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Resumen

Los grupos algebraicos son el andlogo algebraico a los grupos de Lie de la geometria diferen-
cial. No cabe duda pues, de que el estudio de estos objetos, entre los que se encuentran grupos
tan conocidos como los grupos clasicos de matrices, es del mayor interés. Siguiendo la linea
marcada por Grothendieck, los matematicos se dieron cuenta hace algin tiempo de que era
posible comprender estos objetos fijandose en la estructura de los morfismos entre ellos. Tanto
es asi que en este trabajo presentamos una descripcion totalmente funtorial de los mismos, sin
apelar directamente a la geometria en ningin momento. Esto nos permite comenzar a trabajar
con grupos algebraicos sin tener que tratar primero con nociones de geometria algebraica. A
cambio, es necesario estar familiarizado con nociones basicas de teoria de categorias. La fuente
principal de esta parte del trabajo es [8], y alli se puede encontrar también la relacion entre esta
version funtorial de los grupos algebraicos y su naturaleza geométrica.

Empezaremos asumiendo conocidos los primeros conceptos de la teoria de categorias, tales
como la propia definicién de categoria, la definiciéon de funtor o la definicién de transformacion
natural. No serd necesario mucho més que eso, puesto que el primer capitulo comienza dando
la definicién de funtor representable y estableciendo uno de los resultados fundamentales sobre
los que descansa el resto de la teoria: el lema de Yoneda. A grandes rasgos y en la version que
utilizaremos aqui, este importante lema dice lo siguiente.

Lema de Yoneda. Sea C una categoria y sean E, F : C — Set dos funtores representables.
Las transformaciones naturales de B a F' estdn en correspondencia con los morfismos entre los
objetos representantes, en sentido inverso.

Comprender este lema es primordial, puesto que es el diccionario que nos permite traducir
lo que sucede en la categoria de esquemas-grupo afines (una version ligeramente mas general
de los grupos algebraicos) a la categoria de algebras de Hopf, un nuevo objeto algebraico que
introducimos y estudiamos en el capitulo 1. Méas adelante, en el capitulo 2, el lema de Yoneda
volverd a entrar en juego y nos servird de nuevo como puente, esta vez entre las representaciones
lineales de grupos algebraicos y los comédulos, otra nueva estructura algebraica.

Con esta herramienta en mano, el resto del capitulo 1 transcurre estudiando las propiedades
algebraicas tipicas de los esquemas-grupo afines y las dlgebras de Hopf, tales como los morfis-
mos entre objetos de la misma categoria; los subobjetos y monomorfismos; y los cocientes y
epimorfismos. Seguidamente se introducen dos tipos de grupos algebraicos afines que resultaran
utiles en los capitulos siguientes: los grupos algebraicos diagonalizables y los esquemas-grupo
constantes. El capitulo finaliza con una versién restringida de la dualidad de Cartier, que nos
permite poner en relacién estos dos tltimos tipos de esquemas-grupo.

El capitulo 2 comienza con un cambio stbito de direcciéon. Abandonamos momentidneamente
el terreno funtorial para introducir la nocién de algebra (no necesariamente asociativa) graduada
y algunos conceptos relacionados, como el de realizacion de una graduacion. La definicién bésica
es la que sigue.

1l



v Resumen

Definiciéon. Dados un grupo G y un algebra (no necesariamente asociativa) A, una gradua-
cion por G de A o una G-graduacion de A, es una descomposicion de A como espacio vectorial,
A= @geG Ay, que satisface AgAj, C Ay, para todo g, h € G.

A continuacion aparecen distintas nociones de isomorfismo para algebras graduadas, segin
si consideramos el grupo por el que se gradia como parte de la definicién o no. Los teoremas
principales de este capitulo 2, presentados en la seccidon 2.4, lidian con los diferentes tipos de
isomorfismo por separado. Antes de poder formular dichos resultados es necesario desarrollar
el lenguaje apropiado. Este es el proposito de la secciéon 2.3 que, empleando el lema de Yoneda
y con tan solo una conexién adicional, pone en relacién las graduaciones de un &lgebra no
asociativa A por un grupo abeliano finito G con las representaciones lineales del grupo algebraico
diagonalizable G en el esquema-grupo de automorfismos de A, Aut(A). Todo esto y mucho
més se puede encontrar en [1], fuente de este capitulo.

Por ultimo, el capitulo 3 pretende sacar a relucir una aplicacién directa de lo presentado
en el capitulo 1, mostrando que los conceptos all{ descritos siguen siendo relevantes hoy en dia.
Para ello nos servimos de temas y articulos de actualidad. Calcularemos aqui los esquemas-
grupo de automorfismos de algunas algebras de evolucion de dimensién 2. Estas algebras fueron
introducidas en 2006 por Tian, y él mismo ha indicado sus multiples aplicaciones (aliciente del
intenso trabajo que ha habido en este campo en los altimos anos) en [6]. Para el computo de
estos esquemas-grupo nos valdremos de las técnicas presentadas en dos articulos de este ano
2019, a saber [2] y [3].

Estos célculos, aparentemente inocuos, pueden volverse realmente complicados. Las in-
teresantes ideas presentadas en [2] simplificaran las cuentas a cambio de introducir nueva
maquinaria. El capitulo comenzara con la introduccién de estos nuevos métodos, que incluyen
grafos y secuencias exactas cortas de esquemas-grupo afines, y finalizara con el célculo de algunos
de los esquemas-grupo de automorfismos antes nombrados. En este capitulo nos volveremos a
encontrar con los dos tipos de esquemas-grupo afines que habian aparecido anteriormente en el
capitulo 1, diagonalizables y constantes.



Summary

Algebraic groups are the algebraic counterpart of Lie groups. It goes without saying that the
study of such objects, among which we may find well-known groups including the classical matrix
groups, is of great interest. Following the path outlined by Grothendieck, mathematicians from
the last century have come to the realization that it is possible to understand these algebraic
groups by focusing on the structure of the morphisms between them. This is so much so that in
this work we are able to present a completely functorial description of the former, with no direct
reference to the geometry behind the scenes. It is this way that we are capable of working with
algebraic groups without having to first learn some notions from Algebraic Geometry. In return,
one should be familiar with the basic concepts from Category Theory to properly understand
this description. The main source for this first part of the work ahead is 8], where one may
also find explained the relationship between the functorial presentation of algebraic groups and
their geometric nature.

We will start off assuming that the reader is acquainted with the first principles of Category
Theory — the definitions of category, functor and natural transformation. This is all that will
be needed, as the first chapter sets off introducing the concept of representable functor and
establishing one of the fundamental results: the Yoneda Lemma. In the form that we will use
the most, this result says the following.

Yoneda Lemma. Let C be a category and let E,F : C — Set be two representable func-
tors. Natural transformations from E to F are in correspondence with morphisms between the
representing objects, in reverse order.

A thorough understanding of this lemma is of the utmost importance, for it is a lexicon that
allows us to translate from the category of affine group schemes (a slighlty generalized version
of an algebraic group) to the category of Hopf algebras, a new object which we define and study
throughout Chapter 1. Later on, in Chapter 2, the Yoneda Lemma will come into play again,
this time around serving as a bridge between linear representations of algebraic groups and
comodules, another new algebraic structure.

With this result in our toolbox, the remainder of Chapter 1 continues by studying the usual
algebraic properties of affine group schemes and Hopf algebras, such as morphisms between the
objects of the same category; subobjects and monomorphisms; and quotients and epimorphisms.
Immediately after that, two families of affine algebraic groups enter the scene. Their names are
diagonalizable algebraic groups and constant group schemes, and they will make an appearance
in both subsequent chapters. The relation between the two is explicited via a restricted version
of Cartier duality, with which we close the chapter.

Chapter 2 begins with a sudden change of direction. We temporarily leave the functorial
realm behind to introduce the notion of a (not necessarily associative) graded algebra and some
related topics, such as that of the realization of a grading. The basic definition goes as follows.

Definition. Let G be a group and A be a (not necessarily associative) algebra. A grading
by G on A, or a G-grading on A, is a vector space decomposition A = @geG Ay satisfying
AgAp C Agp, for all g, h € G.



vi Summary

Following this definition we encounter several different notions of isomorphism for graded
algebras, depending on whether we consider the grading group as part of the definition or not.
The main theorems of Chapter 2, presented in Section 2.4, deal with the different types of
isomorphism separately. Before we are able to even formulate said theorems, we must develop
the necessary language. Such is the goal of Section 2.3, in which, by means of the Yoneda Lemma
and just one other connection, we are able to relate the gradings of a nonassociative algebra A
by a finite abelian group G with the linear representations of the diagonalizable algebraic group
GP on the automorphism group scheme of A, Aut(A). All of this and much more can be found
in 1], the main source of this chapter.

Last but not least, Chapter 3 aims to present a direct application of the machinery of Chapter
1. In doing so we pretend to show that the concepts we have covered are still relevant nowadays.
To achieve that, we will make use of topics and papers which only very recently have appeared
in journals. We will proceed to compute the automorphism group schemes of some evolution
algebras of dimension 2. These algebras were introduced on 2006 by Tian, who has pointed out
their manifold applications in [6]. To do the computations we will employ the techniques from
two papers that have come out this year 2019, namely [2] and [3].

These computations, although inocuous at first sight, can quickly become really complicated.
The interesting ideas presented in [2] will simplify the work. The chapter starts by defining some
new necessary concepts, and along the way we will encounter some agents from Graph Theory
and short exact sequences of affine group schemes. The final section will consist in the promised
computation of the automorphism group schemes mentioned above. In this chapter we will meet
once again the two special types of affine group schemes that were introduced in Chapter 1.
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Chapter 1

Affine group schemes

1.1 Definitions

We begin with some background from category theory, which will be the language in which
we express most of the results. Any elementary text in category theory will cover these topics
among other basic concepts, in this case we used [4] and |1, App. A].

Definition 1.1. Let € be a category. A functor F': € — Set is said to be representable if there
is an object A € € such that F' is naturally isomorphic to the hom functor Hom(A4, —). If F is
instead a functor € — Grp then we say F' is representable if its composition with the forgetful
functor Grp — Set is representable.

Representing objects are unique (up to isomorphism), which is a consequence of the following
more general result.

Lemma 1.2 (Yoneda). Let E,F : C — Set be functors and assume that E is representable
with representing object A € C. Then there is a one-to-one correspondence between natural
transformations from E to F' and elements of F(A).

In particular, if F' is also representable with representing object B, then natural transforma-
tions from E to F' correspond to morphisms B — A and composition of natural transformations
corresponds to composition of these morphisms in reverse order.

Proof. We proceed in the “naive” way. Let ® : E — F be a natural transformation. Since we
want an element of F'(A) it makes sense to take the image of some distinguished element of F(A)
under ®4 : E(A) — F(A). The only element we know for sure exists is idq € Hom(A, A) =
E(A). Therefore to ® we assign ®4(id4) € F(A).

Conversely, given an element x € F(A) we are going to construct a natural transformation
® : E — F. To have a bijection we must impose ®4(id4) = . Luckily this already fixes the
whole natural transformation because the following diagram should commute for any C' € € by
the naturality of ®:

EA) 29 B(o)

# Jac

F(a) 29 peo

Indeed, for any element f € E(C) = Hom(A,C) we have f = foida = E(f)(ida) because
of how the representable functor F is defined. On the other hand we have fixed ®4(id4) = .
Finally F(f) is an already defined map. Hence

O(f) = @Y(E(f)(ida)) = F(f)(®*(ida)) = F(f)(x).

Now one can easily check that this is indeed a natural transformation.

1



2 Chapter 1. Affine group schemes

In the particular case that F' is represented by an object B the function F(f) is left com-
position with f, and the element z is a function x € F(A) = Hom(B, A). Therefore we can
explicitly give F(f)(z) = fox € Hom(C,C) = F(C). In other words: in the case that both
functors are representable, the natural transformation is given by right composition with the
function x : B — A. O

We are ready to define our main object of study. We denote by Alg, the category of unital,
associative, commutative algebras over a unital, associative, commutative ring k. Later on we
will fix our attention in the case that k is a field.

Definition 1.3. Let k be a ring. An affine group scheme over k is a representable functor
G : Alg;, — Grp. The representing object will be denoted by k[G]. If k[G] is finitely generated
as a k-algebra we say that G is an (affine) algebraic group.

This definition seems admittedly dry and unmotivated. Let us step back a little bit and see
where it can come from. All of the rings considered here will unital, associative, commutative
rings (i.e. Z-algebras). We follow the lines of |8, Chap. 1].

One of the most fruitful problems in the history of mathematics has been studying systems of
polynomial equations with some restrictions on the coefficients and the allowed solution set. It is
the case that for some equations the solution set admits a natural group structure. Perhaps the
clearest example of this is the general linear group GL,(R). If we fix a ring R, we may regard
elements of R as matrices, and in this case we know that the determinant is a polynomial
expression in the coefficients of the matrix. Requiring the matrix M € R™ to be invertible
is equivalent to requesting its determinant to be invertible in R, which in turn is the same as
asking that the entries of M be the solution of the polynomial equation det(M)Y = 1, where Y
is some dummy indeterminate. Notice that this construction can be made for any ring R, and
since the condition to be in the solution set is given by a polynomial with integer coefficients,
a ring homomorphism ¢ : R — S takes solutions to solutions and thus induces a map from one
solution set to another, i.e. a group homomorphism GL,(R) — GL,(S).

To get some other (albeit trivial) examples of this kind of construction notice that we may
regard the underlying additive group (R,+) of any ring R as the solution set of an empty
system of equations, and that a ring homomorphism ¢ : R — S induces a group homomorphism
(R,+) — (S,+). Similarly taking the multiplicative group of units (R*,-) also comes from
an equation, XY = 1, and respects homomorphisms (this is just the particular case GL1(R)
from the previous discussion). Since these examples will be important later on, we give them a
notation similar to the one of the general linear group: define G,(R) = (R, +) and G,,(R) =
(R*,).

Generalizing slightly we stop requesting the coefficients of our equations to be integers and
instead we fix a “field of coefficients” k (it should be noted that some of the results ahead hold
in more generality, namely for algebras over rings, but to avoid confusion we will be working
over a field k). Hence it will only make sense to look for solutions of this polynomials over
k-algebras instead of general rings, and the maps between them will need to be homomorphisms
of k-algebras. There is however one complication that we have overlooked: seemingly different
equations might give rise to the same groups. To solve this we move to the functorial picture.

It is a well known fact and easy to check that if we have a family of equations (f;);c; with in-
determinates (X;);cs and coefficients in k, the solutions for these over a k-algebra R correspond
to k-algebra homomorphisms A — R, where A is the quotient algebra k[(X;);jes]/(fi)icr. For
example elements of G,(R) correspond to maps k[X] — R, and elements of G,,(R) correspond
to maps k[X,Y]/(XY — 1) — R. This leads us to identify Hom(A, R) with the solution set.
If as before we request that our equations have a solution set with a natural group structure
(in the sense that algebra homomorphisms induce group homomorphisms between the solution
sets) then we find out that we have been talking about the functor Alg, — Grp represented
by A. Since any algebra may be expressed as the quotient of some polynomial ring (maybe in
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infinitely many variables) by taking generators, we conclude that studying solution sets of poly-
nomial equations with a natural group structure corresponds exactly to studying representable
functors. Hence our definition of affine group scheme is motivated.

1.2 Hopf algebras

The Yoneda Lemma tells us that a representable functor is completely determined by its
representing object and vice versa. It makes sense then to expect all of the information of an
affine group scheme G to be encoded in k[G] in some way. This is indeed the case, and to see
that we need the following proposition, the proof of which can be found in [5, 1.2.4, 1.2.5].

Proposition 1.4. Let G, H be affine group schemes. The functor G x H sending each k-algebra
R to the direct product G(R) x H(R) is represented by k|G x H] = k[G] @ k[H|. The functor
that sends all k-algebras to a trivial group {e} is represented by k.

Now comes a key observation. The fact that G is an affine group scheme means among other
things that for any k-algebra homomorphism ¢ : R — S the induced map G(¢) : G(R) — G(S)
is a group homomorphism, so it commutes with multiplication. This is reflected in the following
diagram

G(R) x G(R) —™" _, G(R)
(@xG)e)| G
G(S) x G(S) — ™ G(s).

Since this works for any ring homomorphism, we deduce multiplication is a natural transfor-
mation from G x G to G. Similarly the map “pointing” at the identity element of each group
unit : {e} — G and the inverse map inv : G — G are natural maps. The definition of group tells
us that these maps with some relations between them are all we need to have a group structure.
Hence a group functor is just a set functor together with these three natural transformations
mult : G x G — G, unit : {¢} - G and inv : G — G satisfying some relations given by the
group axioms.

By the Yoneda Lemma, these natural transformations correspond to morphisms between the
representing objects. If we denote A := k[G] these are

e A: A— A®y, A, which is called comultiplication and corresponds to mult.
e ¢: A — k, which is called counit or augmentation and corresponds to unit.
e S: A — A, which is called coinverse or antipode and corresponds to inv.

The Lemima also says that composition behaves well when passing from natural transformation
to algebra homomorphisms and vice versa. Hence the commutative diagrams expressing the
group axioms turn into these ones for algebras

idA®A

AR AR A AR A
A®idAT TA (1.1)
A A A A
ko A e®id g Ao A id A ®e€ Aok

R &

A ida A ida A
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A A
R ] =
k k

Definition 1.5. A commutative Hopf algebra over k is a unital, associative, commutative k-
algebra together with homomorphisms A : A > ARy A, e: A — kand S : A — A satisfying
equations (1.1), (1.2) and (1.3).

What we have seen is that the representing object of an affine group scheme carries a
commutative Hopf algebra structure. Conversely, one can prove (see [5, Th. 1.3.4] or [I, App.
A]) that a Hopf algebra structure on the representing object of a set functor induces a group
structure on each Hom set via

(f9)(a) = flag)glaw) foralla€ A; f,g € Hom(A, R).

Here we have used Sweedler’s notation, which denotes A(a) = ) a1y ® a(z). Written as com-
position this would mean that we define

fg=1(f,g)cA.

Notice that what we are doing is just recovering the natural transformation mult from the
element A € G(A® A) as in the proof of the Yoneda Lemma.

In this same line a morphism of affine group schemes ® : G — H induces a homomorphism
of algebras k[H] — k[G] by the Yoneda Lemma. Summarizing our discussion, we have proved
the following theorem.

Theorem 1.6. There is an anti-equivalence of categories between the category of affine group
schemes over k and the category of commutative Hopf algebras over k. We call it an anti-
equivalence because the arrows get reversed (see [7, 1.3.11]).

As an example (from |1, Ex. A.10]) the Hopf algebra structure on k[G,,] = k[X,Y]/(XY —
1) = k[X, X 1] is given by

AX)=X®X, «X)=1, S(X)=X""1
Indeed, if f,g € Hom(k[X, X!, R),y = f(X),z = g(X), then

(fo)(X) = (f,9)(AX)) = (f,9)(X ® X) = f(X)g(X) = yz.

Which proves that the product we have defined on Hom(k[X, X 1], R) corresponds to the prod-
uct from G,,(R) = R*. Furthermore, since the multiplication completely determines the struc-
ture of any group (i.e. it also fixes the neutral element and the inverses) it follows that comul-
tiplication completely determines the Hopf algebra structure:

A~ mult ~ unit, inv ~ €, S. (1.4)

This is a particular instance of the more general observation that any statement that is true for
all groups, i.e. can be deduced from the group axioms, has an analog true statement for Hopf
algebras. More examples of this are explored in [8, Sect. 1.5].

Theorem 1.6 makes it clear that a good understanding of Hopf algebras provides a lot of
insight into affine group schemes. Therefore we proceed to study the structure of Hopf algebras
and affine group schemes as one would do with any other algebraic structure. The simultaneous
study of both allows us to see the connections. For example, as affine group schemes are just
functors the obvious definition of a morphism ® : G — H is that it is a natural transformation,
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and since the components of ® are morphisms in Grp they must commute with mult. If we
denote A = k[G], B = k[H| and write the corresponding diagram for Hopf algebras right next
to the diagram for affine group schemes, we have

GxG 2% HxH Ao Al BeB
multgl lmultH AAT TAB
G—% H AT B

where f: B — A is the comorphism corresponding to ® by the Yoneda Lemma. This motivates
the following definition.

Definition 1.7. Let A, B be commutative Hopf algebras with comultiplication given by A4, Ap
respectively. A homomorphism of Hopf algebras is a k-algebra homomorphism f : B — A
satisfying the additional condition that

Apof=(f®f)oAp.

Once again, following (1.4) reveals that the condition to be a Hopf algebra homomorphism
implies that f also commutes with ¢ and S.

Since the components of ® are given by precomposition with f, if f is surjective then all of
the components of ® are injective. In this case we say that ® is a closed embedding, and these
are precisely the monomorphisms in the category of affine group schemes.

Definition 1.8. Let G, H be affine group schemes. We will say that H is a subgroupscheme of G
if, for any k-algebra R, the group H(R) is a subgroup of G(R), and the inclusions H(R) — G(R)
form a natural map H — G.

Notice that in this case the inclusion H — G is a closed embedding and therefore the
corresponding B < A is a surjection, so B is isomorphic to a quotient of A. The idea is that
H is defined by the equations of G and some additional ones. However, we have already said
that choosing equations at random does not result in an affine group scheme, and similarly
quotienting by any ideal I of A will not work. Following a reasoning analogous to the one for
the homomorphisms we find the following definition.

Definition 1.9. Let A be a commutative Hopf algebra. A Hopf ideal is an ideal I of A as a
ring, satisfying the conditions

Al)CI®A+A®I, €I)=0, SI)c).

If G is the affine group scheme represented by A, the subgroupschemes of G are in correspon-
dence with the Hopf ideals of A.

The largest Hopf ideal of any Hopf algebra A is ker(e), known as the augmentation ideal.
Clearly A/ker(e) = k, so the corresponding subgroupscheme is the trivial one. Dually to the
notion of closed embedding we may say that a morphism ® : G — H is a quotient map if
the corresponding comorphism A < B is injective. Although these are the epimorphisms in
the category of affine group schemes, it is not true that the components of a quotient map are
surjective, as the following example shows.

Example 1.10. For any n € Z and any k-algebra R we may define a group homomorphism
R* — R* : x — z". This is natural by the definition of group homomorphism, so we get
a morphism of affine group schemes [n] : G,, — G,,. The corresponding comorphism is
E[X,X Y — k[X,X 1] : X = X", which is clearly injective. Hence [n] is a quotient map.
However already in k[X, X 1] the map x +— 2" is not surjective, as not every Laurent polyno-
mial has an n-th root.
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Any homomorphism of Hopf algebras f : B — A may be decomposed as B — B/I — A
where I = Kker f, where the first map is surjective and the second map is injective. Consequently
any morphism of affine group schemes ® : G — H can be decomposed as G — Hy — H, where
the first morphism is a quotient map and the second one is a closed embedding. In this case
Hj is the subgroupscheme of H determined by the Hopf ideal I = ker f. We call Hy the image
of ®, and notice that in general ®%(G(R)) € Hy(R).

@R

On the other hand it is not hard to see that the functor defined by N(R) = ker|G(R) —
H(R)] is representable, and its representing object is A ®p k = A/(Alp), where Ip is the
augmentation ideal. This shows that N is a subgroupscheme of G, called the kernel of ®. This
concepts of kernel and image allow us to talk about exact sequences of affine group schemes,
which we will do in Chapter 3.

1.3 Diagonalizable group schemes

Now we turn to a concept that will be important in the following chapters: the notion of
diagonalizable affine group scheme. We need a few definitions and results for that, which we
state without proof. For a proof of those we refer to [3].

Definition 1.11. Let A be a commutative Hopf algebra. An invertible element a € A is said
to be group-like if A(a) =a® a.

Proposition 1.12. A group-like element a € A always has €(a) = 1, S(a) = a~*. The group-
like elements of A form a subgroup of A*, called the group of characters. Group-like elements
are linearly independent.

Proposition 1.13. Let G be a group and kG be the corresponding group algebra. We may define
a Hopf algebra structure on kG by setting A(g) = g® g for all g € G. The group of characters
of kG is then precisely G. If G is abelian then kG is a commutative Hopf algebra, and therefore
it corresponds to an affine group scheme, which we denote by GP.

The notation GP will be explained shortly. At this point we are ready to state the main
definition of this section.

Definition 1.14. An affine group scheme is said to be diagonalizable if it is isomorphic to
GP for some abelian group G. Its representing algebra is then isomorphic to kG, so GP is an
algebraic group if and only if G is finitely generated as a group.

Diagonalizable algebraic groups have a particularly nice structure, which follows from the
structure theorem for finitely generated abelian groups. The proof comes from [8].

Theorem 1.15. Let G be a diagonalizable algebraic group. Then G is isomorphic to a finite
product of copies of Gy, and various p,,, where w, s the affine group scheme represented by
EX]/(X™=1), ie p,(R)={x€R|a"=1}.

Proof. Since G is an algebraic group, its representing algebra is kM for some finitely generated
abelian group M. Recall that k(M; x M) = kM; ® kMo, and that the tensor product of
representatives represents the cartesian product of affine group schemes. Hence we may assume
without loss of generality (by the structure theorem for finitely generated abelian groups) that
M is either Z or Z/nZ for some n € N.

If M = 7Z then we have kZ = k[X, X '], where the isomorphism sends the 1 from Z to X
and A(1) = 1® 1 implies A(X) = X ® X. Therefore G = Gy,. Similarly, if M = Z/nZ then
k(Z/nZ) = k[X]/(X™ — 1) and thus G & p,,. O
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To explain the notation G” we introduce the notions of constant group scheme and Cartier
duality. It should be noted that Cartier duality holds in more generality than we present here.
We follow [8, Sect. 2.3, 2.4].

Let us begin with constant group schemes. Apart from the trivial group scheme, we would
like to know which other “simple” affine group schemes there are. A first idea could be to fix
a finite group G and assign it to every k-algebra. However it turns out that such a functor is
only representable if G has one element because of cardinality reasons (see |8, Exercise 1.1]).
We can achieve something similar, namely assigning a group of our choice to all algebras with
no idempotents except 0 and 1. Let A = k& be the set of functions from G to k endowed with
pointwise addition and multiplication, and let e, be the indicator function of the element o € G.
Clearly {e,}sec is a basis of A, and hence A as a ring is just the direct product of |G| copies
of k. The elements of the basis satisfy

6(2,:607 ecer =0if o # 1, Zegzl.
ceG

If R is a k-algebra with no idempotents other than 0 or 1 this means that any homomorphism
p: A — R must send one e, to 1 and the others to 0, and this characterizes the homomorphism
completely. Hence these homomorphisms are in one-to-one correspondence with the elements
of G.

Now we want to define a Hopf algebra structure on A that induces on Hom(A, R) the same
group structure that G has. To do this define

Alep) = Z (ex ® er).

p=0T

Letting f,g € Hom(A, R) correspond to vy, s € G respectively, we have

(f9)(ep) = (£,9)(Ale)) = > fles)gler).

p=0T

This expression is 1 if p = v1vs and 0 otherwise, so indeed the product homomorphism fg
corresponds to the product in the group vivs. Setting S(es) = e(,-1) and €(e;) = 1 if o is the
neutral element of G and 0 otherwise, we get a Hopf algebra structure on A. The affine group
scheme it represents is called the constant group scheme for G and will be denoted by G.

Now we turn to Cartier duality. One can see there is a symmetry in the definition of a
commutative Hopf algebra. This leads to the following theorem, the proof of which are only
computations. To see some of them one can check [8]. Denote a Hopf algebra with its operations
by (A, A€, S, m,u), where m : A® A — A is the multiplication of A as a ring and v : k — A
gives the k-algebra structure map.

Theorem 1.16 (Cartier duality). Let G be a finite abelian group scheme, meaning that k[G] is
a finite-dimensional k-vector space and G(R) is an abelian group for all k-algebras R. Denote
by k|G]* the dual vector space. Then k[G] is a finite-dimensional, commutative, cocommutative
Hopf algebra. Furthermore (k[G]*, m*, u*, S*, A* €*) is also a finite-dimensional, commutative,
cocommutative Hopf algebra, and therefore it represents o finite abelian group scheme, which we
call its Cartier dual and denote by GP.

This explains the notation GP for the finite diagonalizable group schemes. Indeed, if G is a
finitely generated abelian group, then we see that the dual algebra of k¢ is kG. Therefore the
Cartier dual of the constant group scheme G is just the diagonalizable group scheme GP.






Chapter 2

Gradings on algebras

2.1 Definitions

In this chapter we will be working over a fixed field k. All vector spaces, linear maps, tensor
products, algebras, etc. will be assumed over k unless indicated otherwise. Almost all of the
definitions and propositions here have been extracted from |1, Chap. 1].

The concept of grading is a generalization of the decomposition of polynomials into monomi-
als of different degrees. Given a k-vector space V we decompose it into a direct sum of “labeled”
subspaces. As in any direct sum, not all elements get a label, but the labeled elements are
enough to construct any other element as a linear combination of labeled elements. In the case
of polynomials we know that we may decompose any polynomial as a sum of monomials and to
each monomial we may attach a label, namely its degree. Here is the formal definition.

Definition 2.1. Let V be a k-vector space and S be a set. An S-grading I" on V is any
decomposition of V into a direct sum of subspaces indexed by S

r: V:@VS.

seES

The support of T' is the set Supp I := {s € S | Vs # 0}. The subspace Vs will be called the
homogeneous component of degree s. If a grading I' is fixed, then V will be referred to as a
graded vector space.

If our vector space A is an algebra over k (not necessarily associative) it seems appropiate
that the labels should have some relation with the multiplication of the algebra. What we
require is that the product of any two homogeneous components is contained in a homogeneous
component, just like multiplying a monomial of degree 2 and a monomial of degree 3 always
gives a monomial of degree 5.

Definition 2.2. Let A be a k-algebra and S be a set. An S-grading I on A is an S-grading
I' of A as a vector space with the additional condition that for any si,so € S there exists an
s3 € S such that

Ag Agy C Agy.

For the following discussion it will be useful to assume that Supp I' = 5, i.e. that none of
the homogeneous components is trivial. Notice that if Ag A, # 0 then the element s3 € S is
uniquely determined, and therefore the algebra structure on A defines a partial operation on S

via
S1 - S = S3 whenever 0 # Ag A, C As,. (2.1)

A natural question to ask now is whether S with its operation forms some kind of algebraic
structure, or can be embedded in one. Going back to the polynomials, we know that the degree

9
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of the product of two monomials is the sum of the degrees of the monomials. The support of
this grading are the natural numbers with 0. Therefore we may embed the support into the
abelian group Z. For our purpose we are only interested in the case where S can be embedded
in some (often abelian) group G. The precise definition is the following.

Definition 2.3. Let GG be a group. We will say that I is realized as a G-grading if GG is a group
containing S, the subspaces
sz{ﬂsﬁg:seﬁ

0 ifgeG\S;

satisfy AgAp C Agp, for all g, h € G, and S generates G. If such a group exists we will say that
I' is a group grading.

It has been shown that not all gradings can be realized as a group grading. In fact [1, Ex
1.9, 1.10] shows that there are cases where it isn’t even possible to embed S into a semigroup.
On the other end, [, Prop 1.12] shows that in some cases focusing on abelian groups is not that
much of a restriction. When the grading I" can be realized as a G-grading for some group G, the
group is in general not unique, as the following example shows (extracted from |1, Ex. 1.13]).

Example 2.4. Let J; (i = 1,2) be Lie algebras with basis {z;, y;, h;} and multiplication given
by

[his i) = @iy [hasyil = =i, (26,53 = ha.
Consider the algebra £ = J; & Jo with grading

I L=2L, ®L,,d Ly, d Lo,

where Lg, = span{hi, ha}, Ls, = span{xza,ya}, Ls, = span{x1},Ls, = span{y1}. Then I' can
be realized as a grading by the cyclic group (g)¢ with s; = e, 50 = g3, 53 = g2, 54 = g* and also
as a grading by the symmetric group S3 with s; = e, s9 = (12),s3 = (123), s4 = (132).

2.2 Isomorphisms, equivalences and weak isomorphisms

We would like to be able to have some notion of isomorphism of gradings to be able to tell
when two gradings are the same. To get this we begin with not one but in fact two concepts
of morphism, which will give rise to two different versions of isomorphism. We do this because
one has to distinguish between graded vector spaces and G-graded vector spaces, that is, it is
important to say whether the grading group is part of the definition or not.

Definition 2.5. Let V be an S-graded vector space and let W be a T-graded vector space.
A linear map f : V — W is said to be graded if for any s € S there exists t € T such that
f(Vs) € Wy. Clearly, if f(V) # 0, then ¢ is uniquely determined.

An equivalence of graded vector spaces is a linear isomorphism f : V' — W such that both f
and f~! are graded maps. If I' : A = @, g As and I : B = P, B; are gradings on algebras
(with supports S and T') we say I' and I are equivalent if there exists an equivalence of graded
algebras ¢ : A — B, i.e. an isomorphism of algebras that is also an equivalence of graded vector
spaces. It determines a bijection « : S — T such that p(As) = By (y)-

Definition 2.6. Let V and W be S-graded vector spaces. A linear map f: V — W is said to
be a homomorphism of S-graded vector spaces if for all s € S, we have f(Vs) C W;.

Let G be a group. Two G-graded algebras A, B are said to be isomorphic if there exists an
isomorphism of algebras ¢ : A — B such that p(Ay) = B, for all g € G.

Another important concept will be that of the universal group of a group grading. This will
allow us to go from realizations of gradings to group homomorphisms between the universal
groups, where we have another concept of isomorphism.
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Definition 2.7. Let I' be a grading on an algebra A. Suppose that I" admits a realization as a
Go-grading for some group Gy (i.e. T is a group grading). We say that Gg is a universal group
of I if for any other realization of I' as a G-grading, there exists a unique group homomorphism
Gy — G which restricts to the identity on Supp I'.

Using the standard trick for objects defined via universal properties one proves that universal
groups are unique up to unique isomorphism, provided they exist. Their existance is the first
part of the next proposition. The proof amounts to considering the free group on Supp I’
subject to the relations imposed by Eq. (2.1) and doing the necessary comprobations. This
proposition also highlights the importance of the universal group that we mentioned previously.
The complete proof is in [1, Prop. 1.18].

Proposition 2.8. Let ' be a group grading on an algebra A. Then there exists a universal
group for I', which we denote by U(T"). Two group gradings, T' on A and T on B, are equivalent
if and only if there exist an algebra isomorphism ¢ : A — B and a group isomorphism « :

U(T) — U(T') such that p(Ay) = By for all g € U(T).

As a brief remark, the construction of U(T") as the free group with some relations is always
possible, regardless of whether I' is a group grading or not. The proof of the proposition shows
that I is as group grading if and only if the canonical map Supp I' — U(T') is injective.

Corollary 2.9. For a given group grading I' and a group G, the realizations of I' as a G-grading
are in one-to-one correspondence with the epimorphisms U(T') — G that are injective on Supp I.

There is another notion of isomorphism that will appear in our main theorems. To define it
we need to introduce the concept of change of group.

Let o : G — H be a group homomorphism and let I' : V = @QEG Vy be a G-grading on
the vector space V. The map « allows us to transform the G-grading into an H-grading in a
natural way as follows. Define for each h € H

Vi= P v

g€eG : a(g)=h

These subspaces clearly form an H-grading of V' which we denote by °“T' : V = @, .4 V). If
V = A is an algebra and I is an algebra grading, then ®I" is also an algebra grading. Indeed, if
h, 7 0# A}, , then hy and hy are in the image of a and

C Z ‘AglAQQQ Z Agigs © Z ‘Ag:‘AlfuhQ‘

a(g1)=h a(g1)=h1 a(g)=hihz
a(gz)=h a(g ) ha

Definition 2.10. Let V be a G-graded vector space and W be an H-graded vector space. We
will say that V and W are weakly isomorphic if there exist a linear isomorphism ¢ : V' — W and
a group isomorphism « : G — H such that ¢(V,) = W, for all g € G. The same definition
applies for algebras and algebra gradings by requiring the linear isomorphism ¢ to be an algebra
isomorphism.

Notice that this definition just says that two gradings I and I"” are weakly isomorphic if and
only if I is isomorphic to T for some group isomorphism «. The definition also gives us a way
to rephrase Proposition 2.8: two algebra gradings are equivalent if and only if they are weakly
isomorphic when considered as gradings over their respective universal groups.
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2.3 Gradings, comodules and linear representations

We want to bring back the concepts of Chapter 1 to get some powerful classification results.
In order to do this we need to relate gradings with some affine group schemes. To do this we
introduce an new object that will serve as a bridge between the two. Once again there is a more
general definition, but we restrict to the case which is of interest to us right now.

Definition 2.11. Let A be a commutative Hopf algebra. A comodule over A (or A-comodule)
is a vector space V with a linear map p: V — V ® A, called coaction, making the following
diagrams commute

vV —" sveA V-LsveA
pl lp@idA & lidv ®e
Vod WS yveAs A V ek

Now we show how each vector space grading gives rise to a coaction. Let GG be an abelian
group and let I' : V' = @ge(} Vy be a G-grading on the vector space V. We have already seen
that we can make kG into a commutative Hopf algebra by setting A(g) = g ® g for all g € G.
We define a kG-comodule structure on V via the coaction pr : V — V ® kG defined by

pr(v) =v®g forall geG, vel,.

One easily checks that this map satisfies the conditions to be a coaction. Conversely, given a
coaction p: V — V ® kG we define the following subspaces of V'

Vog={veV|pw)=veg} forall ged.

and now the comodule axioms imply that V' is the direct sum of the subspaces V. From the
definition it is clear that the constructions are inverse to each other.

If the vector space is actually an algebra A with multiplication p : A ® A — A, we can
ask which condition should the coaction satisfy in order to have the vector space grading be an
algebra grading. The condition AgAj, C Ay, translates to

plab) =ab® gh for any a € Ay be Ay

This is expressed in the following commutative diagram:

PARA

AA — ARAREKG

#l J/N@ide

A—P2 5 AREG.

where p4 is the coaction of A and pgg4 is the natural coaction on A®A given by the composition

ADA—ADKGOADKG = A A®KG®EG ™ A0 A0 kG.
We may read this diagram as saying that p is a homomorphism of algebras or that p is a
morphism of kG-comodules (in the sense that it commutes with the respective coactions).

A remark that will be useful later on is the fact that a group homomorphism o« : G — H
induces a Hopf algebra homomorphism kG — kH, which we also denote by a by an abuse of
notation. It is a straightforward computation to check that the coaction corresponding to the
change of group is

Par = (Zd X Oé) o pr. (22)

On the other end of the correspondence we have the concept of a linear representation of an
affine group scheme. If we fix a vector space V the usual concept of a linear representation of
a group G on V is just a linear action of G on V, i.e. a group homomorphism G — GLy. In
analogy with this we may define the following.
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Definition 2.12. Fix a vector space V. We denote by GLy the functor that assigns to each
k-algebra R the group of R-linear automorphisms of V' (by extension of scalars)

GLy(R) = Autr(V ® R).

Notice that in principle this functor need not be representable, but if V' is finite-dimensional
and we have a basis {v1,...,v,}, then there is a natural isomorphism GLy = GL,, and we
know this is an affine algebraic group.

Definition 2.13. Let G be an affine group scheme and V' be a vector space. A linear repre-
sentation of G on V is a morphism G — GLy .

The key observation is the following.

Theorem 2.14. Linear representations of G on 'V are in one-to-one correspondence with k|G-
comodule structures on V.

Proof. Let ® : G — GLy be a linear representation. Denote A = k[G]. Following a Yoneda-like
approach consider the element id4 € G(A) and send it through ® to ®4(id4) € Aut4(V®A). By
A-linearity this map is determined by its restriction to V =2 V ®k, which wecall p: V — VR A.
Now the naturality of ® implies that for any k-algebra R and for any g : A — R in G(R), the
following diagram commutes:
DA (id 4)
VA —FVe®A
id®gl lid@g
*(g)
VR —5 V®R.

Therefore in the restriction to V ® k C V ® R the map ®(g) acts via (id ® g) o p, and the rest
is determined by R-linearity. Hence p determines the whole natural transformation.
Conversely, given a linear map p: V — V ® A we get by linearity a linear endomorphism of
V ® A and thus a natural transformation ® : G — End(V ® —) by the Yoneda Lemma. The
comodule axioms are seen to be equivalent to having this map be a representation. Indeed, the
condition (id ® €) o p = id is equivalent to having ® send idg to idyggr (the neutral element of
Autr(V ® R)), and the condition (p®id)op = (id® A) o p is equivalent to ®(g) o ®(h) = ®(gh)
where g, h are elements of G(R) and the multiplication is the one defined on G(R) (induced by
A). O

Therefore we may join the two correspondences and build the bridge
G-gradings on V <— kG-comodule structures on V <— Linear representations of GP on V.

We may express this relation directly and explicitly as follows. Given an abelian group G and
a finite-dimensional vector space V with a G-grading I', we have already shown that we may
define a kG-comodule structure on V' via the action pr, sending each v € Vj; to v ® g. Since kG
is the representing Hopf algebra for the diagonalizable group scheme G, pr induces a linear
representation np : GP — GLy. Now we make use of the grading and the finite-dimensionality
of V' by fixing a basis {v1, ..., v,} of homogeneous elements, where v; € V;, foreachi =1,...,n.
The basis gives a natural isomorphism GLy = GL, identifying each R-linear automorphism
of V with its R-matrix in the basis {v1,...,v,}. This exhibits k[X;;, det '] as the representing
algebra of GLy .

Since both GP and GLy are affine group schemes, the Yoneda Lemma tells us that we may
encode the linear representation nr in the corresponding comorphism of representing algebras
nt : k[X;j,det™'] — kG. To know how nr works, we take f : kG — R an element of GP(R)
and see how its image acts on the basis elements.

ne(f)(vi @ 1) = (id® f)(p(vi)) = (id® f)(vi ® g;) = vi @ f(g5)- (2.3)
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The first equality comes from the correspondence between comodules and representations out-
lined in the proof of Theorem 2.14. This shows that the matrix of np(f) in the basis {v1,...,v,}
is the diagonal matrix

f(g1)

f(gn)

giving an idea of why the affine group scheme GP is called “diagonalizable”. Since the matrix
of nr(f) is the one to which f ony “points at” we must have (by the uniqueness of the Yoneda
Lemma) the following expression for nj.:

nr(Xij) = 0i59i-

Conversely, given a linear representation 7 : GP — GLy we get a kG-comodule structure
on V, which defines a G-grading I'. Taking an appropiate basis of V' we get back a diagonal
representation of n = nr.

Just like in the correspondence between comodules and gradings, assuming we are working
with an algebra A we would like to know which conditions should nr satisfy so that I' is an

algebra grading. It can be checked directly that I' is an algebra grading if and only if the
multiplication p: A ® A — A is a morphism of GP-representations, i.e. if and only if

ulre(f)(a) @ e (f)(6) = ne(f)(u(a®@ b)) forall a,b€ A, feGP(R),R € k-Alg.

This means that the image by nr of any f € GP(R) is not only an R-linear automorphism of
Apr = A® R but is in fact an automorphism of Ar as an R-algebra. We denote the set of such
automorphisms by Autgr(Ag) or Aut(Agr) when it is clear from context what we mean. This
leads to the following definition.

Proposition 2.15. Let A be a (nonassociative) finite-dimensional algebra and define the fol-
lowing group for any k-algebra R

Aut(A)(R) == Autr(ARg).

This defines a representable group functor, Aut(A), i.e. an affine group scheme. We call it the
automorphism group scheme of A.

Proof. 1t is enough to find a representing object for Aut(A). Since algebra automorphisms
are in particular linear automorphisms, we begin with the representing algebra for GL,, (where
n = dimg A) and quotient it by some equations which will guarantee that the resulting maps
respect the multiplication.

Already in the identification with a subgroup of GL,, we are fixing a basis {a1,...,a,} of A.
Writing the product of the basis elements in terms of the basis gives us the so-called structure

constants:
n
k
ait; = E )\ijak.
k=1

Let ¢ be a linear automorphism of Ap. If (z;5) is the matrix of ¢ in the basis {a1,...,a,}, the
condition ¢(a;a;) = ¢(a;)¢(a;) may be written as

> Miwzy =Y Moy forall dij k=1, n

s,t l

Define the polynomials hfj =D 1 M X6 X = /\éijl. We have shown that the representing
algebra of Aut(A) is
k[Aut(A)] = k[X;;, det ]/ (h)ijk=1,...n-
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This allows us to summarize our previous discussion by saying that if I" is an algebra grading,
then the image of nr is a subgroupscheme of Aut(A). And conversely, given a morphism
nr : GP — Aut(A) we obtain a G-grading on A that is actually an algebra grading.

2.4 Main theorems

Now that we have developed the tools and the language to express them, we are ready to
present the main results of this chapter. In this section we continue with the same assumptions as
before, namely G, H are abelian groups and A, B are finite-dimensional nonassociative algebras.

Theorem 2.16. The G-gradings on A are in one-to-one correspondence with the morphisms
of affine group schemes GP — Aut(A). Two G-gradings are isomorphic if and only if the
corresponding morphisms are conjugate by an element of Aut(A). The weak isomorphism classes
of gradings on A with the property that the support generates the grading group are in one-to-one
correspondence with the Aut(A)-orbits of diagonalizable subgroupschemes in Aut(A).

Proof. We have described in the previous section the one-to-one correspondence between G-
gradings of A and morphisms GP — Aut(A).

In the first place we should figure out what is the action by conjugation of Aut(A) on
morphisms G” — Aut(A) that is mentioned in the statement of the proposition. Given a
k-automorphism ¢ € Aut(A) and an R-automorphism f € Aut(Ag) we can get another R-
automorphism by conjugating f with ¢ on the original algebra and “leaving the R-part fixed”.
This results in a morphism Ady, : Aut(A) — Aut(A):

AdR(f) = (p®id)o fo (¢! @id) for all f € Aut(Ag). (2.4)

To see how morphisms between the automorphism group schemes allow us to move gradings
from one algebra to another, let B be another algebra and let 6 : Aut(A) — Aut(B) be a
morphism. Any G-grading I on A induces a G-grading on B via the morphism 6 onp : GP —
Aut(B). We denote the induced grading by 6(I'). In the particular case that § = Ad, and
using (2.3) and (2.4) we see that the action on elements is

Mg,y () (Wi @1) = (AdZ o nf) (f)(vi @ 1) = ((p @ id) o nf (f) o (¢ @id)) (v @ 1) =
=v; ® fla"(g:)),

where f € GP(R), v; is a (homogeneous) basis element of degree g; and o : G — G is the
group isomorphism corresponding to ¢. Looking at (2.3) this indicates that the g component
of the grading Ad,(I") is precisely the a(g) component of I', A,y = ¢(Ay). That is, Ady(T) :
A = @ eq p(Ag). By definition, this means precisely that the gradings I' and Ad,(I') are
isomorphic. Conversely, given two isomorphic gradings I' : A = @ g Ay and I" = P Ay
there exists an autormorphism ¢ € Aut(A) such that ¢(A,) = Aj. By the calculations above
this means I'" = Ad,(T"). Therefore we can conclude that two G-gradings are isomorphic if and
only if their morphisms are conjugate by an element of Aut(A).

For the second part of the statement recall that a group homomorphism « : G — H gives
rise to a Hopf algebra homomorphism « : kG — kH, which induces a morphism of affine group
schemes a” : HP — GP. Equation (2.2) implies directly that nar = nr o o”. By associativity

(0onr)oa® =00 (mroa®) = *(4(T)) = 0(°T).

In the particular case that 6 = Ad,, what this equation says is that gradings in the same weak
isomorphism class are sent to the same weak isomorphism class via the action by conjugation
of Aut(A). Therefore these classes are in bijection with the Aut(A)-orbits. Furthermore, if
the action is a closed embedding —and hence corresponds to a diagonalizable subgroupscheme
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of Aut(A)— then the corresponding comorphism k[X;;,det™']/(h;;) — kG is a surjection,
meaning that the g; (which form the support of I') generate G. And conversely, if Supp T’

generates G then the comorphism is surjective (recall 7 (X;;) = d;;9;) and the action is a
closed embedding, whose image is a diagonalizable subgroupscheme of the automorphism group
scheme. This concludes the proof. O

Theorem 2.17. Assume we have a morphism 0 : Aut(A) — Aut(B). Then, for any abelian
group G, we have a mapping T' — 0(T) from G-gradings on A to G-gradings on B. If T and T’
are isomorphic (respectively weakly isomorphic), then O(T') and 6(I") are isomorphic (respectively
weakly isomorphic).

Proof. We know from the previous theorem that isomorphism and weak isomorphism classes of
gradings on A are related to the action by conjugation of Aut(A) on morphisms GP — Aut(A).
Therefore we just have to study the relation between Ad, and 0.

Let ¢ € Aut(A) and define v = 0¥(p) € Aut(B). For any k-algebra R and any R-
automorphism f € Aut(Ag) we have

O(AZ(S)) = 0% (0 @id) 007 (f) 007 (0™ @id) = (Y @id) 0 07 (f) o (¥ ®id) = Ad(07(f)).

In the second equality we have used that 07(¢ ®id) = ¥ ®id, which holds because 6 is a natural
transformation, so it commutes with the morphisms — ® idg (which are just the images under
Aut(A), Aut(B) of the inclusion k — R). This just shows that the diagram

Aut(A) —2— Aut(B)

Adwl lAd,/)

Aut(A) —2— Aut(B)

commutes. Hence if ¢ sends I' (or “T" in the case of a weak isomorphism) to I, then ¢ sends
6(T) (respectively 0(°T) = 2(6(T"))) to 6(I). O

We could not end the chapter without pointing out the success of these last results —and
others of their kind—, which have allowed algebrists to classify the gradings of the exceptional
simple Lie algebras of types G2 and Fj. These algebras and the octonion and Albert algebras
have isomorphic automorphism group schemes, and our theorems allow us to move the better
understood gradings of the latter algebras to the former.



Chapter 3

Computations

3.1 Evolution algebras

In this last chapter we are going to apply our knowledge from previous chapters to compute
some automorphism group schemes (and hence the automorphism groups themselves) of a special
kind of algebras called evolution algebras. They were introduced in 2006 by J.P. Tian and P.
Vojtechovsky and have a wide range of connections to other fields such as graph theory, group
theory or Markov chains. This is explored in [6] and we will not go into details in that regard.

Due to their applicability their properties have been thoroughly studied. We are particu-
larly interested in papers [3| and |2]. In the former, a classification of two-dimensional evolution
algebras is presented in Section 3 and afterwards the automorphism group scheme for each class
of algebras is computed in Section 5 via direct computation. However, [2| introduces another
method to compute the automorphism group scheme, which involves some nice properties of
an associated graph. After briefly introducing all of these concepts, we will employ this alter-
native method to compute the automorphism group schemes of a couple of evolution algebras.
Throughout this chapter, all algebras will be defined over a fixed field k£ and their dimension
will be finite. The definitions and theorems are extracted from [2].

Definition 3.1. An evolution algebra is an algebra € endowed with a basis B = {v1,...,v,},
called a natural basis, such that v;v; = 0 for any 1 <1 # j < n.

The main observation is that some properties of the algebra are determined by a graph that
we may associate to it. Since the mixed products of the basis elements are zero by definition we
just need to know the values of v?,i =1,...,n to completely determine the multiplication. If
we write these values in terms of that same natural basis and interpret the coefficients as some
sort of adjacency matrix we get the definition of this graph.

Definition 3.2. Let & be an evolution algebra with natural basis B = {v1,...,v,} and mul-
tiplication determined by v? = > | ajjvj. The associated graph of & is the graph T' = (V, E)
whose set of vertices is V = B and whose set of edges is

FE = {(’UZ‘,U]‘) ceVxV ’ Qg 7& 0},

i.e. there is an arrow from v; to v; if the latter appears with nonzero coefficient in the expression
of v2.

The results we present here are true for a particular kind of evolution algebras. An evolution
algebra & is said to be perfect if €2 = &, or equivalently if the corresponding matrix (;;) is
regular. From this point on we assume that all evolution algebras that appear are perfect. Now
we are going to define some graph-theoretical concepts that will appear in the theorems. We
fix a directed graph I' with a finite set of vertices V' and a set of edges E C V x V.

17
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Definition 3.3. e A path on T is a sequence v = (vg, €1,V1, .. .,Un—1,€n, Vy) Where n > 0,
Vo, ... 0 €V, e1,...,e, € E, and for each i = 1,...,n, either e; = (v;_1,v;) or e; =
(vi, vi—1)-
e The balance of the path v is the integer

b(y)=H{i|1<i<nand e = (vi—1,v)}| = {i | 1 <i<nande; = (v,vi—1)}],

that is, b(vy) is the number of edges in the direction of the path minus the number of edges
opposite to the direction of the path.

e A cycle on T is a path v = (vg, e1,v1,...,Vn_1, €n, V) With vy = vy,.
e The balance of the graph I is
b(I') = ged{|b(y)| : = is a cycle on I'}.
e A vertex v € V is said to be a source if it has no “ingoing” edges (i.e. fw € V such that

(w,v) € E), and is said to be a sink if it has no “outgoing” edges (i.e. #w € V such that
(v,w) € E).

To any graph we may associate two affine group schemes which will be the ones from which
we extract the information to compute Aut(€). One of them is diagonalizable and the other
one is a constant group scheme. Recall that we already talked about these in Chapter 1.

3.2 The diagonal group scheme

Definition 3.4. The diagonal group of a graph I' = (V| E) is the (diagonalizable) affine group
scheme Diag(T") given by

Diag(I')(R) = {p: V — R* | p(w) = ¢(v)? for all (v,w) € E},

with pointwise multiplication and the morphisms acting pointwise on vertices. Notice that since
V is finite we may identify Diag(T')(R) as a subgroup of (R*)VI = (G,,)VI(R), so Diag(I')
is a subgroupscheme of (Gm)W'. Since subgroupschemes of diagonalizable affine group schemes
are themselves diagonalizable (see [1, Prop. A.31|) we conclude Diag(I") is diagonalizable.

The following results are presented here without proof, but all proofs can be found on [2].

Lemma 3.5. Let T' = (V, E) be a graph, v = (v, €1, V1, - -, Un—1, €n, V) be a path inT. Let R be
a k-algebra and ¢ € Diag(I')(R) such that ¢(v;) has odd multiplicative order for alli =0,...,n.
Then p(vy,) = gp(vo)Qbm.

Theorem 3.6. Let I' = (V, E) be connected graph with no sources. Then Diag(T') & p,, where
N =200 1,

Notice that this result applies to the graphs associated to perfect evolution algebras, as in
this case a source would correspond to a basis element v; with U? =0.

Corollary 3.7. Let I' = (V, E) be a connected graph with no sources and with a loop e = (v,v).
Then Diag(T") = 1, the trivial affine group scheme.

Theorem 3.8. Let & be an evolulion algebra with natural basis B = {v1,...,v,} and let T" be
the associated graph. Then there is an injective homomorphism ¢ : Diag(I') — Aut(€) such
that, for any k-algebra R and any ¢ € Diag(I')(R), the image 1(p) is the induced diagonal
automorphism v; — @(v;)v;.
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Proof. Clearly the map v; — ¢(v;)v; defines a linear automorphism of £z = €® R because ¢(v;)

is invertible for all i = 1,...,n. Call this automorphism @. As before, denote v? = 2;21 Q;vj,
then
n n
) o
P(v;) = ZO‘@JSO(UJ‘) = ZQZJ‘P(UJ)UW
7j=1 7=1
n
p(vi)? = o(v)*0] = o(v:)* > ;.
j=1

The only condition we need for ¢ to be an algebra homomorphism is that these two expressions
are equal. Comparing coefficients, either a;; = 0 in which case the equality is trivial, or a;; # 0
in which case (v;,v;) € E and therefore ¢(v;) = ¢(v;)? so the equality holds.

The map ¢ is a well-defined homomorphism: the equality ¢ (1)) = tf(¢).% (1)) holds because
multiplication on Diag(I")(R) is defined pointwise and the matrices of t%(y), 1f(¢) are diagonal,
so multiplication occurs componentwise. Finally, ¢f? is injective for all R because
(

V) =1tide, = @(v;))=1foralli=1,....,n = ¢ =1

O

This is all that we need to know about Diag(T") for now. Let us move on to the second affine
group scheme that we need to study Aut(€). As promised this is a constant group scheme,
so all k-algebras with no idempotents other than 0 or 1 evaluate to the same group via this
functor. Let us define this group.

3.3 The constant automorphism group scheme

Definition 3.9. Let I' = (V, E) be a graph, where V' = {vy,...,v,} is finite. We define the
automorphism group of T, Aut(I'), as the bijections of V' that respect the edges:

Aut(l') = {0 € Sy | (vi,vj) € E = (Vo(s), Vo(j)) € E for all 1 < i, j < n}.

The associated constant group scheme is called the automorphism group scheme of I' and
we denote it by Aut(T").

Our goal is to show the existence of a morphism p : Aut(€) — Aut(I"), which will be useful
because in the end this will produce a short exact sequence determining Aut(€). To do so let
R be a k-algebra and let ¢ € Aut(€)(R) = Aut(Eg). Denote by (ri;) the coefficients of ¢ in
the natural basis B = {vy,...,v,}, i.e. p(v;) = Z?zl rijvj. Denote

r = det(ry;) = Z (=1)7roy1 - Tomm € R™.
0ESh

On the other hand, since mixed products vanish we have 0 = p(v;v;) = p(v;)p(vj) = Y1 Tarkv;.
Since €2 = &, {v?,...,v2} is a basis of € and thus

ryrjp =0 forall 1 <4i,7 <n with i # j.

In particular, if 0,7 € Sp,,0 # 7 then there exists some | € {1,...,n} such that o(l) # 7(1) so
(To()1 -+ Tom)n) (Tr(1)1 - - - Tr(n)n) = 0. This is useful because if we consider the elements

6? = (_1)07’717”0(1)1 < To(n)n
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we have proven that they satisfy the following identities:

=1, efef=0foroc£TES,, ef=ef() ) ={(c£)’. (3.1)
O'GSn TESn

It is a well-known fact and easy to prove that in this case the k-algebra R splits as a direct sum
of principal ideals, R = @, s, Reg. Additionally we have

rijey = 0 unless i = o(j),

which implies that the matrix (r;;) can be written as a sum of monomial matrices with entries
in the principal ideals from before. Each of these monomial matrices, A, = eg(r;j), can be
regarded as an automorphism of Ref as long as ef # 0. This shows that any nonzero ef must
come from o € Aut(I"). All of this will be made more explicit in the calculations that will come
afterwards.

To define p recall that the representing algebra of the constant group scheme Aut(T) is
kAT which has a basis {€, | 0 € Aut(I')} (we changed the e’s from Chapter 1 to €'s to
avoid confusing €, with ey). The R component of p is defined by sending ¢ € Aut(Eg) to

pf(¢) € Aut(I)(R) = Homy, (kA" | R), defined as

pR(SO) : kAut(F) SR

€ > €.

This is seen to be a k-algebra homomorphism, and thus p is well defined. If R has no idempotents
other than 0 or 1, then 1 = e7 for a unique o € Aut(T), so the matrix of ¢ is the monomial
matrix attatched to o. For such an R we had an identification between Aut(I')(R) and the
group Aut(I'). Under this identification the map p®(y) is just o.

3.4 Exact sequences

In the previous two sections we have defined a morphism going into the affine group scheme
Aut(€) and a morphism going out of it. The punchline is that these morphisms may be fitted
into an exact sequence, therefore expresing Aut(€) in terms of Diag(I") and Aut(T").

Theorem 3.10. Let € be a perfect evolution algebra with natural basis B = {v1,...,v,}, and
denote by I its associated graph. Then the sequence

1 —— Diag(l') —— Aut(&) —— Aut(I) (3.2)
1S exact.

Proof. The sequence is exact at Diag(I") because we already showed ¢ is a monomorphism. To
see that the sequence is exact at Aut(€) notice that ker(pf*) consists of the automorphisms
¢ € Aut(&g) such that ef = 0 for any 1 # o € Aut(I"). This is because the neutral element
in Aut(T')(R) = Homy (kAT R) is the map sending all basis elements to 0 except the one
corresponding to the neutral element of the group Aut(I") (which we denote by 1). In that case
the equations (3.1) imply that we must have ef = 1 and the matrix of ¢ is diagonal, so the
elements of the natural basis B are eigenvectors for ¢. These are precisely the maps in the
image of ¢. O

Lemma 3.11. Let G be a finite abelian group. Then the subgroupschemes of the constant group
scheme G are precisely the constant group schemes H corresponding to subgroups H < G.
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Proof. As we know from Section 1.2, subgroupschemes of G are represented by quotients, or
equivalently homomorphic images, of k[G] = k“. Our goal then is to prove that any homomor-
phic image of k¢ through a Hopf algebra homomorphism is isomorphic to k¥ for some subgroup
H < G. To do so let A be a Hopf algebra and let f : k¢ — A be a Hopf algebra homomorphism.

The image of f is generated as a k-algebra by the elements { f(ey) } e (recall that we defined
eg(h) = 0g4n). These elements satisfy

fleg)® = f(e)) = fleg), fleg)flen) = flegen) =0 forall g #h € G.

From here we deduce that for each g € G, either ¢4 is the only element of the family sent to
f(eg) or f(eq) = 0. An even stronger assertion holds: the nonzero elements of the generating
family form a linearly independent set. Indeed, let

H={hecG| f(e) # 0}

and assume we have a nontrivial linear combination summing to 0,

0= Auf(en), An €k, A, # 0 for some hg € H.
heH

In that case we would have f(ep,) = flen,)? = f(eho))\;ol > htho A (en) = 0, a contradiction.
Since the image of f is generated by {f(en)}nhem we just need to show that (i) H is a
subgroup of G and (ii) the Hopf algebra structure on the image of f is actually the “restriction”
of the structure of G.
(i) Let g,h € H. We want to see that f(egn) # 0. To do so we use the fact that f is a Hopf
algebra homomorphism.

Aa(flegn)) = (f © [)(Dgalegn)) = D flea) ® fler).

or=gh

The linear independence of {f(ep)}ren implies that {f(en,) @ f(€ny)}hy hoch is also a linear
independent family, and since the summand f(ey) ® f(ep) is nonzero we conclude that the sum
in the right hand side is nonzero. Consequently f(egn) # 0 and gh € H. Similarly we see that
1 € H, where 1 denotes the neutral element of G. Indeed,

ea(fler)) = flega(er)) = f(1) =1 #0,
so we conclude f(e;) # 0 and 1 € H. Finally for any h € H we have
Sa(f(ep-1)) = f(Skc(ep-1)) = flen) #0,.

so fep—1) #0and h™t € H.
(ii) This is once again a consequence of f being a Hopf algebra homomorphism:

Aa(f(en)) = (f @ [)(Dgalen) = D flea) @ fler),

oT=h
showing that the group structure induced by the image is the same as the one induced by G. [

Corollary 3.12. Let € be a perfect evolution algebra with natural basis B = {vy,...,v,}, and
denote by T its associated graph. Then there is a subgroup H of Aut(T') such that the sequence

1 —— Diag(l') —— Aut(&) —2—+H —— 1

1s exact, where again H denotes the constant group scheme associated to the group H.
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3.5 Examples

Now that we have developed the theory we are going to compute the automorphism group
scheme of some two-dimensional evolution algebras. The classification of such algebras can be
found on [3]. Looking at [3, Table 4] we see that some of the algebras do not satisfy the condition
€2 = €&, so our results do not apply there. Let us begin by computing the automorphism group
scheme for one of the non-perfect algebras of the list to see what are the computations that
have to be done, which will of course get harder as the dimension of the algebra increases.

Example 3.13. Let € be an evolution algebra of type Ag with natural basis B = {v1,v2}, that
is, the multiplication of € is determined by

v% :0,1;3 = 1.

Let R be an arbitrary k-algebra. Our goal is to compute Autr(Eg), so let ¢ be an R-linear
automorphism of Er and denote its matrix in the basis B by (7;); j=1,2. We have to impose
some conditions on the r;; so that the map is actually a homomorphism of algebras:

0 =(v7) = @(v1)? = (r11v1 + ra1v2)® = 13,03 = r3;v1,
riv1 + r21v2 = @(v1) = @(Ug) = @(U2)2 = (r1ov1 + 7”22112)2 = 7‘%2?117

0 = p(v1v2) = ©(v1)p(v2) = (r11v1 4 ro1v2) (11201 + r22V2) = ro1T92V1.

Comparing coefficients and removing the redundant equations we arrive at
5y = =0
Tog = T11, T21 =VU.
Furthermore, since ¢ is a linear isomorphism we know its determinant is invertible, so we have
3 X X
det(gp) =T11722 — 712721 = T99 € R* — ryo € R”.

These conditions are thus necessary to have an algebra automorphism, and we claim that they

are sufficient, that is
a? b
AutR(ER) = 0 a

Indeed, the matrices of this set have invertible determinant so they are invertible. Carrying
out the computations for the basis vectors one sees that the linear maps corresponding to these
matrices respect the multiplication of the algebra. Therefore they are R-algebra automorphisms.
We want to point out that to find this expression we have to solve a system of polynomial
equations. In this case that was easy to do, but of course the general situation can get much
more complicated.

As a further remark, an easy argument from Group Theory gives that Aut(€) is, up to
isomorphism, a semidirect product G, x Gp,. Due to lack of space, these semidirect products
have not been defined here in the category of affine group schemes, but its defintion is the
natural one that could be expected.

aGRX,bGR}.

Now we proceed to use the methods that we have developed in the previous sections to
compute the automorphism group schemes of perfect evolution algebras. In some cases the
situation is so straightforward that we can do several algebras at the same time.

Example 3.14. Consider the two-dimensional evolution algebras of types A3, and A4, once
again we refer to |3, Table 4] for the classification. It is easy to see that they are perfect, i.e.
the subspace spanned by the squares of the elements of the natural basis is the whole algebra.
To apply the theorems we need to know the graphs associated to these algebras (see figure 3.1).
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(® @) ® @)

Figure 3.1: Associated graphs of algebras of type A3, and A4, respectively.

In both cases we may follow the same reasoning. Let I' be the graph of interest, let R be a
k-algebra, and let ¢ € Diag(I')(R). Since there is a loop in v; we must have p(v1)? = o(v1),
and we conclude p(v1) = 1 because the image of ¢ lies in R*. But there is also an edge from
vy to v, 50 (v2) = p(v1)? = 1, and hence Diag(I')(R) is the trivial group for all R, i.e.
Diag(I") = 1.

Similarly we see that for both graphs the only possible graph automorphism is the identity,
as there is no edge (v2,v1) in the graph of Az, and no loop (vi,v1) in the graph of Ay,.
Therefore Aut(I') = 1. But then the short exact sequence (3.2) looks like

1 —— Aut(f) —— 1

and we conclude Aut(€) =1 for both types of algebras.
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