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RESUMEN 

En el mundo occidental, la obesidad, conocida como un peso corporal desproporcionado 

con respecto a la estatura, se ha convertido en la epidemia del siglo XXI. Como consecuencia 

del aumento calórico excesivo, se producen una serie de cambios metabólicos en los 

diferentes territorios adiposos, que podrían actuar como biomarcadores de sobrepeso u 

obesidad. El objetivo principal de este estudio fue optimizar un método analítico para 

determinar colesterol y oxiesteroles en tejido adiposo por HPLC-MS/MS para estudiar 

posteriormente estos biomarcadores en mujeres con sobrepeso y obesidad. Se determinó 

colesterol y oxiesteroles en tejido adiposo control y tejido adiposo subcutáneo y visceral de 38 

mujeres mayores de edad con índices de masa corporal (IMC) comprendidos entre 23 y 40,1 

kg/m2. Se obtuvieron unas concentraciones de colesterol y oxiesteroles en tejido adiposo 

subcutáneo mayores en mujeres con IMC≤31 kg/m2 que en mujeres con IMC>31 kg/m2. Sin 

embargo, en tejido adiposo visceral las mujeres con IMC>31 kg/m2 tuvieron concentraciones 

mayores de colesterol y oxiesteroles. En tejido adiposo subcutáneo se encontró una relación 

inversa entre el colesterol y el IMC, al contrario que en tejido adiposo visceral donde la relación 

fue directa. Hubo una relación directa entre el colesterol y los oxiesteroles tanto en tejido 

adiposo subcutáneo como en visceral, siendo estadísticamente significativa con el 27-

hidroxicolesterol y con el 24S-hidroxicolesterol, respectivamente. En conclusión, el tejido 

adiposo subcutáneo y el visceral parecen comportarse de manera diferente a la hora de 

acumular colesterol y oxiesteroles en función del IMC en las mujeres estudiadas. Los 

resultados obtenidos tienen una significación estadística muy baja en algunos casos, por lo 

que sería de interés continuar este trabajo con un mayor tamaño muestral. Futuros estudios 

de los oxiesteroles en suero y en tejido adiposo, podrían ofrecer un análisis más global del 

metabolismo del colesterol en la obesidad. 
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ABSTRACT 

In the western world, obesity, defined as an excessive body weight in relation to the 

height, has become the 21st century epidemic. Because of the increased caloric intake, a 

combination of metabolic changes take place in the different adipose sites, which could act as 

biomarkers of overweight or obesity. The main objective of this research was to develop an 

analytical method in order to define the concentrations of cholesterol and oxysterols in adipose 

tissue by HPLC-MS/MS to study afterwards these biomarkers in overweight and obese 

women. Cholesterol and oxysterols were determined in adipose tissue of a control subject  and 

subcutaneous and visceral adipose tissue of 38 adult women with body mass index (BMI) 

between 23 and 40,1 kg/m2. Higher concentrations of cholesterol and oxysterols were obtained 

in subcutaneous adipose tissue in women with BMI≤31 kg/m2 than in women with BMI>31 

kg/m2. However, in visceral adipose tissue women with BMI>31 kg/m2 had higher 

concentrations of cholesterol and oxysterols. In subcutaneous adipose tissue, cholesterol and 

BMI had negative correlation, unlike in visceral adipose tissue where the correlation was 

positive. There was a positive correlation between cholesterol and oxysterols in subcutaneous 

adipose tissue and in visceral adipose tissue, being significant with the 27-hydroxycholesterol 

and with the 24S-hydroxycholesterol, respectively. In conclusion, subcutaneous and visceral 

adipose tissue seem to have different behaviour when accumulating cholesterol and oxysterols 

according to the BMI in the studied women. The obtained results have a very low statistical 

significance in some cases, so it would be necessary to continue this research with a higher 

sample size. Future studies about the oxysterols in serum and in adipose tissue could provide 

a more global analysis of the cholesterol metabolism in the obesity. 
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1. INTRODUCCIÓN 

1.1 La obesidad 

La obesidad, considerada como la epidemia del siglo XXI, se define como un peso 

corporal desproporcionado respecto a la estatura, debido a una acumulación excesiva de 

tejido adiposo (TA) [1]. La obesidad junto con otros factores como la presión arterial elevada, 

los niveles elevados de triglicéridos (TGs), la disglucemia o los niveles bajos de colesterol de 

lipoproteínas de alta densidad (cHDL), constituyen el comúnmente llamado síndrome 

metabólico [2]. Este es un claro factor de riesgo para el desarrollo de diabetes mellitus tipo 2, 

enfermedades cardiovasculares, algunos tipos de cáncer y otras afecciones patológicas 

adversas, y tiene una prevalencia creciente en todo el mundo [2,3]. Algunas de las 

alteraciones que se han encontrado en el perfil de riesgo metabólico están relacionadas con 

la obesidad abdominal evaluada por antropometría y con el exceso de adiposidad visceral/ 

grasa ectópica evaluada por técnicas de imagen. Este conjunto de anomalías metabólicas 

aumenta el riesgo de diabetes mellitus tipo 2 y de enfermedad cardiovascular (Figura 1). 

 

 

Figura 1. Alteraciones en el perfil metabólico relacionadas con la obesidad abdominal. 

Adaptado de Deprés J-P [4]. Abreviaturas: ECV, enfermedad cardiovascular; HDL, lipoproteínas de alta 

densidad; LDL, lipoproteínas de baja densidad.  

La obesidad surge fundamentalmente como resultado de un desequilibrio entre el gasto 

energético y la ingesta calórica, consecuencia de cambios en la composición de los alimentos 

y exacerbada por los estilos de vida sedentarios en las sociedades occidentales [1,3,5]. Sin 

embargo, la etiología de la obesidad es más compleja, y factores como el estatus 

socioeconómico, la genética, los cambios ambientales, la identidad cultural y las relaciones 

sociales han de tenerse en cuenta para entender la obesidad de una manera integral [3,6,7]. 

Todos estos factores contribuyen en menor o mayor medida a los procesos metabólicos 

celulares, que incluyen entre otros la termogénesis, la oxidación de ácidos grasos, la 

acumulación diferencial de grasa y el recambio metabólico, e inducen una remodelación 

compleja del tejido adiposo, que se expande para adaptarse a la ingesta calórica excesiva y 

cambia notablemente su estructura y composición celular [8–10]. 

Para cuantificar el exceso de adiposidad que caracteriza a la obesidad se han desarrollado 

diferentes métodos que tienen en cuenta la marcada heterogeneidad de la distribución de la 

grasa acumulada [11]. Estos métodos incluyen una evaluación basada en antropometría, 
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análisis de impedancia bioeléctrica, densitometría y métodos basados en imágenes [12–15]. 

Sin embargo, y a pesar de que el índice de masa corporal (IMC) es una herramienta imprecisa 

(no distingue entre masa magra y masa grasa) sigue siendo el indicador de adiposidad más 

utilizado en todo el mundo [16]. El IMC se calcula dividiendo el peso del individuo en 

kilogramos (kg) entre la altura en metros cuadrados (m2). La clasificación del IMC según la 

OMS define la desnutrición como <18,5 kg/m2, el peso normal como 18,5–24,9 kg/m2, el 

sobrepeso como 25–29,9 kg/m2, la obesidad como ≥30 kg/m2 y ≥40 kg/m2 se considera 

obesidad mórbida [17]. 

1.1.1 Prevalencia y tendencias 

Existen evidencias de que la prevalencia de sobrepeso y obesidad está aumentando en 

todo el mundo a un ritmo alarmante [18,19]. Desde 1975, la obesidad mundial se ha triplicado, 

siendo mayor en mujeres que en hombres, y en la actualidad, el 39% de los adultos tienen 

sobrepeso, y de esos, el 13% son obesos [5] (Figura 2).  

 

Figura 2. Evolución de la prevalencia de la obesidad. Adaptado de González-Muniesa P. [1]. 

Entre 1980 y 2008, la media global estandarizada por edad para el IMC aumentó 0,4 kg/m2 

en hombres y 0,5 kg/m2 en mujeres por década, contribuyendo al aumento del IMC global 

normalizado por edad a 23,8 kg/m2 para hombres y 24,1 kg/m2 para mujeres en 2008. Durante 

este periodo de tiempo, la prevalencia de la obesidad también se duplicó pasando de 4,8% a 

9,8% en hombres y de 7,9% a 13,8 % en mujeres [20]. Si la prevalencia de la obesidad 

continúa en su trayectoria actual, el 57,8% (3.300 millones de personas) de la población adulta 

mundial tendrá un IMC de 25 kg/m2 o más para el 2030 [21]. 

1.2 El tejido adiposo (TA) 

El tejido adiposo, considerado un tejido metabólicamente activo, es un componente 

importante en la homeostasis energética del organismo, que desempeña un papel 

fundamental en el depósito y amortiguación del colesterol [22]. Los tejidos adiposos se 

clasifican en tejido adiposo subcutáneo (TAS) y tejido adiposo visceral (TAV) en función de su 

ubicación en el organismo. El TAS está localizado bajo la piel, mientras que el TAV se sitúa 
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rodeando a los órganos, concretamente al mesenterio. Ambos tipos de tejidos muestran 

diferencias estructurales y funcionales, y por tanto, tienen diferente impacto en la 

desregulación del tejido adiposo, siendo el TAV un depósito más dañino de acumulación de 

grasa [23,24]. 

La mayoría de complicaciones asociadas a la obesidad parecen depender de un exceso de 

acumulación de grasa visceral, actuando como un marcador de disfunción en el tejido adiposo 

[4]. Se ha demostrado que la acumulación a largo tiempo de lípidos en localizaciones 

ectópicas lleva al desarrollo de adiposopatías, las cuales favorecen la resistencia a la insulina, 

y tienen un efecto profundo en el perfil de riesgo cardiometabólico de un individuo [10,25]. 

1.2.1 Cambios patológicos en el tejido adiposo 

El tejido adiposo utiliza dos mecanismos de expansión diferentes en respuesta a la 

ingesta calórica excesiva. La hiperplasia del tejido adiposo es una forma de crecimiento 

beneficiosa mediada por la formación de nuevos adipocitos a partir de células progenitoras. 

Por el contrario, la hipertrofia consiste en el agrandamiento de los adipocitos debido a una  

sobrecarga lipídica, lo que produce la muerte celular y contribuye a la inflamación del tejido 

adiposo [10,23,24]. 

En función de la capacidad del organismo para responder al exceso de energía, el individuo 

tendrá mayor o menor susceptibilidad para desarrollar síndrome metabólico. Si la energía 

adicional se acumula en el TAS gracias a la hiperplasia de las células de grasa, el individuo 

estará protegido contra el desarrollo de síndrome metabólico. Sin embargo, si este TAS 

muestra un límite de expansión debido a una capacidad adipogénica deficiente, el exceso de 

TGs provocará una hipertrofia de los adipocitos subcutáneos y en última instancia, se 

depositará en sitios ectópicos, conllevando a la aparición de síndrome metabólico [4,26]. 

El tejido adiposo no solo está involucrado en el almacenamiento de energía, sino que también 

funciona como un órgano endocrino que secreta varias sustancias bioactivas. Por tanto, la 

disfunción de los adipocitos provoca también la desregulación de los niveles de adipoquinas 

(aumentando la liberación de adipoquinas proinflamatorias como TNF-α, IL-6 y resistina y 

disminuyendo la liberación de adipoquinas antiinflamatorias como la adiponectina) que 

contribuye al estado proinflamatorio propio de la obesidad y promueve la resistencia a la 

insulina en numerosos tejidos [24,25,27]. Así mismo, esta inflamación crónica del tejido 

adiposo en personas obesas promueve el reclutamiento de células del sistema inmune, un 

aumento de la fibrosis y una desregulación del sistema vascular [4,28]. El aumento de grasa 

subcutánea asociada a la obesidad no conlleva tanto riesgo cardiovascular en comparación 

con el aumento de grasa visceral. El TAS libera adipoquinas antiinflamatorias mientras que el 

TAV libera una mayor cantidad de adipoquinas proinflamatorias, creando así un ambiente de 

inflamación que contribuye al deterioro metabólico y cardiovascular sistémico asociado a 

trastornos relacionados con la obesidad (Figura 3). 
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Figura 3. Cambios patológicos en el sistema adiposo.  Adaptado de González-Muniesa P. [1] 

1.3 La gota lipídica 

Las gotas lipídicas (GLs) son compartimentos intracelulares de reserva lipídica, de gran 

importancia en el tejido adiposo. En cuanto a su estructura, estas GLs están formadas por un 

núcleo altamente hidrofóbico de lípidos neutros, principalmente TGs y ésteres de colesterol, 

rodeados por una monocapa externa de fosfolípidos y colesterol libre con proteínas asociadas 

[29,30]. Como se muestra en la sección de la figura 4, las gotas de lípidos (rodeadas) se 

amalgaman de múltiples capas de membrana, lo que las hace ideales para el almacenamiento 

libre de colesterol. 

El 80 % del colesterol libre de las células está presente en las GLs. A diferencia de otros 

tejidos, la mayoría del colesterol en los adipocitos está en forma no esterificada y localizado 

dentro de las membranas de las GLs [23]. Sin embargo, a pesar de que los adipocitos son 

muy ricos en colesterol libre, este tipo celular no sufre los efectos tóxicos propios del mismo, 

debido a la capacidad de almacenamiento de colesterol libre por parte de las GLs. Además, 

diversos estudios realizados en obesos sugieren que la oxidación del colesterol en los 

adipocitos es un mecanismo de defensa para evitar la formación de nuevas células grasas, y 

la sobrecarga de colesterol intracelular [31].  



7 

 

 

Figura 4. Gota lipídica. Abreviaturas: PL, membrana plasmática; LD, gota lípidica. Adaptado de 

Haczeyni F. [23]. 

1.4. Determinación de colesterol y oxiesteroles en tejido adiposo 

La síntesis de colesterol en la obesidad se ha estudiado extensamente [32] en cambio 

las vías que conducen al catabolismo del colesterol están menos documentadas. Este es el 

caso de la formación de derivados oxidados del colesterol, mejor conocidos como 

oxiesteroles. Actualmente existen muchos métodos descritos para la determinación se suero 

de colesterol y oxiesteroles, metabolitos de la oxidación de colesterol que están relacionados 

con procesos de inflamación [33,34]. Las metodologías más utilizadas a día de hoy son la 

cromatografía gaseosa acoplada a la espectrometría de masas y la cromatografía líquida de 

alta resolución acoplada a la espectrometría de masas (HPLC-MS/MS) [35].  

En el caso de la determinación de colesterol y oxiesteroles en tejido adiposo no está tan 

extendida debido a la complejidad del tejido y a la falta de homogeneidad de la muestra. Se 

conocen estudios donde han determinado oxiesteroles por HPLC-MS/MS en diferentes tipos 

de tejidos, como el hipotálamo, el hígado y el tejido adiposo, en ratones [36].  

Para investigar los cambios metabólicos asociados a la obesidad en comparación con 

condiciones normales, utilizamos un enfoque metabólico para identificar biomarcadores. Para 

ello, en este estudio realizaremos la determinación del colesterol y oxiesteroles por HPLC-

MS/MS, tanto en tejido adiposo subcutáneo como visceral en distintos estadios del sobrepeso-

obesidad. 
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2. HIPÓTESIS Y OBJETIVOS 

2.1. Hipótesis 

Una persona obesa tiene concentraciones de colesterol plasmático inferiores a las 

esperadas en relación con el efecto del colesterol en el incremento de peso en una persona 

delgada. Esto es posiblemente debido a un almacenamiento de colesterol en el tejido adiposo 

o a un cambio funcional (o reclutamiento de regiones de tejido con funciones diferentes) que 

conlleva un almacenamiento de una mayor cantidad relativa de colesterol en el tejido. 

2.2. Objetivos  

2.2.1. Objetivo general 

Desarrollar un método analítico rápido y sensible para la determinación de colesterol y 

oxiesteroles en tejido adiposo mediante cromatografía líquida de alta resolución acoplada a la 

espectrometría de masas (HPLC-MS/MS). 

2.2.2. Objetivos específicos 

 Estudiar la cantidad de colesterol y oxiesteroles almacenada en el tejido adiposo 

subcutáneo y tejido adiposo visceral en sujetos con sobrepeso y obesidad. 

 Correlacionar la concentración de colesterol plasmático con la cantidad de colesterol 

obtenida en ambos territorios de tejido adiposo de todos los sujetos estudiados. 

 

3. MATERIAL Y MÉTODOS 

3.1. Optimización del método 

3.1.1 Tejido adiposo control 

El tejido adiposo control se recogió de un sujeto control del Departamento de Anatomía 

Patológica del Hospital Universitario Miguel Servet de Zaragoza. Esta muestra de tejido 

adiposo se fraccionó en tres fragmentos los cuales se utilizaron para optimizar el método de 

cuantificación de esteroles. En primer lugar, se realizó una extracción lipídica de cada 

fragmento (100 mg) del tejido adiposo control (Figura 5). Posteriormente, en cada uno de los 

fragmentos se realizaron dos extracciones de esteroles, una para determinar colesterol y otra 

para determinar los oxiesteroles, 24S-hidroxicolesterol y 27-hidroxicolesterol. 



9 

 

 

Figura 5. Plan de trabajo para optimizar el método de cuantificación de esteroles.  

3.1.2 Extracción de los lípidos totales en tejido adiposo control  

La muestra de tejido adiposo control fue congelada tras su recogida. En cada proceso 

de extracción utilizamos aproximadamente 100 mg de tejido, que fue homogeneizado durante 

20 min en cloroformo/metanol (2:1, 1,2 ml) haciendo uso de un Ultra-Turrax. Para asegurarnos 

la adecuada ruptura de las membranas celulares, las muestras fueron sonicadas durante 15 

min. Después de esto, se añadió cloroformo-agua (1:1, 200 μl de cada), y las muestras se 

transfirieron a viales de vidrio con tapón de rosca para ser centrifugadas. Tras la 

centrifugación, las fases se separaron correctamente, y observamos una fase acuosa en la 

capa superior, una interfase proteica y la fase orgánica conteniendo los lípidos en la capa 

inferior. El extracto lipídico se transfirió a un vial de vidrio y se secó bajo atmósfera de 

nitrógeno y se reconstituyó en 200 μl de metanol. Los extractos se almacenaron a -80ºC hasta 

su posterior extracción de colesterol y oxiesteroles.  

3.1.3 Extracción de colesterol y oxiesteroles a partir del extracto lipídico control 

El extracto de lípidos totales recogido en la primera extracción, se transfirió a un vial de 

vidrio con tapón de rosca. En el caso de la extracción de oxiesteroles, se añadieron 2,6 μl de 

estándar interno (colesterol-6D 104,4 ppm), mientras que para la extracción de colesterol se 

añadieron 3,5 μl de estándar interno (colesterol-7D 2180,59 ppm). Después de la adición de 

1 ml de disolución etanoica 0.71M de hidróxido de potasio, se llevó a cabo la hidrólisis alcalina 

durante 1 hora a 65ºC en baño de ultrasonidos. Después de esto, se añadieron 500 μl de agua 

destilada. Se realizó una extracción de la muestra dos veces con 3 ml de hexano. El extracto 

se secó bajo atmósfera de nitrógeno y se reconstituyó en 200 μl de metanol. La muestra se 
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sometió a un proceso de purificación mediante extracción en fase sólida (SPE). Los cartuchos 

de C18 (500mg, Discovery DSC-18, Supelco) se acondicionaron con 500 μl de metanol para 

facilitar la retención de los analitos. La muestra extraída fue aplicada al cartucho por gravedad. 

Posteriormente, se añadieron 1,5 ml de isopropanol para eluir los oxiesteroles y el colesterol. 

En la extracción de oxiesteroles el isopropanol se evaporó bajo atmósfera de nitrógeno y se 

reconstituyó con 100 μl de isopropanol. Sin embargo, en la extracción de colesterol, tomamos 

50 μl de los 1,5 ml de isopropanol y los disolvimos en 450 μl de isopropanol. En este caso, no 

evaporamos ni llevamos a sequedad. En ambas extracciones, el extracto se guardó a -20ºC 

hasta que se analizó mediante HPLC-MS/MS. 

3.1.4 Determinación de colesterol y oxiesteroles por HPLC-MS/MS 

Los esteroles se separaron usando una columna de C18 de fase reversa (RP-HPLC). 

Una alícuota de 40 μl del extracto (100% 2-propanol) se cargó en la columna (Zorbax Eclipse 

Plus C18 2.1 x 150 mm, 3,5 μm tamaño de partícula; Agilent) del HPLC equipada con una pre-

columna (C18, 4 x 2,5 mm). Después de este paso, los esteroles se separaron mediante un 

gradiente de elución. El gradiente utilizado para la ionización APCI fue 80% del solvente B 

desde el principio y durante un minuto. Después se hizo una rampa hasta el 100% del solvente 

B en un periodo de 4 minutos y se mantuvo durante 20 minutos. En un minuto el solvente B 

pasó a estar a la 80% y se mantuvo durante 9 minutos. Solvente A: 100% agua de HPLC. 

Solvente B: 100% metanol de HPLC-MS (Sigma-Aldrich, España). 

 

Figura 6. Cromatograma de los analitos 24S-hidroxicolesterol, colesterol-6D y el 27-

hidroxicolesterol. 
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El equipo de HPLC (Agilent 1200RRLC) usado se acopló a un espectrómetro de masas 

(Applied Biosystems, Foster City, CA) dotado de un triple cuadruplo con trampa de iones 4000 

QTrap con una sonda de ionización química a presión atmosférica (APCI). El 24S-

hidroxicolesterol, el colesterol-6D y el 27-hidroxicolesterol fueron detectaron con las 

transiciones 337,4/91,1,375,4/174,2 y 385,4/81,1, respectivamente (Figura 6).  

3.2 Sujetos seleccionados  

Se seleccionaron 19 mujeres con edades comprendidas entre los 18 y los 40 años.  De 

esas 19 mujeres, 9 presentaban un IMC comprendido entre 23 y 31 kg/m2 (que 

denominaremos IMC≤31 kg/m2), y 10 tenían un IMC comprendido entre 31,1 y 40,1 kg/m2 (que 

denominaremos IMC>31 kg/m2). Ninguna de las pacientes era diabética ni estaba en 

tratamiento para disminuir los niveles de lípidos. Las pacientes firmaron el consentimiento 

informado para participar en un protocolo aprobado por un comité de ética médica (Comité 

Ético de Investigación Clínica de Aragón, España).   

3.3 Obtención de la muestra 

Se recogieron muestras de tejido adiposo subcutáneo (abdomen) y de tejido adiposo 

visceral (epiplón) de cada una de las mujeres sometidas a una operación programada en el 

caso de las mujeres con sobrepeso y a una cirugía bariátrica en el caso de las mujeres con 

obesidad. 

3.4 Determinación de colesterol y oxiesteroles en las muestras seleccionadas 

Para determinar el colesterol y los oxiesteroles en cada una de las muestras de tejido 

adiposo seleccionadas se aplicó el método optimizado descrito anteriormente en los 

apartados 3.1.2, 3.1.3 y 3.1.4. Estas muestras tenían una masa de alrededor de 100 mg, por 

lo que realizamos únicamente una extracción lipídica. El extracto obtenido para cada muestra 

de tejido fue dividido en dos fracciones: de una fracción extrajimos colesterol y de la otra 

extrajimos oxiesteroles. Posteriormente, las concentraciones de colesterol y oxiesteroles se 

determinaron por HPLC-MS/MS. 

3.5 Determinaciones bioquímicas en las muestras seleccionados 

Se determinaron los lípidos a partir del suero de cada una de las pacientes. Entre los 

lípidos estudiados se encuentran el colesterol, colesterol LDL, colesterol HDL y TGs. Todas 

las determinaciones se llevaron a cabo en los laboratorios del Servicio de Bioquímica del 

Hospital Universitario Miguel Servet de Zaragoza. Las concentraciones de colesterol y TGs 

fueron determinadas mediante métodos enzimáticos estandarizados. La concentración de 

colesterol HDL se determinó mediante un método enzimático directo.  

3.6 Determinación de colesterol por colorimetría de las muestras seleccionadas 

Realizamos una segunda determinación de colesterol, en este caso, por colorimetría, 

para confirmar la validez de nuestros resultados. Este ensayo colorimétrico se realizó 
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mediante el kit comercial ab65359 (Cholesterol/Cholesteryl Ester Quantitation Assay kit) de la 

casa comercial abcam®.  

Este kit se basa en la hidrólisis de los ésteres de colesterol para la obtención de colesterol 

libre. Éste se oxida mediante la enzima colesterol oxidasa obteniéndose peróxido de 

hidrógeno. El peróxido de hidrógeno, en presencia de la enzima peroxidasa de rábano, 

reacciona en proporción 1:1 con una sonda de colesterol estable y sensible para dicho 

peróxido de hidrógeno. La reacción se llevó a cabo en placas de 96 pocillos y se midió la 

absorbancia a 570 nm de longitud de onda en el lector Synergy™ HT (BioTek). 

Se calcularon los resultados de concentración de colesterol mediante la interpolación en una 

recta de calibrado mediante el software Gen 5™, (BioTek). 

3.7 Determinación de TGs en tejido adiposo  

Para la determinación de TGs en tejido adiposo se utilizó un kit comercial (OSR60118, 

BECKMAN COULTER®) basado en una serie de reacciones enzimáticas acopladas. En 

primer lugar, los TGs son hidrolizados por una combinación de lipasas para dar glicerol y 

ácidos grasos. El glicerol es fosforilado en presencia de adenosina trifosfato (ATP) en 

presencia de glicerol quinasa para producir glicerol-3-fosfato. Éste es oxidado por una 

molécula de oxígeno en presencia de glicerol fosfato oxidasa para producir peróxido de 

hidrógeno y dihidroxiacetona fosfato. El peróxido de hidrógeno formado reacciona con 4-

aminofenazona y sal disódica en presencia de peroxidasa para producir un cromóforo. 

𝑇𝑟𝑖𝑔𝑙𝑖𝑐é𝑟𝑖𝑑𝑜𝑠 + 3 𝐻2𝑂 
𝐿𝑖𝑝𝑎𝑠𝑎
→     𝐺𝑙𝑖𝑐𝑒𝑟𝑜𝑙 + 3 Á𝑐𝑖𝑑𝑜𝑠 𝑔𝑟𝑎𝑠𝑜𝑠 

𝐺𝑙𝑖𝑐𝑒𝑟𝑜𝑙 + 𝐴𝑇𝑃 
𝐺𝐾,𝑀𝑔2+

→       𝐺𝑙𝑖𝑐𝑒𝑟𝑜𝑙3𝑓𝑜𝑠𝑓𝑎𝑡𝑜 + 𝐴𝐷𝑃 

𝐺𝑙𝑖𝑐𝑒𝑟𝑜𝑙3𝑓𝑜𝑠𝑓𝑎𝑡𝑜 + 𝑂2
𝐺𝑃𝑂
→   𝐻2𝑂2 + 𝐷𝑖ℎ𝑖𝑑𝑟𝑜𝑥𝑖𝑎𝑐𝑒𝑡𝑜𝑛𝑎 𝑓𝑜𝑠𝑓𝑎𝑡𝑜 

2 𝐻2𝑂2 +𝑀𝐴𝐷𝐵 + 4𝐴𝐴𝑃 
𝑃𝑒𝑟𝑜𝑥𝑖𝑑𝑎𝑠𝑎
→         𝐶𝑜𝑙𝑜𝑟𝑎𝑛𝑡𝑒 𝑎𝑧𝑢𝑙 + 𝑂𝐻− +𝐻2𝑂 

La reacción se llevó a cabo en placas de 96 pocillos y se midió la absorbancia a 630 nm de 

longitud de onda en el lector Synergy™ HT (BioTek). 

Se calcularon los resultados de concentración de TGs mediante la interpolación en una recta 

de calibrado mediante el software Gen 5™, (BioTek). 

3.8 Análisis estadístico 

El análisis estadístico se realizó por medio del programa informático SPSS, versión 20.0 

(Chicago, Illinois, EEUU) tomando como nivel de significación estadístico valores de p<0,05. 

Las variables con distribución no paramétricas se expresan como la media y percentiles 25 y 

75 y se analizan con el test de U de Mann-Whitney. Las correlaciones se estudiaron mediante 
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un test de correlación de Spearman considerando nivel de significación estadístico valores 

p<0,05 y p<0,01. 

4. RESULTADOS 

4.1 Correlación entre los métodos de determinación de colesterol por HPLC-MS/MS y 

por colorimetría 

Para validar la determinación de colesterol y oxiesteroles por HPLC-MS/MS, se 

compararon los valores de colesterol de los 38 tejidos analizados por HPLC-MS/MS y por 

colorimetría. La asociación entre estas dos variables se estudió mediante el coeficiente de 

correlación de Spearman, obteniéndose un valor de 0,872 que fue estadísticamente 

significativo (p<0,001). Como la correlación obtenida para ambos métodos fue buena, se 

utilizarán los datos obtenidos por HPLC-MS/MS para el resto del estudio. 

4.2 Parámetros analíticos estudiados en sujetos con IMC≤31 kg/m2 y con IMC>31 kg/m2 

A continuación, se muestran los datos bioquímicos obtenidos a partir de suero 

(colesterol, TGs, colesterol HDL y colesterol LDL) para los sujetos en función de su IMC. Se 

calcularon las medias y los percentiles 25 y 75 para los sujetos con IMC≤31 kg/m2 y para 

sujetos con IMC>31kg/m2, calculándose también sus diferencias (Tabla 1). 

Respecto a los valores obtenidos, es destacable que los sujetos con menor IMC tenían  

concentraciones significativamente superiores de colesterol en suero, en comparación con los 

sujetos con IMC más alto (p=0,030). Esta tendencia se mantuvo igual para el colesterol HDL 

(p<0,001). Sin embargo, en el caso del colesterol LDL, las concentraciones en suero fueron 

muy similares en ambos grupos de sujetos. 

Tabla 1. Características bioquímicas de mujeres con IMC<31 kg/m2 e IMC>31 kg/m2 

 IMC≤31 kg/m2 (n=9) IMC>31 kg/m2 (n=10)  

Media p25 p75 Media p25 p75 P 

Triglicéridos en suero; mg/dL 92,6 83,2 101,5 87 76,5 95,6 0,782 

Colesterol en suero; mg/dL 222 180 234 190 169,2 207,5 0,030 

Colesterol HDL en suero; mg/dL 61 59 62 52 49 55 <0,001 

Colesterol LDL en suero; mg/dL 111 106 153 110 101,7 124,2 0,244 

 
Datos expresados como media y percentiles 25 y 75. Abreviaciones: IMC, índice de masa corporal; P-valor 
calculado mediante el test de U-Mann Whitney. 

A continuación, se analizaron los datos de los tejidos juntos (sin separar por territorios) y 

también los resultados separando los datos por territorio subcutáneo y visceral. 
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En tejido adiposo, encontramos concentraciones significativamente más elevadas para el 

24S-hidroxicolesterol en sujetos con IMC>31 kg/m2, en comparación con los sujetos con 

IMC≤31 kg/m2 (p=0,025) (Tabla 2). Los TGs presentaron concentraciones mayores en sujetos 

con sobrepeso que en sujetos obesos (p=0,029). Al normalizar colesterol y oxiesteroles en 

tejido por TGs, obtuvimos diferencias significativas entre ambos grupos de sujetos. Tanto en 

colesterol como en el 27-hidroxicolesterol y en el 24S-hidroxicolesterol ajustados por TGs, los 

sujetos con IMC>31 kg/m2 presentaron concentraciones significativamente más elevadas 

(p=0,019, p=0,037 y p=0,018, respectivamente) 

Tabla 2. Datos analíticos de los tejidos adiposos de mujeres con IMC≤31 kg/m2 e IMC>31 kg/m2 

 IMC≤31 kg/m2 (n=9) IMC>31 kg/m2 (n=10)  

Media p25 p75 Media p25 p75 P 

Colesterol en TA; mg/g TA 1,09 0,90 1,25 1,33 0,97 1,50 0,808 

27-hidroxicolesterol en TA; mg/g TA 0,073 0,044 0,086 0,098 0,062 0,15 0,378 

24S-hidroxicolesterol en TA; mg/g TA 0,11 0,077 0,14 0,18 0,11 0,21 0,025 

Triglicéridos en TA; mg/g TA 9,74 0,87 13,38 4,53 0,31 7,86 0,029 

Colesterol en TA; mg/mg TGs 0,74 0,067 1,03 2,25 0,18 3,32 0,018 

27-hidroxicolesterol en TA; μg/mg TGs 0,066 0,0025 0,082 0,21 0,0085 0,29 0,037 

24S-hidroxicolesterol en TA; μg/mg TGs 0,082 0,0068 0,13 0,31 0,014 0,55 0,019 

 
Datos expresados como media y percentiles 25 y 75. Abreviaciones: IMC, índice de masa corporal; TGs, 
triglicéridos; TA, tejido adiposo. P-valor calculado mediante el test de U-Mann Whitney. 

Cuando se analizaron los valores en los tejidos por separado, se observó que en tejido 

adiposo subcutáneo las medias obtenidas de colesterol y 27-hidroxicolesterol por gramo de 

tejido adiposo fueron mayores para sujetos con IMC≤31 kg/m2 (Tabla 3). Sin embargo, al 

ajustar por gramo de TGs estos parámetros, incluyendo el 24S-hidroxicolesterol, los sujetos 

con IMC>31 kg/m2 presentaron concentraciones más elevadas. En este caso los TGs 

obtenidos en sujetos con IMC≤31 kg/m2 fueron mucho mayores que en sujetos con IMC>31 

kg/m2. 

Tabla 3. Datos analíticos obtenidos de mujeres con IMC≤31 kg/m2 e IMC>31 kg/m2 por territorio subcutáneo 

 IMC≤31 kg/m2 (n=9) IMC>31 kg/m2 (n=10)  

Media p25 p75 Media p25 p75 P 

Colesterol en TAS; mg/g TA 1,10 0,98 1,36 0,99 0,79 1,25 0,402 

27hidroxicolesterol en TAS; mg/g TA 0,061 0,044 0,097 0,058 0,040 0,076 0,744 

24hidroxicolesterol en TAS; mg/g TA 0,10 0,096 0,14 0,13 0,098 0,19 0,221 
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Triglicéridos en TAS; mg/g TA 6,15 1,57 10,52 3,08 0,38 5,67 0,094 

Colesterol en TAS; mg/mg TGs 0,49 0,13 0,93 1,45 0,17 2,90 0,111 

27-hidroxicolesterol en TAS; μg/mg 

TGs 

0,035 0,0058 0,060 0,12 0,0090 0,22 0,171 

24S-hidroxicolesterol en TAS; μg/mg 

TGs 

0,053 0,010 0,089 0,23 0,022 0,48 0,070 

 
Datos expresados como media y percentiles 25 y 75. Abreviaturas: IMC, índice de masa corporal; TGs, triglicéridos; 
TA, tejido adiposo; TAS, tejido adiposo subcutáneo. P-valor calculado mediante el test de U-Mann Whitney. 

En tejido adiposo visceral, las medias obtenidas de colesterol, 27-hidroxicolesterol y 24S-

hidroxicolesterol por gramo de tejido adiposo fueron mayores para sujetos con IMC>31 kg/m2 

(Tabla 4), siendo significativa en el caso de 24S-hidroxicolesterol (p=0,047), a diferencia de lo 

que ocurría en tejido adiposo subcutáneo (Tabla 3).  En tejido adiposo visceral, al ajustar 

colesterol, 27-hidroxicolesterol y 24S-hidroxicolesterol por TGs, se obtuvieron 

concentraciones más altas en sujetos con IMC>31 kg/m2 (Tabla 4), al igual que en tejido 

subcutáneo. En este caso los TGs fueron mucho mayores en sujetos con IMC≤31 kg/m2 que 

en sujetos con IMC>31kg/m2, como ocurrió en tejido subcutáneo. 

 Tabla 4.  Datos analíticos obtenidos en mujeres con IMC≤31 kg/m2 e IMC>31 kg/m2 por territorio visceral  

 IMC≤31 kg/m2 (n=9) IMC>31 kg/m2 (n=10)  

Media p25 p75 Media p25 p75 P 

Colesterol en TAV; mg/g TA 0,93 0,86 1,07 1,11 0,91 1,35 0,121 

27-hidroxicolesterol en TAV; mg/g TA 0,065 0,044 0,077 0,084 0,063 0,11 0,102 

24S-hidroxicolesterol en TAV; mg/g 

TA 

0,089 0,074 0,12 0,13 0,095 0,15 0,047 

Triglicéridos en TAV; mg/g TA 13,32 0,78 21,73 5,98 0,19 12,41 0,102 

Colesterol en TAV; mg/mg TGs 0,99 0,047 1,41 3,05 0,13 6,63 0,086 

27-hidroxicolesterol en TAV; μg/mg 

TGs 

0,098 0,0024 0,17 0,30 0,0076 0,64 0,122 

24S-hidroxicolesterol en TAV; μg/mg 

TGs 

0,11 0,0046 0,19 0,38 0,012 0,73 0,085 

 
Datos expresados como media y percentiles 25 y 75. Abreviaturas: IMC, índice de masa corporal; TGs, triglicéridos; 
TA, tejido adiposo; TAV, tejido adiposo visceral. P-valor calculado mediante el test de U-Mann Whitney. 

 

 



16 

 

4.3. Correlaciones entre datos clínicos y parámetros bioquímicos en tejido adiposo  

Con el objetivo de estudiar la asociación existente entre las diferentes variables 

analizadas, utilizamos el coeficiente de correlación de Spearman, que nos d la relación entre 

dos variables aleatorias.  

En la Tabla 5, el IMC se relaciona inversamente con los TGs en tejido adiposo, siendo esta 

correlación significativa (p<0,05). En el caso del IMC y el colesterol en tejido adiposo la 

tendencia es también inversa, pero en este caso la correlación no es significativa. El colesterol 

y los TGs en TA se correlacionan positivamente y de manera significativa (p<0,05). En la Tabla 

5 podemos observar también una correlación positiva entre el colesterol y los oxiesteroles en 

tejido (p<0,01). Por el contrario, los TGs en tejido adiposo se correlacionan inversamente con 

los oxiesteroles, siendo significativa en el caso del 27-hidroxicolesterol (p<0,05). Además, 

existe una correlación positiva entre 27-hidroxicolesterol y 24S-hidroxicolesterol, lo que 

significa que ambos cambian en la misma dirección (p<0,01). 

Tabla 5. Correlaciones de Spearman entre los datos clínicos y los datos bioquímicos en tejido adiposo 

  Colesterol 

total, mg/g 

TA  

Triglicéridos, 

mg/g TA 

27-

hidroxicolesterol

, mg/g TA 

24S-

hidroxicolesterol

, mg/g TA 

IMC Coeficiente de 
correlación  

-0,117 -0,384* 0,075 0,241 

Colesterol total 
en suero; mg/dL 

Coeficiente de 
correlación  

-0,250 0,066 -0,016 0,033 

Triglicéridos en 

suero; mg/dL  

Coeficiente de 
correlación  

0,080 0,339 -0,303 -0,197 

Colesterol, mg/g 
TA,  

Coeficiente de 
correlación  

- 0,353* 0,438** 0,428** 

Triglicéridos, 
mg/g TA 

Coeficiente de 
correlación  

- - -0,365* -0,162 

27-
hidroxicolesterol
, mg/g TA 

Coeficiente de 
correlación  

- - - 0,573** 

 
 * Coeficiente de Spearman p< 0,05. ** Coeficiente de Spearman p< 0,01. Abreviaturas: TA, tejido adiposo; IMC, 

índice de masa corporal. 

Cuando estudiamos los valores en los tejidos por separado, observamos que en tejido adiposo 

subcutáneo (Tabla 6), existe una correlación negativa entre IMC y TGs en TA (p<0,05). Esta 

tendencia se observa también entre el IMC y el colesterol en TA. En este caso, entre los TGs 

y el colesterol en TAS tan sólo existe una correlación leve. Al igual que en TA total, el colesterol 

en TAS se correlaciona positivamente con oxiesteroles, siendo la correlación con 27-

hidroxicolesterol significativa (p<0,05). Por el contrario, los TGs en tejido adiposo subcutáneo 

presentan una tendencia negativa con respecto a los oxiesteroles. En tejido adiposo 



17 

 

subcutáneo, el 27-hidroxicolesterol y el 24S-hidroxicolesterol también se correlacionan 

positivamente (p<0,05). 

Tabla 6. Correlaciones de Spearman entre los datos clínicos y los datos bioquímicos en tejido adiposo 
subcutáneo 

 
* Coeficiente de Spearman p< 0,05 ** Coeficiente de Spearman p< 0,01. Abreviaturas: TA, tejido adiposo; IMC, 

índice de masa corporal. 

A diferencia de en tejido adiposo subcutáneo (Tabla 6), el IMC se correlacionó de manera 

positiva con el colesterol en tejido adiposo visceral (Tabla 7). Sin embargo, la relación entre 

el IMC y los TGs en TAV siguió siendo positiva. En este territorio, la correlación existente entre 

colesterol y TGs en tejido también fue positiva, aunque leve. La correlación del colesterol en 

tejido adiposo visceral con los oxiesteroles fue positiva, pero en tejido adiposo visceral, la 

relación fue sólo significativa entre el colesterol en tejido y el 24S-hidroxicolesterol (p<0,01). 

En el TAV, la correlación entre los TGs en tejido y los oxiesteroles también fue negativa. La 

correlación entre el 27-hidroxicolesterol y el 24S-hidroxicolesterol en TAV como en TAS, fue 

positiva (p<0,01). 

Tabla 7. Correlaciones de Spearman entre los datos clínicos y los datos bioquímicos en tejido adiposo 
visceral 

  Colesterol 

total, mg/g 

TA  

Triglicéridos, 

mg/g TA 

27-

hidroxicolesterol, 

mg/g TA 

24S-

hidroxicolesterol, 

mg/g TA 

IMC Coeficiente de 
correlación  

-0,385 -0,540* -0,100 0,284 

Colesterol total 
en suero; mg/dL 

Coeficiente de 
correlación  

-0,300 -0,077 -0,018 0,010 

Triglicéridos en 

suero; mg/dL   

Coeficiente de 
correlación  

0,140 0,197 -0,117 -0,166 

Colesterol, mg/g   
TA,  

Coeficiente de 
correlación  

- 0,366 0,552* 0,298 

Triglicéridos, 
mg/g TA 

Coeficiente de 
correlación  

- - -0,346 -0,224 

27-
hidroxicolesterol
, mg/g TA 

Coeficiente de 
correlación  

- - - 0,567* 

  Colesterol 
total, mg/g 

TA,  

Triglicéridos, 
mg/g TA 

27-
hidroxicolesterol, 

mg/g TA 

24S-
hidroxicolesterol, 

mg/g TA 

IMC Coeficiente de 
correlación  

0,230 -0,318 0,263 0,179 

Colesterol total 
en suero; 
mg/dL 

Coeficiente de 
correlación  

-0,216 0,171 0,062 0,060 
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* Coeficiente de Spearman p< 0,05 ** Coeficiente de Spearman p< 0,01. Abreviaturas: TA, tejido adiposo; IMC, 
índice de masa corporal. 

5. DISCUSIÓN  

En el presente trabajo hemos optimizado un método para determinar colesterol y 

oxiesteroles en tejido adiposo mediante la técnica HPLC-MS/MS. Existen numerosos estudios 

en los que se determina el colesterol en diferentes matrices, tales como el suero, el plasma, 

y numerosos tipos de tejidos (hepático, mamario, adiposo, etc.) [33,34,37]. Sin embargo, las 

técnicas que utilizan estos estudios no están extendidas para la determinación de oxiesteroles 

en tejido adiposo, metabolitos de la oxidación del colesterol que están relacionados con 

procesos de inflamación. Por esta razón, hemos querido optimizar el mismo método de 

determinación de oxiesteroles y colesterol para poder estudiar en conjunto ambos metabolitos 

en tejido adiposo humano. El método estandarizado para la determinación de colesterol es la 

colorimetría, así pues, determinamos colesterol en las mismas muestras por el método de 

colorimetría y por el método optimizado de HPLC-MS/MS. La correlación obtenida entre las 

concentraciones de colesterol en tejido adiposo por ambos métodos fue muy buena (0,872; 

p<0,001) y la consideramos lo suficientemente aceptable para determinar oxiesteroles en 

tejido adiposo con la técnica de HPLC-MS/MS.  

En el estudio de Laclaustra et al. [36], evaluaron la relación entre el IMC y la concentración de 

colesterol LDL en suero en dos cohortes poblacionales. Laclaustra et al. observaron que al 

aumentar el IMC aumentaba también la concentración de colesterol LDL en suero, pero 

cuando se llegaba a IMC de 27,1 dicha concentración de colesterol LDL disminuía 

significativamente. En la misma línea, en este estudio se observa de manera significativa una 

concentración de colesterol total en suero mayor en mujeres con IMC≤31 kg/m2 que en 

mujeres con IMC>31 kg/m2. En este trabajo el número de muestras no es muy elevado, pero 

nos permite ver esta diferencia de manera significativa en las concentraciones de colesterol 

total. 

La síntesis de colesterol en diferentes estadios de la obesidad ha sido extensamente 

estudiada, sin embargo; la oxidación del colesterol en oxiesteroles no lo ha sido tanto. Por 

ello, se consideró importante conocer las variaciones de estos metabolitos de oxidación, así 

como las del colesterol en tejido adiposo de mujeres con diferentes valores de IMC. El tejido 

adiposo se comporta como almacén y amortiguador del colesterol en los adipocitos. Existen 

dos tipos de tejido adiposo, el subcutáneo y el visceral, siendo este último un depósito más 

dañino para el colesterol. En el presente estudio se obtuvieron unas concentraciones mayores 

Triglicéridos en 
suero; mg/dL 

Coeficiente de 
correlación  

0,093 0,388 -0,555* -0,197 

Colesterol, 
mg/g TA 

Coeficiente de 
correlación  

- 0,321 0,383 0,653** 

Triglicéridos, 
mg/g TA 

Coeficiente de 
correlación  

- - -0,418 -0,094 

27-
hidroxicolester
ol, mg/g TA 

Coeficiente de 
correlación  

- - - 0,628** 
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de colesterol y oxiesteroles en tejido adiposo en las mujeres con IMC>31 kg/m2 siendo solo 

significativa esta diferencia para el 24S-hidroxicolesterol. El tamaño de muestra de este 

estudio no es muy elevado, por lo que consideramos que encontrar significación estadística 

en nuestros datos es complicado. Igualmente, podemos ver que la hipótesis formulada en este 

estudio sobre la función tamponante del tejido adiposo podría ser cierta, ya que observamos 

que en las mujeres obesas se acumula más colesterol en tejido adiposo, y este colesterol 

podría sufrir una degradación oxidativa a 24S-hidroxicolesterol. Debido a la gran cantidad de 

triglicéridos que hay en el tejido adiposo, se decidió normalizar las concentraciones de 

esteroles por cantidad de triglicéridos en dichos tejidos. En este caso, obtuvimos 

significativamente más triglicéridos en el tejido adiposo de las mujeres con sobrepeso que en 

el de las mujeres obesas. Por lo tanto, al hacer los ratios las diferencias entre ambos grupos 

estudiados aumentaron, llegando a ser en todos los casos significativas. Cuando estudiamos 

estos parámetros diferenciando entre ambos territorios, en el caso del tejido subcutáneo se 

obtuvieron unas concentraciones mayores de esteroles en mujeres con IMC≤31 kg/m2, 

mientras que en tejido visceral estas concentraciones de colesterol, 27-hidroxicolesterol y 

24S-hidroxicolesterol fueron mayores en mujeres con IMC>31 kg/m2. Estas diferencias 

podrían ser debidas a que el tejido adiposo visceral podría comportarse como medio tampón, 

pero no así el tejido adiposo subcutáneo.  

En el caso del tejido subcutáneo, la relación entre el IMC y el colesterol y los TGs fue inversa; 

al aumentar el IMC, la cantidad de colesterol y TGs en tejido adiposo subcutáneo disminuyó. 

Esto mismo se encontró en el suero de las mujeres, pero no en el tejido adiposo visceral. En 

el caso del tejido adiposo visceral, considerado más perjudicial, la relación entre el IMC y el 

colesterol fue positiva, considerando así que a medida que aumenta el IMC también aumenta 

el acúmulo de colesterol en este tejido. Estos resultados parecen indicar que, en las mujeres 

estudiadas, su tejido adiposo subcutáneo se comporta de manera similar al suero, 

acumulando menos colesterol a medida que aumenta el IMC. Sin embargo, a medida que 

aumenta el IMC en estas mujeres, el tejido adiposo visceral se comporta de forma inversa, 

aumentando la concentración de colesterol. En el caso de los esteroles, se encontraron 

correlaciones positivas entre ellos en el tejido adiposo tanto subcutáneo como visceral. Para 

el caso del tejido adiposo subcutáneo, el colesterol se correlaciona significativamente con el 

27-hidroxicolesterol mientras que en el tejido adiposo visceral la significación la encontramos 

con el 24S-hidroxicolesterol. Esto podría indicar que el colesterol en tejido adiposo subcutáneo 

se transforma mayoritariamente en 27-hidroxicolesterol y en tejido adiposo visceral en 24S-

hidroxicolesterol.  

Finalmente podemos concluir que el tejido adiposo subcutáneo y el visceral parecen 

comportarse de manera diferente a la hora de acumular colesterol y oxiesteroles en función 

del IMC en las mujeres estudiadas. Los resultados obtenidos tienen una significación 

estadística muy baja en algunos casos, por lo que habría continuar este trabajo con un mayor 

tamaño muestral. Futuros estudios de los oxiesteroles en suero y en tejido adiposo podrían 

ofrecer un conocimiento más profundo del metabolismo del colesterol en la obesidad. 
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6. CONCLUSIONES 

- El tejido adiposo subcutáneo y el visceral parecen comportarse de manera diferente a la 

hora de acumular colesterol y oxiesteroles en función del IMC en las mujeres estudiadas. 

- El colesterol se correlaciona de manera inversa con el IMC en tejido adiposo subcutáneo, 

al igual que ocurre en suero, mientras que en tejido adiposo visceral se correlaciona de 

manera directa. 

- Los resultados obtenidos tienen una significación estadística muy baja en algunos casos, 

por lo que habría que continuar este trabajo con un número mayor de muestras.  

 

-   Subcutaneous and visceral adipose tissue seem to have different behaviour when 

accumulating cholesterol and oxysterols according to BMI in the studied women. 

-   Cholesterol is negatively correlated with BMI in subcutaneous adipose tissue, as well as in 

serum. However, in visceral adipose tissue cholesterol is positively correlated with BMI. 

-   The obtained results have a very low statistical significance in some cases, so it would be 

necessary to continue this research with a higher sample size. 
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