo. 

Las líneas celulares utilizadas son MDA-MB-231, MDA-MB-468 y MCF7, células 

epiteliales humanas de cáncer de mama metastásico, con una capacidad de invasión 

decreciente en ese orden. Como control de los experimentos se usó la línea 613, 

células transmitocondriales obtenidas por la fusión de células 143ρ0 (osteosarcoma 

carente de mtDNA) con plaquetas de un donante sano de haplogrupo H. 

Las células se sembraron en medio DMEM (GIBCO™) con glucosa (4.5 g/l) y piruvato 

(0.11 g/l), al que se le añadió un 10% suero fetal bovino (SFB) y un 1% de una mezcla 

de antibióticos compuesta por 10000 unidades/mL de penicilina G sódica y 10000 

μg/mL de sulfato de estreptomicina (Invitrogen). El medio de galactosa utilizado en las 

curvas de crecimiento se preparó a partir de medio DMEM sin glucosa ni piruvato 

(GIBCO™), al que se le añadió 0.9 g/l de galactosa y 0.11 g/l de piruvato de sodio 

(SIGMA), además de 10% de SFB y 1% de antibióticos. 

4.1.2. Cultivo y siembra celular. 

Las células se sembraron en placas petri de 100 o 150 mm de diámetro con una 

densidad de 104-105 cél/mL de medio, añadiendo 0.2 mL de medio/cm2 de superficie. 

Estas placas de cultivo se mantuvieron en una estufa a 37ºC con atmósfera húmeda y 

5% de CO2, cambiando el medio de cultivo regularmente cada dos o tres días.  

Al alcanzar la confluencia las células fueron replicadas, para lo cual se elimina el 

medio por succión, se lavan las células con PBS (0.05 mL/cm2) (GIBCO™) y se 

incuban durante 2-3 minutos con tripsina pancreática (0.033 mL/cm2 de una mezcla 

0.05% tripsina (SIGMA) y 0.02% EDTA preparada en PBS y esterilizada por filtración). 

Las células se recogen con PBS, suplementado con 10% de SFB para inhibir la 

tripsina, en un tubo falcon de 15 mL. Estas se centrifugan 5 minutos a 1750 xg y el 

precipitado celular se resuspende en volumen adecuado de medio de cultivo.  

Todo los medios usados se precalentaron antes de su uso en un baño de agua a 

37ºC, y toda la manipulación de las placas se realizó en campana de flujo de aire 

laminar. 

4.1.3. Congelación y descongelación de líneas celulares. 

Para la congelación, las células recogidas de una placa de cultivo se centrifugan y 

resuspenden en 450 μL de medio de cultivo, traspasándolas a un tubo criogénico en el 

cual se añaden 50 μL del compuesto crioprotector dimetilsulfóxido (DMSO, SIGMA). 

Rápidamente se introducen en un contenedor para congelación que permite una tasa 

de enfriamiento de 10C/min y se llevan a un congelador a -80ºC, pasándolas al día 

siguiente a un tanque de N2 líquido. 

A la hora de descongelarlas, se recupera el vial del N2 líquido y se descongela 

manteniéndolo pocos segundos en un baño de agua a 37ºC. Rápidamente se pasa la 

suspensión celular a un tubo falcon con 8 mL de PBS suplementado con 10% de SFB 

y se centrifuga 5 minutos a 1000 xg para eliminar el DMSO. El precipitado se 

resuspende en medio de cultivo y se siembra en una placa. 
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4.1.4. Recuento celular. 

Para el recuento celular, tomamos una alícuota de 50 μL en un tubo eppendorf de la 

suspensión celular homogénea previamente recogida (ver apartado 4.1.2.), 

diluyéndola en un volumen igual de colorante azul trypan (Fluka, 0.4% en NaCl 0.15 

M). El contaje se realiza con una cámara de Neubauer de 0.1 mm de profundidad, 

colocando un cubreobjetos sobre ella, y depositando una gota de la mezcla celular con 

el colorante, que penetrará entre ambos por capilaridad. La concentración celular se 

calcula mediante la siguiente fórmula:  

𝑁º 𝑑𝑒 𝑐é𝑙.

𝑚𝐿
=

𝑁º 𝑑𝑒 𝑐é𝑙. 𝑡𝑜𝑡𝑎𝑙𝑒𝑠 𝑐𝑜𝑛𝑡𝑎𝑑𝑎𝑠 ∗ 104 ∗ 𝑑𝑖𝑙𝑢𝑐𝑖ó𝑛

𝑁º 𝑑𝑒 𝑐𝑢𝑎𝑑𝑟𝑎𝑛𝑡𝑒𝑠 𝑐𝑜𝑛𝑡𝑎𝑑𝑜𝑠
 

4.1.5. Curvas de crecimiento 

Se realizan curvas de crecimiento para determinar la velocidad de crecimiento celular 

en distintos medios de cultivo (glucosa y galactosa). Se utilizan placas de 12 o 6 

pocillos, y se siembran 5 pocillos con 50.000 células/pocillo por cada línea celular en 

cada uno de los medios. A las dos horas de la siembra, se tripsiniza un pocillo de cada 

uno de los medios y líneas, se recogen las células en tubos eppendorf y se realiza su 

contaje. Este corresponde al tiempo cero, repitiéndose el contaje cada 24 horas hasta 

las 96 horas.  

Para evaluar la velocidad de crecimiento se calcula el tiempo de duplicación celular o 

tiempo de doblaje, representando en una gráfica el número de células frente al tiempo, 

y ajustándolo a una curva exponencial tipo N=ax10bt, en la que el tiempo de doblaje se 

obtiene por la fórmula DT= Log 2/b. 

 

4.2. Extracción de ácidos nucleicos 

 

4.2.1. Extracción de DNA de células en cultivo 

Las células en cultivo son recogidas por tripsinización seguida de centrifugación como 

se indica en el apartado 4.1.2. El pellet celular se resuspende en 250 μL de TE 

10:1(Tris-HCl 10 mM, pH=7.5; EDTA 1 mM), y se añade 1.25 μL de proteinasa K (20 

mg/mL), que digiere las proteínas, 5 μL de SDS al 25%, que solubiliza las membranas 

celulares, y 5 μL de ribonucleasa A (10 mg/mL) para eliminar el RNA. La preparación 

se incuba a 37ºC durante toda la noche. 

Seguidamente se realiza una doble extracción de DNA añadiendo 1.5 volúmenes de 

fenol:cloroformo:alcohol isoamílico (25:24:1, saturado con una disolución de Tris-HCl 

10 mM pH=8, EDTA 1 mM), centrifugando 5 minutos a 15700 xg, y recogiendo la fase 

acuosa. Para aumentar la pureza de la preparación se realiza otra extracción con 

cloroformo:alcohol isoamílico (24:1). A continuación, se precipita el DNA añadiendo 50 

μL de acetato amónico (7.5 M) y dos volúmenes de etanol frío. Se mezcla por 

inversión y se deja precipitar al menos 3 horas a -20ªC. Tras esto, se centrifuga 30 

minutos a 15700 xg y 4ºC. Se elimina el etanol y se deja secar el pellet de DNA, 

siendo finalmente resuspendido en Tris-HCl 10 mM; pH=8. 
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4.2.2. Extracción de RNA de células en cultivo 

En la extracción de RNA se trabaja en campana de flujo laminar para evitar la 

contaminación de RNAsas. Se parte de un pellet celular (ver apartado 4.1.2.) que se 

lisa con 500 μL de TRIzol®, resuspendiendo fuertemente e incubando 5 minutos a 

temperatura ambiente. Posteriormente se añaden 100 μL de cloroformo, invirtiendo e 

incubando 3 minutos a temperatura ambiente. A continuación, se centrifuga 15 

minutos en una microcentrífuga a 11600 xg y 4ºC. De las tres fases obtenidas se aísla 

la orgánica, a la cual se añaden 250 μL de isopropanol, se invierte, incuba 10 minutos 

a temperatura ambiente y se centrifuga 10 minutos a 11600 xg y 4ºC. 

Se retira el sobrenadante, se añaden 500 μL de etanol al 75% en agua y se centrifuga 

5 minutos a 7200 xg y 4ºC. Se retira todo el sobrenadante posible y se deja el tubo 

abierto hasta que se evapore todo el etanol. Finalmente, se disuelve el RNA en 100 μL 

de agua libre de RNAsas y se incuba 10 minutos a 55-600C con agitación. 

4.2.3. Cuantificación de ácidos nucleicos por espectrofotometría 

Para determinar la concentración y pureza de los ácidos nucleicos previamente 

extraídos se utiliza el espectrofotómetro microgota NanoDrop®, que da directamente la 

concentración de la muestra, así como la relación entre absorbancias A260/A280, que se 

relaciona con el grado de pureza de la muestra, considerándose pura cuando se 

obtienen valores  1,8 para RNA y  2,0 para DNA. 

 

4.3. Reacción en cadena de la polimerasa (PCR) 
 

4.3.1. Obtención de cDNA monocatenario 

Para obtener cDNA se parte de RNA total aislado de células en cultivo como molde, y 

se utiliza el kit “Transcriptor First Strand cDNA Síntesis Kit” de Roche, en un 

termociclador T300 de Biometra. Los reactivos utilizados se recogen en la siguiente 

tabla: 

Tabla 1. Reactivos para la síntesis de cDNA. 

 

En primer lugar, se prepara la mezcla de RNA, oligos y agua (hasta 13 μL) y se 

desnaturaliza manteniéndolo a 65ºC durante 10 minutos. A continuación, se mezclan 

con el resto de los reactivos y se lleva a cabo la reacción de retrotranscripción en el 

termociclador, incubando a 25ºC durante 10 minutos y después a 42ºC durante 60 

minutos. El cDNA obtenido se almacena a -20ºC. 

 Concentración inicial Volumen (μL) Concentración final 

Oligo(dT)18 50 mM 1 2.5 mM 

RNA  
Depende de 

la muestra 

Depende de la 

muestra 
1 μg (0.05 μg/μL) 

Tampón 5x 4 1x 

Inhibidor de RNAsas 40 U/μL 0.5 20 U 

dNTPs 10 mM 2 1 mM 

Transcriptasa inversa 20 U/μL 0.5 10 U 

H2O - Hasta 20 - 
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4.3.2. PCR en tiempo real 

Partiendo tanto de DNA genómico como de cDNA, se realiza PCR en tiempo real 

utilizando el sistema capilar LightCycler2.0 junto con el kit LightCycler FastStart DNA 

Master PLUS SYBR Green I, ambos de Roche. El programa de PCR se especifica en la 

tabla C del anexo I. 

En cada capilar se mezclan:  

• 2 µl de mastermix  

• 0.25 µl de primer mix, mezcla de los cebadores directo y reverso a 5 µM. Las 

secuencias utilizadas se encuentran en las tablas A y B del anexo I. 

• 6.25 µl de H2O  

• 1.5 µl de DNA (4 ng/µl) o cDNA (dilución 1/10) 

La PCR en tiempo real a partir de DNA genómico se empleó para cuantificar el número 

de copias de DNA mitocondrial respecto a nuclear, amplificando un gen que se 

considera representativo en cada uno de ellos: subunidad A de la succinato 

deshidrogenasa (SHDA) para el nuclear y subunidad II de la citocromo c oxidasa 

(COX2) para el mitocondrial. Se calcula basándonos en el cycle threshold (Ct), el 

número de ciclos a partir del cual la señal de emisión del fluoróforo es detectada por 

encima del ruido de fondo, siendo inversamente proporcional al número de copias de 

DNA. Los valores se calculan mediante la siguiente fórmula: 

Nº Copias mtDNA /  nDNA = 2(2ΔCt) siendo ΔCt = Ctnuclear -Ctmt 

Partiendo de cDNA se cuantificó la expresión tanto de las enzimas antioxidantes 

manganeso superóxido dismutasa (SOD2) y catalasa (Cat), como del gen de 

biogénesis mitocondrial factor respiratorio nuclear 1 (NRF1). En estos casos los 

cálculos se realizaron tomando la expresión de la actina como referencia, ya que se 

considera constante. 

Expresión gen X / actina= (2ΔCt) siendo ΔCt = Ctactina -Ctgen 

En ambos casos los datos se representan tomando las MCF7 como control o 

referencia, al ser las menos metastásicas. 

 

4.4. Purificación de mitocondrias para análisis por Blue Native – PAGE 

Se parte de 5 placas de 150 mm al 80% de confluencia y se recogen las células como 

se indica en el apartado 4.1.2. lavando el pellet celular dos veces con PBS frío y 

congelándolo a -80ºC hasta el momento de la extracción (al menos durante 10 

minutos).  

Para la extracción, el pellet se resuspende en un volumen de tampón hipotónico 

(sacarosa 83 mM, MOPS 10 mM, pH 7.2) igual a 7 veces el del pellet. La suspensión 

se incuba 2 minutos en hielo y se homogeneiza usando un homogeneizador Potter-

Dounce de 2 mL con émbolo de teflón mediante 8-10 pases (“pops”) que permiten la 

rotura de las células debido al efecto vacío generado. Se añade 1 volumen de tampón 

hipertónico (sacarosa 250 mM, MOPS 30 mM, pH 7.2) y se centrifuga 5 minutos a 

1000 xg y 4ºC para favorecer el precipitado de residuos celulares. El sobrenadante se 
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reparte en tubos eppendorf y se centrifuga durante 2 minutos a máxima velocidad en 

una microcentrífuga refrigerada. 

Los pellets obtenidos se resuspenden en medio A (sacarosa 0.32 M, Tris 10 mM, 

EDTA 1 mM, pH=7.4), juntando los de 2 tubos en uno y repitiendo el proceso de 

lavado y centrifugación hasta tener todas las mitocondrias en un tubo. A continuación, 

se resuspende el pellet final en 500 μL de medio A y se toman 4 μL para medir la 

concentración de proteína mediante el método de Bradford (apartado 4.5.1). 

La muestra se sedimenta 2 minutos a 13400 xg y 4ºC, y se resuspende en el volumen 

necesario para obtener una concentración final de 10 μg/μL. También se añade el 

detergente suave digitonina para lisar las mitocondrias, a una concentración de 4 g/g 

de proteína mitocondrial, incubándose en hielo durante 5 minutos. Finalmente, la 

muestra se centrifuga 30 minutos a 15700 xg y 4ºC, recogiendo el sobrenadante y 

congelándolo a -80ºC. Normalmente, antes de congelar las muestras, se les añade 1/3 

de volumen de azul trypan (Blue G 5%), quedando ya totalmente listas para cargarlas 

en el gel de Blue Native. 

 

4.5. Análisis de proteínas 

 

4.5.1. Cuantificación de proteínas por método de Bradford. 

La cuantificación de proteínas de muestras de mitocondrias (apartado 4.4) se realiza 

mediante espectrofotometría, utilizando el método de Bradford. Se preparan 6 

standards que contienen distintas cantidades de 0 a 20 μg de albúmina sérica bovina 

(BSA). Tanto los standars como las muestras se llevan a un volumen de 800 μL y se 

les añade 200 μL del reactivo de Bradford (BioRad). Todos se mezclan para que 

desarrollen el color y se mide su absorbancia a 595 nm. Con los standards se 

construye una recta de calibrado en la que se interpolan los valores de absorbancia de 

las muestras, calculando su concentración proteica. 

4.5.2. Electroforesis en geles de poliacrilamida “Blue Native”. 

Los geles en gradiente de poliacrilamida permiten la resolución de complejos proteicos 

formados por varias proteínas, en este caso se utilizan para separar los complejos de 

la cadena de transporte electrónico mitocondrial.  

Se utilizan geles comerciales NativePAGETM 3-12% Bis-Tris de InvitrogenTM con un 

gradiente del 3% al 12% de poliacrilamida. Tras montar el gel en el soporte adecuado, 

y en la cámara fría, se añaden los tampones del cátodo A y del ánodo, también 

comerciales. Se cargan las muestras de mitocondrias aisladas, permeabilizadas con 

digitonina y mezcladas con 1/3 de volumen del tampón de carga (Blue G 5%), de 

manera que obtengamos unos 70-100 μg de mitocondrias en cada pocillo y se inicia la 

electroforesis a un voltaje constante de 80V hasta que las muestras entran 

completamente en el gel (aproximadamente 30 minutos). A partir de entonces, 

aumentamos la corriente a 150V y se mantiene así hasta que el colorante sale del gel. 

En el caso de que el gel se vaya a usar para ensayos de actividad en gel (IGA), 

cuando la muestras han avanzado 5-7 cm en el gel, se cambia el tampón del cátodo A 

por el del B, que presenta una concentración menor de colorante.  
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4.5.3. Transferencia de proteínas a membranas de PVDF. 

Las proteínas separadas por electroforesis se transfieren a membranas de fluoruro de 

polivinilideno (PVDF) mediante el sistema de transferencia húmeda. Se corta un 

fragmento de membrana PVDF (Hybond-P de Amersham) de tamaño similar al del gel 

a transferir, se sumerge en metanol 10 segundos y se lava 5 minutos con agua 

destilada. La membrana se equilibra con tampón de transferencia (BSN: Tris 48 mM; 

glicina 39 mM; metanol 20% (v/v)) durante 10 minutos, sumergiendo también el gel en 

este tampón el mismo tiempo. 

En el sándwich de transferencia se colocan del polo negativo al positivo y sumergidos 

en tampón de transferencia: una esponja, 2 papeles Whatman 3MM, el gel, la 

membrana, otros 2 papeles, y otra esponja. Este se coloca en su soporte, se añade un 

bloque de hielo y se cubre con tampón de transferencia, dejándolo a una corriente 

constante de 100V durante 1 hora o a 30V toda la noche a 4ºC. Transcurrido este 

tiempo, la membrana se lava con metanol y por último con PBS-T (Tween20 al 0.1% 

en PBS). Las membranas permanecen sumergidas en PBS-T y a 4ºC hasta su uso. 

4.5.4. Inmunodetección de proteínas por Western-blot. 

La membrana a la cual se han transferido las proteínas previamente separadas por 

electroforesis se utiliza para la detección de estas mediante anticuerpos. Los 

anticuerpos empleados y sus diluciones se encuentran la tabla D (anexo I). Todas las 

incubaciones y lavados se realizan en un agitador orbital a temperatura ambiente 

durante el tiempo indicado, o toda la noche en la cámara fría a 4ºC. 

En primer lugar, se bloquea la membrana incubándola en una disolución de leche 

(leche desnatada en polvo al 5% en PBS-T) durante al menos 1 hora. Tras este 

tiempo, se elimina el exceso de agente bloqueante lavando varias veces con PBS-T. 

El anticuerpo primario comercial se diluye en PBS-T con 0.1% de leche en polvo, y se 

incuba la membrana con el mismo durante 1 hora y 30 minutos a temperatura 

ambiente o toda la noche a 4ºC. A continuación, se lava la membrana con PBS-T una 

vez durante 10 minutos y otras 2 veces 5 minutos. El anticuerpo secundario (anti-IgG 

de ratón conjugado con peroxidasa de rábano) se diluye a una proporción 1:5000 en 

PBS-T con 0.1% de leche, y se incuba con él la membrana durante mínimo 45 

minutos. Finalmente, se realiza un lavado de 15 minutos y otros tres de 5 minutos con 

PBS-T. 

Las proteínas de interés se detectan mediante la reacción de la enzima peroxidasa de 

rábano, conjugada al anticuerpo secundario. Para darse esta reacción, se mezcla el 

mismo volumen de solución de peróxido (reactivo 1) y de luminol (reactivo 2) (Thermo 

scientific), y se incuba la membrana con esta mezcla durante 1 minuto. La 

quimioluminiscencia se detecta mediante el revelador Amershan Imager 600. 

4.5.5. Reutilización de las membranas 

Los anticuerpos ya unidos a proteínas fijadas en membranas pueden ser eliminados 

con el fin de reutilizar las mismas en nuevas inmunodetecciones. Para ello, se incuba 

la membrana con solución de stripping (2-mercaptoetanol 100 mM, SDS 2%, Tris-HCl 

1 M pH=6.7) a 58ºC durante 30 minutos. Tras este tiempo, se realizan 3 lavados de 10 

minutos con PBS-T a temperatura ambiente. 
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4.5.6. Ensayos de actividad en gel (IGA) 

Para evaluar la actividad de los complejos respiratorios directamente sobre el gel de 

Blue Native, una vez desarrollada la electroforesis, el gel se sumerge en una 

disolución con los sustratos adecuados a la actividad a ensayar y se incuba a 

temperatura ambiente hasta que aparezcan bandas de precipitado. 

Para el complejo I, se prepara NADH 0.14 mM y NBT 1 mg/mL en Tris-HCl 0.1 M 

pH=7.4. En el caso del complejo IV, se prepara DAB 0.05% y citocromo C 50 mM en 

KPi 50 μM pH=7.4. 

 

4.6. Medida de los niveles de especies reactivas de oxígeno mediante 

citometría de flujo 

En la detección de las especies reactivas de oxígeno (ROS) se utilizan dos reactivos: 

dihidroetidio (DHE, Life Technologies), que detecta el anión superóxido O2
2- por la 

formación de 2-hidroetidio (2HE); y dihidrodiclorofluoresceína diacetato (H2DCF-DA, 

Invitrogen), capaz de detectar el ión superóxido (O2
2-) y peróxido de hidrógeno (H2O2) 

por la formación de diclorofluoresceína (DCF). 

Las células en cultivo son recogidas (unas 105), lavadas con PBS, e incubadas con 

DHE o H2DCF-DA a 2 y 20 μM respectivamente, durante 30 minutos a 37ºC. Realizado 

el marcaje, las muestras se lavan con PBS y se pasan por el citómetro de flujo. 

 

4.7. Medida de función de la enzima citrato sintasa. 

La actividad enzimática de citrato sintasa se determina por espectrofotometría 

partiendo de extractos celulares, y utilizando la siguiente fórmula matemática: 

 

 

 

 

La función de la enzima citrato sintasa se determina mediante el incremento de la 

absorbancia de las muestras a 412 nm debida a la formación de la forma aniónica del 

DTNB (ε = 13.6 mM-1cm-1) tras añadir 250 μmoles de oxalacetato como iniciador. La 

medida se realiza a 30ºC durante el intervalo de un minuto. 

Los reactivos se prepararon como se indica a continuación: 

- Tampón de medida: Tris-HCl 10 mM pH=8 

- Acetil CoA: 7 mg/mL  

- DTNB: (Ácido 5,5-Ditio-bis-2-nitrobenzóico) 1 mM 2 mg en 5mL de tampón de 

medida (FRESCO) 

- Oxalacetato 50mM (OAA) 33 mg en 5 mL de agua (FRESCO) 

- Tritón X-100 10 %, 1 mL en 10 mL de agua 

 La mezcla de reacción se preparó como se indica en la tabla E (anexo I). 

• ΔA/minuto: Incremento de la absorbancia por minuto 

• ε: Coeficiente de extinción molar del reactivo que 
absorbe a la longitud de onda de trabajo y cuya 
concentración varía en el transcurso de la reacción. 

• L: Anchura del paso de luz (1 cm) 

• U.I.: micromoles de sustrato transformados en un 
minuto 
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4.8. Medida de la funcionalidad de la cadena de transporte electrónico  

El funcionamiento de la cadena de transporte electrónico mitocondrial de las 

diferentes líneas celulares se evalúa midiendo el consumo de oxígeno de cada una 

de ellas. Para ello se utiliza un electrodo de oxígeno tipo Clark termostatizado 

(Oxytherm, Hansatech Instrument) y los datos obtenidos se registran en un PC 

utilizando el programa Oxygraph Plus V1.00 (Hansatech Instruments). 

Antes de comenzar con las medidas, se fija la temperatura a 37ºC y se calibra el 

aparato, estableciendo el cero con el agente oxidante ditionito de sodio. Partimos de 

células cultivadas en placas de 150 mm y recogidas mediante tripsinización y 

centrifugación. El pellet se resuspende en el volumen adecuado para una 

concentración de 5*106 cél/mL y se introduce 1 mL en la cámara de reacción del 

aparato, manteniéndose siempre con agitación magnética. Se registra así la medida 

de la respiración endógena, y tras 2-3 minutos se añaden 10 μL de DNP 6.5 mM para 

desacoplar la cadena de transporte de electrones de la síntesis de ATP y así detectar 

la máxima capacidad OXPHOS. Transcurridos otros 2-3 minutos se añaden 10 μL de 

KCN 400 mM, que inhibe el consumo de oxígeno. Estas disoluciones se añaden 

mediante jeringas Hamilton. Después de cada medida, la cámara de reacción se lava 

con agua. 

 

4.9. Análisis estadístico 

El análisis estadístico de los resultados obtenidos en los diferentes ensayos se realizó 

mediante el programa StatView 5.0, calculando siempre la media y la desviación 

estándar. A los conjuntos de datos se les aplicó el test de análisis de la varianza 

(ANOVA) para determinar su dispersión y para encontrar diferencias estadísticamente 

significativas (p < 0.05) se utilizó el test de la t de Student (post hoc Fisher’s).  
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5. RESULTADOS  
 

5.1. Funcionalidad del sistema OXPHOS  

En este proyecto se ha trabajado con tres líneas celulares con diferente capacidad de 

invasión, siendo la MDA-MB231 la más invasiva y MCF7 la menor, mientras que MDA-

MB468 representa un estado intermedio. Una característica común de las células 

tumorales es la adquisición del fenotipo Warburg, aumentando la tasa glucolítica y la 

fermentación láctica en detrimento de la fosforilación oxidativa. Para comprobar el 

cambio de fenotipo analizamos las características de su metabolismo y su función 

OXPHOS mediante ensayos de crecimiento celular en dos medios de cultivo 

diferentes: medio con glucosa, que es fermentativo y permite sobrevivir a todas las 

células, y medio con galactosa, en el que solo sobrevivirán las células con un sistema 

OXPHOS funcional. 

Los tiempos de duplicación celular (Dt) obtenidos para cada línea celular se muestran 

en la figura 4. Las líneas MCF7 y MDA-MB468 sobreviven y crecen correctamente en 

ambos medios de cultivo, siendo más lentas las primeras, mientras que las MDA-

MB231 tienen un tiempo de duplicación muy bajo en el medio de glucosa, pero en el 

de galactosa crecen muy lentamente y acaban muriendo, indicando una alta 

dependencia por la glucosa y posiblemente una deficiencia del sistema OXPHOS. 

 
 

Para comprobar la funcionalidad de la cadena de transporte electrónico también se 

estudió la capacidad de respiración mitocondrial de las líneas celulares midiendo el 

consumo de oxígeno en células intactas. Se establece así una tasa de respiración 

endógena, que indica el consumo basal en las células, y una tasa de respiración 

desacoplada, que representa la máxima actividad del sistema OXPHOS para cada 

línea. Los resultados de este análisis se muestran en la figura 5. 

Comparando la respiración endógena de las tres líneas celulares destaca la diferencia 

entre el elevado consumo de las MCF7 y el de las MDA-MB468, mucho menor. Estas 

diferencias se compensan cuando se desacopla la cadena respiratoria de la síntesis 

de ATP, sin diferencias significativas entre las líneas, y siendo en las MDA-MB468 

donde se da el mayor aumento del consumo de oxígeno tras desacoplarse. Dado que 

las MDA-MB231 mueren en el medio de galactosa como hemos visto anteriormente, 

esperábamos una baja respiración mitocondrial que también indicase una deficiencia 

en OXHPOS, sin embargo, los resultados indican un elevado consumo de oxígeno.  

Figura 4. Tiempo de duplicación 

celular en medio de glucosa y de 

galactosa. Los datos se representan 

como la media ± desviación estándar.  

¥: las células no sobreviven y no se 

puede calcular el Dt. La línea celular 

613 se utiliza como control del 

crecimiento en ambos medios. 
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A la vista de estos resultados no esperados estudiamos la actividad OXPHOS a nivel 

de complejos respiratorios individuales mediante ensayos de In Gel Activity (IGA), que 

también aportan información sobre las asociaciones de complejos, analizando en 

concreto la actividad NADH deshidrogenasa del CI y la actividad citocromo c oxidasa 

del CIV. 

En la figura 6A se muestra el resultado obtenido para el CI, que forma parte de varios 

supercomplejos y prácticamente no aparece en su forma libre. Las líneas MCF7 y 

MDA-MB468 presentan el mismo patrón de bandas, siendo diferente el de las MDA-

MB231 que, además, presentan menos actividad. El ensayo del CIV se muestra en la 

figura 6B, en la que vemos bandas tanto en su forma libre como en forma dimérica y 

asociado a otros complejos. Se observa el mismo patrón de bandas para las MCF7 y 

MDA-MB468, mientras que éste varía en las MDA-MB231 con algunas bandas más 

tenues y otras que desaparecen, como las correspondientes al CIV dimérico y a los 

supercomplejos, siendo el CIV monomérico la forma mayoritaria. 

Estos resultados sí coinciden con lo esperado tras el ensayo de crecimiento celular en 

glucosa y galactosa, demostrando una deficiencia en la actividad de los complejos 

respiratorios en la línea celular MDA-MB231. 

 

 

Figura 6. Resultado del 

ensayo de In Gel Activity. 

A) CI. B) CIV. En ambos 

casos el orden de las 

muestras es de menor a 

mayor capacidad de invasión 

de las células tumorales. En 

todas las calles se cargó la 

misma cantidad de proteína 

mitocondrial (100 µg).  

A)                                                 B) 

Figura 5. Respiración endógena 

y máxima. Consumo de oxígeno 

representado como fmol de O2 

consumidos por célula y por 

minuto. La línea celular 613 es el 

control. Los datos se representan 

como la media ± desviación 

estándar y el asterisco indica 

diferencias estadísticamente 

significativas (p < 0.05) entre  

líneas celulares procedentes de 

cáncer de mama. Los valores de 

p se recogen en el anexo II. A. 
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5.2. Organización de los complejos y supercomplejos respiratorios 

Estudios recientes del grupo de investigación usando como modelo células de ratón, 

demuestran la existencia de patrones distintos de SCs en líneas celulares con mayor 

capacidad metastásica (23), lo cual también se intuye en los resultados del IGA (figura 

6). Para confirmar estas diferencias en la organización y ensamblaje de los complejos 

y supercomplejos (SCs) en nuestras líneas celulares, se  llevaron a cabo ensayos de 

electroforesis en geles Blue Native (BN) seguidas de Western Blot (WB), utilizando 

anticuerpos específicos para cada uno de los complejos respiratorios (ver anexo I, 

tabla D). 

En la figura 7A se muestra la inmunodetección del complejo I, que aparece asociado a 

otros complejos formando SCs con un patrón diferente en cada línea celular, con 

bandas muy intensas en la línea MDA-MB468, mientras que no es visible en las 

MCF7, pero esto puede deberse a un error en la carga de la muestra o en la 

transferencia a la membrana, cuando realmente estas células sí presentan CI como se 

demuestra en el IGA (figura 6A)  o en las asociaciones del CIII para formar SCs (figura 

7C). El complejo II (figura 7B) presenta el mismo patrón en las tres líneas celulares, 

apareciendo de forma libre y sin formar ningún SC, aunque en las MCF7 parece haber 

menos proteína. En cuanto al complejo III (figura 7C), está presente en las tres líneas 

celulares en su forma dimérica y asociado al CIV aunque, en ambos casos, en menor 

cantidad en las MDA-MB231. También forma diversos SCs con un patrón que varía 

para cada línea celular, pero cuyas bandas son especialmente intensas en las MDA-

MB468. Por último, en la figura 7D se muestra el resultado correspondiente al 

complejo CIV, que aparece en todas las líneas en su forma libre, mientras que su 

forma dimérica y asociación con el CIV no se observa en las MDA-MB231. Podemos 

afirmar por tanto que en células humanas de tumores de mama el patrón de SCs varía 

según su capacidad de invasión. 

 

Figura 7. Resultados del Western-Blot de los cuatro complejos de la cadena de 

transporte electrónico. A) Complejo I. La carga de MCF7 es menor que las demás muestras, 

el asterisco indica que deberían aparecer bandas correspondientes a SCs. B) Complejo II. C) 

Complejo III. Las bandas de SCs de CIII corresponden a asociaciones con CI y CI+IV. D) 

Complejo IV. Las bandas que no se indican corresponderían a restos del CI, debido a que es la 

misma membrana reutilizada tras el proceso de stripping. 
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Figura 8. Niveles de ROS. Se representan los histogramas de emisión de fluorescencia, 

de DCF a la izquierda y 2HE a la derecha, detectados para las tres líneas celulares, cada 

una dibujada en un color: MCF7 en cian, MDA-MB468 en amarillo y MDA-MB2631 en rojo. 

El área en color gris corresponde a restos celulares sin marcar, y el primer pico que se 

observa en las MCF7 marcadas con DCF es debido a un marcaje inespecífico. 

5.3. Especies reactivas de oxígeno 

El aumento en los niveles de especies reactivas de oxígeno (ROS) es otra 

característica definida para las células tumorales, en las que actúan como mutágenos 

y mitógenos, contribuyendo así al desarrollo tumoral. Su acumulación progresiva suele 

ir acompañada del incremento en la expresión de enzimas detoxificadoras de ROS 

para evitar una muerte por apoptosis o necrosis. Además, los ROS mantienen una 

relación bidireccional con los SCs afectándose mutuamente, y vistas anteriormente las 

diferencias en el patrón de SCs, pasamos a estudiar los ROS en las tres líneas 

celulares. 

El nivel de ROS se determinó mediante citometría de flujo marcando las células con 

los reactivos H2DCF-DA y DHE. El primero se convierte en DCF en presencia de ROS 

entre los que se incluyen el ión superóxido (O2
2-) y peróxido de hidrógeno (H2O2), 

mientras que el segundo se transforma en 2HE exclusivamente en presencia de O2
2-. 

En la figura 8 vemos sus espectros de emisión de fluorescencia, a la izquierda DCF, y 

a la derecha 2HE, acompañados de una tabla con las intensidades de fluorescencia 

para todos los casos. La línea MDA-MB231 presenta mayor fluorescencia en ambos 

casos indicando un mayor nivel de ROS debido principalmente a O2
2-, mientras que 

entre las otras dos líneas celulares no hay grandes diferencias, llegando a 

superponerse sus espectros de emisión. 

 

 

En cuanto a la expresión de enzimas detoxificadoras, se determinó el número de 

copias de las enzimas manganeso superóxido dismutasa (SOD2) y catalasa mediante 

PCR cuantitativa. Los resultados (figura 9) indican que los niveles de catalasa 

aumentan conforme lo hace la capacidad de invasión de las células tumorales, 

mientras que los niveles de SOD2 son especialmente elevados en MDA-MB468, sin 

diferencias significativas entre MCF7 y MDA-MB231.  
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Figura 9. Niveles de expresión 

de enzimas detoxificadoras 

de ROS. A la izquierda los 

datos de la catalasa y a la 

derecha SOD2. Los datos se 

representan como la media ± 

desviación estándar y se 

expresan como porcentajes 

proporcionales a MCF7. El 

asterisco indica unas 

diferencias con las otras líneas 

estadísticamente significativas 

(p < 0.05). Los valores de p se 

recogen en el anexo II.B. 

 

Figura 10. Nº de copias de mtDNA. 

Los datos se representan como la 

media ± desviación estándar y se 

expresan como porcentajes en 

proporción a MCF7. El asterisco 

indica unas diferencias con las otras 

líneas estadísticamente significativas 

(p < 0.05). Los valores de p se 

recogen en el anexo II.C. 

 

 

 

5.4. Diferencias en la masa, biogénesis y nivel de DNA mitocondriales 

La presencia de daños en el DNA mitocondrial (mtDNA) es una característica muy 

común en las células tumorales, posiblemente debidos a su proximidad física en la 

mitocondria con los ROS, cuyos niveles también aumentan en células tumorales como 

hemos visto anteriormente. Estos daños en ocasiones son mutaciones puntuales y en 

otras cambios en el número de copias de mtDNA, por lo que medimos este parámetro 

mediante PCR cuantitativa. Los resultados (figura 10) indican una gran cantidad de 

copias de mtDNA en las MCF7, en contraste con las otras dos líneas celulares entre 

las que no hay diferencias significativas. 

 

Evaluamos también las posibles diferencias en la biogénesis mitocondrial midiendo por 

PCR cuantitativa el nivel de expresión del factor respiratorio nuclear 1 (NRF1). Este 

gen es un factor de transcripción que promueve la expresión de otros genes, que a su 

vez son esenciales para la regulación del crecimiento celular, la respiración, y la 

transcripción y replicación del DNA mitocondrial, teniendo un importante papel en la 

regulación de la biogénesis mitocondrial y la fosforilación oxidativa (21). En la figura 11 

podemos ver los resultados del número de copias de este gen, que disminuye 

conforme aumenta la capacidad de invasión de las células, con diferencias 

significativas entre las tres líneas. 
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Figura 11. Nº de copias de NRF1. 

Los datos se representan como la 

media ± desviación estándar y se 

expresan como porcentajes en 

proporción a MCF7. El asterisco 

indica unas diferencias con las otras 

líneas estadísticamente significativas 

(p < 0.05). Los valores de p se 

recogen en el anexo II.D. 

 

Figura 12. Actividad citrato sintasa 

especifica. Los datos se representan 

como la media ± desviación estándar 

y se expresan como porcentajes en 

proporción a MCF7. El asterisco 

indica unas diferencias con las otras 

líneas estadísticamente significativas 

(p < 0.05). Los valores de p se 

recogen en el anexo II.E. 

 

 

Los resultados obtenidos para el número de copias de mtDNA y de NRF1 concuerdan 

con lo observado respecto a diferencias en la masa mitocondrial, medida como 

actividad específica de la enzima citrato sintasa (CS) en homogenado celular total 

(figura 12). Se confirma así un descenso en la masa mitocondrial paralelo al 

incremento en la capacidad metastásica de las células tumorales.  

 

 

 

 

 

 

 

 

 

 

 



22 
 

6. DISCUSIÓN DE RESULTADOS 

Los supercomplejos respiratorios y las especies reactivas de oxígeno guardan una 

relación reciproca entre ellos: los ROS afectan a la función y estabilidad de los 

complejos y la organización de estos afecta a la producción de los primeros. Este TFG 

se planteó con el objetivo de discernir las características y el papel de esta relación en 

el desarrollo del cáncer y la metástasis, estudiando las diferencias mitocondriales que 

presentan tres líneas celulares de cáncer de mama con diferentes capacidades de 

invasión. 

Con el estudio de la organización de los complejos y formación de supercomplejos 

hemos demostrado que estas varían dependiendo de la capacidad metastásica de las 

células, siendo particularmente significativas las diferencias en la línea celular MDA-

MB231, con la mayor capacidad de invasión, que presentan menor formación de 

supercomplejos. Evaluando también la actividad de estos complejos vemos que en 

esta línea celular no solo hay deficiencias en la organización de SCs sino también en 

la actividad de su sistema OXPHOS.  Sin embargo, sorprende su alta capacidad de 

respiración mitocondrial, característica de una cadena de transporte electrónico 

funcional, aunque probablemente menos eficiente. 

Los niveles de producción de ROS son especialmente elevados en la línea MDA-

MB231, que podría explicar las deficiencias en sus sistema OXPHOS por daños 

oxidativos, afectando tanto a la funcionalidad de los complejos como al ensamblaje de 

SCs. La expresión de catalasa aumenta conforme lo hace la capacidad metastásica 

como es esperado para contrarrestar el aumento de ROS, sin embargo, destaca el alto 

número de copias de SOD2 en las MDA-MB468. Esta alta defensa antioxidante 

explicaría sus bajos niveles de ROS y la alta formación de SCs, especialmente con el 

CIII, en un estado intermedio del proceso de metástasis en el que aumenta la 

detoxificación de ROS para prevenir sus daños. No obstante, habría que confirmar que 

los niveles de expresión de SOD2 se correlacionan con el de proteína funcional. 

Al impedir la formación de SCs, disminuye la eficacia de la transferencia de electrones 

y aumenta así la producción ROS. A su vez, el fallo en los complejos imposibilita el 

uso de la fosforilación oxidativa como fuente de energía, desplazándose hacia el 

fenotipo Warburg. Los fallos observados en la función OXPHOS y el cambio en el 

metabolismo, también concuerdan con los resultados observados de disminución en la 

masa mitocondrial paralelo al aumento de la capacidad de invasión de las células. 

A la vista de los resultados obtenidos podemos afirmar que la relación entre SCs y 

ROS juega un papel de importancia en el desarrollo del cáncer, afectando a la 

eficiencia de la fosforilación oxidativa y al metabolismo energético de las células. Estos 

ensayos se han realizado únicamente en tres líneas celulares de tumores de mama, 

por lo que para establecer unas asociaciones de forma general en los procesos 

oncogénicos sería necesario un estudio más amplio en cuanto a tipos celulares y 

estadios tumorales, así como analizar el comportamiento de líneas celulares no 

tumorales procedentes del mismo tipo de tejido.  
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7. CONCLUSIONES 

 

• Las células de tumores más metastásicos presentan deficiencias en la 

funcionalidad de su sistema OXPHOS, relacionada con el cambio de su 

metabolismo hacia un fenotipo Warburg. 

 

• El patrón de organización de complejos y supercomplejos respiratorios varía en 

las células con diferente capacidad de invasión, disminuyendo drásticamente la 

formación de SCs en las células más invasivas. 

 

• Los niveles de ROS son especialmente elevados en la línea células más 

metastásica, mientras que en un estadio intermedio cuentan con una gran 

defensa antioxidante. 

 

• Las copias de mtDNA y la biogénesis mitocondrial disminuyen conforme 

aumenta la capacidad de invasión de las células. 

 

7. CONCLUSIONS 

• Highly-metastatic cells show OXPHOS deficiency, related to their metabolic 

switch to a Warburg phenotype.  

 

• The respiratory complex and supercomplex organization pattern varies in cells 

with different invasion capacity, with SCs assembly drastically diminishing in the 

highly- invasive cells. 

 

• ROS levels are significantly increased in highly-invasive cells, while 

intermediate-stage cells have a strong antioxidant defence. 

 

• mtDNA copy number and mitochondrial biogenesis decrease as cell invasion 

capacity increases. 
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9. ANEXOS 

Anexo I: Tablas de Materiales y Métodos 

A. Cebadores usados para PCR en tiempo real con cDNA como molde 

Gen Oligo Posición Secuencia 

NRF1 
(NM_005011) 

hNRF1 RTF 1165-1185 GCTGATGGAGAGGTGGAACAA 

hNRF1 RTR 1213-1231 GCGTCGTCTGGATGGTCAT 

SOD2 
(NM_000636.4) 

hSOD2 RTF 572-591 TCAGGATCCACTGCAAGGAA 

hSOD2 RTR 598-617 CGTGCTCCCACACATCAATC 

CATALASA 
(NM_001752.4) 

hCAT RTF 320-339 GGCCTTTGGCTACTTTGAGG 

hCAT RTR 403-422 CCGATTCTCCAGCAACAGTG 

hActb 
(NM_001101) 

hActin RTF 419-438 CGCGAGAAGATGACCCAGAT 

hActin RTR 468-489 ACAGCCTGGATAGCAACGTACA 

 

 

B. Cebadores usados para PCR en tiempo real con DNA genómico como 

molde 

Gen Oligo Posición Secuencia 

mt-Co2 
(NC_001807) 

hCOII RTF 7859-7878 CGATCCCTCCCTTACCATCA 

hCOII RTR 7905-7927 CCGTAGTCGGTGTACTCGTAGGT 

SdhA 
(AF171018) 

hSDH RTF 224-244 TCTCCAGTGGCCAACAGTGTT 

hSDH RTR 276-295 GCCCTCTTGTTCCCATCAAC 

 

 

C. Programa de PCR en tiempo real 

Desnaturalización 95ºC 10 minutos 1 ciclo 

Cuantificación 

95ºC 10 segundos 

55 ciclos 60ºC (*) 10 segundos 

72ºC 10 segundos 

Melting 

95ºC 0 segundos 

1 ciclo 65ºC 15 segundos 

98ºC 0 segundos (0.1ºC/s) 

Enfriamiento 40ºC 30 segundos 1 ciclo 

 

(*): Esta temperatura depende de los cebadores utilizados. 
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D. Anticuerpos empleados en inmunodetecciones 

 Ab primario (dilución) Proteína 
Ab secundario 

(dilución) 

Complejo I Anti-NDUFB4 (1:5000) NDUFB4 Anti-ratón (1/5000) 

Complejo II Anti-70KDa (1:5000) SHDA Anti-ratón (1/5000) 

Complejo III Anti-Core1 (1:5000) UQCRC1 Anti-ratón (1/5000) 

Complejo IV Anti-COI (1:10000) MT-CO1 Anti-ratón (1/5000) 

 

 

E. Reacción de la citrato sintasa 

 
Concentración   

stock 
Volumen (μL) 

Concentración 
final 

Buffer 10 mM 876.7 ~10 mM 

Acetil-CoA 7 mg/mL 3.3 0.023 mg/mL 

DTNB 1 mM 100 0.1 mM 

Muestra ----- 5 ---- 

Tritón X-100 10% 10 0.1% 

OAA (oxalacetato) 50 mM 5 0.25 mM 

 

 

  



28 
 

Anexo II: Análisis estadístico de los resultados 

A. Capacidad respiratoria 

 

B. Enzimas detoxificadoras de ROS 

  

C. Número de copias de mtDNA 

 

D. Número de copias de NRF1 

 

E. Actividad CS específica 

 

 

-,167 ,586 ,5537

,845 ,606 ,0095 S

1,012 ,557 ,0015 S

Mean Diff. Crit. Diff P-Value

MCF7, MDA.MB231

MCF7, MDA.MB468

MDA.MB231, MDA.MB468

Fisher's PLSD for Resp. endógena

Effect: Línea celular

Significance Level: 5 %

Row exclusion: Respiración tumorales.ssd

-,514 1,187 ,3664

-,240 1,187 ,6693

,274 1,062 ,5864

Mean Diff. Crit. Diff P-Value

MCF7, MDA.MB231

MCF7, MDA.MB468

MDA.MB231, MDA.MB468

Fisher's PLSD for Resp. desacopl.

Effect: Línea celular

Significance Level: 5 %

Row exclusion: Respiración tumorales.ssd

44,660 98,231 ,3306

-987,428 98,231 <,0001 S

-1032,088 98,231 <,0001 S

Mean Diff. Crit. Diff P-Value

MCF7, MDA-MB231

MCF7, MDA-MB468

MDA-MB231, MDA-MB468

Fisher's PLSD for SOD2 (% MCF7)

Effect: Línea celular

Significance Level: 5 %

-177,303 114,655 ,0081 S

-114,377 114,655 ,0504

62,927 122,571 ,2641

Mean Diff. Crit. Diff P-Value

MCF7, MDA-MB231

MCF7, MDA-MB468

MDA-MB231, MDA-MB468

Fisher's PLSD for Cat (% MCF7)

Effect: Línea celular

Significance Level: 5 %

72,100 11,108 <,0001 S

68,200 15,709 <,0001 S

-3,900 15,709 ,5957

Mean Diff. Crit. Diff P-Value

MCF7, MDA-MB-231

MCF7, MDA-MB-468

MDA-MB-231, MDA-MB-468

Fisher's PLSD for N Copias mtDNA

Effect: Línea celular

Significance Level: 5 %

68,140 12,284 <,0001 S

40,797 12,284 ,0002 S

-27,343 12,284 ,0016 S

Mean Diff. Crit. Diff P-Value

MCF7, MDA-MB-231

MCF7, MDA-MB-468

MDA-MB-231, MDA-MB-468

Fisher's PLSD for N Copias Nrf1

Effect: Línea celular

Significance Level: 5 %

54,767 9,405 <,0001 S

43,367 9,405 <,0001 S

-11,400 9,405 ,0251 S

Mean Diff. Crit. Diff P-Value

MCF7, MDA-MB-231

MCF7, MDA-MB-468

MDA-MB-231, MDA-MB-468

Fisher's PLSD for CS esp (%)

Effect: Línea celular

Significance Level: 5 %


