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Abstract

Failure times, denoted as 7', are random variables that represent the time to a particular event and
they are studied in different areas of research like medicine (survival analysis), engineering (reliability),
economics or social sciences. When observing these variables, censored data arise, when the observed
value of the variable is only partially known. These censored observations may appear when the event
of interest hasn’t happened by the end of the study or when the subject dropped out, moved away or
died from other causes; then the only information we know is that the observed value of the variable is
greater than a given value. Deleting censored data or taking them as true observations will lead to biased
estimations, so we need to add this information properly to the analysis if we want to produce efficient
estimations based on the obtained sample.

First, in Chapter 1 the existing types of censoring will be presented, followed by some definitions
and properties about the probability distribution of failure times. The usual functions that uniquely
characterize the distribution of a variable are usually the probability density function f(z) (pdf) and the
cumulative distribution function F () (cdf), but in the study of failure times other functions are equally
used: the survival function, defined as S(t) = P(T > t), the hazard function h(t), the cumulative hazard
function H () and the mean residual life function m(r). Some relations between these functions will be
proved and the main summary measures of location will be presented, like the mean survival time E[T],
the median survival time and the percentiles and also another function, the median residual lifetime.

In Chapter 2, some methods of estimation for censored samples are provided. Methods can be non-
parametric, if they don’t require any assumptions about the population distribution, or parametric, if
they assume that sample data come from a given family of distributions and then the parameters of the
distribution are estimated.

The main non-parametric statistic introduced is the Kaplan-Meier estimator, used to estimate the
survival function. It is defined as,

$(1) = i d
{ilrg <t}

with #(;) a time point at which at least one event occurred, d; the number of events that happened at 7(;)
and n; the number of individuals at risk at #(;, i.e., the individuals still in the study at time 7(;). Some
properties of this estimator are obtained and it is described how to calculate confidence intervals for S(7)
at any time ¢.

Using the Kaplan-Meier estimator of S(¢), one can obtain estimators of the cumulative hazard fun-
ction H(t), the mean survival time E[T] and the percentiles together with their confidence intervals.
Also there exists the Nelson-Aalen estimator for H(¢) and S(¢).

In order to make parametric estimations, a family of distributions must be selected. First, the most
common distributions used to model failure times are described: the exponential, Weibull, Gamma, Log-
normal and Loglogistic distributions. Then, a graphic procedure is described to see which distribution
better fits the data.

Once a distribution is selected, the vector of parameters ® must be estimated. Here the maximum
likelihood estimation from complete samples is adapted to censored samples. The only change lies in
the definition of the likelihood function, which is defined as,

1(©) = ﬁlLi(@) — [ /0 [ 5::0).
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where F if the set of instants of failure and C is the set of censoring times. The aim is to maximize
this function. With the maximum likelihood estimator of the parameters one can obtain the estimator
for any bijective function of them, such as the survival function or the mean of the distribution. Finally,
confidence intervals for the parameters and functions of the parameters will be computed.

In Chapter 3, tests for comparing the distribution of T of two or more groups will be introduced. The
first one is the non-parametric log-rank test family. The null hypothesis is that all the groups have the
same distribution, and the alternative hypothesis is that at least one of the groups differs from the others
at some time. A test statistic is constructed and when the null hypothesis is true it has a x> distribution
with G — 1 degrees of freedom, with G the number of groups.

The second test is the likelihood ratio test for two groups and it is parametric. If the distribution of
the groups is known, the null hypothesis is that the vectors of parameters are equal and the alternative is
that they are different, i.e., at least one parameter is different in each group. The test statistic is

X; = =2[1(®)—1(6,,6,)],

with /(®) the maximum loglikelihood under Hy and [(©;,0,) the maximum loglikelihood with no
restriction on the vectors of parameters (@1, ®,). This statistic, under the null, follows a x? distribution
with k — 1 degrees of freedom, with k the number of parameters of the vectors. This test can be adapted
to the situation in which the null hypothesis doesn’t include all the parameters of the distribution.

Finally, in Chapter 4 a censored sample simulation and an application of different estimation met-
hods to the simulated sample are carried out. The methods used are both the standard methods for
uncensored samples and the methods proposed in this paper. Then, the different results are compared to
show that the usual methods produce bad estimations, but the new ones work well.
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Capitulo 1

Las variables aleatorias tiempos de fallo y
sus caracteristicas

En este primer capitulo, se introducen las variables aleatorias tiempos de fallo y una caracteristica
muy habitual: la presencia de datos censurados en las muestras a analizar, es decir, datos cuyo valor
solo se conoce parcialmente, asi como los tipos de censura que se pueden dar. Ademads, se presentan las
funciones que caracterizan la distribucion de probabilidad de estas variables y sus medidas de posicion.

1.1. El tiempo de fallo

Las variables aleatorias tiempos de fallo o supervivencia, también denominadas usualmente como
tiempos de vida o tiempos de respuesta, representan el tiempo transcurrido desde un instante inicial
hasta la ocurrencia de un determinado evento que es el fallo o respuesta. Estas variables se pueden
analizar estadisticamente con el fin de caracterizar la frecuencia de fallo de un elemento. A partir de
ahora denotaremos como 7 a este tipo de variables.

Los dos principales campos en los que aparecen problemas cuyo objetivo es estudiar el tiempo de
funcionamiento de un elemento o individuo son:

» La industria y la tecnologia: El estudio de estas variables recibe el nombre de Fiabilidad (de
componentes). Un ejemplo de una variable tiempo de fallo es el tiempo hasta la primera averia de
un determinado tipo de coche.

= Labiomedicina: En este caso, el estudio de estas variables se denomina Andlisis de supervivencia
y se utiliza en ensayos clinicos. Por ejemplo, el tiempo hasta la reaparicién de un tumor en un
enfermo de cdncer o el tiempo hasta la curaciéon de una enfermedad en un paciente desde que
comienza su tratamiento.

En las dltimas décadas se ha producido un gran desarrollo de los métodos estadisticos para analizar
este tipo de datos y existen ademds aplicaciones en epidemiologia, economia, finanzas, criminologia y
ciencias sociales, entre otros campos.

1.2. Obtencion de los datos

Para definir una variable tiempo de fallo debe especificarse qué instante marca el comienzo y qué
suceso es el fallo o respuesta. La medida utilizada en la mayor parte de los casos serd el tiempo real
transcurrido, pero también podria ser el tiempo operativo u otra cantidad no negativa adecuada.

Como en cualquier estudio estadistico, para garantizar la validez y poder extrapolar los resultados
del estudio es necesario que la muestra sea representativa de la poblacién de la que proviene. Ademads,
para evitar la aparicion de sesgo en los resultados se deben analizar muestras aleatorias simples (i.i.d.),
en las que los tiempos de fallo de todos los elementos tengan la misma distribucion.
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1.3. Caracteristicas de los tiempos de fallo: asimetria y datos censurados

La variable tiempo de fallo, T, es una variable no negativa que suele tener una distribucién bastante
asimétrica. Por este motivo, la distribucién Normal no tendra la relevancia que tiene en otros campos de
la Estadistica; su papel lo tomard la distribucién Exponencial.

El rasgo diferencial que caracteriza el andlisis de este tipo de variables es la presencia de observa-
ciones incompletas o censuradas en las muestras sobre las que hay que realizar inferencia. El principal
motivo es que la obtencién de muestras completas suele requerir demasiado tiempo por lo que es habi-
tual terminar los experimentos antes de haber observado todos los fallos y, ademds, puede haber alguna
dificultad para observar la respuesta de un individuo como puede ser el abandono durante el ensayo por
parte de este o su fallo por una causa distinta a la estudiada en el ensayo. Sin embargo, estas observa-
ciones parciales si aportan informacién: que el valor de 7' es mayor que el tiempo transcurrido hasta su
censura, y debe incorporarse al andlisis de forma adecuada, ya que si las observaciones censuradas se
eliminan, o se toman por auténticas, las estimaciones sobre 7' pueden resultar sesgadas e ineficientes.

En el capitulo 4 se simula con R una muestra censurada de tamafio 300 de una distribucién Exp(0.4)
y se realizan distintas estimaciones. Eliminando los datos censurados, la media, por ejemplo, es 1.957,
y considerandolos fallos, la media es 1.975. La media de una distribucién Exp(0.4) es 2.5, por lo que se
observa cierto sesgo en la estimacion de la media si procedemos de alguna de estas maneras. El objetivo
de las técnicas que se van a presentar en este trabajo es tratar adecuadamente los datos censurados.

1.4. Tipos de censura

La censura puede ser a derecha, a izquierda o en un intervalo. Una observacién se dice censurada
a derecha en L, si se desconoce el valor exacto de la observacion y solo se sabe que es mayor que L.
Por otro lado, una observacién se dice censurada a izquierda en L, si solo se sabe que la observacién
es menor que el valor L. Ademads, en algunos experimentos, pueden aparecer datos censurados en un
intervalo (17,1p); es decir, que la informacién sobre ellos es que #; < T < tp. La censura a derecha es la
mads frecuente y es la Unica que consideraremos a partir de ahora.

1.4.1. Censura de tipo I y censura de tipo 11

Segtin la manera en que se limita la duracién del experimento que se realiza para obtener los datos,
los dos esquemas de censura mds frecuentes son:

= Censura de tipo I. En este esquema el experimento se programa con una duracién, C, establecida a
priori. El tiempo de fallo de un elemento se observara si es menor o igual que ese valor prefijado.
En otro caso, la observacién correspondiente tendrd un valor censurado C. En este esquema, el
nimero de observaciones censuradas de la muestra es aleatorio y el valor de censura es fijo. Este
es el disefio que se utiliza generalmente en los ensayos médicos.

= Censura de tipo II. Con este esquema de censura, un ensayo con n componentes idénticos finaliza
en el momento en que se produce el r-ésimo fallo (1 < r < n). Ese instante, #(r), serd el valor
censurado de todos los elementos que en ese momento no hayan fallado todavia. Es decir, se
observan los r tiempos de fallo més pequefios de la muestra y aparecen n — r tiempos censurados
en el valor #(r). En este esquema, el nimero de observaciones censuradas de la muestra es fijo y
el valor de censura aleatorio. Este disefio es mds frecuente en los experimentos industriales.

El valor de C en el esquema de tipo I y el valor de r (o de r/n) en el esquema de tipo II deben fijarse
antes de iniciar el experimento, para garantizar la independencia entre el mecanismo de censura y la
observacién del fendmeno, que es una de las condiciones necesarias en el desarrollo de las herramientas
estadisticas que presentaremos.



Andlisis de datos censurados - Jorge Muro Guerrero 3

1.4.2. Muestras simplemente censuradas y muestras miltiplemente censuradas

Dependiendo de si existe un valor de censura tinico o no, las muestras generadas por los experimen-
tos disefiados pueden ser:

» Muestras simplemente censuradas: Tienen un valor de censura comun, #(r) o C, para todas las
observaciones censuradas. Esto requiere que todos los individuos comiencen el ensayo al mismo
tiempo. En los ensayos industriales son mds habituales este tipo de muestras.

= Muestras multiplemente censuradas: Las observaciones censuradas de la muestra pueden tener
valores de censura diferentes. Esto sucede en los ensayos médicos ya que, ademds de establecerse
una limitacién temporal C, es habitual que los individuos se incorporen al ensayo en distintos
instantes de tiempo y que se produzcan abandonos durante el ensayo, que dan lugar a observa-
ciones censuradas porque solo se sabe que el fallo no se habia observado hasta el momento del
abandono.

En la Figura 1.1 se representa un ejemplo de muestra multiplemente censurada que corresponde a
un estudio de 18 meses de duracion, en el que solo fueron admitidos pacientes durante los 6 primeros
meses. En el grifico superior se pueden observar los instantes de entrada y salida, por fallo (e) o censura
(o), de cada paciente. Los pacientes 1, 4, 7 y 10 murieron durante el estudio, los pacientes 3, 6, 8 y 9
seguian vivos al terminar el estudio, y el 2 y el 5 lo abandonaron antes de que finalizara. El instante en
el que se comenz6 a medir cada observacion no es de interés ya que la magnitud que queremos analizar
es el tiempo de fallo 7', es decir, el tiempo desde el instante de entrada hasta el instante de fallo; por
esta razon, las observaciones suelen representarse con el mismo origen, como se muestra en el grafico
inferior.

14 L
O
3] ©
2 54 —_—0
2
S
g 13)
7 —e
9
1
T T T T
0 5 10 15
tiempo
1 o ®
O
3 4 O
g 59 —9
2
]
g ©
71 —@
3
9
—
T T T T
0 5 10 15

tiempo

Figura 1.1: Esquema de los tiempos de fallo.
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1.4.3. El modelo de censura aleatoria

En este modelo general de censura que engloba a los anteriores se supone que para cada individuo
i de la muestra existen dos variables aleatorias, el tiempo de fallo 7; y el tiempo de censura C;, y que
son independientes. La muestra queda determinada por dos variables: el minimo de cada par (7;,C;) vy,
ademads, una variable binaria para distinguir los fallos de las censuras, que vale 1 si 7; < C; y 0 en otro
caso. Es necesario que la distribucién del tiempo de fallo sea independiente de la censura para realizar
estimaciones insesgadas a partir de la muestra.

1.5. La distribucion de probabilidad de los tiempos de fallo y funciones
que la caracterizan

Consideramos que los tiempos de supervivencia observados son observaciones independientes de
una variable aleatoria T. El conjunto de valores que puede tomar la variable es no negativo, generalmente
R* =[0,00) 0 un intervalo contenido en R™. En ocasiones, podria ser un conjunto discreto como Z*.

1.5.1. Variables continuas
Las funciones habituales que caracterizan una distribucién de probabilidad son:

» La funcion de densidad: Se define como

Pt <T <t+Ar)
t)=11 = .
f) A150 At

Es una funcién no negativa y [;” f(x)dx = 1. Con intervalos suficientemente pequefios,

_P<T<t+A)

f(t) ~ At )

es decir, la funcién de densidad en ¢ se aproxima a la probabilidad de fallo en un intervalo de
tiempo pequefio con inicio en ¢, expresada por unidad de tiempo. Equivalentemente, la probabili-
dad de fallo en un intervalo pequefio con inicio en ¢ es aproximadamente la funcién de densidad
en ¢ por la longitud del intervalo: P(t < T <t-+At) =~ f(t)Ar.

» La funcién de distribucion: Se define como F (1) = P(T <)y para todo ¢,
t
Flt) = / Fx)dx.
0

Ademds de estas funciones, existen otras que se utilizan en el anélisis de los tiempos de fallo:

» La funcién de supervivencia o de fiabilidad: Se define como S(¢) = P(T > t), es la probabilidad
de que un individuo no haya fallado todavia en el instante ¢, es decir, que sobreviva mds alld del
instante ¢. Para todo ¢,

S(t)=P(T>1)=1—F(1) = /, " F@)dx.

Es una funcién monétona no creciente, S(0) = 1y lim S(¢) = 0.
o0

= La funcién de riesgo: Se define como

Pt <T<t+At|T>t
h(e) = tim LUST<tHar|T210)
At—0 At

P <T<t+At|T>t
Cuando Ar — 0, h(t) ~ (< +A|T 2¢)

a la probabilidad por unidad de tiempo de que un individuo que ha sobrevivido hasta el instante ¢
falle en un intervalo pequefio con inicio en £.

, es decir, la funcién de riesgo en ¢ se aproxima
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= La funcién de riesgo acumulado, definida como
!
H(t) = / h(x)dx,
0
representa el riesgo acumulado hasta el instante t.

Relaciones entre las funciones

Se presentan aqui las relaciones que se dan entre las funciones que se acaban de presentar y sus
respectivas demostraciones.

_dS(r) _dF(1) _d(1-S(t)) _ dS(1)
i) = dt (1) = dt dt o dr
. f(t) . Qg PUST<t+A|T>t) _ 4. PA<T<t+At) __ 1 ;- P(<T<t+At) _ f(t)
= (1) = S@) h(t) = Alzlino# = AI}LHO P(T=NAl — P(T>1) AI}LHO Y 0N
ds(t)
1 —— 1

S(t S(1) dt

(7)
CHO =50 HEO) = [ = [ -

S dx=—In(S(1)).

1.5.2. Variables discretas

Suponemos que la variable toma valores en el conjunto de los enteros positivos, aunque este caso es
poco frecuente. Las funciones que caracterizan la distribucion en este caso son:

» La funcién de probabilidad: py = P(T = k) parak=1,2,...,con py >0y Y pr = 1.
k

» La funcién de supervivencia: S(t) = P(T >1t) =Y. py.
k>t

P ir=keZ*
» La funcién de riesgo: h(t)IP(T=f|T2t):{ S(k(;l) S%t#kEZJF
si

» La funcién de riesgo acumulado: H(r) = Y. h(k).
k<t

1.5.3. El tiempo de vida restante y la vida media residual

La variable aleatoria R,, tiempo de vida restante en el instante ¢, se define como T —¢ | T > ¢, es
decir, el tiempo que queda hasta el instante de fallo de un individuo dado que ha sobrevivido hasta el
instante ¢. Dadas las funciones de la variable tiempo de fallo T que se han presentado, las funciones de
R; son:

w Sg,(x) =P(R, >x)=P(T >x+t|T >1t)= S(;(Jtr)t)
. )= f(;c(—:)t)

w hg (x) =h(x+1)
= HRr(x) :H(x+t) —H(Z)

Otra funcién que también caracteriza la distribucion de 7 es la funcién de vida media residual,
m(t), que representa el tiempo de vida restante esperado en cualquier instante ¢ > 0 y se define como,
m(t) = E(R;). La mediana de R, también es muy utilizada en Andlisis de Supervivencia.
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1.6. Medidas resumen de posicion

La medida de posicion central mas utilizada es la media, pero como la variable T suele ser asimé-
trica, la mediana es mas adecuada en este caso.

= [a media de T viene dada por la siguiente expresion:
E[T] = / S(x)dx
0

Aplicando esta relacién al tiempo de vida restante en ¢ Ry, la funcién de vida media residual se
puede calcular como m(t) = E(R;) = [, Sk, (x)dx y de aqui se obtiene la expresion

_[7Sk)
m(t)—/t %dx.

= El cuantil p se define como el valor ¢, que verifica S(z,) = 1 — p.

= La mediana de T es el valor en el que el 50% de la poblacién bajo estudio ha fallado, es decir,
en el que la probabilidad de sobrevivir es la mitad de la que habia al inicio, 1. La mediana es el
valor 5 tal que S(fp5) = 0,5 por lo que se calcula resolviendo esta ecuacién. Aplicando esto al
tiempo de vida restante en #; R, la mediana de R;, es el valor 1R,:0,5 que verifica S, R, (tr,:0,5) =0,5.
En términos de la variable aleatoria 7', verifica ‘
S(ti+tr.05) 1

Sit) 2
0, equivalentemente,
S(t;
S(li+[R,i;0,5) = (21)-



Capitulo 2

Estimacion de la funcion de supervivencia
y parametros relacionados

En este capitulo, se presentan estimaciones sobre distintos pardmetros y funciones relacionadas con
las variables tiempos de fallo 7. A la hora de estudiar el comportamiento de una variable aleatoria exis-
ten dos formas posibles de hacerlo: las estimaciones no paramétricas y las paramétricas. Las primeras
no suponen ninguna hipétesis sobre la distribucién de la variable y se emplean en las primeras fases
del estudio cuando atn no se tiene informacién sobre el comportamiento de la variable. En cambio,
las técnicas paramétricas requieren establecer una hipétesis sobre la familia de distribuciones a la que
pertenece la variable y luego se calculan estimadores e intervalos de confianza de los pardmetros de la
distribucién. A partir de estos se pueden obtener los estimadores de todas las funciones y medidas de la
distribucién de 7'.

2.1. [Estimaciones no paramétricas

Dentro de las estimaciones no paramétricas, se introduce el estimador de Kaplan-Meier de la funcién
de supervivencia. Ademds, a partir de este estimador se pueden obtener intervalos de confianza para S(¢)
y otros estimadores de algunas funciones y medidas de la distribucién de T'.

El estimador natural de S(¢) es la funcién de supervivencia empirica,

S'(t) B P(T S1)= N° de individuos con T > ¢
- ~ N° de individuos de la muestra’

Sin embargo, si la muestra contiene observaciones censuradas este no es un estimador adecuado porque
trata las censuras como instantes de fallo y es probable que subestime S(z). El estimador no paramétrico
mds utilizado para la funcién de supervivencia es el estimador producto-limite o estimador Kaplan-
Meier (KM).

2.1.1. El estimador Kaplan-Meier de S()

Consideremos una muestra de » individuos y que esos individuos han fallado en s < n instantes de
fallo distintos #(1) < #(3) < ... <) (estos instantes no incluyen los instantes de censura). Para cada
instante de fallo 7;) se define:

» d;, (di > 1), es el numero de individuos de la muestra que han fallado en 1)

= 7, es el nimero de individuos en riesgo en ese instante, es decir, es el nimero de individuos que
llegan al instante 7;) sin haber fallado ni haber sido censurados antes. Las observaciones con valor
igual a #(;), fallos o censuras, se contabilizan como individuos en riesgo para calcular n;, ya que
han tenido la posibilidad de fallar en ese instante.

7
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Con esta notacion, el estimador Kaplan-Meier de S(z) se define como,
A i —d;

S@t) = iy

{ilrg =<t}

En la Figura 2.1 se representa el estimador Kaplan-Meier de S(7) con sus intervalos de confianza
(més adelante se ve cémo se calculan) correspondientes a los datos del Ejemplo 2 de [7] sobre el tiempo,
en meses, que tardan los clientes de una compaifiia en cancelar su suscripcién con ella: 0.5, 1, 3%, 10, 10,
10%*, 11, 13.5, 14, 19, 19.5, 30. Las observaciones censuradas (*) corresponden a clientes que todavia
no se han marchado y solo se sabe que el instante en el que cancelardn la suscripcion es mayor que el
tiempo que llevan hasta el momento.

Propiedades del estimador Kaplan-Meier
= Es una funcién constante entre los tiempos de fallo consecutivos.

» Toma el valor 1 antes del menor tiempo de fallo, 7).

= Su valor decrece, segtin el factor variable ’“n;fli, en cada instante de fallo 7.

= No cambia de valor en los instantes donde ha ocurrido una censura, pero las observaciones cen-
suradas influyen en el estimador a través de los valores n;.

Notas:

1. Cuando el mayor de los tiempos observados en la muestra, 37, es un fallo, la estimacién KM
toma el valor cero a partir de ese instante. Si fj; es una observacién censurada, S(r) no esté bien
definido para t > f3; puesto que () = S(y/) es constante # 0 y produce un sesgo positivo ya que
tlgg S(t) = 0. Tampoco se puede tomar S(¢) = 0 para ¢ > f; porque se produce un sesgo negativo.

2. En una muestra sin observaciones censuradas, el estimador Kaplan-Meier coincide con el estima-

"—Zi:] dk

dor natural de S(t), la funcién de supervivencia empirica, S(t) = .

para f(; <t< L(j+1)-

3. El estimador KM admite una formulacién alternativa, menos intuitiva pero mas sencilla de cal-
cular y programar: sean t; <t < ... <1, los n valores de T observados en la muestra ordenada
en orden creciente (considerando que las censuras que tienen un valor igual al tiempo de fallo de
otro elemento son mayores que estos), el estimador KM se puede expresar como,

A n—r
—r+1

{r|t; es tiempo de falloyt, <t} n

Esta expresion es equivalente a la definicion y proporciona exactamente las mismas estimaciones.

Kaplan Meier Survival Curve for Customer Loss

1.0

08
1

06
!

Probability

04

00
!

Months to Customer Loss

Figura 2.1: Estimacién de S(¢) y los intervalos de confianza. [7]
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Intervalos de confianza para S(¢)

El mejor estimador de la varianza del estimador KM de S(¢) para un tiempo ¢ fijo es el que propor-
ciona la férmula de Greenwood [1, pdg. 23-25]:

SO B0 D Vi ——

Proposicién 1. En ausencia de censura, la expresién anterior se reduce a $(r)(1—8()) /n.

.. & Nsi1 L. .
Demostracion. En efecto, como n; —d; =n; 1y S(t) = —— cons = méx {i | t; < t}, se tiene
n

Bajo la hipétesis de que la censura de la muestra es aleatoria, el estimador S (t) es asintéticamente
normal para un ¢ fijo; utilizando esta propiedad se puede construir un intervalo de confianza aproximado
para S(¢) en un tiempo ¢ fijo; a un nivel del 100(1 — &) % el intervalo es,

S(t) £21_qs.e.[8()],

donde z;_q/, es el cuantil correspondiente de la distribucién N(0,1) y el error estdndar, s.e.[S(1)], se

calcula utilizando la férmula de Greenwood, 1/ V [S(7)].

Este intervalo aproximado no es demasiado satisfactorio en el caso de muestras pequefias dada la
normalidad asintética de S (t); ademas, si ¢ es un valor extremo, puede incluir valores fuera del rango
(0,1); la solucién mas répida es reemplazar los limites fuera del rango (0, 1) por 0 6 1. Una alternativa
mds adecuada consiste en aplicar a S(¢) una transformacién biyectiva g : (0, 1) — R, calcular un intervalo
de confianza para g[S(1)],

gI8(N] £21-q/25.¢.18[S()]],

y aplicar g~ alos limites del intervalo calculado. La transformacién mas habitual es g(x) = In[—In(x)],
que transforma el intervalo (0, 1) en (c0, —oo). El error estandar de [g[S(¢)]] se calcula mediante el método
delta: V[g[X]] = (¢/(E[X]))*V[X].

1

2.1.2. Estimacion de otras funciones y parametros
Funcion de riesgo acumulado
Existen dos posibles estimadores de H (7):

» Estimador Kaplan-Meier de H(7):

La funcién de riesgo acumulado se relaciona con S(¢) mediante la expresion H(¢) = —InS(z); en
consecuencia, un estimador de dicha funcién es H(t) = —InS(z), donde S(t) es el estimador KM
de la funcién de supervivencia.

= Estimador Nelson-Aalen de H (7):

Otro estimador posible de H (), propuesto por Nelson-Aalen, es la funcién de riesgo acumulado
empirica,
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que va sumando la funcién de riesgo empirica d;/n; en los sucesivos instantes de fallo ;. Una

estimacion de la varianza de este estimador es, V(H (1)) = ¥ Ji <t % [2, pag. 109]. A partir de
=

este estimador de H(¢) es posible obtener un estimador alternativo de la funcién de supervivencia

utilizando ahora la relacién inversa, S(¢) = exp(—H (t)).

Si T es una variable continua, H(¢) y H(t) son dos estimadores asintSticamente equivalentes y, salvo
para valores altos de t, donde las estimaciones son mas inestables, la diferencia entre ambos serd, por lo
general, pequefa.

Tiempo medio de vida

Dado que la esperanza del tiempo de vida se define como u = E[T] = ;" S(r)dt, un estimador
razonable de U es,

Q- / $(1)dr.
0

El calculo de esta integral no resulta complicado ya que la integral es el area comprendida entre los ejes
y 8(¢); como esta funcién es constante a trozos, la integral es la suma de las dreas de los rectangulos que
tienen por base #(;y — ;1) y por altura S(¢;_y)), es decir,

=Y (to)—ti1)Sti1))-

-

i=1

Este estimador es adecuado solo en el caso de que el maximo valor de la muestra, #3;, corresponda a
un instante de fallo, #(), ya que en ese caso S (t) es nula a partir de ese valor; si el mdximo es una obser-
vacién censurada, § (t) no estd definido para t > 1), y la integral anterior, hasta e, no puede calcularse.
En esta situacion, solo se puede estimar la media del tiempo de vida restringida a un intervalo [0, L],
= E[min(T,L)] = [i S(t)dt y su estimador es iy, = [i S(¢)dt. Si se toma L = tyy, L;,, serd una buena
aproximacion de E[T] si P(T > ty) es pequeia.

El estimador de la varianza de {I mas habitual es,

T A;
V(H)—ZArnr(nr_dr)_Z(n—r)(n—r+1)7

reF reF

donde F' = {r | t, es un tiempo de fallo de la muestra ordenada} y A, = [~ S(t)dr [6, pag. 118]. Este
estimador es sesgado por lo que se suele corregir su sesgo multiplicandolo por ny/(ny — 1), siendo ns
el nimero de instantes de fallo de la muestra, es decir, el niimero de sumandos del estimador [8, pag.,
332].

Percentiles y su varianza

La estimacion de la mediana o cualquier percentil, 7,,, de la distribucién es el menor tiempo de fallo
observado ¢ ;) tal que S (t)) <1—p.

Veamos como construir un intervalo de confianza aproximado para #,. El procedimiento, propuesto
por Brookmeyer, se basa en contrastar, para cada ¢, la hipétesis nula Hy : S(t) = 1 — p, frente a la
alternativa H; : S(t) # 1 — p, utilizando la normalidad asintética del estimador KM de S(7). El intervalo
de confianza al 100(1 — &) % parat,, estd formado por los valores ¢ para los que no se rechaza la hipétesis
nula, es decir, que satisfacen, X

15() —(1—p)|
s.e.(S(1))
donde el error estandar de S (1) se puede calcular a partir de la formula de Greenwood. En la préctica,
para calcular el intervalo se comprueban si verifican la condicion anterior solamente los valores de ¢ que
estdn en la muestra: el extremo inferior y superior del intervalo serdn, respectivamente, el primer y el
ultimo valor de la muestra ordenada que la verifiquen.

< a2
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2.2. Distribuciones de probabilidad para las variables tiempos de fallo T

Para las estimaciones paramétricas, hay que seleccionar una distribucién conocida y entonces obte-
ner estimadores de sus pardmetros e intervalos de confianza. En esta seccién se describen las distribu-
ciones de probabilidad mds frecuentes que presentan las variables tiempos de fallo 7' y un procedimiento
para seleccionar la méds adecuada.

2.2.1. Distribucion exponencial

La distribucién Exponencial de pardmetro A es la mas sencilla ya que supone que la funcién de
riesgo es constante,
h(t) =24 para0 <t < oo,

con A una constante positiva.
Utilizando las relaciones entre las funciones vistas en el capitulo 1, las restantes funciones que
caracterizan esta distribucion son,

S(1) = exp(— / h(r)dt) = exp(— / Adt) = exp(—A1)
f(t) =h(t)S(t) = Aexp(—At)
H(t) = /Oth(x)dx uyy para 0 < < oo,

Su media es 1/A y su varianza 1/A42. Otra propiedad importante que caracteriza esta distribucién,
es la ausencia de memoria, que implica que en cualquier instante t, la variable tiempo de vida restante,
R;, sigue también una distribucién Exp(A). Otra parametrizacion frecuente de esta distribucién utiliza
un pardmetro y igual a su media, es decir, A = 1/.

Existen dos funciones que generalizan la Exponencial: Weibull y Gamma.

2.2.2. Distribucion Weibull

La distribucién Weibull generaliza la condicidn de riesgo constante con una funcién de riesgo de la
forma,
h(t) = Ay(A)™! para0 <t < o

donde el pardmetro A > 0 es el pardmetro de escala 'y ¥ > 0 es el pardmetro de forma. Esta funcién
es siempre mondtona: creciente si ¥ > 1 y decreciente si ¥ < 1. Si ¥ = 1, coincide con la distribucion
Exp(A). Las expresiones de las restantes funciones son,

S(1) = exp (- / h(t)dt) — exp (- / ly(lt)”_]dt> — exp[—(A1)"]
f(t) = h(t)S(t) = Ay(Ar)" Texp[—(Ar)"] para 0 <7 < co.

En la Figura 2.2 se representan las funciones de densidad, riesgo y supervivencia de la distribucién
Weibull con A = 1 y distintos valores de y. Se puede observar la gran multitud de formas que puede to-
mar f(¢) dependiendo del pardmetro de forma y. Esta diversidad y la sencillez de sus funciones hace que
sea una de las distribuciones mads utilizadas para modelizar tiempos de fallo, sobre todo en Fiabilidad.

La media de la distribucion es,

—1
E(r) =D

donde I'(x) es la funcién gamma, definida para todo x > 0 por la integral I'(x) = [5°u*le “du.
Otra parametrizacion frecuente de esta distribucién es h(t) = A'y'rY !, que implica S(¢) = exp[—A/t" ],
y la relacién entre los pardmetroses Y = yy A’ = A7.
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Weibull Distribution: 2=1 Weibull Distribution: 2.=1 Weibull Distribution: 2=1

hit)

Figura 2.2: Gréfica de las funciones de densidad (izda.), riesgo (centro) y supervivencia (dcha.) de la distribucién Weibull
con A = 1 y distintos valores de .

2.2.3. Distribucion Gamma

La distribucién Gamma estd también caracterizada por dos pardmetros positivos ¥y A. Su funcién
de densidad es,

f) = F?y)(kt)yl exp(—At) parar > 0.
Su media y varianza son y/A y y/A2.

La distribucién Gamma, como la Weibull, es de riesgo creciente si ¥ > 1 y de riesgo decreciente si
Y < 1. Si y =1 se obtiene la distribucién Exp(A). Ademds h(t) tiende a A al crecer ¢.

Aunque en otros dmbitos la distribucion Gamma es muy importante, en el anélisis de los tiempos de
fallo no es muy ttil ya que para obtener expresiones de las funciones de riesgo y supervivencia se requie-
re calcular integrales y resulta complicado. Ademds, en general, produce estimaciones muy parecidas a
las de la distribuciéon Weibull, cuya inferencia es més sencilla, por lo que esta es mas utilizada.

Ademds de estas distribuciones, existen otras dos que se construyen especificando la distribucién de
InT, para asi asegurar que T solo toma valores positivos: las distribuciones Lognormal y Loglogistica.

2.2.4. Distribucion Lognormal

Diremos que T sigue una distribucién Lognormal de pardmetros i y ¢ siIn(T') tiene una distribucién
N(u,0). La funcién de riesgo se caracteriza porque h(0) = 0, crece hasta alcanzar un maximo y a
continuacién decrece de forma que 1im;_,.. 2(r) = 0.

La distribuciéon Lognormal presenta el mismo inconveniente que la distribucién Gamma: su funcién
de supervivencia incluye una integral, lo que dificulta la inferencia, por lo que no es muy utilizada.

2.2.5. Distribucion Loglogistica

Se dice que T tiene una distribucion Loglogistica si la variable In(7") tiene una distribucién Logis-
tica. La distribucién Logistica, como la Normal, es una distribucién con pardmetros de localizacién u y
escala o, es decir, Y = u + oW, donde W es la distribucién Logistica estandar. W tiene una funcion de
densidad simétrica muy parecida a la de la N(0, 1), excepto en las colas. Su funcién de densidad es

expl-G-m)/o]
(1+exp[~(y— )/0]?

Las funciones que caracterizan la distribucién Loglogistica de pardmetros 6 = —1 /0, (—c0 < 6 <
o)y k=1/0,(x >0) son,

fly) =

—o0 <y < oo,

as(t)  ext*! fr)  efrrr!

S(t):(lJreetK)_l, flt)=— o :(1+e9t’<)2’ h(t):%—ma

parat > 0.
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Loglogistic Distribution: 8=0 Loglogistic Distribution: 6=0 Loglogistic Distribution: 6=0
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Figura 2.3: Griéficas de las funciones de densidad (izda.), riesgo (centro) y supervivencia (dcha.) de la distribucién Loglo-
gistica con 6 = 0 y distintos valores de k.

En la Figura 2.3 se representan las funciones de densidad, riesgo y supervivencia de la distribucién
Loglogistica con 8 = 0 y distintos valores de k. Como podemos observar, la funcién de riesgo es
monoétona decreciente si k < 1. Si k > 1, la funcidn tiene el mismo comportamiento que el riesgo de la
Lognormal, tiene un inico maximo, lo que permite modelizar situaciones que presentan dos fases, una
fase inicial con riesgo creciente a la que sigue otra con riesgo decreciente.

Dada la similitud existente entre las distribuciones Normal y Logistica, la distribuciéon Loglogistica
suele producir resultados similares a los que se obtienen con la Lognormal y, dada su mayor sencillez
de calculo, se utiliza mas.

2.2.6. Seleccion de una distribucion para T

Para escoger un modelo paramétrico para una variable T cuya distribucién es desconocida, se deben
comparar distintas distribuciones y elegir la més adecuada. Un criterio del que ya hemos hablado es el
de la sencillez de las expresiones de las funciones de riesgo, supervivencia y densidad, segtin el cual
elegiriamos el modelo Weibull o el Loglogistico antes que el Gamma o el Lognormal, cuando produzcan
ajustes similares.

En este apartado se propone un procedimiento grafico para analizar la bondad de ajuste de una
distribucion que se basa en comparar su funcién de supervivencia S(¢) con un estimador no paramétrico
de S(t) calculado a partir de la muestra obtenida. En primer lugar se debe encontrar una funcién de S(7)
que sea una funcion lineal de una funcién del tiempo, es decir, encontrar una expresion de la forma
gl(S(t)) =a+b-g2(t), la cual se obtiene a partir de la ecuacion de la funcién de supervivencia S(z)
de la distribuci6n ensayada. A continuacién, hay que representar g1[S(z;)] frente a g2(z;), donde #; son
los instantes de fallo de la muestra, para asi poder comparar la funcién de supervivencia S(¢) con el
estimador no paramétrico S(t) Si la nube de puntos es aproximadamente una linea recta, la distribucién
ensayada es adecuada. Es importante sefialar que para poder representar las funciones gl y g2, estas
no deben depender de ningtin pardmetro desconocido relacionado con la distribucién cuya bondad de
ajuste queremos analizar. A continuacidn se detallan los procedimientos para algunas distribuciones.

Exponencial

La funcién de supervivencia exponencial es S(f) = exp(—At). Tomando logaritmos en esta expresion
se tiene,

In[S(1)] = —Ar.

De esta relacién se deduce que, si la hipétesis de exponencialidad es cierta, al representar In[S(z;)]
frente a #; debemos obtener una nube de puntos aproximadamente lineal de pendiente —A . En este caso,
gl(x) =In(x) y g2(x) es la funcién identidad. Ademds, la pendiente de la recta de regresion ajustada a
la nube de puntos, B], proporciona un estimador preliminar de A, A=- 31.
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Weibull

La funcién de supervivencia es S(¢) = exp[—(A#)?]. Tomando logaritmos, —In[S(¢)] = ( t)7. To-
mando logaritmos de nuevo y operando en el segundo miembro, In[—In[S(7)]] = In[(A#)?] = yIn(Az) =
YIn(A) + yIn(z), y se obtiene la expresion

In[—In[$(7)]] = yIn(A) + yIn().

De esta relacion se deduce que, si la distribucién Weibull es adecuada, al representar In[—In[S(#;)]] frente
a In(#;) debemos obtener una nube de puntos aproximadamente lineal de pendiente ¥ y ordenada en el
origen ¥In(A). En este caso, gl1(x) = In[—In[x]] y g2(x) = In(x). Los estimadores de los pardmetros de
la recta de regresion ajustada a la nube de puntos, BO y Bl’ proporcionan dos estimadores de Yy A,

7=PB1y A =exp(Bo/Br).
Loglogistica
La funcién de supervivencia es S(¢) = (14 ¢%*)~!. Por lo tanto, ﬁ — 1 = €%*. Tomando logarit-

mos y operando en el segundo miembro, In (ﬁ - 1) =1n(e%%) = In(e?) +In(t*) = 6+ xIn(t), y se

In <1 ;5;”) — 0+ KIn(t).

obtiene la expresion

De esta relacion se deduce que, si la distribucidon Loglogistica es adecuada, al representar In (1 S(St_()t’)>
frente a In(z;) debemos obtener una nube de puntos aproximadamente lineal de pendiente Kk y orderllada
en el origen 6. En este caso, gl (x) =In(:2) y g2( ) In(x). Los estimadores de los pardmetros de la
recta de regresion ajustada a la nube de puntos, ﬁo y [31, proporcionan dos estimadores de 0 y k, = ﬁo
y k= pr.

En el caso de las distribuciones Lognormal y Gamma no existe una relacion exacta pero se pueden
utilizar relaciones basadas en aproximaciones a la distribucién Normal:

Lognormal

Si T tiene una distribucién Lognormal de parametros i y o, se tiene que, S(t) =1 —P(T <t) =
1—P(In(T)<In(t))=1-P (1“(2’” < 1““2;“) =1-® (%), siendo @ la funcion de distribucion
de una variable Normal estdndar; de esta relacién se deduce que,

& (1-S(1) = —% + éln(t).

En consecuencia, para verificar la adecuacién de la distribucién Lognormal se analiza la linealidad de la
nube de puntos @' (1 —$(z;)) frente a In(z;), y los estimadores de u y ¢ son respectivamente, — /31

Yl/ﬁl-

2.3. [Estimacion e inferencia paramétrica

Una vez seleccionado un modelo para la variable T hay que estimar sus pardmetros a partir de
la muestra. En esta dltima seccion del capitulo, se emplea el método de maxima verosimilitud para
realizar las estimaciones. En primer lugar, se presenta la funcién de verosimilitud generalizada para
muestras con datos censurados; el resto del andlisis es andlogo al de muestras completas. Finalmente,
se utiliza la distribucién asintética normal de los estimadores maximo verosimiles (EMV) para calcular
intervalos de confianza de los pardmetros y de funciones de los pardmetros como podrian ser la funcién
de supervivencia, la media de T y demds funciones y medidas de la distribucion de T.
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2.3.1. Estimacion paramétrica en muestras con censura

En la inferencia paramétrica se asume que la distribucion de la variable T es conocida excepto por
un vector de parametros ®. El método de estimacion mads utilizado es el de maxima verosimilitud, que
puede aplicarse en situaciones bastante generales y, en particular, puede adaptarse a la existencia de
censura.

Una propiedad muy importante de los estimadores maximo verosimiles, EMV, es la invarianza
funcional, que garantiza que si g es una fugcg)n biyectiva que toma valores reales, el EMV de g(®)

se puede calcular aplicando g al EMV @, g(®) = g(©). Esta propiedad permite estimar S(¢),/(z), la
esperanza, la mediana o cualquier otra medida relacionada con T que sea una funcién biyectiva de los
parametros, a partir de los EMV de los pardmetros de la distribucién.

Los EMV de los pardmetros © son los valores ® que maximizan la funcién de verosimilitud L(0©),
que se define en el siguiente apartado. Para calcular los valores que maximizan esa funcién es mas
cémodo operar con la funcién de logverosimilitud, /(®) = In[L(®)]. Los valores que maximizan estas
dos funciones son los mismos dada la monotonia de la funcién logaritmo y esta tiene la ventaja de
que la estructura aditiva resulta mds sencilla para derivar. Los valores que maximizan la funcién son
aquellos que anulan las derivadas parciales de /(®) respecto a cada 6;, por lo que para calcularlos hay
que resolver el sistema formado por las m ecuaciones de verosimilitud,

21(0®)
——=0 i=1,...,
76, i m
91(®) 210))’ . . . )
El vector 26 96, de las derivadas parciales se denomina vector de puntuaciones (score).

Funcion de verosimilitud

El procedimiento descrito es el mismo para el caso de muestras completas y para el de muestras con
censura; el dnico cambio se da en la definicion de la funcién de verosimilitud.

Se supone que la distribucion de probabilidad es continua, que es conocida excepto por un vector
de pardmetros ® = (0y,...,6,) y que f(7;0) es su funcién de densidad. Si la muestra no contiene
observaciones censuradas, la funcion de verosimilitud de esa muestra, L(®), se define como

L(®) = ﬁu(@) - ﬁf(n@)

Para generalizar el caso anterior a muestras que contienen observaciones censuradas (a derecha),
tengamos en cuenta que la informacién que aporta una de estas observaciones ¢ es que 7 > t;". Como
el objetivo serd encontrar los pardmetros que hacen méaxima la probabilidad conjunta de que sucedan
todas las observaciones de la muestra, la verosimilitud en las observaciones censuradas se define como
P(T >1}), esto es, la funcién de supervivencia en ese instante. Por lo tanto, la funcién de verosimilitud
de la muestra se define como

1©)=[]L(®) = [1/:0) [ sts:e)

tEeF tfeC

donde F es el conjunto de observaciones de la muestra que son fallos y C es el conjunto de observaciones
que son censuradas. Una formulacién alternativa es

1(©) = [ ] £(1:0)75(15:0)
i=1

donde c; es 1 si t; es un tiempo de fallo y O si #; es una censura.
La funcién de logverosimilitud con la que se opera queda,

(0) = Y n[2:(0)] = ¥ In[f(1:0)] + ¥ In[S(s;:0)] @
i=1

teF treC
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En general, hay que resolver sistemas de ecuaciones no lineales cuya resolucién requiere algoritmos
numéricos. Sin embargo, para la distribucién exponencial los calculos son sencillos y pueden obtenerse
expresiones analiticas de los estimadores.

Dada una muestra de tamafio n de una variable T con distribucién Exp(A), en la que hay r observa-
ciones completas #;, y n — r observaciones censuradas 7, la verosimilitud de la muestra es,

— [T Aexp(—As) [Jexp(—Ar),
i=1 j=1

y la logverosimilitud,

I(A) =In(L(A)) = rin(A (Zt, + Z ) =rln(1) —AS,

r n—r dl
conS = Z ti+ Z t7 la suma de todas las observaciones de la muestra. Resolviendo —-(4) = - —§ =0,

=1 j=1 dA A

se deduce que el EMV de A es A= r/S. Utilizando la propiedad de invarianza se pueden obtener los
EMYV de cualquier funcién o estadistico que sea una funcién biyectiva del pardmetro A. Asi, se obtienen,

por ejemplo, los estimadores S(r) = exp(—it), h(t) = 2o E( )= l/l

2.3.2. Inferencia paramétrica en muestras con censura

El procedimiento de inferencia que se detalla en este apartado se basa en la distribucion asintética
Normal de ®, el EMV de ©. Para calcular intervalos de confianza y contrastes de hipdtesis se necesitan
los estimadores de los pardmetros y los estimadores de sus varianzas, que se encuentran en la matriz de

. . AN r—1 92 A P
varianzas-covarianzas V(®) = I~", donde I = (I;;)mxm con I;; = ml(@) [5, pag. 34].

Los EMV son asintéticamente normales e insesgados (£ ( ) = ©). En consecuencia, para un pa-
rémetro 6, se tiene que (6 — 6;)/s.e.[6;] con s.e.[6;] = 1/V[6] es asintéticamente N(0,1). Asi, un
intervalo de confianza para 6; al nivel & de confianza se puede calcular de la forma habitual como

ékizl_a/gs.e.[ék]

donde z;_4/; es el correspondiente percentil de la distribucion Normal estandar.

Intervalos de confianza para funciones de los parametros

Por la propiedad de invarianza funcional, se tiene que g(®) es el EMV de g(®) y de aqui se deduce
que, asintéticamente,

A

8(0) ~ N(g(®),V[g(0)).

De esta afirmacion, se obtiene inmediatamente el intervalo de confianza asintético,
2(®) iZl—a/zs-e-[g@)],

8g

i=1 j ] aX

Solo podemos garantizar que la aproximacion es buena si la muestra es razonablemente grande;

en otro caso, conviene utilizar otros procedimientos, como los intervalos de confianza basados en el
estadistico de raz6n de verosimilitud.

donde s.e.[g(©)] se calcula con el método delta: V[g (E[X;]) Cov[X;,X]].




Capitulo 3

Comparacion de la supervivencia de dos o
mas grupos

En este capitulo se presentan dos herramientas para comparar la supervivencia de grupos definidos
por un factor, por ejemplo el sexo, el tratamiento utilizado o el proceso de fabricacion. La primera de
ellas es la familia de contrastes log-rank, que es no paramétrica, por lo que se utiliza cuando no se
tiene ninguna hipdtesis sobre la distribucion de 7. La segunda es el test de razén de verosimilitud para
comparar dos grupos de forma paramétrica, es decir, requiere establecer previamente una hipétesis sobre
la familia a la que pertenece la distribucién de 7.

3.1. Comparacion no paramétrica: familia de tests log-rank

Supongamos que se quiere comparar la supervivencia en G poblaciones de individuos; sean 7(1) <
. <t(jy <...<t( los J instantes de fallo distintos observados en la muestra conjunta de los G grupos,
dispuestos en orden creciente.

Paracada j=1,...,J,i=1,...,G se define d;; como el niimero de fallos ocurridos en la muestra
i en el instante 7(;) y n;j como el nimero de individuos en riesgo en la muestra i en el instante 7.
Ademds, para cada j =1,...,J, d; es el niimero total de fallos en ese instante, es decir, d; = Z,G: 1dijy
n; es el nimero total de individuos en riesgo en ese instante, n; = ¥ | n;;.

La hipétesis que se quiere contrastar es que el tiempo de fallo de todos los grupos tiene la misma dis-
tribuciéon. Como una distribuciéon queda determinada univocamente por cualquiera de las funciones que
la caracterizan, la hipétesis se puede plantear en términos de cualquiera de ellas, aunque habitualmente
se utiliza la funcién de riesgo. Por lo tanto, la hipétesis nula es,

Hy: hl(t) :hz(l‘) =... :h(;(t) Vit

frente a la alternativa de que el riesgo de al menos uno de los grupos difiera de los demds en algtin
instante f.

Para contrastar esta hip6tesis se construye un estadistico basado en la discrepancia entre lo observa-
do y lo esperado bajo Hy, en concreto, entre el nimero de fallos observado y esperado en cada grupo en
cada uno de los instantes de fallo.

Para j fijo, supongamos conocido d; y los valores n;; Vi. El vector aleatorio (d;j,d>j,...,dg;) que
representa el nimero de fallos ocurridos en cada grupo en el instante 7 ;), queda determinado por G — 1 de
las componentes, ya que una de ellas queda determinada por las G — 1 restantes debido a la relacion d; =
2?:1 d;j y podemos no tenerla en cuenta para construir el estadistico ya que no se pierde informacion.

Recordemos, en primer lugar, la definicién de la distribucién hipergeométrica multivariante. Con-
sideremos una poblacién de N elementos de lo cuales Ny son de tipo 1, N, son de tipo 2...., y Ng son
de tipo G y en la que la probabilidad de cada elemento de ser extraido es la misma; si extraemos de
dicha poblacién una muestra de tamafio n (sin reemplazo), el vector aleatorio (Xj,...,Xs_1) dado por

17
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X; = niimero de elementos de tipo i en la muestra de tamafio n, tiene una distribucion hipergeométrica
de dimensién G — 1 de pardmetros N,n,Ny,...,Ng_1.
Esta situacion es andloga al caso en el que tenemos N = n; individuos en riesgo en el instante 7).
De esos individuos, Ny = ny; son del grupo 1, N, = ny; son del grupo 2,..., y NG = ng; son del grupo
G. De esos individuos, hay n = d; que fallan simultdneamente. Si la probabilidad de cada individuo de
fallar es la misma (es decir, si la distribucién del tiempo de fallo de los individuos de todos los grupos
es la misma, esto es, si Hy es cierta), el vector aleatorio (Xi,...,Xs—1) dado por X; = d; ; niimero de
individuos del grupo i que han fallado entre los d; sigue una distribucion hipergeométrica de dimension
G — 1 de parametros nj,d;,nyj,...,ng_1);; luego cada d;; tiene una distribucion hipergeométrica de
pardmetros n;,n;;,d;.
Por lo tanto, bajo la hipétesis nula, el niimero esperado de fallos en el grupo k es,
Eldy;] = exj = ”kjﬁ
nj

y la matriz de covarianzas correspondiente, V; ,, de dimensién (G —1) x (G — 1), estd formada por
elementos de la forma,

nij(nj—nij)d;(nj—d;)

Vi, dt = Covldy.dyj] wny o Pak=l
1.kl = Covidgj,d;j| = i d
) nkﬂ:zlé(y;_fiq) ) para k 751

conk=1,....G—-1yl=1,...,G—1. [4, pag. 173]

Para obtener una medida global de la discrepancia entre lo observado y lo esperado en cada grupo,
se suman las diferencias observadas en los distintos instantes de fallo para cada grupo y se obtiene un
vector U = (Uy,...,Ug—1), cuyas componentes son,

J
U= wildij—ex)),
=1

donde w; son los elementos de un vector de pesos que se utiliza para dar mds valor a las discrepancias
dij — ey observadas en los instantes iniciales ya que estdn calculadas con muestras mds grandes (de
tamafio ;) que las de los instantes finales que tienen mds variabilidad. Asi, con w; = 1 se obtiene el test
Mantel-Cox, con pesos w; = n; el test de Gehan-Breslow, y con pesos w; = , /i el test de Tarone-Ware.

Suponiendo que los J vectores (d1,dj,-..,d(G-1);) son independientes, Cov|d;;,dy]| = 0 Vi,k, si
J # 1,y por lo tanto Var[U;] = ):le wfVar[dij] y Cov[U;,Uy] = le w?Cov[dl-j,dkj], luego la matriz de
covarianzas del vector U, V, se calcula a partir de las matrices de covarianzas correspondientes a los J
instantes de fallo,

J
V= j; W?‘/fm'

Aplicando el teorema central del limite se tiene que la distribucién de U es asintdticamente (si el
ndmero de tiempos de fallo, J, es suficientemente alto) Normal multivariante de vector de medias nulo
bajo Hy. Por ello, se define el estadistico Q = U'V~'U que, bajo Hy, tiene una distribucién aproximada
x? con G — 1 grados de libertad.

La hipétesis nula se rechaza si el valor del estadistico Q es muy extremo, es decir, si el p-valor
P(X >|q|), donde X ~ x2_, y q es el valor observado del estadistico Q, es muy pequefio.

3.2. Comparacion paramétrica: test de razon de verosimilitud

Si los tiempos de fallo siguen una distribucidn conocida, los tests paramétricos son mds eficientes
que los no paramétricos. Vamos a ver el test de razén de verosimilitud para comparar dos grupos.
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Supongamos que la distribucién de los tiempos de fallo en los dos grupos es del mismo tipo y
que todos los pardmetros son desconocidos y queremos contrastar la hipétesis de que los vectores de
pardmetros son iguales (es decir, que la distribucidn del tiempo de fallo de los dos grupos es la misma),

H() . @1 == @2(E @),

con ® desconocido, frente a la alternativa H; : ®; # @,. El estadistico del test de razén de verosimilitud
asociado es,

A A

X; = -2[1(®)—1(6,,6,)]
donde:

» O representa el EMV del vector de pardmetros comiin ® obtenido a partir de la muestra conjunta
obtenida al unir los dos grupos y /(®) la funcién de logverosimilitud asociada a esa muestra
evaluada en ©.

» O es el EMV de 0 calculado solo con la muestra del primer grupo y /; (@)1) su logverosimilitud
asociada.

» O, esel EMV de O, calculado solo con la muestra del segundo grupo y lz(@)z) su logverosimilitud
asociada.

= [(0,0,) es la logverosimilitud conjunta calculada como [(©1,0,) = 1;(0) 4+ 1,(6,).

Bajo Hp, X; tiene una distribucién asintética x> con k grados de libertad, siendo k el niimero de pardme-
tros de O.

La hipétesis nula se rechaza a un nivel de significacién o si el p-valor P( x,% > x;), donde x; es el
valor observado en la muestra del estadistico X;, es menor que .

Este procedimiento se puede adaptar al caso en que la hipétesis nula no incluya a todos los pardme-
tros de ®. Distingamos dos casos:

= Caso 1: Si sabemos que una parte de los pardmetros son iguales y conocemos su valor, podemos
contrastar si el resto de pardmetros que no conocemos son iguales de la misma manera: calcu-
lando los EMV de esos pardmetros a partir de la muestra conjunta y por separado, el valor de las
funciones de logverosimilitud y el estadistico X;, que tendra una distribucién x> con los mismos
grados de libertad que pardmetros desconocidos.

= Caso 2: Si solo sabemos que una parte de los pardmetros son iguales pero desconocemos su valor,
primero se calcula el EMV de todos los pardmetros con la muestra conjunta. Los pardimetros que
ya se sabe que son iguales intervienen con el mismo valor (el EMV obtenido) en la logverosimi-
litud bajo Hy, I, y bajo Hy, [; + 1. A continuacién se procede como en el caso anterior.






Capitulo 4

Analisis de supervivencia con Ry
aplicacion a una muestra simulada

En este capitulo se presentan algunas herramientas que tiene el software R para realizar andlisis de
supervivencia y después se realiza un ejercicio de simulacién para comparar el funcionamiento de los
métodos de estimacién especificos para muestras con censura propuestos en temas anteriores, con los
métodos estandar para muestras sin censura, cuando se aplican a muestras censuradas. En primer lugar,
se genera una muestra con una distribucién conocida con la cual se pueden obtener de forma tedrica
valores como la media, percentiles de la distribucién y su funcién de supervivencia. A continuacién se
genera un mecanismo de censura aleatoria independiente y se obtiene la muestra censurada correspon-
diente. Posteriormente, a partir de esa muestra se estiman los mismos pardmetros mediante los métodos
paramétricos y no paramétricos para muestras censuradas y mediante los métodos habituales para mues-
tras completas, eliminando los datos censurados o considerdndolos fallos. Por dltimo, se comparan los
resultados obtenidos con los distintos métodos con los valores tedricos y la funcién de supervivencia
real de la distribucion simulada.

4.1. Analisis de supervivencia con R: el paquete survival

Para estimar la funcién de supervivencia y sus intervalos de confianza se utiliza el paquete survival
[9] de R, que contiene las principales tareas de andlisis de supervivencia, como la definicién de objetos
de supervivencia, curvas de Kaplan-Meier y Aalen-Johansen, modelos Cox, etc. y se carga mediante la
orden library (survival). En el tutorial [3] se pueden consultar estas y otras herramientas de analisis
de supervivencia con R, como la comparacion de la supervivencia de dos o mds grupos.

En primer lugar, se deben disponer los datos de la forma adecuada, creando lo que se denomina un
objeto de supervivencia, que establezca claramente qué observaciones son fallos y cuales son censu-
radas. Esto se realiza mediante la funcién Surv() y necesita dos argumentos para muestras censuradas
solo a derecha: el primero es un vector que contiene todas las observaciones y el segundo es el vector
que indica para cada observacidn si es un fallo (1) o estd censurada (0).

Para obtener el estimador Kaplan-Meier de la funcién de supervivencia y sus intervalos de confianza
se utiliza la funcién survfit(formula, conf.int, conf.type), donde formula es un objeto de supervivencia,
conf.int es el nivel de confianza de los intervalos (por defecto 0.95) y conf.type es la transformacién
utilizada para construir los intervalos, por ejemplo, para g(r) = log(—1log(z)) es "log-log". Con la orden
plot () podemos obtener la grifica del estimador y con la orden summary () podemos ver cada tiempo
de fallo con sus valores n; y d; y la estimacién de S(¢) en ese instante con su error estandar y los limites
de su intervalo de confianza.

21
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4.2. Simulacion de una muestra censurada y aplicaciéon de los métodos
de estimacion con R

En esta seccion estimaremos de distintas maneras la funcién de supervivencia, la media y los cuan-
tiles 0.25, 0.5, 0.75 y 0.95 a partir de una muestra simulada con R.

Para obtener una muestra simulada que contenga datos censurados utilizaremos el modelo de cen-
sura aleatoria. En este modelo la censura es independiente de los tiempos de fallo, por lo que se generan
los fallos y las censuras por separado. Por ejemplo, para una muestra Exp(0.4) de tamaiio 300:

y <- rexp(300, rate = 0.4)
cen <- rexp(300, rate = 0.1)

La muestra estard formada por el minimo de cada par:
ycen <- pmin(y, cen)
Ademds se genera una variable binaria que indique si la observacién es un fallo (1) o una censura (0):
di <- as.numeric(y <= cen)

La muestra generada contiene un 20 % de censura.

4.2.1. Estimacion mediante métodos para muestras completas

Para utilizar los métodos de estimacion habituales podemos eliminar los datos censurados o consi-
derarlos fallos.

Opcioén 1: Eliminar los datos censurados

Para empezar, definimos un subconjunto de ycen que contenga solo los fallos, mediante la orden s1

<- subset(ycen, subset= di == "1").Lamediay los cuantiles de este subconjunto son:
> mean (sl)
[1] 1.957189

> guantile (=1, probs=c(.25,.5,.75,.85))
25% 50% 75% 95%

0.6380547 1.4234583 2.7288136 5.5138521

Para estimar la funcién de supervivencia, buscamos el estimador Kaplan-Meier ya que para muestras
no censuradas este coincide con la funcién de supervivencia empirica. Mds adelante obtendremos su
gréfica.

> my.survl <- Survisl, di[di==l1])

> my.fitl <- surviit(formula = my.survl~l, conf.int = 0,385, conf.type = "log-log")

Para obtener estimaciones paramétricas, consideramos la distribuciéon Exp(1/1.957189) y calcula-

mos sus cuantiles. M4s adelante se obtendrd la grafica de su funcién de supervivencia.
> gexp(cl.25, .5, .75,.95), rate=1/1.957189, lower.tail=TRUE)
[1] 0.5630482 1.3566200 2.7132401 5.8632143

Opcion 2: Considerar los datos censurados como fallos

En este caso, calculamos la media y los cuantiles con el vector ycen completo:
> mean (ycen)
[1] 1.974848

> guantile (vcen, probs=c(.25,.5,.75,.895))
25% 50% 75% 95%
0.6369582 1.4666644 2.7935258 5.5129800

Para estimar S(7) lo hacemos del siguiente modo:
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> my.3urve <- Surv(iycen, rep(l,length({ycen)))
> my.fit2 «<- survfit (formula = my.survZ~1l, conf.int = 0.95, conf.type = "log-log™)

Para obtener estimaciones paramétricas, consideramos la distribucién Exp(1/1.974848) y calcula-

mos sus cuantiles. M4s adelante se obtendrd la gréafica de su funcién de supervivencia.
> gqexplc(.25,.5,.75,.95), rate=1/1.974848, lower.talil=TERUE)
[1] 0.5681284 1.3688603 2.7377206 5.9161159

4.2.2. Estimacion mediante métodos para muestras censuradas

Vamos a realizar una estimacién no paramétrica, con el estimador Kaplan-Meier, y una estimacion
paramétrica, con el método de maxima verosimilitud.

Estimacion no paramétrica

En primer lugar, obtenemos el estimador Kaplan-Meier de S(z):
> my.surv3 <- Surviycen, di)
> my.fic3 <- survfit (formula = my.surv3~1l, conf.int = 0.85, conf.type = "log-log"™)

A partir del estimador Kaplan-Meier, obtenemos la media restringida al maximo fallo y los cuantiles:
> print (my.fit3, print.rmean=TERUE)

Call: survfit(formula = my.surv3 ~ 1, conf.int = 0.95, conf.type = "log-log")
n events *rmean *se (rmean) median 0.95LCL 0.95UCL
300.000 239.000 2.437 0.146 1.778 1.487 2.030

# restricted mean with upper limit = 10.6&

> guantile {my.£fit3, probs=c(.253,.5,.75,.953))
Sguantile

25 50 75 95
0.7562912 1.7786439 3.4671224 T7.16T0E871

Slower
25 50 75 95
0.5734806 1.4974955 2.9798724 5.5878471

Supper
5 50 75 95
2

2
0.8896452 2.0304145 4.0609485 9.7318738

Estimacion paramétrica

Para la estimacién paramétrica, suponemos que la distribucién es Exp(4) y obtendremos el EMV
de A utilizando la funcién mle del paquete stats4.

En primer lugar, calculamos la funcién de logverosimilitud (2.1) negativa. Como la verosimilitud es
distinta para fallos y para censuras, se define, ademds del subconjunto s1 de los fallos, el subconjunto sO

que contiene las censuras con la orden sO <- subset(ycen, subset= di == "0"). Para los fallos
consideramos la funcion de densidad y para las censuras la funcioén de supervivencia:
> 11h exp <- function (lambda) {
+ 11h «<- -sum{dexp(sl, rate=lambda, log=TRUE))-sum(pexp (30, rate=lambda, lower = FALSE, log=TRUE})
+ return (11h) }

La funcién mle necesita la logverosimilitud negativa como primer argumento y, ademads, un valor
inicial para el parametro:

> fit_exrp <- mle(llh exp, start = list(lambda = 0.1}))

> summary (fit_e=xp)
Maximum likelihood estimation

Call:
mle (minuslogl = 1lh exp, start = list(lambda = 0.1))

Coefficients:
Estimate S5td. Error

lambhda 0.4034074 0.0260941

-2 log L: 511.9333
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Estimaciones no paramétricas de S(t) Estimaciones paramétricas de S(t)
o . o . . .
= — funcidn de supervivencia real - 7 — funcion de supervivencia real
— estimacion eliminando los datos censurados — estimacion eliminando los datos censurados
— estimacién tomando las censuras como fallos —— estimacién tomando las censuras como fallos
estimacidn Kaplan-Meier estimacion para muestras censuradas
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Figura 4.1: Gréficas de la funcién de supervivencia real y de sus estimaciones no paramétricas (izda.) y paramétricas (dcha.).

El valor estimado de A es 0.4034074. A partir de este valor, podemos obtener los estimadores de

S(t), de la media y de los percentiles:
> 1/0.4034074
[1] 2.478284

> gexp(c(.25,.5,.75,.95), rate=0.4034074, lower.tall=TRUE)
[1] ©0.7131304 1.7182312 3.4364624 7.4260717

4.3. Comparacion de los resultados con la distribucion real

Por dltimo, comprobemos con qué métodos se han obtenido mejores estimaciones. En la siguiente
tabla se recogen la media y los cuantiles obtenidos en las distintas estimaciones, ademds de los valores
tedricos de la distribucién Exp(0.4). Ademas, en la figura 4.1 se representan las gréficas de las distintas
estimaciones de la funcién de supervivencia.

| Media [ 25% [ 50% | 75% | 95% |

Estimacion no param. eliminando los datos censurados 1.957 | 0.638 | 1.423 | 2.729 | 5.514
Estimacién no param. tomando las censuras como fallos || 1.975 | 0.637 | 1.467 | 2.794 | 5.513
Estimacion Kaplan-Meier 2437 | 0756 | 1.779 | 3.467 | 7.167
Estimacién param. eliminando los datos censurados 1.957 | 0.563 | 1.357 | 2.713 | 5.863
Estimacion param. tomando las censuras como fallos 1.975 | 0.568 | 1.369 | 2.738 | 5916
EMYV para muestras censuradas 2479 | 0713 | 1.718 | 3.436 | 7.426
Valores reales 2.5 0.719 | 1.733 | 3.466 | 7.489

Comparando los distintos resultados, podemos observar que aplicar los métodos habituales a una
muestra censurada no produce buenas estimaciones, ya que subestiman todas las medidas y la funcién
de supervivencia. Sin embargo, los métodos para muestras censuradas que se han presentado en este
trabajo funcionan bien.
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