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Resumen

Los grupos algebraicos son el análogo algebraico a los grupos de Lie de la geometría diferen-
cial. No cabe duda pues, de que el estudio de estos objetos, entre los que se encuentran grupos
tan conocidos como los grupos clásicos de matrices, es del mayor interés. Siguiendo la línea
marcada por Grothendieck, los matemáticos se dieron cuenta hace algún tiempo de que era
posible comprender estos objetos �jándose en la estructura de los mor�smos entre ellos. Tanto
es así que en este trabajo presentamos una descripción totalmente funtorial de los mismos, sin
apelar directamente a la geometría en ningún momento. Esto nos permite comenzar a trabajar
con grupos algebraicos sin tener que tratar primero con nociones de geometría algebraica. A
cambio, es necesario estar familiarizado con nociones básicas de teoría de categorías. La fuente
principal de esta parte del trabajo es [8], y allí se puede encontrar también la relación entre esta
versión funtorial de los grupos algebraicos y su naturaleza geométrica.

Empezaremos asumiendo conocidos los primeros conceptos de la teoría de categorías, tales
como la propia de�nición de categoría, la de�nición de funtor o la de�nición de transformación
natural. No será necesario mucho más que eso, puesto que el primer capítulo comienza dando
la de�nición de funtor representable y estableciendo uno de los resultados fundamentales sobre
los que descansa el resto de la teoría: el lema de Yoneda. A grandes rasgos y en la versión que
utilizaremos aquí, este importante lema dice lo siguiente.

Lema de Yoneda. Sea C una categoría y sean E,F : C→ Set dos funtores representables.
Las transformaciones naturales de E a F están en correspondencia con los mor�smos entre los
objetos representantes, en sentido inverso.

Comprender este lema es primordial, puesto que es el diccionario que nos permite traducir
lo que sucede en la categoría de esquemas-grupo a�nes (una versión ligeramente más general
de los grupos algebraicos) a la categoría de álgebras de Hopf, un nuevo objeto algebraico que
introducimos y estudiamos en el capítulo 1. Más adelante, en el capítulo 2, el lema de Yoneda
volverá a entrar en juego y nos servirá de nuevo como puente, esta vez entre las representaciones
lineales de grupos algebraicos y los comódulos, otra nueva estructura algebraica.

Con esta herramienta en mano, el resto del capítulo 1 transcurre estudiando las propiedades
algebraicas típicas de los esquemas-grupo a�nes y las álgebras de Hopf, tales como los mor�s-
mos entre objetos de la misma categoría; los subobjetos y monomor�smos; y los cocientes y
epimor�smos. Seguidamente se introducen dos tipos de grupos algebraicos a�nes que resultarán
útiles en los capítulos siguientes: los grupos algebraicos diagonalizables y los esquemas-grupo
constantes. El capítulo �naliza con una versión restringida de la dualidad de Cartier, que nos
permite poner en relación estos dos últimos tipos de esquemas-grupo.

El capítulo 2 comienza con un cambio súbito de dirección. Abandonamos momentáneamente
el terreno funtorial para introducir la noción de álgebra (no necesariamente asociativa) graduada
y algunos conceptos relacionados, como el de realización de una graduación. La de�nición básica
es la que sigue.
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iv Resumen

De�nición. Dados un grupo G y un álgebra (no necesariamente asociativa) A, una gradua-
ción por G de A o una G-graduación de A, es una descomposición de A como espacio vectorial,
A =

⊕
g∈GAg, que satisface AgAh ⊂ Agh para todo g, h ∈ G.

A continuación aparecen distintas nociones de isomor�smo para álgebras graduadas, según
si consideramos el grupo por el que se gradúa como parte de la de�nición o no. Los teoremas
principales de este capítulo 2, presentados en la sección 2.4, lidian con los diferentes tipos de
isomor�smo por separado. Antes de poder formular dichos resultados es necesario desarrollar
el lenguaje apropiado. Este es el propósito de la sección 2.3 que, empleando el lema de Yoneda
y con tan solo una conexión adicional, pone en relación las graduaciones de un álgebra no
asociativa A por un grupo abeliano �nito G con las representaciones lineales del grupo algebraico
diagonalizable GD en el esquema-grupo de automor�smos de A, Aut(A). Todo esto y mucho
más se puede encontrar en [1], fuente de este capítulo.

Por último, el capítulo 3 pretende sacar a relucir una aplicación directa de lo presentado
en el capítulo 1, mostrando que los conceptos allí descritos siguen siendo relevantes hoy en día.
Para ello nos servimos de temas y artículos de actualidad. Calcularemos aquí los esquemas-
grupo de automor�smos de algunas álgebras de evolución de dimensión 2. Estas álgebras fueron
introducidas en 2006 por Tian, y él mismo ha indicado sus múltiples aplicaciones (aliciente del
intenso trabajo que ha habido en este campo en los últimos años) en [6]. Para el cómputo de
estos esquemas-grupo nos valdremos de las técnicas presentadas en dos artículos de este año
2019, a saber [2] y [3].

Estos cálculos, aparentemente inocuos, pueden volverse realmente complicados. Las in-
teresantes ideas presentadas en [2] simpli�carán las cuentas a cambio de introducir nueva
maquinaria. El capítulo comenzará con la introducción de estos nuevos métodos, que incluyen
grafos y secuencias exactas cortas de esquemas-grupo a�nes, y �nalizará con el cálculo de algunos
de los esquemas-grupo de automor�smos antes nombrados. En este capítulo nos volveremos a
encontrar con los dos tipos de esquemas-grupo a�nes que habían aparecido anteriormente en el
capítulo 1, diagonalizables y constantes.



Summary

Algebraic groups are the algebraic counterpart of Lie groups. It goes without saying that the
study of such objects, among which we may �nd well-known groups including the classical matrix
groups, is of great interest. Following the path outlined by Grothendieck, mathematicians from
the last century have come to the realization that it is possible to understand these algebraic
groups by focusing on the structure of the morphisms between them. This is so much so that in
this work we are able to present a completely functorial description of the former, with no direct
reference to the geometry behind the scenes. It is this way that we are capable of working with
algebraic groups without having to �rst learn some notions from Algebraic Geometry. In return,
one should be familiar with the basic concepts from Category Theory to properly understand
this description. The main source for this �rst part of the work ahead is [8], where one may
also �nd explained the relationship between the functorial presentation of algebraic groups and
their geometric nature.

We will start o� assuming that the reader is acquainted with the �rst principles of Category
Theory � the de�nitions of category, functor and natural transformation. This is all that will
be needed, as the �rst chapter sets o� introducing the concept of representable functor and
establishing one of the fundamental results: the Yoneda Lemma. In the form that we will use
the most, this result says the following.

Yoneda Lemma. Let C be a category and let E,F : C → Set be two representable func-
tors. Natural transformations from E to F are in correspondence with morphisms between the
representing objects, in reverse order.

A thorough understanding of this lemma is of the utmost importance, for it is a lexicon that
allows us to translate from the category of a�ne group schemes (a slighlty generalized version
of an algebraic group) to the category of Hopf algebras, a new object which we de�ne and study
throughout Chapter 1. Later on, in Chapter 2, the Yoneda Lemma will come into play again,
this time around serving as a bridge between linear representations of algebraic groups and
comodules, another new algebraic structure.

With this result in our toolbox, the remainder of Chapter 1 continues by studying the usual
algebraic properties of a�ne group schemes and Hopf algebras, such as morphisms between the
objects of the same category; subobjects and monomorphisms; and quotients and epimorphisms.
Immediately after that, two families of a�ne algebraic groups enter the scene. Their names are
diagonalizable algebraic groups and constant group schemes, and they will make an appearance
in both subsequent chapters. The relation between the two is explicited via a restricted version
of Cartier duality, with which we close the chapter.

Chapter 2 begins with a sudden change of direction. We temporarily leave the functorial
realm behind to introduce the notion of a (not necessarily associative) graded algebra and some
related topics, such as that of the realization of a grading. The basic de�nition goes as follows.

De�nition. Let G be a group and A be a (not necessarily associative) algebra. A grading
by G on A, or a G-grading on A, is a vector space decomposition A =

⊕
g∈GAg satisfying

AgAh ⊂ Agh for all g, h ∈ G.
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vi Summary

Following this de�nition we encounter several di�erent notions of isomorphism for graded
algebras, depending on whether we consider the grading group as part of the de�nition or not.
The main theorems of Chapter 2, presented in Section 2.4, deal with the di�erent types of
isomorphism separately. Before we are able to even formulate said theorems, we must develop
the necessary language. Such is the goal of Section 2.3, in which, by means of the Yoneda Lemma
and just one other connection, we are able to relate the gradings of a nonassociative algebra A

by a �nite abelian group G with the linear representations of the diagonalizable algebraic group
GD on the automorphism group scheme of A, Aut(A). All of this and much more can be found
in [1], the main source of this chapter.

Last but not least, Chapter 3 aims to present a direct application of the machinery of Chapter
1. In doing so we pretend to show that the concepts we have covered are still relevant nowadays.
To achieve that, we will make use of topics and papers which only very recently have appeared
in journals. We will proceed to compute the automorphism group schemes of some evolution
algebras of dimension 2. These algebras were introduced on 2006 by Tian, who has pointed out
their manifold applications in [6]. To do the computations we will employ the techniques from
two papers that have come out this year 2019, namely [2] and [3].

These computations, although inocuous at �rst sight, can quickly become really complicated.
The interesting ideas presented in [2] will simplify the work. The chapter starts by de�ning some
new necessary concepts, and along the way we will encounter some agents from Graph Theory
and short exact sequences of a�ne group schemes. The �nal section will consist in the promised
computation of the automorphism group schemes mentioned above. In this chapter we will meet
once again the two special types of a�ne group schemes that were introduced in Chapter 1.
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Chapter 1

A�ne group schemes

1.1 De�nitions

We begin with some background from category theory, which will be the language in which
we express most of the results. Any elementary text in category theory will cover these topics
among other basic concepts, in this case we used [4] and [1, App. A].

De�nition 1.1. Let C be a category. A functor F : C→ Set is said to be representable if there
is an object A ∈ C such that F is naturally isomorphic to the hom functor Hom(A,−). If F is
instead a functor C→ Grp then we say F is representable if its composition with the forgetful
functor Grp→ Set is representable.

Representing objects are unique (up to isomorphism), which is a consequence of the following
more general result.

Lemma 1.2 (Yoneda). Let E,F : C → Set be functors and assume that E is representable
with representing object A ∈ C. Then there is a one-to-one correspondence between natural
transformations from E to F and elements of F (A).

In particular, if F is also representable with representing object B, then natural transforma-
tions from E to F correspond to morphisms B → A and composition of natural transformations
corresponds to composition of these morphisms in reverse order.

Proof. We proceed in the �naïve� way. Let Φ : E → F be a natural transformation. Since we
want an element of F (A) it makes sense to take the image of some distinguished element of E(A)
under ΦA : E(A) → F (A). The only element we know for sure exists is idA ∈ Hom(A,A) =
E(A). Therefore to Φ we assign ΦA(idA) ∈ F (A).

Conversely, given an element x ∈ F (A) we are going to construct a natural transformation
Φ : E → F . To have a bijection we must impose ΦA(idA) = x. Luckily this already �xes the
whole natural transformation because the following diagram should commute for any C ∈ C by
the naturality of Φ:

E(A) E(C)

F (A) F (C)

E(f)

ΦA ΦC

F (f)

.

Indeed, for any element f ∈ E(C) = Hom(A,C) we have f = f ◦ idA = E(f)(idA) because
of how the representable functor E is de�ned. On the other hand we have �xed ΦA(idA) = x.
Finally F (f) is an already de�ned map. Hence

ΦC(f) = ΦC(E(f)(idA)) = F (f)(ΦA(idA)) = F (f)(x).

Now one can easily check that this is indeed a natural transformation.

1



2 Chapter 1. A�ne group schemes

In the particular case that F is represented by an object B the function F (f) is left com-
position with f , and the element x is a function x ∈ F (A) = Hom(B,A). Therefore we can
explicitly give F (f)(x) = f ◦ x ∈ Hom(C,C) = F (C). In other words: in the case that both
functors are representable, the natural transformation is given by right composition with the
function x : B → A.

We are ready to de�ne our main object of study. We denote by Algk the category of unital,
associative, commutative algebras over a unital, associative, commutative ring k. Later on we
will �x our attention in the case that k is a �eld.

De�nition 1.3. Let k be a ring. An a�ne group scheme over k is a representable functor
G : Algk → Grp. The representing object will be denoted by k[G]. If k[G] is �nitely generated
as a k-algebra we say that G is an (a�ne) algebraic group.

This de�nition seems admittedly dry and unmotivated. Let us step back a little bit and see
where it can come from. All of the rings considered here will unital, associative, commutative
rings (i.e. Z-algebras). We follow the lines of [8, Chap. 1].

One of the most fruitful problems in the history of mathematics has been studying systems of
polynomial equations with some restrictions on the coe�cients and the allowed solution set. It is
the case that for some equations the solution set admits a natural group structure. Perhaps the
clearest example of this is the general linear group GLn(R). If we �x a ring R, we may regard
elements of Rn

2
as matrices, and in this case we know that the determinant is a polynomial

expression in the coe�cients of the matrix. Requiring the matrix M ∈ Rn
2
to be invertible

is equivalent to requesting its determinant to be invertible in R, which in turn is the same as
asking that the entries of M be the solution of the polynomial equation det(M)Y = 1, where Y
is some dummy indeterminate. Notice that this construction can be made for any ring R, and
since the condition to be in the solution set is given by a polynomial with integer coe�cients,
a ring homomorphism ϕ : R→ S takes solutions to solutions and thus induces a map from one
solution set to another, i.e. a group homomorphism GLn(R)→ GLn(S).

To get some other (albeit trivial) examples of this kind of construction notice that we may
regard the underlying additive group (R,+) of any ring R as the solution set of an empty
system of equations, and that a ring homomorphism ϕ : R→ S induces a group homomorphism
(R,+) → (S,+). Similarly taking the multiplicative group of units (R×, ·) also comes from
an equation, XY = 1, and respects homomorphisms (this is just the particular case GL1(R)
from the previous discussion). Since these examples will be important later on, we give them a
notation similar to the one of the general linear group: de�ne Ga(R) = (R,+) and Gm(R) =
(R×, ·).

Generalizing slightly we stop requesting the coe�cients of our equations to be integers and
instead we �x a ��eld of coe�cients� k (it should be noted that some of the results ahead hold
in more generality, namely for algebras over rings, but to avoid confusion we will be working
over a �eld k). Hence it will only make sense to look for solutions of this polynomials over
k-algebras instead of general rings, and the maps between them will need to be homomorphisms
of k-algebras. There is however one complication that we have overlooked: seemingly di�erent
equations might give rise to the same groups. To solve this we move to the functorial picture.

It is a well known fact and easy to check that if we have a family of equations (fi)i∈I with in-
determinates (Xj)j∈J and coe�cients in k, the solutions for these over a k-algebra R correspond
to k-algebra homomorphisms A → R, where A is the quotient algebra k[(Xj)j∈J ]/(fi)i∈I . For
example elements of Ga(R) correspond to maps k[X]→ R, and elements of Gm(R) correspond
to maps k[X,Y ]/(XY − 1) → R. This leads us to identify Hom(A,R) with the solution set.
If as before we request that our equations have a solution set with a natural group structure
(in the sense that algebra homomorphisms induce group homomorphisms between the solution
sets) then we �nd out that we have been talking about the functor Algk → Grp represented
by A. Since any algebra may be expressed as the quotient of some polynomial ring (maybe in
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in�nitely many variables) by taking generators, we conclude that studying solution sets of poly-
nomial equations with a natural group structure corresponds exactly to studying representable
functors. Hence our de�nition of a�ne group scheme is motivated.

1.2 Hopf algebras

The Yoneda Lemma tells us that a representable functor is completely determined by its
representing object and vice versa. It makes sense then to expect all of the information of an
a�ne group scheme G to be encoded in k[G] in some way. This is indeed the case, and to see
that we need the following proposition, the proof of which can be found in [5, 1.2.4, 1.2.5].

Proposition 1.4. Let G,H be a�ne group schemes. The functor G×H sending each k-algebra
R to the direct product G(R)×H(R) is represented by k[G×H] = k[G]⊗k k[H]. The functor
that sends all k-algebras to a trivial group {e} is represented by k.

Now comes a key observation. The fact that G is an a�ne group scheme means among other
things that for any k-algebra homomorphism ϕ : R→ S the induced map G(ϕ) : G(R)→ G(S)
is a group homomorphism, so it commutes with multiplication. This is re�ected in the following
diagram

G(R)×G(R) G(R)

G(S)×G(S) G(S).

mult
R

(G×G)(ϕ) G(ϕ)

mult
S

Since this works for any ring homomorphism, we deduce multiplication is a natural transfor-
mation from G ×G to G. Similarly the map �pointing� at the identity element of each group
unit : {e} → G and the inverse map inv : G→ G are natural maps. The de�nition of group tells
us that these maps with some relations between them are all we need to have a group structure.
Hence a group functor is just a set functor together with these three natural transformations
mult : G ×G → G, unit : {e} → G and inv : G → G satisfying some relations given by the
group axioms.

By the Yoneda Lemma, these natural transformations correspond to morphisms between the
representing objects. If we denote A := k[G] these are

• ∆ : A→ A⊗k A, which is called comultiplication and corresponds to mult.

• ε : A→ k, which is called counit or augmentation and corresponds to unit.

• S : A→ A, which is called coinverse or antipode and corresponds to inv.

The Lemma also says that composition behaves well when passing from natural transformation
to algebra homomorphisms and vice versa. Hence the commutative diagrams expressing the
group axioms turn into these ones for algebras

A⊗A⊗A A⊗A

A⊗A A

idA⊗∆

∆⊗idA
∆

∆ (1.1)

k ⊗A A⊗A A⊗ k

A A A

ε⊗idA idA⊗ε

∼=
idA

∆

idA

∼= (1.2)
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A A⊗A A

k A k

(S,idA) (idA,S)

ε

∆

ε

(1.3)

De�nition 1.5. A commutative Hopf algebra over k is a unital, associative, commutative k-
algebra together with homomorphisms ∆ : A → A ⊗k A, ε : A → k and S : A → A satisfying
equations (1.1), (1.2) and (1.3).

What we have seen is that the representing object of an a�ne group scheme carries a
commutative Hopf algebra structure. Conversely, one can prove (see [5, Th. 1.3.4] or [1, App.
A]) that a Hopf algebra structure on the representing object of a set functor induces a group
structure on each Hom set via

(fg)(a) :=
∑

f(a(1))g(a(2)) for all a ∈ A; f, g ∈ Hom(A,R).

Here we have used Sweedler's notation, which denotes ∆(a) =
∑
a(1) ⊗ a(2). Written as com-

position this would mean that we de�ne

fg := (f, g) ◦∆.

Notice that what we are doing is just recovering the natural transformation mult from the
element ∆ ∈ G(A⊗A) as in the proof of the Yoneda Lemma.

In this same line a morphism of a�ne group schemes Φ : G→ H induces a homomorphism
of algebras k[H] → k[G] by the Yoneda Lemma. Summarizing our discussion, we have proved
the following theorem.

Theorem 1.6. There is an anti-equivalence of categories between the category of a�ne group
schemes over k and the category of commutative Hopf algebras over k. We call it an anti-
equivalence because the arrows get reversed (see [7, 1.3.11]).

As an example (from [1, Ex. A.10]) the Hopf algebra structure on k[Gm] = k[X,Y ]/(XY −
1) ∼= k[X,X−1] is given by

∆(X) = X ⊗X, ε(X) = 1, S(X) = X−1.

Indeed, if f, g ∈ Hom(k[X,X−1], R), y = f(X), z = g(X), then

(fg)(X) = (f, g)(∆(X)) = (f, g)(X ⊗X) = f(X)g(X) = yz.

Which proves that the product we have de�ned on Hom(k[X,X−1], R) corresponds to the prod-
uct from Gm(R) = R×. Furthermore, since the multiplication completely determines the struc-
ture of any group (i.e. it also �xes the neutral element and the inverses) it follows that comul-
tiplication completely determines the Hopf algebra structure:

∆ ; mult ; unit, inv ; ε, S. (1.4)

This is a particular instance of the more general observation that any statement that is true for
all groups, i.e. can be deduced from the group axioms, has an analog true statement for Hopf
algebras. More examples of this are explored in [8, Sect. 1.5].

Theorem 1.6 makes it clear that a good understanding of Hopf algebras provides a lot of
insight into a�ne group schemes. Therefore we proceed to study the structure of Hopf algebras
and a�ne group schemes as one would do with any other algebraic structure. The simultaneous
study of both allows us to see the connections. For example, as a�ne group schemes are just
functors the obvious de�nition of a morphism Φ : G→ H is that it is a natural transformation,
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and since the components of Φ are morphisms in Grp they must commute with mult. If we
denote A = k[G], B = k[H] and write the corresponding diagram for Hopf algebras right next
to the diagram for a�ne group schemes, we have

G×G H×H

G H

Φ×Φ

multG multH

Φ

A⊗A B ⊗B

A B

f⊗f

∆A

f

∆B

where f : B → A is the comorphism corresponding to Φ by the Yoneda Lemma. This motivates
the following de�nition.

De�nition 1.7. Let A,B be commutative Hopf algebras with comultiplication given by ∆A,∆B

respectively. A homomorphism of Hopf algebras is a k-algebra homomorphism f : B → A
satisfying the additional condition that

∆A ◦ f = (f ⊗ f) ◦∆B.

Once again, following (1.4) reveals that the condition to be a Hopf algebra homomorphism
implies that f also commutes with ε and S.

Since the components of Φ are given by precomposition with f , if f is surjective then all of
the components of Φ are injective. In this case we say that Φ is a closed embedding, and these
are precisely the monomorphisms in the category of a�ne group schemes.

De�nition 1.8. LetG,H be a�ne group schemes. We will say thatH is a subgroupscheme ofG
if, for any k-algebra R, the groupH(R) is a subgroup ofG(R), and the inclusionsH(R) ↪−→ G(R)
form a natural map H→ G.

Notice that in this case the inclusion H ↪−→ G is a closed embedding and therefore the
corresponding B ←− A is a surjection, so B is isomorphic to a quotient of A. The idea is that
H is de�ned by the equations of G and some additional ones. However, we have already said
that choosing equations at random does not result in an a�ne group scheme, and similarly
quotienting by any ideal I of A will not work. Following a reasoning analogous to the one for
the homomorphisms we �nd the following de�nition.

De�nition 1.9. Let A be a commutative Hopf algebra. A Hopf ideal is an ideal I of A as a
ring, satisfying the conditions

∆(I) ⊂ I ⊗A+A⊗ I, ε(I) = 0, S(I) ⊂ (I).

If G is the a�ne group scheme represented by A, the subgroupschemes of G are in correspon-
dence with the Hopf ideals of A.

The largest Hopf ideal of any Hopf algebra A is ker(ε), known as the augmentation ideal.
Clearly A/ ker(ε) ∼= k, so the corresponding subgroupscheme is the trivial one. Dually to the
notion of closed embedding we may say that a morphism Φ : G → H is a quotient map if
the corresponding comorphism A ←− B is injective. Although these are the epimorphisms in
the category of a�ne group schemes, it is not true that the components of a quotient map are
surjective, as the following example shows.

Example 1.10. For any n ∈ Z and any k-algebra R we may de�ne a group homomorphism
R× → R× : x 7→ xn. This is natural by the de�nition of group homomorphism, so we get
a morphism of a�ne group schemes [n] : Gm → Gm. The corresponding comorphism is
k[X,X−1] → k[X,X−1] : X → Xn, which is clearly injective. Hence [n] is a quotient map.
However already in k[X,X−1] the map x 7→ xn is not surjective, as not every Laurent polyno-
mial has an n-th root.
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Any homomorphism of Hopf algebras f : B → A may be decomposed as B → B/I → A
where I = ker f , where the �rst map is surjective and the second map is injective. Consequently
any morphism of a�ne group schemes Φ : G→ H can be decomposed as G→ H0 → H, where
the �rst morphism is a quotient map and the second one is a closed embedding. In this case
H0 is the subgroupscheme of H determined by the Hopf ideal I = ker f . We call H0 the image
of Φ, and notice that in general ΦR(G(R)) ( H0(R).

On the other hand it is not hard to see that the functor de�ned by N(R) := ker[G(R)
ΦR−−→

H(R)] is representable, and its representing object is A ⊗B k ∼= A/(AIB), where IB is the
augmentation ideal. This shows that N is a subgroupscheme of G, called the kernel of Φ. This
concepts of kernel and image allow us to talk about exact sequences of a�ne group schemes,
which we will do in Chapter 3.

1.3 Diagonalizable group schemes

Now we turn to a concept that will be important in the following chapters: the notion of
diagonalizable a�ne group scheme. We need a few de�nitions and results for that, which we
state without proof. For a proof of those we refer to [8].

De�nition 1.11. Let A be a commutative Hopf algebra. An invertible element a ∈ A is said
to be group-like if ∆(a) = a⊗ a.

Proposition 1.12. A group-like element a ∈ A always has ε(a) = 1, S(a) = a−1. The group-
like elements of A form a subgroup of A×, called the group of characters. Group-like elements
are linearly independent.

Proposition 1.13. Let G be a group and kG be the corresponding group algebra. We may de�ne
a Hopf algebra structure on kG by setting ∆(g) = g ⊗ g for all g ∈ G. The group of characters
of kG is then precisely G. If G is abelian then kG is a commutative Hopf algebra, and therefore
it corresponds to an a�ne group scheme, which we denote by GD.

The notation GD will be explained shortly. At this point we are ready to state the main
de�nition of this section.

De�nition 1.14. An a�ne group scheme is said to be diagonalizable if it is isomorphic to
GD for some abelian group G. Its representing algebra is then isomorphic to kG, so GD is an
algebraic group if and only if G is �nitely generated as a group.

Diagonalizable algebraic groups have a particularly nice structure, which follows from the
structure theorem for �nitely generated abelian groups. The proof comes from [8].

Theorem 1.15. Let G be a diagonalizable algebraic group. Then G is isomorphic to a �nite
product of copies of Gm and various µn, where µn is the a�ne group scheme represented by
k[X]/(Xn − 1), i.e. µn(R) = {x ∈ R | xn = 1}.

Proof. Since G is an algebraic group, its representing algebra is kM for some �nitely generated
abelian group M . Recall that k(M1 × M2) ∼= kM1 ⊗ kM2, and that the tensor product of
representatives represents the cartesian product of a�ne group schemes. Hence we may assume
without loss of generality (by the structure theorem for �nitely generated abelian groups) that
M is either Z or Z/nZ for some n ∈ N.

If M = Z then we have kZ ∼= k[X,X−1], where the isomorphism sends the 1 from Z to X
and ∆(1) = 1 ⊗ 1 implies ∆(X) = X ⊗X. Therefore G ∼= Gm. Similarly, if M = Z/nZ then
k(Z/nZ) ∼= k[X]/(Xn − 1) and thus G ∼= µn.
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To explain the notation GD we introduce the notions of constant group scheme and Cartier
duality. It should be noted that Cartier duality holds in more generality than we present here.
We follow [8, Sect. 2.3, 2.4].

Let us begin with constant group schemes. Apart from the trivial group scheme, we would
like to know which other �simple� a�ne group schemes there are. A �rst idea could be to �x
a �nite group G and assign it to every k-algebra. However it turns out that such a functor is
only representable if G has one element because of cardinality reasons (see [8, Exercise 1.1]).
We can achieve something similar, namely assigning a group of our choice to all algebras with
no idempotents except 0 and 1. Let A = kG be the set of functions from G to k endowed with
pointwise addition and multiplication, and let eσ be the indicator function of the element σ ∈ G.
Clearly {eσ}σ∈G is a basis of A, and hence A as a ring is just the direct product of |G| copies
of k. The elements of the basis satisfy

e2
σ = eσ, eσeτ = 0 if σ 6= τ,

∑
σ∈G

eσ = 1.

If R is a k-algebra with no idempotents other than 0 or 1 this means that any homomorphism
ϕ : A→ R must send one eσ to 1 and the others to 0, and this characterizes the homomorphism
completely. Hence these homomorphisms are in one-to-one correspondence with the elements
of G.

Now we want to de�ne a Hopf algebra structure on A that induces on Hom(A,R) the same
group structure that G has. To do this de�ne

∆(eρ) =
∑
ρ=στ

(eσ ⊗ eτ ).

Letting f, g ∈ Hom(A,R) correspond to ν1, ν2 ∈ G respectively, we have

(fg)(eρ) = (f, g)(∆(eρ)) =
∑
ρ=στ

f(eσ)g(eτ ).

This expression is 1 if ρ = ν1ν2 and 0 otherwise, so indeed the product homomorphism fg
corresponds to the product in the group ν1ν2. Setting S(eσ) = e(σ−1) and ε(eσ) = 1 if σ is the
neutral element of G and 0 otherwise, we get a Hopf algebra structure on A. The a�ne group
scheme it represents is called the constant group scheme for G and will be denoted by G.

Now we turn to Cartier duality. One can see there is a symmetry in the de�nition of a
commutative Hopf algebra. This leads to the following theorem, the proof of which are only
computations. To see some of them one can check [8]. Denote a Hopf algebra with its operations
by (A,∆, ε, S,m, u), where m : A ⊗ A → A is the multiplication of A as a ring and u : k → A
gives the k-algebra structure map.

Theorem 1.16 (Cartier duality). Let G be a �nite abelian group scheme, meaning that k[G] is
a �nite-dimensional k-vector space and G(R) is an abelian group for all k-algebras R. Denote
by k[G]∗ the dual vector space. Then k[G] is a �nite-dimensional, commutative, cocommutative
Hopf algebra. Furthermore (k[G]∗,m∗, u∗, S∗,∆∗, ε∗) is also a �nite-dimensional, commutative,
cocommutative Hopf algebra, and therefore it represents a �nite abelian group scheme, which we
call its Cartier dual and denote by GD.

This explains the notation GD for the �nite diagonalizable group schemes. Indeed, if G is a
�nitely generated abelian group, then we see that the dual algebra of kG is kG. Therefore the
Cartier dual of the constant group scheme G is just the diagonalizable group scheme GD.





Chapter 2

Gradings on algebras

2.1 De�nitions

In this chapter we will be working over a �xed �eld k. All vector spaces, linear maps, tensor
products, algebras, etc. will be assumed over k unless indicated otherwise. Almost all of the
de�nitions and propositions here have been extracted from [1, Chap. 1].

The concept of grading is a generalization of the decomposition of polynomials into monomi-
als of di�erent degrees. Given a k-vector space V we decompose it into a direct sum of �labeled�
subspaces. As in any direct sum, not all elements get a label, but the labeled elements are
enough to construct any other element as a linear combination of labeled elements. In the case
of polynomials we know that we may decompose any polynomial as a sum of monomials and to
each monomial we may attach a label, namely its degree. Here is the formal de�nition.

De�nition 2.1. Let V be a k-vector space and S be a set. An S-grading Γ on V is any
decomposition of V into a direct sum of subspaces indexed by S,

Γ : V =
⊕
s∈S

Vs.

The support of Γ is the set Supp Γ := {s ∈ S | Vs 6= 0}. The subspace Vs will be called the
homogeneous component of degree s. If a grading Γ is �xed, then V will be referred to as a
graded vector space.

If our vector space A is an algebra over k (not necessarily associative) it seems appropiate
that the labels should have some relation with the multiplication of the algebra. What we
require is that the product of any two homogeneous components is contained in a homogeneous
component, just like multiplying a monomial of degree 2 and a monomial of degree 3 always
gives a monomial of degree 5.

De�nition 2.2. Let A be a k-algebra and S be a set. An S-grading Γ on A is an S-grading
Γ of A as a vector space with the additional condition that for any s1, s2 ∈ S there exists an
s3 ∈ S such that

As1As2 ⊂ As3 .

For the following discussion it will be useful to assume that Supp Γ = S, i.e. that none of
the homogeneous components is trivial. Notice that if As1As2 6= 0 then the element s3 ∈ S is
uniquely determined, and therefore the algebra structure on A de�nes a partial operation on S
via

s1 · s2 := s3 whenever 0 6= As1As2 ⊂ As3 . (2.1)

A natural question to ask now is whether S with its operation forms some kind of algebraic
structure, or can be embedded in one. Going back to the polynomials, we know that the degree

9
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of the product of two monomials is the sum of the degrees of the monomials. The support of
this grading are the natural numbers with 0. Therefore we may embed the support into the
abelian group Z. For our purpose we are only interested in the case where S can be embedded
in some (often abelian) group G. The precise de�nition is the following.

De�nition 2.3. Let G be a group. We will say that Γ is realized as a G-grading if G is a group
containing S, the subspaces

Ag :=

{
As if g = s ∈ S,
0 if g ∈ G \ S;

satisfy AgAh ⊂ Agh for all g, h ∈ G, and S generates G. If such a group exists we will say that
Γ is a group grading.

It has been shown that not all gradings can be realized as a group grading. In fact [1, Ex
1.9, 1.10] shows that there are cases where it isn't even possible to embed S into a semigroup.
On the other end, [1, Prop 1.12] shows that in some cases focusing on abelian groups is not that
much of a restriction. When the grading Γ can be realized as a G-grading for some group G, the
group is in general not unique, as the following example shows (extracted from [1, Ex. 1.13]).

Example 2.4. Let Ji (i = 1, 2) be Lie algebras with basis {xi, yi, hi} and multiplication given
by

[hi, xi] = xi, [hi, yi] = −yi, [xi, yi] = hi.

Consider the algebra L = J1 ⊕ J2 with grading

Γ : L = Ls1 ⊕ Ls2 ⊕ Ls3 ⊕ Ls4 .

where Ls1 = span{h1, h2},Ls2 = span{x2, y2},Ls3 = span{x1},Ls4 = span{y1}. Then Γ can
be realized as a grading by the cyclic group 〈g〉6 with s1 = e, s2 = g3, s3 = g2, s4 = g4 and also
as a grading by the symmetric group S3 with s1 = e, s2 = (12), s3 = (123), s4 = (132).

2.2 Isomorphisms, equivalences and weak isomorphisms

We would like to be able to have some notion of isomorphism of gradings to be able to tell
when two gradings are the same. To get this we begin with not one but in fact two concepts
of morphism, which will give rise to two di�erent versions of isomorphism. We do this because
one has to distinguish between graded vector spaces and G-graded vector spaces, that is, it is
important to say whether the grading group is part of the de�nition or not.

De�nition 2.5. Let V be an S-graded vector space and let W be a T -graded vector space.
A linear map f : V → W is said to be graded if for any s ∈ S there exists t ∈ T such that
f(Vs) ⊂Wt. Clearly, if f(Vs) 6= 0, then t is uniquely determined.

An equivalence of graded vector spaces is a linear isomorphism f : V →W such that both f
and f−1 are graded maps. If Γ : A =

⊕
s∈S As and Γ′ : B =

⊕
t∈T Bt are gradings on algebras

(with supports S and T ) we say Γ and Γ′ are equivalent if there exists an equivalence of graded
algebras ϕ : A→ B, i.e. an isomorphism of algebras that is also an equivalence of graded vector
spaces. It determines a bijection α : S → T such that ϕ(As) = Bα(s).

De�nition 2.6. Let V and W be S-graded vector spaces. A linear map f : V → W is said to
be a homomorphism of S-graded vector spaces if for all s ∈ S, we have f(Vs) ⊂Ws.

Let G be a group. Two G-graded algebras A,B are said to be isomorphic if there exists an
isomorphism of algebras ϕ : A→ B such that ϕ(Ag) = Bg for all g ∈ G.

Another important concept will be that of the universal group of a group grading. This will
allow us to go from realizations of gradings to group homomorphisms between the universal
groups, where we have another concept of isomorphism.
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De�nition 2.7. Let Γ be a grading on an algebra A. Suppose that Γ admits a realization as a
G0-grading for some group G0 (i.e. Γ is a group grading). We say that G0 is a universal group
of Γ if for any other realization of Γ as a G-grading, there exists a unique group homomorphism
G0 → G which restricts to the identity on Supp Γ.

Using the standard trick for objects de�ned via universal properties one proves that universal
groups are unique up to unique isomorphism, provided they exist. Their existance is the �rst
part of the next proposition. The proof amounts to considering the free group on Supp Γ
subject to the relations imposed by Eq. (2.1) and doing the necessary comprobations. This
proposition also highlights the importance of the universal group that we mentioned previously.
The complete proof is in [1, Prop. 1.18].

Proposition 2.8. Let Γ be a group grading on an algebra A. Then there exists a universal
group for Γ, which we denote by U(Γ). Two group gradings, Γ on A and Γ′ on B, are equivalent
if and only if there exist an algebra isomorphism ϕ : A → B and a group isomorphism α :
U(Γ)→ U(Γ′) such that ϕ(Ag) = Bα(g) for all g ∈ U(Γ).

As a brief remark, the construction of U(Γ) as the free group with some relations is always
possible, regardless of whether Γ is a group grading or not. The proof of the proposition shows
that Γ is as group grading if and only if the canonical map Supp Γ→ U(Γ) is injective.

Corollary 2.9. For a given group grading Γ and a group G, the realizations of Γ as a G-grading
are in one-to-one correspondence with the epimorphisms U(Γ)→ G that are injective on Supp Γ.

There is another notion of isomorphism that will appear in our main theorems. To de�ne it
we need to introduce the concept of change of group.

Let α : G → H be a group homomorphism and let Γ : V =
⊕

g∈G Vg be a G-grading on
the vector space V . The map α allows us to transform the G-grading into an H-grading in a
natural way as follows. De�ne for each h ∈ H

V ′h :=
⊕

g∈G : α(g)=h

Vg.

These subspaces clearly form an H-grading of V which we denote by αΓ : V =
⊕

h∈H V
′
h. If

V = A is an algebra and Γ is an algebra grading, then αΓ is also an algebra grading. Indeed, if
A′h1 6= 0 6= A′h2 , then h1 and h2 are in the image of α and

A′h1A
′
h2 ⊆

∑
α(g1)=h1
α(g2)=h2

Ag1Ag2 ⊆
∑

α(g1)=h1
α(g2)=h2

Ag1g2 ⊆
∑

α(g)=h1h2

Ag = A′h1h2 .

De�nition 2.10. Let V be a G-graded vector space and W be an H-graded vector space. We
will say that V andW are weakly isomorphic if there exist a linear isomorphism ϕ : V →W and
a group isomorphism α : G → H such that ϕ(Vg) = Wα(g) for all g ∈ G. The same de�nition
applies for algebras and algebra gradings by requiring the linear isomorphism ϕ to be an algebra
isomorphism.

Notice that this de�nition just says that two gradings Γ and Γ′ are weakly isomorphic if and
only if Γ′ is isomorphic to αΓ for some group isomorphism α. The de�nition also gives us a way
to rephrase Proposition 2.8: two algebra gradings are equivalent if and only if they are weakly
isomorphic when considered as gradings over their respective universal groups.
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2.3 Gradings, comodules and linear representations

We want to bring back the concepts of Chapter 1 to get some powerful classi�cation results.
In order to do this we need to relate gradings with some a�ne group schemes. To do this we
introduce an new object that will serve as a bridge between the two. Once again there is a more
general de�nition, but we restrict to the case which is of interest to us right now.

De�nition 2.11. Let A be a commutative Hopf algebra. A comodule over A (or A-comodule)
is a vector space V with a linear map ρ : V → V ⊗ A, called coaction, making the following
diagrams commute

V V ⊗A

V ⊗A V ⊗A⊗A

ρ

ρ ρ⊗idA
idV ⊗∆

V V ⊗A

V ⊗ k.

ρ

∼= idV ⊗ε

Now we show how each vector space grading gives rise to a coaction. Let G be an abelian
group and let Γ : V =

⊕
g∈G Vg be a G-grading on the vector space V . We have already seen

that we can make kG into a commutative Hopf algebra by setting ∆(g) = g ⊗ g for all g ∈ G.
We de�ne a kG-comodule structure on V via the coaction ρΓ : V → V ⊗ kG de�ned by

ρΓ(v) := v ⊗ g for all g ∈ G, v ∈ Vg.

One easily checks that this map satis�es the conditions to be a coaction. Conversely, given a
coaction ρ : V → V ⊗ kG we de�ne the following subspaces of V

Vg := {v ∈ V | ρ(v) = v ⊗ g} for all g ∈ G.

and now the comodule axioms imply that V is the direct sum of the subspaces Vg. From the
de�nition it is clear that the constructions are inverse to each other.

If the vector space is actually an algebra A with multiplication µ : A ⊗ A → A, we can
ask which condition should the coaction satisfy in order to have the vector space grading be an
algebra grading. The condition AgAh ⊂ Agh translates to

ρ(ab) = ab⊗ gh for any a ∈ Ag, b ∈ Ah.

This is expressed in the following commutative diagram:

A⊗A A⊗A⊗ kG

A A⊗ kG.

ρA⊗A

µ µ⊗idkG
ρA

where ρA is the coaction of A and ρA⊗A is the natural coaction on A⊗A given by the composition

A⊗A→ A⊗ kG⊗A⊗ kG ∼= A⊗A⊗ kG⊗ kG id⊗mult−−−−−→ A⊗A⊗ kG.

We may read this diagram as saying that ρ is a homomorphism of algebras or that µ is a
morphism of kG-comodules (in the sense that it commutes with the respective coactions).

A remark that will be useful later on is the fact that a group homomorphism α : G → H
induces a Hopf algebra homomorphism kG → kH, which we also denote by α by an abuse of
notation. It is a straightforward computation to check that the coaction corresponding to the
change of group is

ραΓ = (id⊗ α) ◦ ρΓ. (2.2)

On the other end of the correspondence we have the concept of a linear representation of an
a�ne group scheme. If we �x a vector space V the usual concept of a linear representation of
a group G on V is just a linear action of G on V , i.e. a group homomorphism G → GLV . In
analogy with this we may de�ne the following.
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De�nition 2.12. Fix a vector space V . We denote by GLV the functor that assigns to each
k-algebra R the group of R-linear automorphisms of V (by extension of scalars)

GLV (R) = AutR(V ⊗R).

Notice that in principle this functor need not be representable, but if V is �nite-dimensional
and we have a basis {v1, . . . , vn}, then there is a natural isomorphism GLV ∼= GLn, and we
know this is an a�ne algebraic group.

De�nition 2.13. Let G be an a�ne group scheme and V be a vector space. A linear repre-
sentation of G on V is a morphism G→ GLV .

The key observation is the following.

Theorem 2.14. Linear representations of G on V are in one-to-one correspondence with k[G]-
comodule structures on V .

Proof. Let Φ : G→ GLV be a linear representation. Denote A = k[G]. Following a Yoneda-like
approach consider the element idA ∈ G(A) and send it through Φ to ΦA(idA) ∈ AutA(V⊗A). By
A-linearity this map is determined by its restriction to V ∼= V ⊗k, which we call ρ : V → V ⊗A.
Now the naturality of Φ implies that for any k-algebra R and for any g : A → R in G(R), the
following diagram commutes:

V ⊗A V ⊗A

V ⊗R V ⊗R.

id⊗g

ΦA(idA)

id⊗g
ΦR(g)

Therefore in the restriction to V ⊗ k ⊂ V ⊗R the map ΦR(g) acts via (id⊗ g) ◦ ρ, and the rest
is determined by R-linearity. Hence ρ determines the whole natural transformation.

Conversely, given a linear map ρ : V → V ⊗A we get by linearity a linear endomorphism of
V ⊗ A and thus a natural transformation Φ : G → End(V ⊗ −) by the Yoneda Lemma. The
comodule axioms are seen to be equivalent to having this map be a representation. Indeed, the
condition (id⊗ ε) ◦ ρ = id is equivalent to having Φ send idR to idV⊗R (the neutral element of
AutR(V ⊗R)), and the condition (ρ⊗ id)◦ρ = (id⊗∆)◦ρ is equivalent to Φ(g)◦Φ(h) = Φ(gh)
where g, h are elements of G(R) and the multiplication is the one de�ned on G(R) (induced by
∆).

Therefore we may join the two correspondences and build the bridge

G-gradings on V ←→ kG-comodule structures on V←→ Linear representations of GD on V.

We may express this relation directly and explicitly as follows. Given an abelian group G and
a �nite-dimensional vector space V with a G-grading Γ, we have already shown that we may
de�ne a kG-comodule structure on V via the action ρΓ, sending each v ∈ Vg to v⊗ g. Since kG
is the representing Hopf algebra for the diagonalizable group scheme GD, ρΓ induces a linear
representation ηΓ : GD → GLV . Now we make use of the grading and the �nite-dimensionality
of V by �xing a basis {v1, . . . , vn} of homogeneous elements, where vi ∈ Vgi for each i = 1, . . . , n.
The basis gives a natural isomorphism GLV ∼= GLn identifying each R-linear automorphism
of V with its R-matrix in the basis {v1, . . . , vn}. This exhibits k[Xij , det

−1] as the representing
algebra of GLV .

Since both GD and GLV are a�ne group schemes, the Yoneda Lemma tells us that we may
encode the linear representation ηΓ in the corresponding comorphism of representing algebras
η∗Γ : k[Xij , det

−1] → kG. To know how ηΓ works, we take f : kG → R an element of GD(R)
and see how its image acts on the basis elements.

ηΓ(f)(vi ⊗ 1) = (id⊗ f)(ρ(vi)) = (id⊗ f)(vi ⊗ gi) = vi ⊗ f(gi). (2.3)
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The �rst equality comes from the correspondence between comodules and representations out-
lined in the proof of Theorem 2.14. This shows that the matrix of ηΓ(f) in the basis {v1, . . . , vn}
is the diagonal matrix f(g1)

. . .

f(gn)

 ,

giving an idea of why the a�ne group scheme GD is called �diagonalizable�. Since the matrix
of ηΓ(f) is the one to which f ◦ η∗Γ �points at� we must have (by the uniqueness of the Yoneda
Lemma) the following expression for η∗Γ:

η∗Γ(Xij) = δijgi.

Conversely, given a linear representation η : GD → GLV we get a kG-comodule structure
on V , which de�nes a G-grading Γ. Taking an appropiate basis of V we get back a diagonal
representation of η = ηΓ.

Just like in the correspondence between comodules and gradings, assuming we are working
with an algebra A we would like to know which conditions should ηΓ satisfy so that Γ is an
algebra grading. It can be checked directly that Γ is an algebra grading if and only if the
multiplication µ : A⊗A→ A is a morphism of GD-representations, i.e. if and only if

µ(ηΓ(f)(a)⊗ ηΓ(f)(b)) = ηΓ(f)(µ(a⊗ b)) for all a, b ∈ A, f ∈ GD(R), R ∈ k-Alg.

This means that the image by ηΓ of any f ∈ GD(R) is not only an R-linear automorphism of
AR := A⊗R but is in fact an automorphism of AR as an R-algebra. We denote the set of such
automorphisms by AutR(AR) or Aut(AR) when it is clear from context what we mean. This
leads to the following de�nition.

Proposition 2.15. Let A be a (nonassociative) �nite-dimensional algebra and de�ne the fol-
lowing group for any k-algebra R

Aut(A)(R) := AutR(AR).

This de�nes a representable group functor, Aut(A), i.e. an a�ne group scheme. We call it the
automorphism group scheme of A.

Proof. It is enough to �nd a representing object for Aut(A). Since algebra automorphisms
are in particular linear automorphisms, we begin with the representing algebra for GLn (where
n = dimk A) and quotient it by some equations which will guarantee that the resulting maps
respect the multiplication.

Already in the identi�cation with a subgroup of GLn we are �xing a basis {a1, . . . , an} of A.
Writing the product of the basis elements in terms of the basis gives us the so-called structure
constants:

aiaj =
n∑
k=1

λkijak.

Let ϕ be a linear automorphism of AR. If (xij) is the matrix of ϕ in the basis {a1, . . . , an}, the
condition ϕ(aiaj) = ϕ(ai)ϕ(aj) may be written as∑

s,t

λkstxsixtj =
∑
l

λlijxkl for all i, j, k = 1, . . . , n.

De�ne the polynomials hkij =
∑

s,t λ
k
stXsiXtj−

∑
l λ

l
ijXkl. We have shown that the representing

algebra of Aut(A) is
k[Aut(A)] = k[Xij , det

−1]/(hkij)i,j,k=1,...,n.
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This allows us to summarize our previous discussion by saying that if Γ is an algebra grading,
then the image of ηΓ is a subgroupscheme of Aut(A). And conversely, given a morphism
ηΓ : GD → Aut(A) we obtain a G-grading on A that is actually an algebra grading.

2.4 Main theorems

Now that we have developed the tools and the language to express them, we are ready to
present the main results of this chapter. In this section we continue with the same assumptions as
before, namely G,H are abelian groups and A,B are �nite-dimensional nonassociative algebras.

Theorem 2.16. The G-gradings on A are in one-to-one correspondence with the morphisms
of a�ne group schemes GD → Aut(A). Two G-gradings are isomorphic if and only if the
corresponding morphisms are conjugate by an element of Aut(A). The weak isomorphism classes
of gradings on A with the property that the support generates the grading group are in one-to-one
correspondence with the Aut(A)-orbits of diagonalizable subgroupschemes in Aut(A).

Proof. We have described in the previous section the one-to-one correspondence between G-
gradings of A and morphisms GD → Aut(A).

In the �rst place we should �gure out what is the action by conjugation of Aut(A) on
morphisms GD → Aut(A) that is mentioned in the statement of the proposition. Given a
k-automorphism ϕ ∈ Aut(A) and an R-automorphism f ∈ Aut(AR) we can get another R-
automorphism by conjugating f with ϕ on the original algebra and �leaving the R-part �xed�.
This results in a morphism Adϕ : Aut(A)→ Aut(A):

AdRϕ (f) := (ϕ⊗ id) ◦ f ◦ (ϕ−1 ⊗ id) for all f ∈ Aut(AR). (2.4)

To see how morphisms between the automorphism group schemes allow us to move gradings
from one algebra to another, let B be another algebra and let θ : Aut(A) → Aut(B) be a
morphism. Any G-grading Γ on A induces a G-grading on B via the morphism θ ◦ ηΓ : GD →
Aut(B). We denote the induced grading by θ(Γ). In the particular case that θ = Adϕ and
using (2.3) and (2.4) we see that the action on elements is

ηR
Adϕ(Γ)(f)(vi ⊗ 1) = (AdRϕ ◦ ηRΓ )(f)(vi ⊗ 1) = ((ϕ⊗ id) ◦ ηRΓ (f) ◦ (ϕ−1 ⊗ id))(vi ⊗ 1) =

= vi ⊗ f(α−1(gi)),

where f ∈ GD(R), vi is a (homogeneous) basis element of degree gi and α : G → G is the
group isomorphism corresponding to ϕ. Looking at (2.3) this indicates that the g component
of the grading Adϕ(Γ) is precisely the α(g) component of Γ, Aα(g) = ϕ(Ag). That is, Adϕ(Γ) :
A =

⊕
g∈G ϕ(Ag). By de�nition, this means precisely that the gradings Γ and Adϕ(Γ) are

isomorphic. Conversely, given two isomorphic gradings Γ : A =
⊕

g∈GAg and Γ′ =
⊕

g∈GA′g
there exists an autormorphism ϕ ∈ Aut(A) such that ϕ(Ag) = A′g. By the calculations above
this means Γ′ = Adϕ(Γ). Therefore we can conclude that two G-gradings are isomorphic if and
only if their morphisms are conjugate by an element of Aut(A).

For the second part of the statement recall that a group homomorphism α : G → H gives
rise to a Hopf algebra homomorphism α : kG→ kH, which induces a morphism of a�ne group
schemes αD : HD → GD. Equation (2.2) implies directly that ηαΓ = ηΓ ◦ αD. By associativity

(θ ◦ ηΓ) ◦ αD = θ ◦ (ηΓ ◦ αD) =⇒ α(θ(Γ)) = θ(αΓ).

In the particular case that θ = Adϕ, what this equation says is that gradings in the same weak
isomorphism class are sent to the same weak isomorphism class via the action by conjugation
of Aut(A). Therefore these classes are in bijection with the Aut(A)-orbits. Furthermore, if
the action is a closed embedding �and hence corresponds to a diagonalizable subgroupscheme
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of Aut(A)� then the corresponding comorphism k[Xij , det
−1]/(hij) → kG is a surjection,

meaning that the gi (which form the support of Γ) generate G. And conversely, if Supp Γ
generates G then the comorphism is surjective (recall η∗Γ(Xij) = δijgi) and the action is a
closed embedding, whose image is a diagonalizable subgroupscheme of the automorphism group
scheme. This concludes the proof.

Theorem 2.17. Assume we have a morphism θ : Aut(A) → Aut(B). Then, for any abelian
group G, we have a mapping Γ→ θ(Γ) from G-gradings on A to G-gradings on B. If Γ and Γ′

are isomorphic (respectively weakly isomorphic), then θ(Γ) and θ(Γ′) are isomorphic (respectively
weakly isomorphic).

Proof. We know from the previous theorem that isomorphism and weak isomorphism classes of
gradings on A are related to the action by conjugation of Aut(A) on morphisms GD → Aut(A).
Therefore we just have to study the relation between Adϕ and θ.

Let ϕ ∈ Aut(A) and de�ne ψ := θk(ϕ) ∈ Aut(B). For any k-algebra R and any R-
automorphism f ∈ Aut(AR) we have

θR(AdRϕ (f)) = θR(ϕ⊗ id) ◦ θR(f) ◦ θR(ϕ−1⊗ id) = (ψ⊗ id) ◦ θR(f) ◦ (ψ−1⊗ id) = AdRψ (θR(f)).

In the second equality we have used that θR(ϕ⊗ id) = ψ⊗ id, which holds because θ is a natural
transformation, so it commutes with the morphisms −⊗ idR (which are just the images under
Aut(A),Aut(B) of the inclusion k → R). This just shows that the diagram

Aut(A) Aut(B)

Aut(A) Aut(B)

Adϕ

θ

Adψ

θ

commutes. Hence if ϕ sends Γ (or αΓ in the case of a weak isomorphism) to Γ′, then ψ sends
θ(Γ) (respectively θ(αΓ) = a(θ(Γ))) to θ(Γ′).

We could not end the chapter without pointing out the success of these last results �and
others of their kind�, which have allowed algebrists to classify the gradings of the exceptional
simple Lie algebras of types G2 and F4. These algebras and the octonion and Albert algebras
have isomorphic automorphism group schemes, and our theorems allow us to move the better
understood gradings of the latter algebras to the former.



Chapter 3

Computations

3.1 Evolution algebras

In this last chapter we are going to apply our knowledge from previous chapters to compute
some automorphism group schemes (and hence the automorphism groups themselves) of a special
kind of algebras called evolution algebras. They were introduced in 2006 by J.P. Tian and P.
Vojtechovsky and have a wide range of connections to other �elds such as graph theory, group
theory or Markov chains. This is explored in [6] and we will not go into details in that regard.

Due to their applicability their properties have been thoroughly studied. We are particu-
larly interested in papers [3] and [2]. In the former, a classi�cation of two-dimensional evolution
algebras is presented in Section 3 and afterwards the automorphism group scheme for each class
of algebras is computed in Section 5 via direct computation. However, [2] introduces another
method to compute the automorphism group scheme, which involves some nice properties of
an associated graph. After brie�y introducing all of these concepts, we will employ this alter-
native method to compute the automorphism group schemes of a couple of evolution algebras.
Throughout this chapter, all algebras will be de�ned over a �xed �eld k and their dimension
will be �nite. The de�nitions and theorems are extracted from [2].

De�nition 3.1. An evolution algebra is an algebra E endowed with a basis B = {v1, . . . , vn},
called a natural basis, such that vivj = 0 for any 1 ≤ i 6= j ≤ n.

The main observation is that some properties of the algebra are determined by a graph that
we may associate to it. Since the mixed products of the basis elements are zero by de�nition we
just need to know the values of v2

i , i = 1, . . . , n to completely determine the multiplication. If
we write these values in terms of that same natural basis and interpret the coe�cients as some
sort of adjacency matrix we get the de�nition of this graph.

De�nition 3.2. Let E be an evolution algebra with natural basis B = {v1, . . . , vn} and mul-
tiplication determined by v2

i =
∑n

i=1 αijvj . The associated graph of E is the graph Γ = (V,E)
whose set of vertices is V = B and whose set of edges is

E := {(vi, vj) ∈ V × V | αij 6= 0},

i.e. there is an arrow from vi to vj if the latter appears with nonzero coe�cient in the expression
of v2

i .

The results we present here are true for a particular kind of evolution algebras. An evolution
algebra E is said to be perfect if E2 = E, or equivalently if the corresponding matrix (αij) is
regular. From this point on we assume that all evolution algebras that appear are perfect. Now
we are going to de�ne some graph-theoretical concepts that will appear in the theorems. We
�x a directed graph Γ with a �nite set of vertices V and a set of edges E ⊂ V × V .

17
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De�nition 3.3. • A path on Γ is a sequence γ = (v0, e1, v1, . . . , vn−1, en, vn) where n ≥ 0,
v0, . . . , vn ∈ V , e1, . . . , en ∈ E, and for each i = 1, . . . , n, either ei = (vi−1, vi) or ei =
(vi, vi−1).

• The balance of the path γ is the integer

b(γ) = |{i | 1 ≤ i ≤ n and ei = (vi−1, vi)}| − |{i | 1 ≤ i ≤ n and ei = (vi, vi−1)}| ,

that is, b(γ) is the number of edges in the direction of the path minus the number of edges
opposite to the direction of the path.

• A cycle on Γ is a path γ = (v0, e1, v1, . . . , vn−1, en, vn) with v0 = vn.

• The balance of the graph Γ is

b(Γ) = gcd{|b(γ)| : γ is a cycle on Γ}.

• A vertex v ∈ V is said to be a source if it has no �ingoing� edges (i.e. @w ∈ V such that
(w, v) ∈ E), and is said to be a sink if it has no �outgoing� edges (i.e. @w ∈ V such that
(v, w) ∈ E).

To any graph we may associate two a�ne group schemes which will be the ones from which
we extract the information to compute Aut(E). One of them is diagonalizable and the other
one is a constant group scheme. Recall that we already talked about these in Chapter 1.

3.2 The diagonal group scheme

De�nition 3.4. The diagonal group of a graph Γ = (V,E) is the (diagonalizable) a�ne group
scheme Diag(Γ) given by

Diag(Γ)(R) := {ϕ : V → R× | ϕ(w) = ϕ(v)2 for all (v, w) ∈ E},

with pointwise multiplication and the morphisms acting pointwise on vertices. Notice that since
V is �nite we may identify Diag(Γ)(R) as a subgroup of (R×)|V | = (Gm)|V |(R), so Diag(Γ)
is a subgroupscheme of (Gm)|V |. Since subgroupschemes of diagonalizable a�ne group schemes
are themselves diagonalizable (see [1, Prop. A.31]) we conclude Diag(Γ) is diagonalizable.

The following results are presented here without proof, but all proofs can be found on [2].

Lemma 3.5. Let Γ = (V,E) be a graph, γ = (v0, e1, v1, . . . , vn−1, en, vn) be a path in Γ. Let R be
a k-algebra and ϕ ∈ Diag(Γ)(R) such that ϕ(vi) has odd multiplicative order for all i = 0, . . . , n.

Then ϕ(vn) = ϕ(v0)2b(γ).

Theorem 3.6. Let Γ = (V,E) be connected graph with no sources. Then Diag(Γ) ∼= µN , where
N = 2b(γ) − 1.

Notice that this result applies to the graphs associated to perfect evolution algebras, as in
this case a source would correspond to a basis element vi with v

2
i = 0.

Corollary 3.7. Let Γ = (V,E) be a connected graph with no sources and with a loop e = (v, v).
Then Diag(Γ) = 1, the trivial a�ne group scheme.

Theorem 3.8. Let E be an evolution algebra with natural basis B = {v1, . . . , vn} and let Γ be
the associated graph. Then there is an injective homomorphism ι : Diag(Γ) → Aut(E) such
that, for any k-algebra R and any ϕ ∈ Diag(Γ)(R), the image ι(ϕ) is the induced diagonal
automorphism vi 7→ ϕ(vi)vi.
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Proof. Clearly the map vi 7→ ϕ(vi)vi de�nes a linear automorphism of ER = E⊗R because ϕ(vi)
is invertible for all i = 1, . . . , n. Call this automorphism ϕ̂. As before, denote v2

i =
∑n

j=1 αijvj ,
then

ϕ̂(v2
i ) =

n∑
j=1

αijϕ̂(vj) =
n∑
j=1

αijϕ(vj)vj ,

ϕ̂(vi)
2 = ϕ(vi)

2v2
i = ϕ(vi)

2
n∑
j=1

αijvj .

The only condition we need for ϕ̂ to be an algebra homomorphism is that these two expressions
are equal. Comparing coe�cients, either αij = 0 in which case the equality is trivial, or αij 6= 0
in which case (vi, vj) ∈ E and therefore ϕ(vj) = ϕ(vi)

2 so the equality holds.

The map ι is a well-de�ned homomorphism: the equality ιR(ϕψ) = ιR(ϕ)ιR(ψ) holds because
multiplication onDiag(Γ)(R) is de�ned pointwise and the matrices of ιR(ϕ), ιR(ψ) are diagonal,
so multiplication occurs componentwise. Finally, ιR is injective for all R because

ιR(ϕ) = idER =⇒ ϕ(vi) = 1 for all i = 1, . . . , n =⇒ ϕ = 1.

This is all that we need to know about Diag(Γ) for now. Let us move on to the second a�ne
group scheme that we need to study Aut(E). As promised this is a constant group scheme,
so all k-algebras with no idempotents other than 0 or 1 evaluate to the same group via this
functor. Let us de�ne this group.

3.3 The constant automorphism group scheme

De�nition 3.9. Let Γ = (V,E) be a graph, where V = {v1, . . . , vn} is �nite. We de�ne the
automorphism group of Γ, Aut(Γ), as the bijections of V that respect the edges:

Aut(Γ) := {σ ∈ Sn | (vi, vj) ∈ E =⇒ (vσ(i), vσ(j)) ∈ E for all 1 ≤ i, j ≤ n}.

The associated constant group scheme is called the automorphism group scheme of Γ and
we denote it by Aut(Γ).

Our goal is to show the existence of a morphism ρ : Aut(E)→ Aut(Γ), which will be useful
because in the end this will produce a short exact sequence determining Aut(E). To do so let
R be a k-algebra and let ϕ ∈ Aut(E)(R) = Aut(ER). Denote by (rij) the coe�cients of ϕ in
the natural basis B = {v1, . . . , vn}, i.e. ϕ(vi) =

∑n
j=1 rijvj . Denote

r = det(rij) =
∑
σ∈Sn

(−1)σrσ(1)1 . . . rσ(n)n ∈ R×.

On the other hand, since mixed products vanish we have 0 = ϕ(vivj) = ϕ(vi)ϕ(vj) =
∑n

l=1 rilrklv
2
k.

Since E2 = E, {v2
1, . . . , v

2
n} is a basis of E and thus

rilrjl = 0 for all 1 ≤ i, j ≤ n with i 6= j.

In particular, if σ, τ ∈ Sn, σ 6= τ then there exists some l ∈ {1, . . . , n} such that σ(l) 6= τ(l) so
(rσ(1)1 . . . rσ(n)n)(rτ(1)1 . . . rτ(n)n) = 0. This is useful because if we consider the elements

eϕσ = (−1)σr−1rσ(1)1 . . . rσ(n)n
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we have proven that they satisfy the following identities:∑
σ∈Sn

eϕσ = 1, eϕσe
ϕ
τ = 0 for σ 6= τ ∈ Sn, eϕσ = eϕσ(

∑
τ∈Sn

eϕτ ) = (eϕσ)2. (3.1)

It is a well-known fact and easy to prove that in this case the k-algebra R splits as a direct sum
of principal ideals, R =

⊕
σ∈Sn Re

ϕ
σ . Additionally we have

rije
ϕ
σ = 0 unless i = σ(j),

which implies that the matrix (rij) can be written as a sum of monomial matrices with entries
in the principal ideals from before. Each of these monomial matrices, Aσ = eϕσ(rij), can be
regarded as an automorphism of Reϕσ as long as eϕσ 6= 0. This shows that any nonzero eϕσ must
come from σ ∈ Aut(Γ). All of this will be made more explicit in the calculations that will come
afterwards.

To de�ne ρ recall that the representing algebra of the constant group scheme Aut(Γ) is
kAut(Γ), which has a basis {εσ | σ ∈ Aut(Γ)} (we changed the e's from Chapter 1 to ε's to
avoid confusing εσ with eϕσ). The R component of ρ is de�ned by sending ϕ ∈ Aut(ER) to
ρR(ϕ) ∈ Aut(Γ)(R) = Homk(k

Aut(Γ), R), de�ned as

ρR(ϕ) : kAut(Γ) → R

εσ 7→ eϕσ .

This is seen to be a k-algebra homomorphism, and thus ρ is well de�ned. If R has no idempotents
other than 0 or 1, then 1 = eϕσ for a unique σ ∈ Aut(Γ), so the matrix of ϕ is the monomial
matrix attatched to σ. For such an R we had an identi�cation between Aut(Γ)(R) and the
group Aut(Γ). Under this identi�cation the map ρR(ϕ) is just σ.

3.4 Exact sequences

In the previous two sections we have de�ned a morphism going into the a�ne group scheme
Aut(E) and a morphism going out of it. The punchline is that these morphisms may be �tted
into an exact sequence, therefore expresing Aut(E) in terms of Diag(Γ) and Aut(Γ).

Theorem 3.10. Let E be a perfect evolution algebra with natural basis B = {v1, . . . , vn}, and
denote by Γ its associated graph. Then the sequence

1 Diag(Γ) Aut(E) Aut(Γ)ι ρ
(3.2)

is exact.

Proof. The sequence is exact at Diag(Γ) because we already showed ι is a monomorphism. To
see that the sequence is exact at Aut(E) notice that ker(ρR) consists of the automorphisms
ϕ ∈ Aut(ER) such that eϕσ = 0 for any 1 6= σ ∈ Aut(Γ). This is because the neutral element
in Aut(Γ)(R) = Homk(k

Aut(Γ), R) is the map sending all basis elements to 0 except the one
corresponding to the neutral element of the group Aut(Γ) (which we denote by 1). In that case
the equations (3.1) imply that we must have eϕ1 = 1 and the matrix of ϕ is diagonal, so the
elements of the natural basis B are eigenvectors for ϕ. These are precisely the maps in the
image of ι.

Lemma 3.11. Let G be a �nite abelian group. Then the subgroupschemes of the constant group
scheme G are precisely the constant group schemes H corresponding to subgroups H ≤ G.
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Proof. As we know from Section 1.2, subgroupschemes of G are represented by quotients, or
equivalently homomorphic images, of k[G] = kG. Our goal then is to prove that any homomor-
phic image of kG through a Hopf algebra homomorphism is isomorphic to kH for some subgroup
H ≤ G. To do so let A be a Hopf algebra and let f : kG → A be a Hopf algebra homomorphism.

The image of f is generated as a k-algebra by the elements {f(eg)}g∈G (recall that we de�ned
eg(h) = δgh). These elements satisfy

f(eg)
2 = f(e2

g) = f(eg), f(eg)f(eh) = f(egeh) = 0 for all g 6= h ∈ G.

From here we deduce that for each g ∈ G, either eg is the only element of the family sent to
f(eg) or f(eg) = 0. An even stronger assertion holds: the nonzero elements of the generating
family form a linearly independent set. Indeed, let

H := {h ∈ G | f(eh) 6= 0}

and assume we have a nontrivial linear combination summing to 0,

0 =
∑
h∈H

λhf(eh), λh ∈ k, λh0 6= 0 for some h0 ∈ H.

In that case we would have f(eh0) = f(eh0)2 = f(eh0)λ−1
h0

∑
h6=h0 λhf(eh) = 0, a contradiction.

Since the image of f is generated by {f(eh)}h∈H we just need to show that (i) H is a
subgroup of G and (ii) the Hopf algebra structure on the image of f is actually the �restriction�
of the structure of G.

(i) Let g, h ∈ H. We want to see that f(egh) 6= 0. To do so we use the fact that f is a Hopf
algebra homomorphism.

∆A(f(egh)) = (f ⊗ f)(∆kG(egh)) =
∑
στ=gh

f(eσ)⊗ f(eτ ).

The linear independence of {f(eh)}h∈H implies that {f(eh1) ⊗ f(eh2)}h1,h2∈H is also a linear
independent family, and since the summand f(eg)⊗ f(eh) is nonzero we conclude that the sum
in the right hand side is nonzero. Consequently f(egh) 6= 0 and gh ∈ H. Similarly we see that
1 ∈ H, where 1 denotes the neutral element of G. Indeed,

εA(f(e1)) = f(εkG(e1)) = f(1) = 1 6= 0,

so we conclude f(e1) 6= 0 and 1 ∈ H. Finally for any h ∈ H we have

SA(f(eh−1)) = f(SkG(eh−1)) = f(eh) 6= 0, .

so f(eh−1) 6= 0 and h−1 ∈ H.
(ii) This is once again a consequence of f being a Hopf algebra homomorphism:

∆A(f(eh)) = (f ⊗ f)(∆kG(eh)) =
∑
στ=h

f(eσ)⊗ f(eτ ),

showing that the group structure induced by the image is the same as the one induced by G.

Corollary 3.12. Let E be a perfect evolution algebra with natural basis B = {v1, . . . , vn}, and
denote by Γ its associated graph. Then there is a subgroup H of Aut(Γ) such that the sequence

1 Diag(Γ) Aut(E) H 1ι ρ

is exact, where again H denotes the constant group scheme associated to the group H.
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3.5 Examples

Now that we have developed the theory we are going to compute the automorphism group
scheme of some two-dimensional evolution algebras. The classi�cation of such algebras can be
found on [3]. Looking at [3, Table 4] we see that some of the algebras do not satisfy the condition
E2 = E, so our results do not apply there. Let us begin by computing the automorphism group
scheme for one of the non-perfect algebras of the list to see what are the computations that
have to be done, which will of course get harder as the dimension of the algebra increases.

Example 3.13. Let E be an evolution algebra of type A6 with natural basis B = {v1, v2}, that
is, the multiplication of E is determined by

v2
1 = 0, v2

2 = v1.

Let R be an arbitrary k-algebra. Our goal is to compute AutR(ER), so let ϕ be an R-linear
automorphism of ER and denote its matrix in the basis B by (rij)i,j=1,2. We have to impose
some conditions on the rij so that the map is actually a homomorphism of algebras:

0 = ϕ(v2
1) = ϕ(v1)2 = (r11v1 + r21v2)2 = r2

21v
2
2 = r2

21v1,

r11v1 + r21v2 = ϕ(v1) = ϕ(v2
2) = ϕ(v2)2 = (r12v1 + r22v2)2 = r2

22v1,

0 = ϕ(v1v2) = ϕ(v1)ϕ(v2) = (r11v1 + r21v2)(r12v1 + r22v2) = r21r22v1.

Comparing coe�cients and removing the redundant equations we arrive at

r2
22 = r11, r21 = 0.

Furthermore, since ϕ is a linear isomorphism we know its determinant is invertible, so we have

det(ϕ) = r11r22 − r12r21 = r3
22 ∈ R× =⇒ r22 ∈ R×.

These conditions are thus necessary to have an algebra automorphism, and we claim that they
are su�cient, that is

AutR(ER) =

{(
a2 b
0 a

) ∣∣∣∣ a ∈ R×, b ∈ R} .
Indeed, the matrices of this set have invertible determinant so they are invertible. Carrying
out the computations for the basis vectors one sees that the linear maps corresponding to these
matrices respect the multiplication of the algebra. Therefore they are R-algebra automorphisms.
We want to point out that to �nd this expression we have to solve a system of polynomial
equations. In this case that was easy to do, but of course the general situation can get much
more complicated.

As a further remark, an easy argument from Group Theory gives that Aut(E) is, up to
isomorphism, a semidirect product Ga oGm. Due to lack of space, these semidirect products
have not been de�ned here in the category of a�ne group schemes, but its de�ntion is the
natural one that could be expected.

Now we proceed to use the methods that we have developed in the previous sections to
compute the automorphism group schemes of perfect evolution algebras. In some cases the
situation is so straightforward that we can do several algebras at the same time.

Example 3.14. Consider the two-dimensional evolution algebras of types A3,α and A4,α, once
again we refer to [3, Table 4] for the classi�cation. It is easy to see that they are perfect, i.e.
the subspace spanned by the squares of the elements of the natural basis is the whole algebra.
To apply the theorems we need to know the graphs associated to these algebras (see �gure 3.1).
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v1 v2 v1 v2

Figure 3.1: Associated graphs of algebras of type A3,α and A4,α, respectively.

In both cases we may follow the same reasoning. Let Γ be the graph of interest, let R be a
k-algebra, and let ϕ ∈ Diag(Γ)(R). Since there is a loop in v1 we must have ϕ(v1)2 = ϕ(v1),
and we conclude ϕ(v1) = 1 because the image of ϕ lies in R×. But there is also an edge from
v1 to v2, so ϕ(v2) = ϕ(v1)2 = 1, and hence Diag(Γ)(R) is the trivial group for all R, i.e.
Diag(Γ) = 1.

Similarly we see that for both graphs the only possible graph automorphism is the identity,
as there is no edge (v2, v1) in the graph of A3,α and no loop (v1, v1) in the graph of A4,α.
Therefore Aut(Γ) = 1. But then the short exact sequence (3.2) looks like

1 Aut(E) 1

and we conclude Aut(E) = 1 for both types of algebras.





Bibliography

[1] A. Elduque and M. Kochetov, Gradings on Simple Lie Algebras, Mathematical Suveys
and Monographs, Volume 189, 2013.

[2] A. Elduque and A. Labra, Evolution algebras, automorphisms, and graphs, to appear
in Linear Mult. Algebra, https://doi.org/10.1080/03081087.2019.1598931

[3] M.I. Cardoso Gonçalves, D. Gonçalves, D. Martín Barquero, C.Martín

González and M. Siles Molina, Squares and associative representations of two-
dimensional evolution algebras, preprint arXiv:1807.02362.

[4] T. Leinster, Basic Category Theory, Cambridge Studies in Advanced Mathematics 2018.

[5] A. Sawant, Algebraic Groups, Ludwig-Maximilians Universität München 2016, available
online at http://www.mathematik.uni-muenchen.de/~sawant/SS2016/AG.pdf (consulted
on August 17, 2019).

[6] J.P. Tian, Evolution algebras and their applications, Lecture Notes in Mathematics, vol.
1921, Springer-Verlag, Berlin, 2008.

[7] R. Vakil, The rising sea: Foundations of Algebraic Geometry, 2017, available online
at http://math.stanford.edu/~vakil/216blog/FOAGnov1817public.pdf (consulted on
August 17, 2019).

[8] W.C. Waterhouse, Introduction to A�ne Group Schemes, Graduate Texts in Mathe-
matics 1979.

25

https://doi.org/10.1080/03081087.2019.1598931
http://www.mathematik.uni-muenchen.de/~sawant/SS2016/AG.pdf
http://math.stanford.edu/~vakil/216blog/FOAGnov1817public.pdf

	Resumen
	Summary
	Affine group schemes
	Definitions
	Hopf algebras
	Diagonalizable group schemes

	Gradings on algebras
	Definitions
	Isomorphisms, equivalences and weak isomorphisms
	Gradings, comodules and linear representations
	Main theorems

	Computations
	Evolution algebras
	The diagonal group scheme
	The constant automorphism group scheme
	Exact sequences
	Examples

	Bibliography

