
.

Estructura celular y patrones en bioloǵıa:
un enfoque de bioloǵıa de sistemas

Anexos .

.

Estructura celular y patrones en bioloǵıa: un enfoque de bioloǵıa de sistemas A. Ruberte

A. Notación

La notación a utilizar durante el tratamiento teórico de las ecuaciones de regulación, y el
significado de cada parámetro se presenta en la siguiente tabla.

Śımbolo Significado

∇2 Operador ‘Laplaciano’.

Ci
Concentración de la protéına i en la célula observada.

Di
Coeficiente de difusión de la protéına i.

µi
Coeficiente de degradación de la protéına i

Hj
i

Coeficiente multiplicativo (‘amplitud’) de la función de Hill que
representa la influencia de j sobre i.

Kj
i

Valor umbral de Cj en la función de Hill que representa la influencia
de j sobre i.

nji
Exponente de Hill de la función de Hill que representa la influencia
de j sobre i.

hji =
(Cj)

n
j
i

(Kj
i)
n
j
i+(Cj)

n
j
i

Función de Hill (normalizada) de activación (j → i) que representa
la influencia de j sobre i.

h̄ji = 1− hji
Función de Hill (normalizada) de represión (j a i) que representa la
influencia de j sobre i.

i′
Concentración de i en el instante t− δt. Lo usamos para denotar las
interacciones con retardo.

î
Promedio de las concentraciones de i en las células vecinas. Lo usamos
para denotar las interacciones a través de ligandos.

X̃
Parámetro adimensional con la función de X.

Ai
Concentración inicial de i para las células consideradas en la parte
anterior al MF.

Pi
Concentración inicial de i para las células consideradas en la parte
posterior al MF.

Tabla 4: Descripción y significado de los distintos śımbolos a utilizar en nuestras ecuaciones
de dinámica.

i

A. Ruberte Estructura celular y patrones en bioloǵıa: un enfoque de bioloǵıa de sistemas

B. Adimensionalización

Tenemos 7 grados de libertad en la totalidad del sistema. De la arbitrariedad en las
unidades de Ci tenemos 6, y el séptimo lo aporta la escala de tiempo. Las dimensiones
espaciales no aportan ningún grado de libertad por que se escala con el tamaño de las células.

La primera adimensionalización la realizamos tomando una nueva variable temporal τ =
µ1, de forma que nos eliminamos el parámetro de degradación de Hh:

∂Ci
∂τ

=
Di

µ1
∇2Ci +

A∑
j

Hj
i

µ1
hji +

I∑
j

Hj
i

µ1
h̄ji −

µi
µ1
Ci (B.1)

A parte de esto, también aproximamos µi = µ1 ∀i⇒ µ̃i = 1∀i. De esta forma tendremos:

∂Ci
∂τ

=
Di

µ1
∇2Ci +

A∑
j

Hj
i

µ1
hji +

I∑
j

Hj
i

µ1
h̄ji − Ci (B.2)

Ahora, para eliminar los grados de libertad de las concentraciones, lo que nos hemos
propuesto es que el umbral (Kj

i) de la función de Hill con Hj
i 6= 0 y menor j pase a ser

K̃j
i = 1. Si definimos el Kj

i previo como Kref
i , con ref dependiente de i como ya hemos

dicho, tenemos, sustituyendo en las funciones de Hill C̃i = Ci/K
ref
i :

Kref
i

∂C̃i
∂τ

=
Di

µ1

(
Kref
i

)2
∇2C̃i +

A∑
j

Hj
i

µ1
hji +

I∑
j

Hj
i

µ1
h̄ji −K

ref
i C̃i (B.3)

donde las funciones de Hill expresadas en términos de Kref
i son:

hji =

(
C̃i

)n(
Kj
i /K

ref
i

)n
+
(
C̃i

)n h̄ji =

(
Kj
i /K

ref
i

)n(
Kj
i /K

ref
i

)n
+
(
C̃i

)n (B.4)

Si dividimos ahora todo entre Kref
i llegamos a la expresión final adimensionalizada:

∂C̃i
∂τ

= D̃i∇2C̃i +
A∑
j

H̃j
i

(
C̃i

)n(
K̃j
i

)n
+
(
C̃i

)n +
I∑
j

H̃j
i

(
K̃j
i

)n(
K̃j
i

)n
+
(
C̃i

)n − C̃i (B.5)

Las relaciones entre las variables originales y las adimensionalizadas son:

τ = µ1t

C̃i = 1

Kref
i

Ci

D̃i =
Kref
i
µ1

Di

H̃j
i = 1

µ1K
ref
i

Hj
i

K̃j
i = 1

Kref
i

Kj
i

ii

Estructura celular y patrones en bioloǵıa: un enfoque de bioloǵıa de sistemas A. Ruberte

C. Parámetros utilizados

En esta sección vamos a presentar en formato de tabla todos los parámetros utilizados
en las simulaciones cuyos resultados se han presentado. En cada una de ellas mostraremos
únicamente los que sean relevantes para cada caso. En todas ellas se han impuesto las mismas
condiciones de contorno. Estas consisten en asignar a un cuarto de las células del tejido (parte
izquierda) las concentraciones correspondientes a la parte posterior al MF. Al resto se les
asignan las correspondientes a la parte anterior.

Todos los parámetros expuestos son adimensionales, sin embargo, para no sobrecargar la
notación, los denotamos por sus śımbolos ‘originales’.

C.1. Modelo simple

Parámetro D1 H1
1 H1

3 A1 A3 P1 P3

Valor 1 6 6 0 6 6 0

Tabla 5: Parámetros de la simulación que involucra a Hh y Hairy. Ésta es la presentada en la Figura 17.

Parámetro D1 D2 H1
1 H1

2 H1
3 H2

3 A1 A2 A3 P1 P2 P3

Valor 1 30 6 6 6 0,5 0 0 6 6 6 0,5

Tabla 6: Parámetros de la simulación que involucra a Hh, Dpp y Hairy. Ésta es la presentada en la Figura
18.

Parámetro D1 H1
3 H1

4 H3
4 H4

1 A1 A3 A4 P1 P3 P4

Valor 1 6 4 2 6 0 6 0 6 0 6

Tabla 7: Parámetros de la simulación que involucra a Hh, Hairy y Ato. Ésta es la presentada en la Figura
20.

Parámetro D1 D2 H1
2 H1

3 H1
4 H2

3 H2
4 H3

4 H4
1

Valor 1 30 6 6 3,5 1 1,5 2 6

Tabla 8: Parámetros dinámicos de la simulación que involucra a Hh, Dpp, Hairy y Ato. Ésta es la presentada
en la Figura 21.

Parámetro A1 A2 A3 A4 P1 P2 P3 P4

Valor 0 0 6 0 6 6 1 6

Tabla 9: Condiciones iniciales de la simulación que involucra a Hh, Dpp, Hairy y Ato. Ésta es la presentada
en la Figura 21.

iii

A. Ruberte Estructura celular y patrones en bioloǵıa: un enfoque de bioloǵıa de sistemas

C.2. Modelo Delta-Notch

Presentamos aqúı los parámetros que utilizados en la simulación cuyos resultados se
presentan en la Figura 22. Dado el gran número de estos parámetros, hemos optado por
indicar en tablas separadas los distintos parámetros.

Parámetro H1
2 H1

3 H1
4 H1

5 H2
3 H2

4 H2
5 H3

4 H4
1 H5

3 H6
3 H6

4 H6
5 H 5̂

6

Valor 2,5 2,5 2,5 0,5 0,5 2 0,6 1 2,5 1 1 1 2,9 100

Tabla 10: Parámetros Hj
i de la simulación del sistema básico junto con el Dl-N. Recordamos que î representa

el promedio de la concentración de i en las células vecinas.

Parámetro D1 D2 K2
3 K2

4 K2
5 K3

4 K5
3 K6

3 K6
4 K6

5

Valor 0,8 1,5 0,2 1 2 1 1 1 1 20

Tabla 11: Parámetros Kj
i de la simulación del sistema básico junto con el Dl-N.

Parámetro A1 A2 A3 A4 A5 A6

Valor 0 0 2,5 0 0 0

Tabla 12: Condiciones iniciales en la parte anterior (Aji) al MF de la simulación del sistema básico junto con
el Dl-N.

Parámetro P1 P2 P3 P4 P5|Dl P5|N P6|Dl P6|N
Valor 2,31 2,31 0,5 2,8 3,5 0,8 0 50

Tabla 13: Condiciones iniciales en la parte posterior (P ji) al MF de la simulación del sistema básico junto con
el Dl-N. Notar que dado que comenzamos con el patrón ya formado debemos diferenciar las concentraciones
de Dl y N en según el tipo de célula. Aqúı P5|N representa la concentración inicial de ‘5’ (Dl) en una célula
‘tipo’ Notch de la parte posterior al MF. El resto deben interpretarse de la misma forma.

iv

Estructura celular y patrones en bioloǵıa: un enfoque de bioloǵıa de sistemas A. Ruberte

C.3. Modelo de inhibición con retardo

En este apartado adjuntamos el valor de los parámetros utilizados en los diagramas de
fase de la Figura 23, y los de la simulación de la Figura 26. En este último caso habrá un
nuevo parámetro que considerar, el retardo en la inhibición (HhaAto), que denotaremos δτ .

Parámetro H1
4 H4

1 H1′
4 K1′

4 n

Valor 1,4 1,4 1,1 0,5 ∞

Tabla 14: Parámetros caracteŕısticos de la Figura 23 (A). Recordamos que los parámetros primados hacen
referencia a la interacción retardada.

Parámetro H1
4 H4

1 H1′
4 K1′

4 n

Valor 4 1,27 1,1 0,1 3

Tabla 15: Parámetros caracteŕısticos de la Figura 23 (B). Recordamos que los parámetros primados hacen
referencia a la interacción retardada.

Presentamos por último los parámetros correspondientes a la simulación cuyos resultados
son presentados en la Figura 26.

Parámetro δτ D1 D2 H1
2 H1

4 H2
4 H4

1 H1′
4 K2

4 K1′
4

Valor 1 0,8 1,5 2 4 0,5 1,27 1,1 0,2 0,1

Tabla 16: Parámetros caracteŕısticos de la dinámica de la simulación cuyos resultados se exponen en la
Figura 26. Recordamos que los parámetros primados hacen referencia a la interacción retardada.

Parámetro A1 A2 A4 P1 P2 P4

Valor 0,1 0 0,5 0,7 0 1

Tabla 17: Condiciones iniciales de la simulación que involucra a Hh, Dpp y Ato considerando la inhibición
retardada. Éstas son las usadas para la simulación de la Figura 26

v

A. Ruberte Estructura celular y patrones en bioloǵıa: un enfoque de bioloǵıa de sistemas

D. Programas

En este anexo vamos a exponer los programas que principalmente utilizamos durante el
trabajo. Los que recogen los modelos ya presentados son los ‘Simuladores’ en 1D (Sección D.1)
y 2D (Sección D.2), que bajo los parámetros escogidos recogen los resultados de la simulación
(tiempo, número de célula, concentraciones...) en documentos de texto. Posteriormente estos
documentos de texto se leen por los programas ‘Representación’ (Secciones D.4 y D.5,
que ‘llaman’ a Gnuplot para representar los datos. La representación (para poder extraer
fácilmente comportamientos del sistema) se realiza como una sucesión de imágenes que
evolucionan conforme el programa las lee y dibuja (o más lento si se desea).

Las notaciones en los distintos códigos y su funcionamiento vaŕıan levemente. En el
Simulador 1D (Sección D.1), al estar involucradas menos protéınas nos permitimos una
notación más laxa, llamando a las distintas variables en función de sus relaciones con las
protéınas (Hh, Dpp...) y no sus ı́ndices (1, 2...). Tampoco denotamos las condiciones iniciales
en los programas de la misma manera en que lo hacemos en el trabajo. Sin embargo, en cada
uno de los códigos se explican con anotaciones los significados de las distintas variables y
funciones.

El funcionamiento de los programas de simulación consiste en integrar numéricamente las
ecuaciones de la dinámica mediante el algoritmo de Euler. Este algoritmo nos permite observar
la evolución del sistema en el tiempo. Los pasos de tiempo utilizados para las simulaciones
cubren un rango aproximado dτ ∈ (0,01 − 0,0001). En algunos casos hemos introducido
fluctuaciones en las concentraciones, para ello hemos utilizado el generador de números
aleatorios ‘Parisi-Rapuano’ en conjunto con el algoritmo de ‘Box Muller ’ para obtener una
distribución gaussiana.

En algunos programas puede observarse implementada alguna de las protéınas que en el
trabajo hab́ıamos comentado que eran redundantes (Emc en el Anexo D.1). Concluimos que
ésta era redundante con Hairy y la descartamos para posteriores simulaciones. Por otro lado,
en el Anexo D.2 también se contempla una inhibición retardada de Ato debido a Notch (que
también se propone como mediadora en la activación de Sca, el inhibidor de Ato, por Hh)
[16, 18]. Dado que ambas modificaciones no alteraban de forma decisiva el comportamiento
del sistema, se descartaron rápidamente. En el Anexo D.2 usamos el mismo formato de
numeración de células (presentado en la Figura 27) que P.J. Blasco Hernández en [1].

Figura 27: El diagrama indica la numeración de cada una de las células. Imagen tomada de [1]

vi

Estructura celular y patrones en bioloǵıa: un enfoque de bioloǵıa de sistemas A. Ruberte

D.1. Simulador 1D

//LIBRERIAS

#include <iostream>

#include <stdio.h>

#include <stdlib.h>

#include <math.h>

#include <time.h>

//---PARÁMETROS DEL PROGRAMA---

//Herramientas

#define PROGRESO //Marca como transcurre la simulación.

#define res 1 //Resolución en porcentaje

//Parámetros referentes al sistema y simulación

#define N 400 //Dimensión del sistema

#define dt 0.001 //Paso temporal

#define ts 2 //Tiempo de simulación

#define rdi 1000 /*Relación de datos calculados frente a escritos

(se escribe 1 por cada 'rdi' calculados)*/

//Parámetros referentes a las propiedades fı́sicas

/*Notación

DX ---> coef. de difusión de X

CXY --> coef. de dependencia para Y(X)

uX ---> coef. de degradación de X

*/

#define DHh 1 //Hedgehog

#define DDpp 30 //Decapentaplegic

#define uHh 1

#define uDpp 1

#define uH 1 //Hairy

#define uEmc 1 //Extramacrochaete

#define uAto 1 //Atonal

#define CHhHh 6

#define CAtoHh 0

#define CHhDpp 6

#define CDppH 0.5

#define CHhH 6

#define CDppEmc 0

#define CHhEmc 0

#define CHhAto 0

#define CDppAto 0

#define CHAto 0

#define CEmcAto 0

#define n 3 //Exponente de las funciones de Hill

/*Condiciones iniciales

vii

A. Ruberte Estructura celular y patrones en bioloǵıa: un enfoque de bioloǵıa de sistemas

CI --> Condición

0 ---> Perturbación sobre primera célula

1 ---> Perturbación sobre célula más central

2 ---> Forma exponencial desde la célula central

3 ---> Perturba el primer 1/4 de la posición

*/

#define ci 3

#define Hh0 0

#define Dpp0 0

#define H0 6

#define Emc0 0

#define Ato0 0

#define dHh0 6

#define dDpp0 6

#define dH0 -5.5

#define dEmc0 0

#define dAto0 6

//SUBALGORITMOS

void CI(double *Hh, double *Dpp, double *H, double *Emc, double *Ato);

//Genera el estado inicial del sistema

void Registra(double t, double *Hh, double *Dpp, double *H, double *Emc,

double *Ato);//Guarda la configuración actual

void Evolucion(double *Hh, double *Dpp, double *H, double *Emc,

double *Ato);//Avanza un paso temporal

void Laplaciano(double *f, double *Lf);//Calcula el Laplaciano de 'f'

void Velocidades(double *Hh, double *LHh, double *Dpp, double *LDpp, double *H,

double *Emc, double *Ato, double *vHh, double *vDpp, double *vH, double *vEmc,

double *vAto);//Calcula el cambio de concentración con el tiempo (de todas)

double hill(double a);//Función de Hill de activación

double nhill(double a);//Función de Hill de inhibición

//Variables de uso global

FILE *DATA;

//CÓDIGO PRINCIPAL

int main()

{

FILE *info;//guardamos los datos utilizados para variables generales

info=fopen("INFO.txt","w");

fprintf(info,"%d %d %d",int(ts/dt/rdi),int(N),int(ci));

fclose(info);

//Definimos nuestras variables

double Hh[N],Dpp[N],H[N],Emc[N],Ato[N],t;

int i,Nt;

/*---DATOS---

X[i] --> Concentración de 'X' en la posición 'i'

t -----> Tiempo transcurrido en la simulación

viii

Estructura celular y patrones en bioloǵıa: un enfoque de bioloǵıa de sistemas A. Ruberte

Nt ----> No de pasos temporales a simular

*/

Nt=int(double(ts)/dt);

DATA=fopen("Datos[t,x,Hh,Dpp,Hairy,Emc,Ato].txt","w");/*Nombramos el

fichero en el que vamos a escribir los datos*/

CI(Hh,Dpp,H,Emc,Ato);//Establecemos las condiciones iniciales

t=0;//inicializamos el tiempo

for(i=0;i<Nt+1;i++)

{

if(i%int(rdi)==0)

Registra(t,Hh,Dpp,H,Emc,Ato);

t+=dt;

Evolucion(Hh,Dpp,H,Emc,Ato);

#ifdef PROGRESO

if(100*int(res)*i%Nt==0)

printf("%d%c\n",100*int(res)*i/Nt,'%');

#endif // PROGRESO

}

fclose(DATA);

DATA=fopen("Datos(fin)[t,x,Hh,Dpp,Hairy,Emc,Ato].txt","w");

Registra(t,Hh,Dpp,H,Emc,Ato);

}

//SUBALGORITMOS

void CI(double *Hh, double *Dpp, double *H, double *Emc, double *Ato)

{

int i;

for(i=0;i<N;i++)

{

Hh[i]=Hh0;

Dpp[i]=Dpp0;

H[i]=H0;

Emc[i]=Emc0;

Ato[i]=Ato0;

}

switch(ci)

{

case 0:

Hh[0]+=dHh0;

Dpp[0]+=dDpp0;

H[0]+=dH0;

Emc[0]+=dEmc0;

Ato[0]+=dAto0;

break;

case 1:

Hh[int(N)/2]+=dHh0;

Dpp[int(N)/2]+=dDpp0;

H[int(N)/2]+=dH0;

Emc[int(N)/2]+=dEmc0;

Ato[int(N)/2]+=dAto0;

break;

ix

A. Ruberte Estructura celular y patrones en bioloǵıa: un enfoque de bioloǵıa de sistemas

case 2:

for(i=0;i<N;i++)

{

Hh[i]+=dHh0*exp(-(i-int(N/2))*(i-int(N/2))/DHh);

Dpp[i]+=dDpp0*exp(-(i-int(N/2))*(i-int(N/2))/DDpp);

Ato[i]+=dAto0*exp(-(i-int(N/2))*(i-int(N/2))/DHh);

}

break;

case 3:

for(i=0;i<N/4;i++)

{

Hh[i]+=dHh0;

Dpp[i]+=dDpp0;

H[i]+=dH0;

Emc[i]+=dEmc0;

Ato[i]+=dAto0;

}

break;

default:

printf("No se ha seleccionado correctamente la condición inicial,"

"se toma el caso '1' por defecto\n\n");

Hh[int(N)/2]+=dHh0;

Dpp[int(N)/2]+=dDpp0;

H[int(N)/2]+=dH0;

Emc[int(N)/2]+=dEmc0;

Ato[int(N)/2]+=dAto0;

}

Registra(0,Hh,Dpp,H,Emc,Ato);

}

void Registra(double t, double *Hh, double *Dpp, double *H, double *Emc,

double *Ato)//Guarda la configuración actual

{

int i;

for(i=0;i<N;i++)

{

fprintf(DATA,"%lf %d %lf %lf %lf %lf %lf\n",t,i,Hh[i],Dpp[i],

H[i],Emc[i],Ato[i]);

}

}

void Evolucion(double *Hh, double *Dpp, double *H, double *Emc,

double *Ato)

{

double LHh[N],LDpp[N],vHh[N],vDpp[N],vH[N],vEmc[N],vAto[N];/*Formamos

el Laplaciano de f y la primera derivada temporal de ambas variables.*/

int i;

Laplaciano(Hh,LHh);//Calculamos el Laplaciano de Hh

Laplaciano(Dpp,LDpp);//Calculamos el Laplaciano de Dpp

Velocidades(Hh,LHh,Dpp,LDpp,H,Emc,Ato,vHh,vDpp,vH,vEmc,vAto);

for(i=1;i<N-1;i++)

x

Estructura celular y patrones en bioloǵıa: un enfoque de bioloǵıa de sistemas A. Ruberte

{

Hh[i]+=vHh[i]*dt;

Dpp[i]+=vDpp[i]*dt;

H[i]+=vH[i]*dt;

Emc[i]+=vEmc[i]*dt;

Ato[i]+=vAto[i]*dt;

}

}

void Laplaciano(double *f, double *Lf)

{

int i;

Lf[0]=f[1]-2*f[0];

Lf[N]=f[N-1]-2*f[N];

for(i=1;i<N-1;i++)

Lf[i]=f[i-1]+f[i+1]-2*f[i];

}

void Velocidades(double *Hh, double *LHh, double *Dpp, double *LDpp,

double *H, double *Emc, double *Ato, double *vHh, double *vDpp,

double *vH, double *vEmc, double *vAto)

{

int i;

for(i=0;i<N;i++)

{

vHh[i]=DHh*LHh[i]+CHhHh*hill(Hh[i])+CAtoHh*hill(Ato[i])-uHh*Hh[i];

vDpp[i]=DDpp*LDpp[i]+CHhDpp*hill(Hh[i])-uDpp*Dpp[i];

vH[i]=CDppH*hill(Dpp[i])+CHhH*nhill(Hh[i])-uH*H[i];

vEmc[i]=CDppEmc*hill(Dpp[i])+CHhEmc*nhill(Hh[i])-uEmc*Emc[i];

/*vAto[i]=(CHhAto*hill(Hh[i])+CDppAto*hill(Dpp[i]))*

(CHAto*nhill(H[i])+CEmcAto*nhill(Emc[i]))-uAto*Ato[i];*/

vAto[i]=CHhAto*hill(Hh[i])+CDppAto*hill(Dpp[i])+

CHAto*nhill(H[i])+CEmcAto*nhill(Emc[i])-uAto*Ato[i];

}

}

double hill(double a)

{

return (pow(a,n)/(1+pow(a,n)));

}

double nhill(double a)

{

return (1/(1+pow(a,n)));

}

xi

A. Ruberte Estructura celular y patrones en bioloǵıa: un enfoque de bioloǵıa de sistemas

D.2. Simulador 2D

#include <iostream>

#include <stdio.h>

#include <stdlib.h>

#include <math.h>

#include <time.h>

//ESCRITURA

#define INFO "INFO.txt"

#define FICHOUT "2D-DATA[t,n,Hh,Dpp,H,Ato,Dl,N].txt" /*Dirección del fichero de

salida de datos*/

#define PROGRESO //Activar para ver como avanza el programa

#define res 1. /*Marca la resolución (en porcentaje) con la que informa el

programa de su progreso*/

/*#define DEBUG_MATRIX Saca información de parámetros y posibles errores en la

construcción de las matrices por pantalla*/

//PARÁMETROS DE LA RED

#define forma 0 /*Define la forma de la red hexagonal, es decir, marca el

contorno*/

/*

0 --> Rectangular (Lx,Ly)

*/

#define cc 0 //Condiciones de contorno

/*

0 --> Limitada en eje x (dirección de propagación de la onda), periódica en

eje y (perpendicular)

*/

#define NactAto 0 //Notch activa Ato de forma directa?

/*

0 --> No (Los coefs de represeión con retardo son los X64)

1 --> Si (Se diferencian coeficientes de activación, ahora X64, de los de

represión con retardo, X64r)

*/

#define Lx 60 //Referente al tama~no de la red x6

#define Ly 3 /*Para simular un patron Delta-Notch con cc=0 debe ser múltiplo de

3, x9*/

//CONDICIONES INICIALES

#define ci 0

/*

0 --> 1/4 de la red ya evolucionada (con concentraciones simples)

1 --> '0' pero con ruido gaussiano multiplicativo en las concentraciones

2 --> '0' con patrón Delta-Notch formado

3 --> Patrón inicial de Ato según 'Lubensky et al.' en la primera columna

4 --> '2' con patrón de Ato tipo 'Lubensky et al.' en la parte posterior

5 --> Todo uniforme con C0 menos Hh y Ato excitadas en las células

correspondientes

*/

#define ruido 0.9 //Máxima amplitud del ruido

xii

Estructura celular y patrones en bioloǵıa: un enfoque de bioloǵıa de sistemas A. Ruberte

//Concentraciones iniciales (parte anterior)

#define C10 0.1 //CHh0

#define C20 0 //CDpp0

#define C30 0 //CH0

#define C40 0.5 //CAto0

#define C50 0 //CDl0

#define C60 0 //CN0

//Diferencia posterior-anterior (misma referencia numérica)

#define d1 0.6

#define d2 0

#define d3 0

#define d4 0.5

#define d5 0

#define d6 0

#define d55 0 //Aumento de Delta en células 'Delta'

#define d56 0 //Aumento de Delta en células 'Notch'

#define d65 0 //Aumento de Notch en células 'Delta'

#define d66 0 //Aumento de Notch en células 'Notch'*/

//PARÁMETROS DE LA SIMULACIÓN

#define dt 0.001 //Paso temporal

#define ts 30. //Tiempo de simulación

#define rdi 100 /*Relación de datos calculados frente a escritos (se escribe 1

por cada 'rdi' calculados)*/

#define trN 0.01 //Tiempo de retardo en el efecto de Notch sobre Ato

#define trHh 1 //Tiempo de retardo en el efecto de Hh sobre Ato

#define rHh (int(trHh/dt)) //Número de pasos de retardo en Hh

#define rN (int(trN/dt)) //Número de pasos de retardo en N

//PARÁMETROS DEL SISTEMA

#define Np 6 //Número de parámetros considerados

#define exph 3 //Coeficiente de hill de las funciones

//Coef. de difusión (D/u1)

#define D1 0.8

#define D2 1.5

//Coeficientes de degradación (uX/uHh)

#define u2 1

#define u3 1

#define u4 1

#define u5 1

#define u6 1

//Coeficientes de interacción (C=H/(u1.Kref))

#define H11 0 //Hxy --> coef (adimensionalizado) de x sobre y

#define H12 2

xiii

A. Ruberte Estructura celular y patrones en bioloǵıa: un enfoque de bioloǵıa de sistemas

#define H13 0

#define H14 4

#define H15 0

#define H23 0

#define H24 0.5

#define H25 0

#define H34 0

#define H41 1.27

#define H53 0

#define H56 0 //No deberı́a existir

#define H56nn 0 //100 //Interacción Delta -> Notch a primeros vecinos

#define H63 0

#define H64 0 /*Interacción N -> Ato directa (Si N->Ato, si no será la de

retardo N-|Ato)*/

#define H65 0

#define H14r 1.1 //Interacción Hh -| Ato con retardo

#define H64r 0 //Interacción Notch -| Atonal con retardo (Si N->Ato)

//Coeficientes de Umbral

#define K23 0.2

#define K24 0.2

#define K25 2

#define K34 1

#define K53 1

#define K56 1 //Inutil

#define K63 1

#define K64 1

#define K65 20

#define K64r 1 //Interacción Notch -> Atonal con retardo

#define K14r 0.1

//Valores necesarios, no manipular

#define NormRANu (2.3283063671E-10F) /*Nos va a servir para normalizar los

números aleatorios*/

#define PI 3.14159265359

//Para Box-Muller

unsigned int rueda[256]; //Donde vamos almacenar los aleatorios

unsigned char ind_rand, ig1, ig2, ig3; //Variables auxiliares

float r1, r2; //Número aleatorios generado entre 0 y 1

//VARIABLES DECLARADAS FUERA POR CONVENIENCIA

bool AI[Np][Np];

int nn[Lx*Ly][Lx*Ly];

/*

AI[i][j] --> Coef. 0 si 'j' es inhibidor de 'i' y 1 si es activador.

nn[i][j] --> Matriz que marca los primeros vecinos de cada coordenada.

(¿Pesada en caso de frontera reflectante?)

*/

double K[Np][Np],H[Np][Np],D[Np],U[Np];

xiv

Estructura celular y patrones en bioloǵıa: un enfoque de bioloǵıa de sistemas A. Ruberte

/*DATOS

K[i][j] --> Parámetro de 'trigger' de la funcion de hill dependiente del

prámetro 'j' en 'vi'

H[i][j] --> Coeficiente que acompa~na a las funciones de hill con el mismo

criterio que antes

D[i] -----> Coeficiente de difusión del componente 'i'

U[i] -----> Coeficiente de degradación del componente 'i'

*/

FILE *fout,*info;

/*

*fout --> Fichero de salida de datos

*/

//FUNCIONES

void iniciaRan(int Semilla);

float Parisi_Rapuano(void);

void Box_Muller(double *g1, double *g2);

double h(double C, double k, bool ai);//Función de Hill

void setAI();//Construye la matriz de relaciones activación-inhibición

void setK();//Construye K

void setH();//Construye la matriz de coeficientes de hill

void setD();//Construye el vector 'Coeficientes de difusión'

void setU();//Construye el vector 'Coeficientes de degradación'

void setnn();//Construye la matriz de conectividad (espacial)

void CI(double C[Lx*Ly][Np], double CNr[Lx*Ly][rN],

double CHhr[Lx*Ly][rHh]);/*Aplica las condiciones iniciales a la matriz de

concentraciones*/

void Laplaciano(double C[Lx*Ly][Np], double Lap[Lx*Ly][Np]);

//Calcula el Laplaciano de las diferentes concentraciones

void Velocidades(double C[Lx*Ly][Np], double Vel[Lx*Ly][Np],

double CNr[Lx*Ly][rN], double CHhr[Lx*Ly][rHh]);/* Calcula el cambio en

concentración de cada componente en cualquier punto del espacio*/

void Evolucion(double C[Lx*Ly][Np], double CNr[Lx*Ly][rN],

double CHhr[Lx*Ly][rHh]);//Avanza el sistema un tiempo dt

void Registra(double C[Lx*Ly][Np], double t);//Guarda en fichero

int main()

{

iniciaRan(time(NULL));

int aux,aux2,i,j,k;

double t,C[Lx*Ly][Np],CNr[Lx*Ly][rN],CHhr[Lx*Ly][rHh];

/*DATOS

t --------------> Marca el tiempo durante la simulación

C[i][j] --------> Concentración del parámetro 'j' en la célula 'i'

CNr[Lx*Ly][rN] --> Guarda las concentraciones de Notch de tiempos

previos suficientes

CHhr[Lx*Ly][rHh] --> Guarda las concentraciones de Hedgehog de tiempos

previos suficientes

xv

A. Ruberte Estructura celular y patrones en bioloǵıa: un enfoque de bioloǵıa de sistemas

*/

setAI();

setK();

setH();

setD();

setU();

setnn();

#ifdef PROGRESO

{

printf("Construidas las matrices de interaccion (AI,K,H,D,U)\n");

}

#endif // PROGRESO

#ifdef DEBUG_MATRIX

{

printf("\nAI:\n\n");//INFO AI

for(i=0;i<Np;i++)

{

for(j=0;j<Np;j++)

printf("\t%d",AI[i][j]);

printf("\n");

}

printf("\nK:\n\n");//INFO K

for(i=0;i<Np;i++)

{

for(j=0;j<Np;j++)

printf("\t%lf",K[i][j]);

printf("\n");

}

printf("\nH:\n\n");//INFO H

for(i=0;i<Np;i++)

{

for(j=0;j<Np;j++)

printf("\t%lf",H[i][j]);

printf("\n");

}

printf("\nD:\t(");//INFO D

for(i=0;i<Np;i++)

printf("%lf\t",D[i]);

printf(")\n");

printf("\nU:\t(");//INFO U

for(i=0;i<Np;i++)

printf("%lf\t",U[i]);

printf(")\n");

printf("\nnn:\n\n");//INFO nn

for(i=0;i<Lx*Ly;i++)

{

for(j=0;j<Lx*Ly;j++)

printf("\t%d",nn[i][j]);

printf("\n");

}

}

xvi

Estructura celular y patrones en bioloǵıa: un enfoque de bioloǵıa de sistemas A. Ruberte

#endif // DEBUG_MATRIX

CI(C,CNr,CHhr);//Imponemos las condiciones inciales

#ifdef PROGRESO

{

printf("Construida las matriz de concentraciones (C[L*L][Np]) "

"imponiendo condiciones iniciales.\n");

}

#endif // PROGRESO

#ifdef DEBUG_MATRIX

{

for(k=0;k<Np;k++)

{

printf("\nC(%d):\n",k);

for(i=0;i<Ly;i++)

{

for(j=0;j<Ly;j++)

printf("\t%lf",C[Ly*j+i][k]);

printf("\n");

}

}

}

#endif // DEBUG_MATRIX

info=fopen(INFO,"w");

if(info==NULL)

{

printf("Error al abrir el fichero de informacion.\nCIERRE DEL "

"PROGRAMA");

return 0;

}

fout=fopen(FICHOUT,"w");

if(fout==NULL)

{

printf("Error al abrir el fichero de salida.\nCIERRE DEL PROGRAMA");

return 0;

}

#ifdef PROGRESO

{

printf("Exito al abrir el fichero de salida ("FICHOUT")\n");

}

#endif // PROGRESO

fprintf(info,"%d %d %lf\n",Lx,Ly,ts);

fclose(info);

Registra(C,0);//Guardamos la configuración inicial a tiempo 0

#ifdef PROGRESO

{

printf("\nCondiciones iniciales registradas, comenzamos la "

"simulacion:\n\n");

}

#endif // PROGRESO

aux=res;

aux2=0;

xvii

A. Ruberte Estructura celular y patrones en bioloǵıa: un enfoque de bioloǵıa de sistemas

for(t=0;t<ts;t+=dt)

{

aux2++;

Evolucion(C,CNr,CHhr);

if(aux2%(int(rdi))==0)

Registra(C,t+dt);

#ifdef PROGRESO

{

if(100*(t+dt)/ts>=aux)

{

printf("\t%d%c\n",int(aux),'%');

aux+=res;

}

}

#endif // PROGRESO

}

fclose(fout);

}

void iniciaRan(int Semilla) //Prepara el programa para ejecutar Parisi_Rapuano

{

int ini, factor, sum, i; //Variables para inicializar la rueda

srand(Semilla); /*Inicializamos el generador de C con la semilla (No es

necesarios, pero por si se usa)*/

ini = Semilla; //Inicializamos las variables

factor = 675423; //No estoy seguro de por que estas

sum = 78114698;

for(i=0; i<256; i++) //Inicializamos la rueda

{

ini = (ini*factor+sum);

rueda[i] = ini;

}

ind_rand = ig1 = ig2 = ig3 = 0; /*Inicializamos las variables auxiliares del

Parisi-Rapuano*/

}

float Parisi_Rapuano(void)

{

/*

Devuelve un numero entre 0 y 1 aleatorio plano siguiendo el método

Parisi-Rapuano.

Para que funcione deben estar definidas globalmente unsigned float r,

int rueda[256] y unsigned

char ind_rand, ig1, ig2 e ig3. Asi como NormRANu. Además en su primera

ejecución: ind_rand=ig1=ig2=ig3=0

y en cada rueda[i] debe haber un numero aleatorio (no importa su calidad).

*/

xviii

Estructura celular y patrones en bioloǵıa: un enfoque de bioloǵıa de sistemas A. Ruberte

float s;

ig1 = ind_rand - 23;

ig2 = ind_rand - 129;

ig3 = ind_rand - 74;

rueda[ind_rand] = rueda[ig1] + rueda[ig2];

s = (rueda[ind_rand]^rueda[ig3])*NormRANu;

ind_rand++;

return s;

}

void Box_Muller(double *g1, double *g2)/*Genera dos 'doubles' de distribución

Gaussiana*/

{

r1 = Parisi_Rapuano();//Generamos aleatorios planos

r2 = Parisi_Rapuano();

*g1 = -sqrt(-2*log((double)r1))*cos(2*PI*(double)r2);

//Les damos distribución Gaussiana

*g2 = -sqrt(-2*log((double)r1))*sin(2*PI*(double)r2);

}

double h(double C, double k, bool ai)

{

double aux;

aux=pow(C/k,exph)/(1+pow(C/k,exph));

if(ai)

return aux;

else

return 1-aux;

}

void setAI()

{

int i,j;

for(i=0;i<Np;i++)//Inicializamos a 0

for(j=0;j<Np;j++)

AI[i][j]=0; //Inicialmente X-|Y para todo X,Y

AI[0][0]=1; //Hh -> Hh

AI[0][3]=1; //Ato -> Hh

AI[1][0]=1; //Hh -> Dpp

AI[2][1]=1; //Dpp -> H

AI[3][0]=1; //Hh -> Ato

AI[3][1]=1; //Dpp -> Ato

if(NactAto)

AI[3][5]=1; //N -> Ato

AI[4][0]=1; //Hh -> Dl

AI[4][1]=1; //Dpp -> Dl

xix

A. Ruberte Estructura celular y patrones en bioloǵıa: un enfoque de bioloǵıa de sistemas

}

void setK()

{

int i,j;

for(i=0;i<Np;i++)

for(j=0;j<Np;j++)

K[i][j]=1;

K[2][1]=K23;

K[3][1]=K24;

K[4][1]=K25;

K[3][2]=K34;

K[2][4]=K53;

K[5][4]=K56;

K[2][5]=K63;

K[3][5]=K64;

K[4][5]=K65;

}

void setH()

{

int i,j;

for(i=0;i<Np;i++)

for(j=0;j<Np;j++)

H[i][j]=0;

H[0][0]=H11;

H[1][0]=H12;

H[2][0]=H13;

H[3][0]=H14;

H[4][0]=H15;

H[2][1]=H23;

H[3][1]=H24;

H[4][1]=H25;

H[3][2]=H34;

H[0][3]=H41;

H[2][4]=H53;

H[5][4]=H56;

H[2][5]=H63;

H[3][5]=H64;

H[4][5]=H65;

}

void setD()

{

int i;

for(i=0;i<Np;i++)//Marcamos difusión

D[i]=0;

D[0]=D1;

D[1]=D2;

}

xx

Estructura celular y patrones en bioloǵıa: un enfoque de bioloǵıa de sistemas A. Ruberte

void setU()

{

U[0]=1;//Marcamos degradación

U[1]=u2;

U[2]=u3;

U[3]=u4;

U[4]=u5;

U[5]=u6;

}

void setnn()

{

int i,j,A,lx,ly,pv[6];

/*

i,j ----> Índices auxiliares

A ------> Área, dimensión de la matriz conectividad (AxA)

lx,ly --> Lados del sistema (pasado a entero seguro)

pv[i] --> Coordenadas de los primeros vecinos a una célula

*/

lx=int(Lx);

ly=int(Ly);

A=lx*ly;

for(i=0;i<A;i++)

for(j=0;j<A;j++)

nn[i][j]=0;//Inicializamos a 0;

switch(cc)//Adaptamos la conectividad a las condiciones de contorno

{

case 0:

for(i=0;i<ly;i++)//Primera columna

{

pv[0]=(i+1)%ly+(i/ly)*ly;//n

pv[1]=(i-1+ly)%ly+(i/ly)*ly;//s

pv[2]=(i+(i/ly)%2)%ly+(i/ly)*ly+ly;//ne

pv[3]=(i-1+ly+(i/ly)%2)%ly+(i/ly)*ly+ly;//se

for(j=0;j<4;j++)

nn[i][pv[j]]=1;

}

for(i=(ly-1)*lx;i<A;i++)//Última columna

{

pv[0]=(i+1)%ly+(i/ly)*ly;//n

pv[1]=(i-1+ly)%ly+(i/ly)*ly;//s

pv[2]=(i+(i/ly)%2)%ly+(i/ly)*ly-ly;//no

pv[3]=(i-1+ly+(i/ly)%2)%ly+(i/ly)*ly-ly;//so

for(j=0;j<4;j++)

nn[i][pv[j]]=1;

}

for(i=ly;i<A-ly;i++)//Resto de malla

{

pv[0]=(i+1)%ly+(i/ly)*ly;//n

pv[1]=(i-1+ly)%ly+(i/ly)*ly;//s

pv[2]=(i+(i/ly)%2)%ly+(i/ly)*ly+ly;//ne

xxi

A. Ruberte Estructura celular y patrones en bioloǵıa: un enfoque de bioloǵıa de sistemas

pv[3]=(i-1+ly+(i/ly)%2)%ly+(i/ly)*ly+ly;//se

pv[4]=(i+(i/ly)%2)%ly+(i/ly)*ly-ly;//no

pv[5]=(i-1+ly+(i/ly)%2)%ly+(i/ly)*ly-ly;//so

for(j=0;j<6;j++)

nn[i][pv[j]]=1;

}

}

}

void CI(double C[Lx*Ly][Np], double CNr[Lx*Ly][rN],

double CHhr[Lx*Ly][rHh])

//Aplica las condiciones iniciales a la matriz de concentraciones

{

int i,j;

double err,aux;

switch(forma)

{

case 0:

for(i=0;i<Lx*Ly;i++)

{

C[i][0]=C10;

C[i][1]=C20;

C[i][2]=C30;

C[i][3]=C40;

C[i][4]=C50;

C[i][5]=C60;

}

break;

default:

printf("Forma de la red no concretada correctamente, cierre el "

"programa\n");

}

switch(ci)

{

case 0:

for(i=0;i<(int(Lx)/4)*int(Ly);i++)

{

C[i][0]+=d1;

C[i][1]+=d2;

C[i][2]+=d3;

C[i][3]+=d4;

C[i][4]+=d5;

C[i][5]+=d6;

}

break;

case 1:

for(i=0;i<(int(Lx)/4)*int(Ly);i++)

{

C[i][0]+=d1;

C[i][1]+=d2;

C[i][2]+=d3;

xxii

Estructura celular y patrones en bioloǵıa: un enfoque de bioloǵıa de sistemas A. Ruberte

C[i][3]+=d4;

C[i][4]+=d5;

C[i][5]+=d6;

}

for(i=0;i<Lx*Ly;i++)

{

for(j=0;j<Np;j++)

{

Box_Muller(&err,&aux);

C[i][j]+=C[i][j]*ruido*err;

if(C[i][j]<0)

C[i][j]=0;

}

}

break;

case 2:

for(i=0;i<(int(Lx)/4)*int(Ly);i++)

{

C[i][0]+=d1;

C[i][1]+=d2;

C[i][2]+=d3;

C[i][3]+=d4;

C[i][4]+=d5;

C[i][5]+=d6;

if(((i-(i/int(Ly))%2)%3)==0)

{

C[i][4]+=d55;

C[i][5]+=d65;

}

else

{

C[i][4]+=d56;

C[i][5]+=d66;

}

}

break;

case 3://Ly debe ser múltiplo de 9 en c.c. periódicas en 'y'

for(i=0;i<int(Ly);i++)

if(i%9==0)

{

C[i][3]+=d4;

C[i][0]+=d1;

C[i][1]+=d2;

C[i][2]+=d3;

C[i][4]+=d55;

C[i][5]+=d65;

}

break;

case 4:

for(i=0;i<(int(Lx)/4)*int(Ly);i++)

{

xxiii

A. Ruberte Estructura celular y patrones en bioloǵıa: un enfoque de bioloǵıa de sistemas

C[i][0]+=d1;

C[i][1]+=d2;

C[i][2]+=d3;

C[i][4]+=d5;

C[i][5]+=d6;

if(((i-(i/int(Ly))%2)%3)==0)

{

C[i][4]+=d55;

C[i][5]+=d65;

if((i/int(Ly))%3==0&&(i-4*((i/(3*int(Ly)))%2))%9==0)

C[i][3]+=d4;

}

else

{

C[i][4]+=d56;

C[i][5]+=d66;

}

}

break;

case 5:

for(i=0;i<int(Lx)*int(Ly);i++)

{

if((i/int(Ly))%3==0&&(i-4*((i/(3*int(Ly)))%2))%9==0)

{

C[i][0]+=d1;

C[i][3]+=d4;

}

}

break;

default:

printf("Modo de condici%cn inicial no programado (o no reconocido), "

"fin del programa\n",'ó');

}

for(i=0;i<Lx*Ly;i++)

{

for(j=0;j<rHh;j++)

CHhr[i][j]=C[i][0];

for(j=0;j<rN;j++)

CNr[i][j]=C[i][5];

}

}

void Laplaciano(double C[Lx*Ly][Np], double Lap[Lx*Ly][Np])/*Calcula el

Laplaciano de las diferentes concentraciones*/

{

int i,j,k;

for(i=0;i<Lx*Ly;i++)//Inicializamos la matriz

for(j=0;j<Np;j++)

Lap[i][j]=0;

for(i=0;i<Lx*Ly;i++)

for(j=0;j<Np;j++)

for(k=0;k<Lx*Ly;k++)

xxiv

Estructura celular y patrones en bioloǵıa: un enfoque de bioloǵıa de sistemas A. Ruberte

Lap[i][j]+=double(nn[i][k])*(C[k][j]-C[i][j]);

}

void Velocidades(double C[Lx*Ly][Np], double Vel[Lx*Ly][Np],

double CNr[Lx*Ly][rN], double CHhr[Lx*Ly][rHh])/* Calcula el cambio en

concentración de cada componente en cualquier punto del espacio*/

{

int i,j,k,SCDnn;

double Lap[Lx*Ly][Np];//Laplaciano y coeficientes de difusión y degradación

Laplaciano(C,Lap);//Calculamos el laplaciano de las componentes de interés

for(i=0;i<Lx*Ly;i++)

{

for(j=0;j<Np;j++)//Términos intracelulares y difusión

{

Vel[i][j]=D[j]*Lap[i][j]-U[j]*C[i][j];

for(k=0;k<Np;k++)

{

Vel[i][j]+=H[j][k]*h(C[i][k],K[j][k],AI[j][k]);

}

}

k=0;/*Pasamos a usarlo como contador de los primeros vecinos de una

célula para poder calcular el promedio*/

SCDnn=0;/*Inicializamos la suma de las concentraciones iniciales de

Delta en primeros vecinos*/

for(j=0;j<Lx*Ly;j++)//Términos de ligandos en membranas

if(nn[i][j]!=0)

{

SCDnn+=C[j][4];

k++;

}

SCDnn/=k;

Vel[i][5]+=H56nn*h(SCDnn,1,1);

//Notch normalizado a la interacción con Delta en nn, activación.

if(NactAto)

Vel[i][3]+=H64r*h(CNr[i][rN-1],K64r,0);//Retardo N-|Ato

Vel[i][3]+=H14r*h(CHhr[i][rHh-1],K14r,0);//Retardo Hh-|Ato

}

}

void Evolucion(double C[Lx*Ly][Np], double CNr[Lx*Ly][rN],

double CHhr[Lx*Ly][rHh])//Avanza el sistema un tiempo dt

{

int i,j;

double Vel[Lx*Ly][Np];

Velocidades(C,Vel,CNr,CHhr);

for(i=0;i<Lx*Ly;i++)

{

for(j=0;j<Np;j++)

C[i][j]+=Vel[i][j]*dt;

for(j=rN-1;j>0;j--)

CNr[i][j]=CNr[i][j-1];

xxv

A. Ruberte Estructura celular y patrones en bioloǵıa: un enfoque de bioloǵıa de sistemas

//Vamos desplazando los datos de retardo guardados

CNr[i][0]=C[i][5];

for(j=rHh-1;j>0;j--)

CHhr[i][j]=CHhr[i][j-1];

CHhr[i][0]=C[i][0];

}

}

void Registra(double C[Lx*Ly][Np], double t)

{

int i;

for(i=0;i<Lx*Ly;i++)

fprintf(fout,"%lf %d %lf %lf %lf %lf %lf %lf\n", t, i, C[i][0],

C[i][1], C[i][2], C[i][3], C[i][4], C[i][5]);

}

xxvi

Estructura celular y patrones en bioloǵıa: un enfoque de bioloǵıa de sistemas A. Ruberte

D.3. Análisis de la velocidad del MF

//LIBRERIAS

#include <iostream>

#include <stdio.h>

#include <stdlib.h>

#include <math.h>

#include <time.h>

//---PARÁMETROS DEL PROGRAMA---

//Eltos. a medir

#define VG //Velocidad de la onda (velocidad de grupo)

//Herramientas

#define PROGRESO //Marca como transcurre la simulación.

#define res 10 //Resolución en porcentaje

//SUBALGORITMOS

void Vel_Grup(int Nt, int N, int CI);

//Calcula la velocidad de grupo para cada instante de tiempo

//CÓDIGO PRINCIPAL

int main()

{

//CARGA DE DATOS

FILE *in;//Parámetros del programa

int N,Nt,CI;

in=fopen("INFO.txt","r");

fscanf(in,"%d %d %d",&Nt,&N,&CI);

//ANÁLISIS DE LOS RESULTADOS

#ifdef VG

#ifdef PROGRESO

printf("Comienza el c%clculo de la velocidad de grupo\n\n",'á');

#endif // PROGRESO

Vel_Grup(Nt,N,CI);

#endif // VG

}

//SUBALGORITMOS

void Vel_Grup(int Nt, int N, int CI)

{

FILE *datos;

FILE *vel;

datos=fopen("Datos[t,x,Hh,Dpp,Hairy,Emc,Ato].txt","r");

vel=fopen("Velocidad de grupo [t,VG].txt","w");

int i,j,aux1,x,xi,xf;

double aux,t,vg,vgmed,vgmed2,ti;

double s[N], smax, smin, smed;

xxvii

A. Ruberte Estructura celular y patrones en bioloǵıa: un enfoque de bioloǵıa de sistemas

xi=0;

xf=0;

ti=0;

t=0;

vgmed=0;

vgmed2=0;

if(CI==3)

{

for(i=0;i<Nt;i++)

{

smax=0;

smin=9999;

ti=t;

xi=xf;

vg=0;

for(j=0;j<N;j++)

{

fscanf(datos,"%lf %d %lf %lf %lf %lf %lf",

&t,&aux1,&aux,&s[j],&aux,&aux,&aux);

if(s[j]>smax)

smax=s[j];

if(s[j]<smin)

smin=s[j];

}

smed=smax/2+smin/2;

x=N/5;

while(s[x]>smed)

{

x++;

}

xf=x;

vg=(double(xf)-double(xi))/(t-ti);

if(t==ti)

vg=0;

fprintf(vel,"%lf %lf\n",t,vg);

#ifdef PROGRESO

if(((i+1)*100)%(Nt*int(res))==0)

printf("%d%c\n",(i+1)*100/Nt,'%');

#endif // PROGRESO

vgmed+=vg;

vgmed2+=vg*vg;

}

vgmed/=Nt;

vgmed2/=Nt;

printf("\nVelocidad media del \"furrow\": %lf~n%lfu.a\n\n",vgmed ,

sqrt(vgmed2-vgmed*vgmed)/sqrt(Nt));

fclose(datos);

fclose(vel);

}

xxviii

Estructura celular y patrones en bioloǵıa: un enfoque de bioloǵıa de sistemas A. Ruberte

else

printf("Algoritmo no programado para el caso '3', a%cadir al "

" subalgoritmo 'Vel_Grup'\n",'~n');

}

xxix

A. Ruberte Estructura celular y patrones en bioloǵıa: un enfoque de bioloǵıa de sistemas

D.4. Representación 1D

#include <iostream>

#include <stdio.h>

#include <stdlib.h>

#include <math.h>

#define GNUPLOT "C:\\ProgramFiles\\gnuplot\\bin\\gnuplot.exe -persistent"

//Direccion de gnuplot manteniendo la ventana abierta

#define INFO "INFO.txt" //Nombre del fichero con los datos de N y Nt

#define DATOS "Datos[t,x,Hh,Dpp,Hairy,Emc,Ato].txt"

//Nombre del fichero con los datos a representar

#define cMax 7.0 //Concentración máxima a representar

#define delay 30

#define pausa 0.3

//Tiempo en segundos que se le da a gnuplot para procesar la información

void sleep(double tiempo);

int main()

{

int i,j,Nt,N,aux,x;

/*DATOS:

i,j,aux --> Variables auxiliares

Nt -------> Número de pasos temporales registrados en el fichero de datos a representar

N --------> Número de células 'x' involucradas en el proceso

x --------> Posición

*/

FILE *gp,*info,*datos,*faux;

/*

gp -----> 'Pipe' a Gnuplot

info ---> Fichero con la información de Nt y N

datos --> Fichero con los datos a tratar

faux ---> Fichero auxiliar de representación

*/

double t,Hh,Dpp,H,Emc,Ato;//Concentracion de genes/proteinas

printf("Ruta a Gnuplot utilizada: ");

printf(GNUPLOT);

printf("\n");

gp=popen(GNUPLOT,"w");//Llamamos a Gnuplot

if(gp==NULL)

{

printf("Error al abrir la ruta a gnuplot.\nCese del programa");

return 0;

}

fprintf(gp,"plot 'Datos(fin)[t,x,Hh,Dpp,Hairy,Emc,Ato].txt' u 2:3 w l t "

"'Hh'\n");

fflush(gp);

fprintf(gp,"set out\n");

printf("Abriendo el fichero ");

printf(INFO);

xxx

Estructura celular y patrones en bioloǵıa: un enfoque de bioloǵıa de sistemas A. Ruberte

printf("\n");

info=fopen(INFO,"r");//Abrimos el fichero INFO

if(info==NULL)

{

printf("Error al abrir el fichero ");

printf(INFO);

printf("\nCese del programa");

return 0;

}

printf("Abriendo el fichero ");

printf(DATOS);

printf("\n");

datos=fopen(DATOS,"r");//Abrimos el fichero DATOS

if(datos==NULL)

{

printf("Error al abrir el fichero ");

printf(DATOS);

printf("\nCese del programa");

return 0;

}

fscanf(info,"%d %d %d",&Nt,&N,&aux);//Leemos el fichero INFO

//CONFIGURAMOS GNUPLOT

//fprintf(gp,"cd 'C:\\Users\\ruber\\OneDrive - unizar.es\\4%c\\TFG'\n",'o');

fprintf(gp,"cd 'C:\\Users\\Alejandro\\OneDrive - unizar.es\\4%c\\TFG'\n",'o');

//fprintf(gp,"set xrange[%d/5:%d/2]\n",N,N);

//fprintf(gp,"set xtics %d font \",40\"\n",N/4);

fprintf(gp,"unset xtics\n");

fprintf(gp,"set ytics %d font \",40\"\n",6);

fprintf(gp,"set xrange[0:%d]\n",N);

fprintf(gp,"set yrange[0:%lf]\n",cMax);

//fprintf(gp,"set xlabel \'Posici%cn (c%clula)\' font \",40\"\n",'ó','é');

//fprintf(gp,"set ylabel \'Concentraci%cn (adimensionalizada)\' "

"font \",40\"\n",'ó');

//MONTAMOS EL GIF

printf("Comienza a construirse el GIF\n");

char a;

for(i=0;i<Nt;i++)

{

faux=fopen("Auxiliar.txt","w");

for(j=0;j<N;j++)

{

fscanf(datos,"%lf %d %lf %lf %lf %lf %lf",

&t,&x,&Hh,&Dpp,&H,&Emc,&Ato);

fprintf(faux,"%d %lf %lf %lf %lf %lf\n",x,Hh,Dpp,H,Emc,Ato);

}

fclose(faux);

/*fprintf(gp,"set title \'t=%lf\'\n",t);

fprintf(gp,"plot 'Auxiliar.txt' u 1:2 w l lw 3 t 'Hh'\n");

fprintf(gp,"replot \'Auxiliar.txt\' u 1:4 w l lw 3 t \'Hairy\'\n");

//fprintf(gp,"replot \'Auxiliar.txt\' u 1:3 w l lw 3 t \'Dpp\'\n");

xxxi

A. Ruberte Estructura celular y patrones en bioloǵıa: un enfoque de bioloǵıa de sistemas

//fprintf(gp,"replot \'Auxiliar.txt\' u 1:5 w l lw 3 t \'Emc\'\n");

fprintf(gp,"replot \'Auxiliar.txt\' u 1:6 w l lw 3 lc rgb 'red' t "

"\'Ato\'\n");*/

fprintf(gp,"plot \'Auxiliar.txt\' u 1:2 w l lw 3 t \'\'\n");

fprintf(gp,"replot \'Auxiliar.txt\' u 1:4 w l lw 3 t \'\'\n");

fprintf(gp,"replot \'Auxiliar.txt\' u 1:3 w l lw 3 t \'\'\n");

//fprintf(gp,"replot \'Auxiliar.txt\' u 1:6 w l lw 3 lc rgb \'red\' "

"t \'\'\n");

fflush(gp);

if((100*(i+1))%Nt==0)

printf("%d%c\n",100*(i+1)/Nt,'%');

sleep(pausa);

}

//fflush(gp);

pclose(gp);//Cerramos el 'pipe' a Gnuplot

return 0;

}

void sleep(double tiempo)

{

int i;

double a;

for(i=0;i<int(tiempo*3450000);i++)

a=exp(a*i);

}

xxxii

Estructura celular y patrones en bioloǵıa: un enfoque de bioloǵıa de sistemas A. Ruberte

D.5. Representación 2D

#include <iostream>

#include <stdio.h>

#include <stdlib.h>

#include <math.h>

#include <time.h>

//LECTURA-ESCRITURA

//#define INFO "INFO_3.txt"

//#define DATA "Data_3.txt"

#define INFO "INFO.txt"

//#define INFO "INFO_OscConDiff.txt"

//#define INFO "Info_DlNPerf.txt"

//#define INFO "INFO_HA.txt"

#define DATA "2D-DATA[t,n,Hh,Dpp,H,Ato,Dl,N].txt"

//#define DATA "Data_OscConDiff.txt"

//#define DATA "Data_DlNPerf.txt"

//#define DATA "Data_HA.txt"

#define GNUPLOT "C:\\ProgramFiles\\gnuplot\\bin\\gnuplot.exe -persistent"

//Direccion de gnuplot manteniendo la ventana abierta

//PARÁMETROS DEL GIF

#define ndpp 10 //Número de datos por plot

#define delay 10

#define pausa 0.1

//SELECCIÓN DE CONCENTRACIONES

//(1 si queremos hacer el gif en esa concentración, 0 si no)

#define Hh 0

#define Dpp 0

#define H 0

#define Ato 1

#define Dl 0

#define N 0

#define mode 0 // Si queremos representar simultáneamente las concentraciones

/*

0 --> Gifs de cada concentración consecutivos (una única ventana)

1 --> Preparado la representar en una misma ventana simultáneamente Hh,Dl y

N.

2 --> 2 Ventanas, una superior con el MF (Hh,Dpp,H y Ato a elección), y una

inferior con la interfaz Dl-N

*/

void sleep(double tiempo);

void BuscaMaxMin(double Cmin[6], double Cmax[6]);

void Caso0(int Lx, int Ly, int L, double Cmin[6], double Cmax[6]);

void Caso1(int Lx, int Ly, int L, double Cmin[6], double Cmax[6]);

void Caso2(int Lx, int Ly, int L, double Cmin[6], double Cmax[6]);

xxxiii

A. Ruberte Estructura celular y patrones en bioloǵıa: un enfoque de bioloǵıa de sistemas

FILE *gp,*data;

bool P[6];

int main()

{

int i,j,k,p,Lx,Ly,L,aux;

P[0]=Hh;

P[1]=Dpp;

P[2]=H;

P[3]=Ato;

P[4]=Dl;

P[5]=N;

double ts,t,A,R,G,B,Cmin[6],Cmax[6];

FILE *info;

info=fopen(INFO,"r");

if(info==NULL)

{

printf("Error al abrir el fichero "INFO".\nCese del programa");

return 0;

}

fscanf(info,"%d %d %lf",&Lx,&Ly,&ts);

fclose(info);

double C[Lx*Ly][6];

BuscaMaxMin(Cmin,Cmax);

data=fopen(DATA,"r");

if(data==NULL)

{

printf("Error al abrir el fichero "DATA".\nCese del programa");

return 0;

}

printf("Ruta a Gnuplot utilizada: "GNUPLOT"\n");

gp=popen(GNUPLOT,"w");

if(gp==NULL)

{

printf("Error al abrir la ruta a gnuplot.\nCese del programa");

return 0;

}

fprintf(gp,"set terminal wxt transparent enhanced font \"Verdana,22\" "

"size 2000,2000\n");

//fprintf(gp,"unset terminal size 1500,1500\n");

L=Lx;

if(L<Ly)

L=Ly;

switch(mode)

{

xxxiv

Estructura celular y patrones en bioloǵıa: un enfoque de bioloǵıa de sistemas A. Ruberte

case 0:

Caso0(Lx,Ly,L,Cmin,Cmax);

break;

case 1:

Caso1(Lx,Ly,L,Cmin,Cmax);

break;

case 2:

Caso2(Lx,Ly,L,Cmin,Cmax);

break;

default:

printf("Modo de representación no concretado correctamente, ejecutamos "

"por defecto el modo 2\n");

Caso2(Lx,Ly,L,Cmin,Cmax);

break;

}

fclose(gp);

fclose(data);

}

void sleep(double tiempo)

{

int i;

double a;

for(i=0;i<int(tiempo*3450000);i++)

a=exp(a*i);

}

void BuscaMaxMin(double Cmin[6], double Cmax[6])

{

FILE *f;

double C[6],aux;

int i,aux1;

f=fopen(DATA,"r");

if(f==NULL)

printf("Error al abrir el fichero "DATA".\nCierre del programa");

fscanf(f,"%lf %d %lf %lf %lf %lf %lf %lf",

&aux,&aux1,&C[0],&C[1],&C[2],&C[3],&C[4],&C[5]);

for(i=0;i<6;i++)

{

Cmin[i]=C[i];

Cmax[i]=C[i];

}

while(!feof(f))

{

fscanf(f,"%lf %d %lf %lf %lf %lf %lf %lf",

&aux,&aux1,&C[0],&C[1],&C[2],&C[3],&C[4],&C[5]);

for(i=0;i<6;i++)

{

if(C[i]<Cmin[i])

Cmin[i]=C[i];

if(C[i]>Cmax[i])

xxxv

A. Ruberte Estructura celular y patrones en bioloǵıa: un enfoque de bioloǵıa de sistemas

Cmax[i]=C[i];

}

}

fclose(f);

}

void Caso0(int Lx, int Ly, int L, double Cmin[6], double Cmax[6])

//Representacion de gifs de cada concentración independiente de forma consecutiva

{

int i,j,k,p;

double R,G,B,A,t;

double C[Lx*Ly][6];

for(i=0;i<6;i++)

{

printf("Creando GIF: %d\n",i);

//fprintf(gp,"set output \"GIF%d.gif\"\n",i);

if(double(Ly)>double(Lx)*sqrt(3)/2/1.7)

{

fprintf(gp,"set xrange[%d:%lf]\n",0,double(L+1)*1.7);

fprintf(gp,"set yrange[%d:%d]\n",0,L+1);

}

else

{

fprintf(gp,"set xrange[%d:%lf]\n",0,double(L+1)*sqrt(3)/2);

fprintf(gp,"set yrange[%d:%lf]\n",0,double(L+1)/1.7*sqrt(3)/2);

}

if(P[i])

{

fclose(data);

data=fopen(DATA,"r");

j=0;

if(i<4)

{

R=double(i*(i-1)*(i-2)/6)/2;

G=double(-i*(i-1)*(i-3)/2)/2;

B=double(i*(i-2)*(i-3)/2)/2;

}

else

{

G=0;

R=double(5-i)/2;

B=double(i-4)/2;

}

while(!feof(data))

{

for(k=0;k<Lx*Ly;k++)

{

fscanf(data,"%lf %d %lf %lf %lf %lf %lf %lf",

&t,&p,&C[k][0],&C[k][1],&C[k][2],&C[k][3],&C[k][4],&C[k][5]);

A=double((Cmax[i]-C[k][i])/(Cmax[i]-Cmin[i]));

if(j%int(ndpp)==0)

xxxvi

Estructura celular y patrones en bioloǵıa: un enfoque de bioloǵıa de sistemas A. Ruberte

fprintf(gp,"set object %d circle at %lf, %lf size %lf "

"fc rgb \"#%X\" fs solid 1 linewidth .1\n",

k+1,double(k/Ly)*sqrt(3)/2+0.5,

double(k%Ly)+0.5*double((k/Ly)%2)+0.5,0.5,

((int(A*255)*256+int(R*255))*256+int(G*255))*256+

int(B*255));

//sleep(pausa);

}

if(j%int(ndpp)==0)

{

switch(i)

{

case 0:

fprintf(gp,"plot 1/0 t 'Hh(t=%lf)'\n",t);

break;

case 1:

fprintf(gp,"plot 1/0 t 'Dpp(t=%lf)'\n",t);

break;

case 2:

fprintf(gp,"plot 1/0 t 'H(t=%lf)'\n",t);

break;

case 3:

fprintf(gp,"plot 1/0 t 'Ato(t=%lf)'\n",t);

break;

case 4:

fprintf(gp,"plot 1/0 t 'Dl(t=%lf)'\n",t);

break;

case 5:

fprintf(gp,"plot 1/0 t 'N(t=%lf)'\n",t);

break;

default:

printf("ERROR(indice no correspondiente a ninguna "

"concentracion)\n");

break;

}

//fprintf(gp,"plot 1/0 t ''\n");

//sleep(pausa);

//fflush(gp);

//sleep(pausa);

//sleep(pausa);

}

j++;

}

}

}

}

void Caso1(int Lx, int Ly, int L, double Cmin[6],

double Cmax[6])//Representación simultánea de Hh,Dl y N

{

int i,j,k,p,aux;

xxxvii

A. Ruberte Estructura celular y patrones en bioloǵıa: un enfoque de bioloǵıa de sistemas

double A,R,G,B,t;

double C[Lx*Ly][6];

j=0;

if(Ly>double(Lx)*sqrt(3)/2*1.7)

{

fprintf(gp,"set xrange[%d:%lf]\n",0,double(L+1)*1.7);

fprintf(gp,"set yrange[%d:%d]\n",0,L+1);

}

else

{

fprintf(gp,"set xrange[%d:%lf]\n",0,double(L+1)*sqrt(3)/2);

fprintf(gp,"set yrange[%d:%lf]\n",0,double(L+1)/1.7*sqrt(3)/2);

}

while(!feof(data))

{

for(k=0;k<Lx*Ly;k++)

{

fscanf(data,"%lf %d %lf %lf %lf %lf %lf %lf",

&t,&p,&C[k][0],&C[k][1],&C[k][2],&C[k][3],&C[k][4],&C[k][5]);

A=0;

aux=0;

for(i=0;i<6;i++)

{

A+=P[i]*double((Cmax[i]-C[k][i])/(Cmax[i]-Cmin[i]));

aux+=P[i];

}

A/=aux;

R=double((C[k][4]-Cmin[4])/(Cmax[4]-Cmin[4]));

G=0;

/*G=double((C[k][0]-Cmin[0])/(Cmax[0]-Cmin[0]));<--- Activar en caso

de querer ver Hh*/

B=double((C[k][5]-Cmin[5])/(Cmax[5]-Cmin[5]));

if(j%int(ndpp)==0)

fprintf(gp,"set object %d circle at %lf, %lf size %lf fc "

"rgb \"#%X\" fs solid 1 linewidth .1\n",

k+1,double(k/Ly)*sqrt(3)/2+0.5,

double(k%Ly)+0.5*double((k/Ly)%2)+0.5,0.5,

((int(A*255)*256+int(R*255))*256+int(G*255))*256+int(B*255));

//sleep(pausa);

}

if(j%int(ndpp)==0)

{

fprintf(gp,"plot 1/0 t 't=%lf'\n",t);

//fprintf(gp,"plot 1/0 t ''\n");

//sleep(pausa);

//fflush(gp);

//sleep(pausa);

//sleep(pausa);

}

j++;

}

xxxviii

Estructura celular y patrones en bioloǵıa: un enfoque de bioloǵıa de sistemas A. Ruberte

}

void Caso2(int Lx, int Ly, int L, double Cmin[6], double Cmax[6])

/*Representación simultánea de todas las concentraciones en dos ventanas

(una para el MF y otra para Dl-N)*/

{

int i,j,k,aux,p;

double C[Lx*Ly][6];

double A1,A2,R1,R2,G1,G2,B1,B2,t;

j=0;

if(2*Ly>double(Lx)*sqrt(3)/2*1.7)

{

fprintf(gp,"set xrange[%d:%lf]\n",0,2*double(L+1)*1.7);

fprintf(gp,"set yrange[%d:%d]\n",-L-1,L+1);

}

else

{

fprintf(gp,"set xrange[%d:%lf]\n",0,2*double(L+1)*sqrt(3)/2);

fprintf(gp,"set yrange[%lf:%lf]\n",-double(L+1)/1.7*sqrt(3)/2,

double(L+1)/1.7*sqrt(3)/2);

}

while(!feof(data))

{

for(k=0;k<Lx*Ly;k++)

{

A1=0;

A2=0;

aux=0;

fscanf(data,"%lf %d %lf %lf %lf %lf %lf %lf",

&t,&p,&C[k][0],&C[k][1],&C[k][2],&C[k][3],&C[k][4],&C[k][5]);

for(i=0;i<4;i++)

{

A1+=(Cmax[i]-C[k][i])/(Cmax[i]-Cmin[i]);

aux++;

}

A1/=aux;

aux=0;

R1=((C[k][3]-Cmin[3])/(Cmax[3]-Cmin[3])*3+

(C[k][0]-Cmin[0])/(Cmax[0]-Cmin[0]))/4;

G1=((C[k][2]-Cmin[2])/(Cmax[2]-Cmin[2])*3+

(C[k][0]-Cmin[0])/(Cmax[0]-Cmin[0]))/4;

B1=((C[k][1]-Cmin[1])/(Cmax[1]-Cmin[1])*3+

(C[k][0]-Cmin[0])/(Cmax[0]-Cmin[0]))/4;

for(i=4;i<6;i++)

{

A2+=(Cmax[i]-C[k][i])/(Cmax[i]-Cmin[i]);

aux++;

}

A2/=aux;

aux=0;

R2=(C[k][4]-Cmin[4])/(Cmax[4]-Cmin[4]);

xxxix

A. Ruberte Estructura celular y patrones en bioloǵıa: un enfoque de bioloǵıa de sistemas

G2=0;

B2=(C[k][5]-Cmin[5])/(Cmax[5]-Cmin[5]);

if(j%int(ndpp)==0)

{

fprintf(gp,"set object %d circle at %lf, %lf size %lf fc "

"rgb \"#%X\" fs solid 1 linewidth .1\n",2*k+1,

double(k/Ly)*sqrt(3)/2+0.5,

double(k%Ly)+0.5*double((k/Ly)%2)+0.5,0.5,

((int(A1*255)*256+int(R1*255))*256+int(G1*255))*256+int(B1*255));

fprintf(gp,"set object %d circle at %lf, %lf size %lf fc "

"rgb \"#%X\" fs solid 1 linewidth .1\n",2*k+2,

double(k/Ly)*sqrt(3)/2+0.5,

double(k%Ly)+0.5*double((k/Ly)%2)+0.5-double(Ly+1),0.5,

((int(A2*255)*256+int(R2*255))*256+int(G2*255))*256+int(B2*255));

//sleep(pausa);

}

}

if(j%int(ndpp)==0)

{

fprintf(gp,"plot 1/0 t 't=%lf'\n",t);

//fprintf(gp,"plot 1/0 t ''\n");

//sleep(pausa);

//fflush(gp);

//sleep(pausa);

//sleep(pausa);

}

j++;

}

}

xl

