

Trabajo Fin de Grado

Deep Learning vs. Mecánica Estadística en el análisis
de prevención de riesgos

Deep Learning vs. Statistical Mechanics for risk
prevention analysis

Autor

Raúl Baigorri Martínez

Directores

Alfonso Tarancón Lafita
David Iñiguez Dieste

Facultad de ciencias

Grado en Física
28 de junio de 2019

1

ÍNDICE

1. INTRODUCCIÓN 3

1.1 INTRODUCCIÓN AL MACHINE LEARNING ... 3

1.2 CONTEXTO DEL TFG .. 4

1.3 DATOS UTILIZADOS ... 4

1.4 OBJETIVOS ... 5

2. MÉTODOS A COMPARAR 6

2.1 ESTRUCTURA DE NUESTROS DATOS ... 6

2.2 CARACTERÍSTICAS GENERALES ... 7

3. MECÁNICA ESTADÍSTICA 7

3.1 PROGRAMA PRINCIPAL ... 8

3.2 FUNCION DE APROXIMACIÓN ... 9

3.3 PROCESO DE ENTRENAMIENTO .. 10

3.4 EVOLUCIÓN DE LOS COEFICIENTES Y RESULTADOS GUARDADOS AL FINAL

DE CADA ITERACIÓN ... 12

3.5 MEJORAS EN EL PROGRAMA .. 12

4. DEEP LEARNING 13

4.1 PROGRAMA PRINCIPAL ... 13

4.2 ENTRENAMIENTO DE LA RED .. 14

4.2.1. ADAGRAD OPTIMIZER ... 14

4.3 MEJORAS EN EL PROGRAMA .. 15

5. COMPARACION DE RESULTADOS OBTENIDOS POR LOS DOS MÉTODOS 15

5.1 DIFERENCIAS EN LA EVOLUCIÓN DE DISTINTOS MODELOS .. 18

5.1.1 COMPARACIÓN DE LA EVOLUCIÓN CON DEEP LEARNING DE

DISTINTOS MODELOS.. 21

5.2 EVOLUCIÓN DEL MAPE PARA ARCHIVOS QUE HAN DADO UN

RESULTADO GRANDE .. 21

5.3 EVOLUCIÓN DEL MAPE AUMENTANDO EL NÚMERO DE PASOS DE

ENTRENAMIENTO ... 24

2

6. CONCLUSIONES 25

BIBLIOGRAFÍA 26

ANEXOS 28

A1. TIPOS DE REDES NEURONALES .. 28

A1.1 CAPAS OCULTAS DE LA RED NEURONAL .. 29

A2. ACEPTANCIA DE CAMBIOS O EVOLUCION DE LA CONFIGURACIÓN 30

A3. SELECCIÓN DE TÉRMINOS Y NÚMERO DE ITERACIONES DE LAS

SIMULACIONES CON M.E. .. 32

A3.1 COMPARACIÓNN EVOLUCIÓN TENIENDO EN CUENTA MÁS TÉRMINOS DE

LA FUNCIÓN APROXIMACIÓN ... 35

A4. LIBRERÍAS Y ARCHIVOS COMPLEMENTARIOS. .. 36

 A4.1 LIBRERIAS UTILIZADAS ... 36

 A4.2 ARCHIVOS UTILIZADOS .. 36

 A4.3 FUNCIÓN DE ACTIVACIÓN .. 38

A5. FUNCIÓN DE COSTE ... 40

A6. COMPARACIÓN DE RESULTADOS OBTENIDOS CON OTROS

PROPORCIONADOS POR ALFREDO .. 41

A7. COMPARACIÓN DE EVOLUCIONES ENTRE AMBOS MÉTODOS 42

A7.1. FIGURAS QUE MUESTRAN LAS DIFERENCIAS EN LA EVOLUCIÓN DE

 DISTINTOS MODELOS COMPARANDO LOS DOS MÉTODOS 42

A7.2. FIGURAS QUE MUESTRAN LA EVOLUCIÓN DEL MAPE AUMENTANDO

EL NÚMERO DE ITERACIONES DE ENTRANEMIENTO .. 45

3

1. INTRODUCCIÓN:

Hoy en día, las empresas o compañías informáticas como Google, IBM, Microsoft o Apple están
centradas en el desarrollo de nuevas técnicas y algoritmos relacionados con la Inteligencia Artificial
para manejar la gran cantidad y diversidad de datos que disponen, generados por la sociedad que
utiliza sus plataformas en busca de información, por ello, debemos primero estudiar la teoría en la que
se basan estos nuevos algoritmos para poder aplicarlos a nuestro trabajo.

1.1. INTRODUCCIÓN AL MACHINE LEARNING

Para entender bien los nuevos modelos de aprendizaje que están apareciendo en la nueva década
debemos tener claros ciertos conceptos.

La Inteligencia Artificial (I.A.) es una “subdisciplina del campo de la informática que busca simular
comportamientos inteligentes a través de la creación de máquinas”1.

Dentro de esta podemos ver distintos tipos y métodos de comportamientos, en las que las máquinas
suelen estar programadas para la realización de una tarea específica como el levantamiento de pesos,
pegado de etiquetas, sellado, ordenamiento de objetos según determinadas características... funciones
muy autómatas y específicas.

El Machine Learning es una “rama de la I.A. que busca conceder a las máquinas la capacidad de
aprendizaje. Este aprendizaje, sucede mediante la generalización del conocimiento a partir de un
conjunto de experiencias”2.

La diferencia de esta rama con las demás es que en esta no se programa a la máquina para que realice
una tarea específica, sino que se programa para que aprenda a través de una serie de datos, encuentre
patrones o haga predicciones y aprenda a responder en base a lo aprendido.

“Dentro de esta rama existen diferentes técnicas o métodos para el aprendizaje utilizadas según el tipo
de aplicaciones como los árboles de decisión, modelos de regresión, modelos de clasificación, técnicas
de clusterización, y redes neuronales”3.

Estas últimas son capaces de aprender de forma jerarquizada, la información se aprende por niveles y
es solo con esta técnica con la que encontramos similitud con la capacidad humana de aprendizaje.

El Deep Learning es un modelo que trabaja con redes neuronales, imitando la conectividad del cerebro
humano, clasificando conjuntos de datos y encontrando correlaciones entre ellos.

El objetivo de esta técnica es la creación de un modelo que intente imitar la realidad para dar el
resultado pedido, por ello se necesita una interacción entre partes simples trabajando o
interaccionando conjuntamente. Los tres tipos principales de redes neuronales los explicamos en el
ANEXO 14, 5, 6.

4

1.2. CONTEXTO DEL TFG

Esta gran cantidad de datos que pueden obtener las distintas compañías informáticas y el valor que se
puede extraer de ellos, han servido de conciencia para las grandes empresas, las cuales han tomado
este recurso durante las últimas décadas.

Nosotros nos vamos a centrar en el sector de los seguros, donde gracias a la gran cantidad de datos que
manejan las compañías de cada coche que van a vender y de cada comprador, pueden ayudarles a
conocer mejor a sus clientes, los riesgos inherentes a cada contrato y actividad, pudiendo así establecer
un precio del seguro estimado dependiente de las características de cada caso.

 “Durante muchos años, las compañías han estado tratando con distintos modelos estadísticos y
matemáticos para la determinación de los precios de los seguros dependiendo de los riesgos asociados
a una póliza de seguro, utilizando distintas herramientas de data mining como modelos lineales
generalizados hasta modelos bayesianos y de muy diversos tipos”7.

Muy recientemente se están empezando a probar las técnicas de Deep Learning en algunos casos
específicos del sector. Un ejemplo puede verse en la referencia (7) donde la compañía AXA predijo a
los clientes que producían grandes pérdidas (en torno a un 1%) debido a sus accidentes de coche, que
requerían pagos en torno a los 10.000 dolares. Con su detección sería capaz de optimizar el precio de
sus pólizas.

Inicialmente se utilizaron métodos de Machine-Learning basados en Random Forests, el cual utiliza
múltiples Decision Trees para el modelo predictivo, el cual llegaba a una precisión en torno al 40%.
Con los modelos de redes neuronales llegaron a un porcentaje de predicción del 78% lo cual dio una
ventaja significativa a la hora de optimizar costes y precios de seguros.

De este modo vemos que con Deep Learning podemos capturar las correlaciones entre las numerosas
variables asociadas a cada cliente y las del contexto que le rodea con las variables de negocio que se
intentan prever (el precio de la póliza, en nuestro caso) que son tan intrincadas que los modelos
clásicos no siempre pueden capturarlas adecuadamente. En este sentido, el Deep Learning abre pues
una nueva ventana de oportunidad para la creación de modelos predictivos y de caracterización de
clientes.

1.3. DATOS UTILIZADOS

En nuestro caso disponemos de todas las variables de las que dispone la compañía sobre cada coche y
cada comprador, desde las variables más directamente asociadas al propio riesgo asegurado
(características del vehículo, edad y experiencia del conductor) hasta variables no asociadas con la
determinación del precio del seguro como el número de kilómetros que típicamente va a recorrer el
asegurado.

Para este trabajo, se ha hecho un filtro de las variables disponibles utilizado únicamente las variables
que consideramos relevantes a la hora de determinar el precio del seguro (características del vehículo
y del conductor principalmente) y limpieza de datos, ya que también se han descartado precios de
seguros que no entraban dentro de la norma general, teniendo estos una desviación de la media muy
por encima del resto.

5

Tenemos que indicar que trabajamos con una gran cantidad de datos, en total con 11.000.000 ejemplos
de seguros proporcionados por tres compañías distintas de 43 ciudades y 6 modalidades. Por ello,
hacemos una división de estos dependiendo de cada una de las tres etiquetas anteriores, llamando
“modelo” a cada subdivisión de datos.

 Obtenemos de esta manera un total de 489 modelos distintos, ya que cada compañía no nos ha
proporcionado datos de todas las ciudades ni de todas las modalidades de los coches.

Aunque cada modelo tiene una serie de primas parecidas, estas tienen mucha variabilidad entre
ciudades , tanto de valores como de número, ya que dependiendo de lo grande que sea la ciudad o el
número de clientes de la compañía el modelo tendrá más o menos primas con las que podamos
entrenar.

Además, debemos decir que tampoco tenemos todas las variables con las que trabajan las compañías,
ya que vemos que en determinados datos, teniendo los mismos valores de todas las primas, obtenemos
un precio del seguro distinto. Esto indica que las compañías poseen variables ocultas que no revelan y
que nosotros no podemos manejar, como por ejemplo, la probabilidad de impago del cliente o
probabilidad de accidente grave del cliente.

DATOS TOTALES 11.000.000

CIUDADES 43

COMPAÑIAS 3

MODALIDADES 6

TOTAL MODELOS 489

Tabla1: Esquema de la complejidad de los datos con los que trabajamos.

Los datos de cada modelo los guardamos en archivos con extensión “.csv” guardando cada ejemplo
por filas y cada variable de cada ejemplo por columnas.

1.4. OBJETIVOS

Aunque sabemos que el Deep Learning es un método de predicción muy eficiente para algunas tareas
como la predicción de caracteres o reconocimiento de objetos, una de las dudas más generales es la
eficacia de los métodos de Deep Learning frente a la utilización de métodos estadísticos en la
predicción de riesgos.Por ello vamos a comparar la eficacia en la predicción del precio de seguros
mediante dos métodos distintos. Un primer método basado en la Mecánica Estadística y un segundo
basado en el Deep Learning.

Obtendremos distintos resutados con cada método y los compararemos viendo el funcionamiento de
cada uno, sus características, dificultades y condiciones en las que opera mejor cada uno de ellos

6

haciendo un estudio del error obtenido según el número de datos que disponemos para su
entrenamiento.

2. MÉTODOS A COMPARAR:

2.1. ESTRUCTURA DE NUESTROS DATOS

Como ya hemos dicho anteriormente, disponemos de datos de seguros de coches de distintas ciudades
separados en distintas compañías y modalidades.

Para la comparación “absoluta”1* entre los dos programas de predicción de precios vamos a trabajar
con los mismos datos en ambos casos, dividiendo los datos proporcionados por las compañías de
seguros (ya filtrados, limpiados y separada la variable del precio del seguro en un archivo distinto del
resto de las variables) en datos de entrenamiento o train (80% de los datos totales da cada modelo) y
datos de test o de control2* (20% de los datos totales da cada modelo).

Estos archivos los separaremos a su vez en otros dos, uno que contendrá la variable del precio para
cada coche de cada modelo y otro que contendrá las 20 variables más relevantes que hemos
considerado. Así pues tenemos una subdivisión en archivos de cada uno de:

 Train_Data; Train_Precio; Test_Data; Test_Precio.

Las variables que van a intervenir en el precio del seguro pueden ser de distintos tipos como números
enteros, reales o boleanos (0,1) que especifican si un coche determinado tiene cierta equipación o
posee una característica determinada o no. Las variables son las siguientes:

-Booleanos: Formados por las distintas covers del coche y por la variable que determina si la
compañía tiene zona de expedición o no.

cover_3, cover_4, cover_5, cover_6, cover_7, cover_8, cover_12, cover_14, expedition_zone

-Variables reales: El precio del coche y la variable deductible.

vehicle_price , deductible, (seguro con franquicia).

-Variables enteras: Formado por el resto de variables que indican el valor del precio

vehicle_years, driver_holder_type, vehicle_power,driver_age,experience,vehicle_type,km,

garage_type, years_without_accidents.

1* Ponemos “absoluta” ya que la comparación no va a ser totalmente igual, debido a que con un método
intentaremos hacer la predicción ajustando los distintos parámetros, utilizando todos los datos de un archivo y
con el otro operaremos utilizando solamente un grupo de estos en cada iteración. Además para que la
comparación fuera absoluta el tiempo de programación de la CPU debería ser el mismo en ambos métodos,
cosa que tampoco se cumple.
2 *Nos referiremos a estos archivos con los nombres de train o entrenamiento y test o control indistintamente.

7

En cada uno de estos archivos tenemos N datos o seguros reales de coches que ha ofrecido la
compañía divididos en distintas filas. Según el archivo con el que estaremos operando lo
denominaremos N_train o N_test.

2.2. CARACTERÍSTICAS GENERALES

En ambos métodos, los cuales luego serán explicados más detalladamente, entrenamos primero o
hacemos predicciones con los datos de train, obtenemos un resultado y un error comparando el precio
obtenido con el precio real, y cambiando algunos parámetros de la función que determina el precio,
hacemos que este error disminuya con cada iteración o paso de entrenamiento.

Aunque los métodos sean distintos, ya que uno trabaja con redes neuronales y otro trabaja viendo el
problema como si la variable del precio fuera una función de las otras 20 variables restantes, y además
no se entrenan de igual manera, estos operan de forma similar, comparando los resultados del valor
predicho del precio con el valor real y buscando un valor menor del error entre ellos con el cambio de
los parámetros de la red neuronal o de la función de aproximación.

Después de entrenar cada modelo con los datos en el archivo de train (como su propio nombre indica)
obtenemos un error medio (MAE: Mean Absolute Error) y del tanto por ciento (MAPE: Mean
Absolute Percentage Error) con los datos proporcionados en los archivos test. Esto lo podemos hacer
al final del programa, después de haber entrenado suficiente con nuestros datos, o mientras vamos
entrenando, viendo la evolución del error obtenido.

3. MECÁNICA ESTADÍSTICA:

El algoritmo de este método lo escribiremos en el lenguaje de programación C, el cual lo he estado
utilizando durante el grado y estoy bastante familiarizado con él.

Como ya hemos dicho en el apartado anterior, en este algoritmo tratamos la variable del precio como
una función aproximada del resto de variables que suponemos que influyen de manera distinta en la
determinación de nuestro resultado.

Los valores más importantes con los que trabajamos en este programa son el MAE y el MAPE con los
que iremos viendo la evolución de nuestro entrenamiento, ya que hacen referencia al error entre el
valor predicho del precio y el valor real. El primero es un error absoluto y el segundo es un error en
tanto por ciento como su nombre indica. Vienen dados por las siguientes fórmulas:

��� = � |��	
��
������� − ��	
������|�
���

���� = � |��	
��
������� − ��	
������|��	
������
�

���

Aunque durante todo el grado hemos estado trabajando con el error cuadrático medio (RMSE), en este
método entrenaremos y operaremos con estos dos errores ya que son con los que trabajan las empresas
de seguros y ya que los resultados obtenidos son mejores, como podemos ver en el ANEXO 3.

8

���� = �∑ !��	
��
������� − ��	
������"#���� $

Aunque trabajaremos principalmente con el error MAPE, generalmente este lo daremos y
representaremos en %.

3.1. PROGRAMA PRINCIPAL.

Lo primero que hacemos es crear dos ficheros (Evolución y Resultados), con el nombre de cada
Ciudad especificada con la compañía y la modalidad, para poder identificarla, en los que iremos
escribiendo los resultados obtenidos del MAE y el MAPE, tanto de los datos de entrenamiento como
de los datos de control cada cierto número de iteraciones, para ver su evolución.

Lo segundo que hacemos es leer los dos archivos “.csv” tanto de train como de test, pero esto lo
hacemos de distinta manera y con dos funciones diferentes ya que con unos vamos a entrenar nuestros
parámetros y con otros solo vamos a evaluar nuestras predicciones:

-Lectura de datos Train:

Leemos y guardamos todas las variables del archivo Train_Data en un tensor de tipo double: x&N()*+,-&20-, donde denotaremos a cada variable específica como 1��, donde i se refiere al tipo de
variable y n al número de seguro vendido de todos los N_Train proporcionados.

Después de esto hacemos varias operaciones por columnas del tensor, determinando si alguna variable
toma el mismo valor para todos los datos proporcionados de ese modelo o si alguna toma siempre el
valor 0 y mostrándolo por pantalla, ya que estas variables serán inútiles para el cálculo de la función
del precio, ya que al ser todas iguales no ofrecerán ninguna diferencia entre el cálculo de los diversos
precios, sin poder hacer ningún tipo de estadística con ellas.

Ahora procedemos a convertir nuestras variables 1�� en variables normalizadas, para poder fijar los
coeficientes de la función aproximción en un mismo rango, ya que al tener las distintas variables
tienen distintas escalas, si lo quisiéramos hacer sin normalizarlas, también deberíamos fijar distintas
escalas para los coeficientes.

Primero calculamos la media de todas las columnas, significando la media de los valores que toma
cada variable de nuestro seguro y la suma de los cuadrados:

��23�� ≡ 567 ≡ 〈5�〉 = 1$;<��� � 1��
�=>?@A

���

�B� ≡ 56#CCCC ≡ 〈5�#〉 = 1$;<��� � !1��"# �=>?@A

���

Así podemos calcular la desviación estándar:

E� = F〈5�#〉 − 〈5�〉#

9

Y trabajar con una nueva variable normalizada para cada variable del seguro, que tendrá una media de
cero y desviación 1:

G�� = 5�� − 〈5�〉E�

Seguidamente, leemos y guardamos en un array los datos del fichero de precios y normalizamos la
variable del mismo modo que hemos hecho para las 20 variables anteriores.

-Lectura de datos Test:

En este caso volvemos a leer y guardar todas las variables de los archivos Data en un tensor de tipo

double: x′&N(IJK-&20-, donde denotaremos a cada variable específica como 1L��, donde i se refiere al
tipo de variable y n al número de seguro vendido de todos los N_Test proporcionados.

3.2. FUNCION DE APROXIMACIÓN.

Inicialmente, la función que hemos escogido para determinar el precio la dividimos en una parte
analítica, que es el desarrollo en serie de Taylor hasta el tercer término, más la suma de otros términos
no analíticos, ya que sabemos que estos términos tienen presencia en este tipo de análisis, los cuales
los explicamos más adelante. La fórmula de la función viene dada por la siguiente ecuación:

M!1N, 1#, 1O … . . 1#�"
= � R SMS1�T G�

#�

���
+ VN W� XNG�

#�

���
Y � Z[� \]!Z[^_�`
�� ×

#�

���
G�"

+ 1$;<��� � � b SMS1�S1cd G�Gc
#�

e��

#�

���
+ 1$;<��� V# W� X#

#�

���
G�GcY

+ 1$;<���# � � � b SMS1�S1cS1fd G�Gc
fg�gccg�

#�

���
Gf

Donde los G�′\ son las variables de entrada normalizadas, constantes durante todo el proceso, y los
demás parámetro multiplicativos o funcionales son variables y los que vamos a ir ajustando para
encontrar el mínimo.

Al multiplicar la función por Eh�
i`^ y sumarle la media obtenida con los datos de entrenamiento,
entrará en el rango de los precios reales y obtendremos la función de estimación del precio.

Los términos significan:

• ∑ j kl
km@n G�#���� : Hace referencia a la aproximación en primer orden en torno a un mínimo de

una función analítica en las proximidades del mínimo. También lo podemos ver como los

distintos pesos de las distintas características de cada coche, significando que no todas

tienen la misma importancia individualmente a la hora de determinar el precio final.

• VNo∑ XNG�#���� p: Es un término no analítico que hace referencia a una función escalón en

función de un sumatorio pesado de las distintas variables, de forma que si este supera un

10

determinado número adquiere u valor positivo y en caso contrario adquiere el mismo valor

absoluto pero con signo negativo.

Este término es parecido a la activación de neuronas explicada en el ANEXO 4, por ello nos

referiremos a él como término de activación.

• ∑ Z[� \]!Z[^_�`
�� ×#���� G�": Este término nos ayuda a obtener más rápido la forma de la

función en torno a un mínimo, ya que sabemos que en torno a este, la función posee

términos sinusoidales.

• ∑ ∑ R kl
km@kmqT G�Gc#�e��#���� : Hace referencia a la derivada parcial de segundo orden en torno al

mínimo de la función de estimación del precio como la aproximación en segundo orden.

También la podemos ver como las relaciones entre las distintas características del seguro dos

a dos a la hora de determinar el precio.

• V#o∑ X##���� G�Gcp : Al igual que el tercer término del sumatorio, este es un término escalón,

pero en este caso relacionando las distintas características por parejas.

• ∑ ∑ ∑ R kl
km@kmqkmrT G�Gcfg�gccg�#���� Gf: Hace referencia a la derivada parcial de tercer orden

en torno al mínimo de la función de estimación del precio como la aproximación en el

desarrollo en serie hasta tercer orden. También la podemos ver como las relaciones entre

tres características del seguro cualesquiera a la hora de determinar el precio.

Las distintas derivadas de la función, coeficientes del término sinusoidal y funciones de activación
son variables double generadas aleatoriamente en cada iteración de entrenamiento. En caso de que
mejoren la predicción del precio de los seguros serán sustituidas por sus valores anteriores o no,
siguiendo un algoritmo que explicaremos en el ANEXO 2.

La derivada de primer orden al igual que los coeficientes J’s del término sinusoidal del sumatorio son
vectores con tantas componentes como características tenemos de los coches. La derivada de segundo
orden será un Tensor 20 × 20 y la derivada de tercer orden será un Tensor 20 × 20 × 20.

Los términos de activación son variables double.

3.3. PROCESO DE ENTRENAMIENTO

Vamos a entrenar a nuestro modelo en una serie de iteraciones, entendiendo entrenar como ajustar
nuestros parámetros de la función en cada iteración, dando valores aleatorios a los distintos
coeficientes de la función de aproximación en cada una de ellas y quedándonos con estos valores
aleatorios nuevos si el MAPE disminuye respecto al obtenido en la iteración anterior, buscando así el
mínimo de este error que suponemos que será parecido al obtenido con los datos Test, ya que
pertenecen a un mismo modelo.

Esta búsqueda del mínimo la haremos utilizando el Método de Simulated Annealing8. Por ello nuestra
función MAPE será la energía de nuestro sistema.

11

Como no sabemos la forma que tiene nuestra energía, y seguramente no será suave, sino que al ser
una función de veinte variables es posible que tenga varios mínimos relativos o que presente
discontinuidades, no nos basta con empezar con cualquier solución e ir cambiando ligeramente la
misma aceptando los cambios si la energía disminuye, sino que permitiremos fluctuaciones térmicas al
sistema para que este sea capaz de recorrer toda nuestra función energía , pasar por varios mínimos
relativos e ir buscando estos mínimos al bajar la temperatura progresivamente, siendo probablemente
próximos al mínimo absoluto. Para ello utilizamos el Algoritmo de Metrópolis9 y utilizaremos la
Mecánica Estadística de Boltzman10 para la probabilidad de una determinada configuración de nuestro
sistema.

De este modo tenemos dos parámetros que dictarán la evolución de nuestro sistema principalmente:

-Delta (δ): Dicta el rango en el que se mueven los números aleatorios que dan valor a los coeficientes
de la función de aproximación.

Con el objetivo de recorrer todos los valores de nuestra función de la energía, este empezará tomando
valores en los que los números aleatorios generados uniformemente (que darán valor a los distintos
coeficientes de la función de aproximación) estén en el rango (-0.5,0.5) ya que recordemos que a
medida que pasan las iteraciones su valor irá disminuyendo linealmente, ya que suponemos que al
encontrarnos cerca del mínimo absoluto de la función energía los cambios en los coeficientes deberán
ser pequeños.

-Beta (β): Hace referencia a la Temperatura en la que se encuentra nuestro sistema, concretamente es
proporcional al inverso de la Temperatura.

Al igual que el parámetro anterior, tiene el objetivo de permitirnos recorrer todos los valores de
nuestra función energía. Este empezará tomando valores pequeños que significarán que estamos a una
temperatura alta y nos permitirá recorrer un rango amplio de nuestra función, ya que debido a que la
temperatura es alta, los valores de los coeficientes nuevos serán aceptados en el mayor de los casos
(como vemos en el ANEXO 2). Su valor inicial deberá ser aquel que multiplicado por la variación
energética inicial de 1 → |`�`i`}~ × ∆�`�`i`}~ ≈ 1.

A medida que vamos iterando, su valor irá aumentando linealmente también, simulando un
enfriamiento de nuestro sistema que haga que disminuya la aceptancia y nuestro punto se mueva en
torno al mínimo más cercano.

Hay un parámetro que revisa o controla la evolución y, si es preciso, cambia el valor de los
parámetros descritos anteriormente, este es la Aceptancia:

-Aceptancia: La aceptancia es el cociente del número de cambios tentativos que han sido aceptados
entre el total después de realizar un proceso sweep.

Este proceso significa recorrer secuencialmente el vector que guarda los términos de primer orden de
nuestra función, correspondientes a las distintas características según el número de iteración, recorrer
secuencialmente los Tensores por filas, siendo el número de columna aleatoria en cada iteración y dar
un número aleatorio para cada uno de los tres índices del Tensor de Einstein.

Sabemos cómo debe evolucionar nuestra aceptancia en la teoría. Al principio deseamos que esta sea
casi igual que 1, ya que queremos explorar todas las configuraciones posibles o valores que puede

12

tomar nuestra función de energía, y a medida que vamos acercándonos al mínimo de nuestra función
suponemos que esta irá disminuyendo hasta caer casi a cero cuando estemos muy próximos del
mínimo. De este modo, si la vamos controlando podemos ser capaces de que el sistema evolucione
como nosotros queramos.

Así imponemos que si esta toma valores pequeños al principio de la evolución del sistema (lo cual no
queremos) disminuimos un poco el valor de |, o aumentamos la energía del sistema, siendo así más
probable que el sistema pase por distintas configuraciones. Además programamos la disminución del
valor de | en la siguiente iteración si la acaeptancia del sweep anterior ha sido muy baja.

También controlamos el valor del parámetro |. Como vamos disminuyendo su valor si la aceptancia
es demasiado baja, este puede llegar a tomar valores muy pequeños, así que acotamos su valor en un
mínimo.

3.4. EVOLUCIÓN DE LOS COEFICIENTES Y RESULTADOS GUARDADOS AL FINAL DE CADA

ITERACIÓN

Necesitamos partir de una configuración inicial, la cual será la dada por todos los coeficientes de la
función de aproximación igualados a cero, con lo cual, nuestra predicción inicial del precio será para
todos los datos Test el precio medio obtenido con los datos Train.

Así, obtendremos un error inicial, operando con los datos de entrenamiento, del valor de la dispersión
de nuestros datos. Para el error de Test obtendremos otro error, ya que estos tienen una media y
desviación distinta, por lo que al dar siempre el precio medio obtenido con los datos de entrenamiento
tendremos un resultado diferente aunque parecido, ya que los distintos datos pertenecen a un mismo
modelo.

Una vez que entramos en el bucle de entrenamiento nos guardamos los distintos coeficientes en un
archivo denominado “Configuración” en el cual reescribiremos los términos obtenidos al final de cada
iteración o proceso sweep para partir de ellos en la siguiente.

Además de guardarnos estos coeficientes nos guardamos en el el archivo “Evolución” el valor de Beta,
aceptancia, MAPE_Train y MAPE_Test.

En cada iteración comparamos los errores obtenidos con los anteriores guardándonos el error mínimo,
tanto MAPE como MAE, obtenido con los datos de test, de forma que este será el que nos importará al
final del entrenamiento, ya que será la mejor predicción que hemos obtenido.

3.5. MEJORAS EN EL PROGRAMA:

 -Al principio entrenábamos los datos con el error cuadrático medio y veíamos la evolución del
MAPE frente al número de iteraciones. Como debíamos trabajar con este último error, ya que es con
este con el que trabajan las empresas de seguros decidimos entrenar nuestro programa también con
este error, obteniendo mejores resultados.

 -Después de una serie de pruebas para ver como evolucionaban los errores frente al número de
iteraciones y frente al número de términos escogidos en la serie de nuestra función, observamos que si
queríamos ejecutar los archivos con un tiempo de CPU que no fuera muy alto, el valor óptimo para el
número de iteraciones era de 1500 y entrenamos escogiendo solamente los tres primeros términos de

13

la serie de Fourier. En el ANEXO 3 podemos ver un estudio más detallado de estos aspectos y una
evolución de entrenamiento para un modelo grande con un número elevado de iteraciones,
entrenándolo con todos los términos de la función aproximación.

El problema de los términos siguientes descartados es que además de multiplicar el tiempo de
ejecución del programa, les cuesta mucho termalizar y su contribución empieza a tener efecto varias
iteraciones después de empezar a trabajar con ellos en la estimación del resultado.

 -Creación de programas adicionales con el objetivo de clasificar, ordenar y juntar los archivos
obtenidos.

 -Modificación del programa principal para la eficacia de la obtención de datos en el que en
vez de ir compilando los distintos modelos uno por uno se le da como entrada un archivo el cual
contiene los nombres de varios modelos y el cual ejecuta iterativamente.

4. DEEP LEARNING:

En este caso hemos trabajado con el lenguaje de programación Python11 para la programación de
nuestro código, que realiza toda la gestión de los procesos, tanto de entrada y salida de datos como de
entrenamiento y test de los modelos, utilizando las librerías de Deep Learning de Tensorflow12, 13.

Con este lenguaje no he trabajado a lo largo de la carrera, y ha sido necesario un estudio previo para su
entendimiento y manejo.

En este caso, entrenaremos cada modelo con una red neuronal profunda (DNN) constituida por una
capa externa de 20 neuronas, en la que se introducen las 20 variables de cada ejemplo del modelo, una
capa externa, en la que obtenemos el precio estimado del seguro, y 5 capas ocultas, cada una con [150,

75, 50, 20, 10] neuronas consecutivamente y totalmente conectadas entre ellas. Estos números han
sido elegidos a base de prueba y error, ya que no conocemos ningún estudio ni fórmula que dicte el
número óptimo ni de capas ni de neuronas para la predicción de este caso.

En este método también devolveremos los errores definidos previamente de MAE y MAPE para
evaluar la precisión de nuestros resultados, pero trabajaremos con el error cuadrático medio (RMSE)
para entrenar nuestro modelo, como podemos ver en el ANEXO 5.

Al igual que en el método anterior, trabajaremos principalmente con el error MAPE, pero este lo

daremos en % en la representación de la mayoría de gráficas.

4.1. PROGRAMA PRINCIPAL

El programa tiene distintas librerías y archivos, utilizados para el manejo de datos, explicados en el
ANEXO 412,13,14,15,16,17,18,19. El programa principal es el archivo llamado TRAIN_MODEL.py.

Este contiene el código para entrenar los distintos modelos, incluyendo otros archivos para cada una
de sus distintas funcionalidades.

Lo primero que hacemos es indicar qué modelo vamos a entrenar, especificando su nombre, y crear
una carpeta con su nombre en un determinado directorio, en la que guardamos los distintos parámetros
de la red neuronal que vamos entrenando.

14

Después creamos un archivo llamado “estimación_’nombre del modelo’.dat” en el que guardaremos
los valores del número de datos de entrenamiento, de testeo y los valores del MAPE, en tanto por
ciento, y del MAE, obtenidos en la última iteración.

Mediante el archivo IRIS_DATA.py accedemos a cada archivo de nuestro modelo, obteniendo así
cuatro variables DataFrame con los datos de cada archivo (train_x, train_y, test_x, test_y).

Seguidamente, definimos el número de iteraciones con el que vamos a entrenar nuestro modelo,
siendo este distinto para cada modelo, en contra que en el método estadístico en el que era el mismo
para todos los modelo. Su razón la podemos ver en el ANEXO 6.

Así pues, el número de iteraciones depende del número de datos con el que vayamos a entrenar,
teniendo la ecuación siguiente:

����]_\�	�\ = �]�!$_����] ∗ 25/���
ℎ_\��	"
Donde la función �]�!" devuelve el número entero del número real entre corchetes, restándole a este
último su parte decimal, $_����] es el número de datos de entrenamiento y ���
ℎ_\��	 el número de
datos que escogemos en cada “batch” de entrenamiento del modelo, siendo este número igual para
todos los modelos y teniendo un valor de 230.

Una vez que tenemos definidas todas estas variables pasamos a definir nuestra red neuronal, utilizando
el archivo LOAD_MODEL.py y utilizando otra vez el archivo IRIS_DATA.py, entrenamos nuestros
datos de entrenamiento y obtenemos las predicciones, dadas por la red, de los datos de test.

Estas predicciones las guardamos en un array que utilizamos para compararlas con los datos reales de
los precios.

Finalmente, calculamos los errores MAPE y MAE y guardamos estas variables en el archivo
“estimación_nombre del modelo.dat”.

4.2. ENTRENAMIENTO DE LA RED:

En este archivo también especificamos el optimizador con el que trabajará la red neuronal, que en
nuestro caso será Adagrad optimizer. Al igual que en el método anterior, lo que intentamos hacer es
minimizar el valor de una función, llamada función de coste, que explicamos en el ANEXO 520, 21, 22.

4.2.1. ADAGRAD OPTIMIZER23, 24 :

Este optimizador se basa en el método del descenso del gradiente y especifica un buen ratio de
aprendizaje.

En mecánica estadística este ratio suele ser |, definido en el la explicación del entrenamiento del
método estadístico, el cual es inversamente proporcional a la temperatura.

Otro método seguro de hacerlo, es escoger, para este ratio, el valor de una constante dividida por el
tiempo, o computacionalmente hablando, el número de iteraciones que llevamos entrenando a nuestro

modelo: � = i
� , así la función de coste convergerá, pero esta asignación no es muy buena, ya que el

proceso es muy lento.

15

En el algoritmo Adagrad el ratio depende de la concavidad de la función, de forma que si estamos en
un punto donde la función es muy cóncava, indicando que estamos cerca de un mínimo, el ratio será
muy pequeño, y si la función es casi plana, el ratio será muy grande.

Si trabajamos con varias variables, cada variable (o dimensión de la función) debe tener una tasa de
aprendizaje distinta, ya que una función multidimensional no tiene el mismo gradiente para cada
dimensión.

Empezamos con un vector s⃗ que inicializamos a cero: (s⃗K�� = 0�⃗)

En cada iteración hacemos la operación: \⃗��N = s⃗K + o∇��⃗ F���(��p#.
Donde ∇��⃗ F���(�� es el gradiente de la función de coste en el tiempo t y o∇��⃗ F���(��p#

 el vector

∇��⃗ F���(�� con cada componente al cuadrado, no la multiplicación de vectores.

Así la variación de cada peso de cada variable evolucionará en cada iteración de la siguiente

manera: ���⃗ ��N = ���⃗ � − �∇��⃗ �������������⃗ �

Donde � es la tasa de aprendizaje inicial y ¡ es un valor pequeño para no dividir por cero en la primera

iteración cuando s⃗K�� = 0�⃗ .

Esta ecuación significa que cuando el gradiente sea muy grande, el paso va a ser muy pequeño, debido
a que está dividiendo, y cuando nos encontremos en superficies muy inclinadas, daremos pasos
pequeños hacia el mínimo de la función.

Como trabajamos en muchas dimensiones, puede ser que los valores del gradiente en estas sean muy
dispares, dando pasos largos en una determinada dirección y cortos en otras en una misma iteración.

4.3. MEJORAS EN EL PROGRAMA:

Como más tarde veremos, este programa no funciona del todo bien para los modelos que tienen pocos
datos de entrenamiento, y siendo falsa también la suposición de que el valor más pequeño obtenido del
MAPE es el de la última iteración del entrenamiento.

Para estudiar por qué con los archivos pequeños obtenemos unos valores altos del MAPE y observar
como entrena la red neuronal hemos realizado una serie de modificaciones en el archivo
TRAIN_MODEL.py:

 -Predicción tanto de los precios del archivo test como del archivo train y cálculo de las
variables MAPE y MAE de ambos archivos, para ver la evolución de estos dos dependiendo del
número de iteraciones.

 - Creación de un archivo llamado “Evolución_nombre del modelo.dat”, en el que iremos
guardando los errores MAPE y MAE tanto de los archivos de entrenamiento como de testeo cada
cierto número de iteraciones, denominado “save_steps”, que tendrá el valor de:

save_steps = �]� Rtrain_steps50 T

16

Ya que queremos dibujar una gráfica en la que se vea bien la evolución de nuestro entrenamiento,
considerando así que con 50 puntos (o alguno más, ya que despreciamos el valor decimal del cociente)
tendremos una buena visualización de esta.

 -Adición de dos nuevas variables en el programa llamadas: error_minimo y precio_minimo.

En cada iteración evaluaremos los valores de MAPE y MAE de los archivos test guardándonos estos
valores en las variables definidas si el valor del MAPE es el mínimo encontrado y si el número de
iteraciones es mayor que cierto número ya que al principio estos errores pueden depender mucho del
“batch” utilizado para la predicción.

 -Creación de un nuevo archivo Python llamado “EJECUTA_VARIOS_MODELOS.py” para
la eficacia de la obtención de datos.

Este archivo ejecuta sucesivamente varios modelos, leyendo, de un archivo de texto, el nombre de
estos y guardando, en otro archivo de texto, el nombre del modelo entrenado, el número de datos de
enternamiento y de test, y los errores mínimos de MAPE y MAE del archivo de test, obtenidos
separando los datos de distintos modelos en distintas filas.

5. COMPARACIÓN DE RESULTADOS OBTENIDOS POR LOS DOS METODOS:

En este apartado procederemos a la comparación entre los dos métodos explicados anteriormente,
analizaremos los resultados y compararemos sus entrenamientos y valores de los resultados.

Para ello, primero dibujamos los resultados obtenidos del error MAPE mínimo para todas las
ciudades, dependiendo del número de datos con que hayamos entrenado a nuestro “modelo”, ya que
cuantos más datos de entrenamiento tengamos, mejor estadística podremos hacer y mejores
predicciones obtendremos. Debemos indicar que, aunque en el método de Mecánica estadística sí que
nos quedamos con el error minimo obtenido en la evolución del proceso, en el método de
Deep_Learning nos quedamos con el error final, debido a que suponemos que este será el mínimo,
aunque más adelante veremos que no es así.

Los resultados han sido los mostrados en la siguiente figura:

Figura 5.1: En esta figura podemos ver los valores mínimos obtenidos del error MAPE con los dos métodos en
función del número de datos con el que se entrena cada modelo dibujando el eje x en escala logarítmica para su mejor
visualización.

17

Observando la figura, podemos ver que los datos obtenidos con el método de Deep Learning son
mucho menos precisos que los obtenidos por el estadístico (Mecánica Estadística), cuando entrenamos
con pocos datos. Esta diferencia va disminuyendo a medida que aumentamos el número de datos de
entrenamiento, hasta ser algo menores los obtenidos por el primer método mencionado.

Si observamos más detalladamente la figura, vemos que los errores empiezan a empeorar a partir de
un número de unos 10000 datos de entrenamiento aproximadamente.

Por regla general vemos que en los dos métodos se cumple el hecho de que obtengamos mejores
resultados dependiendo del número de datos con el que entrenamos, estando en concordancia con la
teoría de que al tener más datos podemos realizar una estadística mejor.

Figura 5.2: En esta figura podemos ver los valores mínimos obtenidos del MAE con los dos métodos en función del
número de datos con el que se entrena cada modelo. También vemos una media del error de cada uno de los dos
grupos de datos.

Con el valor del MAE pasa lo mismo, pero este error no se ve tan claro, ya que es el error absoluto y la
diferencia entre estos comparada con el valor real no se aprecia tanto en la figura como en la anterior.

Como sabemos que no es lo mismo obtener un error determinado entrenando con un número de
N_Train bajo (2.000 primas), que con uno alto (40.000 primas), teniendo más relevancia el segundo,
ya que ha sido mejor calculado, debemos realizar la media ponderada de los resultados obtenidos
mediante ambos métodos:

〈����〉 = ∑ ����� × $_§���]��_¨��������� ∑ $_§���]��_¨���������

〈���〉 = ∑ ���� × $_§���]��_¨���������∑ $_§���]��_¨���������

Teniendo unos valores de:
 〈����〉¨�©á��©�
����í���©� = !16.95 ± 0.91"% 〈����〉°��± ~��<���² = !18.32 ± 0.87"% 〈���〉¨�©á��©�
����í���©� = !101.7 ± 6.1" € 〈���〉°��± ~��<���² = !104.9 ± 5.8" €

Y obteniendo una diferencia entre los métodos de:

18

�¨}h
 = 〈����〉¨�©á��©�
����í���©� − 〈����〉°��± ~��<���²〈����〉¨�©á��©�
����í���©� × 100 ≅ 8%

�¨}
 = 〈���〉¨�©á��©�
����í���©� − 〈���〉°��± ~��<���²〈���〉¨�©á��©�
����í���©� × 100 ≅ 2%

Así pues, aunque ambos métodos nos dan resultados bastante parecidos, sabemos que el método de
redes neuronales no funciona muy bien cuando tenemos pocos datos de entrenamiento, por ello
pasamos a estudiarlo.

5.1 DIFERENCIAS EN LA EVOLUCIÓN DE DISTINTOS MODELOS COMPARANDO LOS DOS MÉTODOS

Aunque en este apartado veremos los distintos resultados fijándonos solo en un modelo para cada
clase, en el ANEXO 7 proporcionamos más figuras en las que podemos ver más ejemplos.

MODELOS GRANDES
Con modelos grandes nos referimos a modelos que contienen un número de datos de entrenamiento
mayor que 20.000. Veamos cuál es su evolución utilizando los dos métodos:

Figura 5.1.1: Representación de la evolución del modelo Málaga c1 m3 con 100.000 datos de entrenamiento, en el
que vemos que el método de D.L. llega a errores más bajos que el método M.E.

En esta figura vemos que los modelos que contienen un número grande de datos de entrenamiento,
dan mejores resultados con el método de Deep Learning, como nos esperábamos al ver la Figura 5.1.
El valor del MAPE va disminuyendo su valor progresivamente hasta alcanzar un mínimo al final del
entrenamiento.

19

MODELOS MEDIOS
Con modelos medios nos referimos a modelos desde 3.000 hasta 20.000 datos de entrenamiento:

Figura 5.1.2: Representación de la evolución del modelo Cantabria c2 m3 con 5.000 datos de entrenamiento, en el que
vemos una tendencia decreciente, por lo que un aumento de pasos de entrenamiento podría haber disminuido el error.

En esta figura apreciamos que estos modelos entrenados con el método de Deep Learning tienen
muchas menos iteraciones de entrenamiento que los entrenados con el otro método.
Observamos que, aunque hay modelos con los que parece que ese número de iteraciones es suficiente,
ya que aparentemente no disminuye mucho el valor del MAPE, hay otros en los que van
disminuyendo progresivamente y no llegan a un estado estable en las iteraciones finales, dando la
sensación de que si hubieran sido entrenados con un número de iteraciones mayor, hubiéramos
obtenido mejores resultados.

MODELOS PEQUEÑOS

Con modelos medios nos referimos a modelos con 2.000 o menos datos de entrenamiento:

20

Figura 5.1.3 : Representación de la evolución del modelo Valladolid c2 m6 con 1.900 datos de entrenamiento.

Al igual que en el caso anterior, los modelos entrenados con el método de Deep Learning tienen
muchas menos iteraciones de entrenamiento y volvemos a tener casos en los que el valor mínimo del
MAPE obtenido podría haber disminuido si hubiéramos utilizado un número mayor de iteraciones, ya
que su evolución presenta una tendencia descendente en las últimas.

Así, nos damos cuenta de que un aumento en el número de iteraciones de entrenamiento, para los
archivos con menos de 20.000 datos, puede ser relevante en la mejora de nuestras predicciones
obtenidas con el método de Deep Learning, y que este número puede ser un factor un condicionante
para que los resultados de Deep Learning sean peores cuanto menor es el archivo.

Esto nos indica que nuestra suposición de que el entrenamiento para los archivos pequeños necesite
menos iteraciones no sea del todo cierta y que la asignación proporcional de los pasos de
entrenamiento al número de datos de cada modelo no sea muy buena.

Por otro lado, la suposición de que el error desciende conforme al entrenamiento también es falsa, ya
que, como podemos comprobar, vemos que hay modelos en los que el valor del MAPE no es
continuamente descendente, y en estos casos el valor final obtenido no será el mínimo. Por ello, otro
factor que nos ayudaría a obtener mejores resultados con el método de Deep Learning sería escoger el
valor mínimo del MAPE obtenido en la evolución, en vez del último obtenido.

Un aspecto característico de las figuras, es que en algunas obtenemos un valor del MAPE inicial
mayor en los archivos Test que en los Train. Esto puede suceder si la dispersión de los precios del
archivo de control es menor que la del archivo de entrenamiento y si el precio medio de los datos de
entrenamiento queda entre el rango de los precios de control, echo bastante probable, ya que tenemos
menos datos en los archivos de control que en los de entrenamiento, y estos son muy parecidos unos
de los otros, haciendo posible las dos condiciones dichas anteriormente.

Otro aspecto que presentan es que los errores iniciales con Deep Learning son mucho mayores que los

del método estadíctico. Esto es debido a que con este segundo método hacemos una aproximación

21

inicial, en la que estimamos que el valor del precio de los datos de control va a ser la media
obtenida con los datos de entrenamiento, y con el primer método no hacemos ninguna,
inicializando todos los parámetros de la red a cero.

Por último, analizando las gráficas, vemos que la evolución del método estadístico concuerda con el
algoritmo establecido, ya que generalmente, el valor da una disminución brusca al añadir el segundo
término (término de activación) en torno a las 350 iteraciones, indicando que este es un factor clave
para la estimación final, y otra más suave al añadir el de Fourier, en torno a las 1000 iteraciones.

5.1.1 COMPARACIÓN DE LA EVOLUCIÓN CON DEEP LEARNING DE DISTINTOS MODELOS

 Figura 5.1.4 : Evolución con el método Deep Learning de distintos modelos con tamaños diferentes.

En esta gráfica hemos dibujado distintos modelos entrenados con Deep Learning y vemos que
probablemente la asignación del número de iteraciones sea el factor más determinante en el hecho de
que los errores obtenidos de modelos pequeños con este método sea peor que los obtenidos con el
método estadístico.

5.2 EVOLUCIÓN DEL MAPE AUMENTANDO EL NÚMERO DE PASOS DE ENTRANEMIENTO

Debido a lo dicho en los dos apartados anteriores vamos a cambiar el algoritmo de nuestro código de
Deep Learning, asignando un número de 1500 iteraciones (de igual manera que en el método
estadístico):

����]_\�	�\ = 1500

Vamos a comparar estas evoluciones con las obtenidas en el apartado anterior y vamos a ver si este es
un factor relevante en la determinación del error. Este proceso lo vamos a hacer solo con los archivos
medios y pequeños, ya que hemos visto que con los grandes hemos obtenido resultados satisfactorios.
Los resultados han sido los siguientes:

22

MODELOS MEDIOS

Figura 5.2.1 : Representación de la evolución del MAPE Train del modelo Cantabria c2 m3 con el método D.L.
tomando 1500 iterciones de entrenamiento (dibujado en morado) y de las evoluciones representadas en el apartado
anterior (dibujando M.E. en verde azulado y D.L. anterior en rojo).

Figura 5.2.2: Representación de la evolución del MAPE Test del modelo Cantabria c2 m3 con el método D.L. tomando
1500 iterciones de entrenamiento (dibujado en morado) y de las evoluciones representadas en el apartado anterior
(dibujando M.E. en verde azulado y D.L. anterior en rojo).

23

 MODELOS PEQUEÑOS:

Figura 5.2.3 : Representación de la evolución del MAPE Train del modelo Valladolid c2 m6 con el método D.L.
tomando 1500 iterciones de entrenamiento (dibujado en morado) y de las evoluciones representadas en el apartado
anterior (dibujando M.E. en verde azulado y D.L. anterior en rojo).

Figura 5.2.4 : Representación de la evolución del MAPE Test del modelo Valladolid c2 m6 con el método D.L.
tomando 1500 iterciones de entrenamiento (dibujado en morado) y de las evoluciones representadas en el apartado
anterior (dibujando M.E. en verde azulado y D.L. anterior en rojo).

Con estas gráficas comprobamos que, efectivamente, el aumento del número de iteraciones de
entrenamiento es un factor clave para la mejor predicción del precio y que ambas suposiciones
tomadas de las redes neuronales han sido falsas, obteniendo una mejora con el seguimiento de la
evolución del MAPE, ya que para algunos modelos obtenemos valores mínimos en pasos intermedios
del entrenamiento.

 Estas las hemos hecho ya que, por la propia definición de la red neuronal, esta obtiene mejores
resultados cuantos más datos de entrenamiento tenga, cuanto más homogéneos sean estos comparados
con los de test y cuantas más iteraciones.

24

También las hemos hecho porque, en una primera prueba vimos que los valores obtenidos mediante
este método no variaban mucho al multiplicar el número de iteraciones por cinco, como se puede ver
en el ANEXO 6.

5.3 EVOLUCIÓN DEL MAPE PARA ARCHIVOS QUE HAN DADO UN VALOR GRANDE

Aunque en las gráficas del apartado anterior hemos visto que hay casos en los que el valor del MAPE
toma valores menores que el valor final, su valor final ha mejorado considerablemente con el aumento
de iteraciones, por ello, en nuestro caso vamos a comparar solamente los resultados finales obtenidos
cambiando el número de iteraciones de entrenamiento para los modelos con los que hemos obtenido
un valor del MAPE con el método de Deep Learning mayor que el 25%, ya que este ha sido
aproximadamente el valor máximo obtenido con el método de Mecánica Estadística.

Esta decisión también la tomamos debido a que el seguimiento del entrenamiento cuesta ≅ 50 veces
más de computar, debido a que el proceso más costoso con los archivos de Python es cargar las
librerías y carpetas en las que almacenamos los valores de los distintos parámetros, y esto lo
realizamos cada vez que dibujamos el valor del MAPE. Al dibujar cincuenta valores distintos del
MAPE en cada proceso de entrenamiento, el tiempo en realizar el entrenamiento siguiendo la
evolución es ≅ 50 veces más largo.

Los resultados los vamos a comparar tanto con los propios del método de Deep Learning, obtenidos
anteriormente, como con los obtenidos con el método de Mecánica Estadística. Estos son los
siguientes:

Figura 5.3.1: Comparación de los datos obtenidos del MAPE fijando el número de pasos de entrenamiento a 1500, con
los resultados anteriores.

Vemos que los valores obtenidos han mejorado considerablemente obteniendo unos valores de medias
ponderadas de:
 〈����〉°.~. }���� = 29.27 ± 4.88 % 〈����〉°.~. N¹�� `��< = 22.83 ± 2.76 % 〈����〉¨�©á��©�
����í���©� = 20.54 ± 3.58 %

0

5

10

15

20

25

30

35

40

45

50

1000 10000

M
A

P
E

%

DATOS ENTRENAMIENTO

COMPARACIÓN MAPE OBTENIDO

D.L. ANTES

MECÁNICA
ESTADÍSTICA

D.L. 1500
ITERACIONES

25

Obteniendo así una diferencia entre errores de:

���º�°.~.L� = 〈����〉°.~. }���� − 〈����〉°.~. N¹�� `��<〈����〉°.~. N¹�� `��< × 100 = 28.21%

���º�°.~. }�;
» = 〈����〉°.~. }���� − 〈����〉¨�©á��©�
����í���©�〈����〉¨�©á��©�
����í���©� × 100 = 42.51%

���º�°.~. N¹�� `;
� = 〈����〉°.~. N¹�� `��< − 〈����〉¨�©á��©�
����í���©�〈����〉¨�©á��©�
����í���©� × 100 = 11.15%

De este modo, hemos disminuido el error relativo de un 40% a un 10% aproximadamente
comparando los datos con los obtenidos con el método estadístico, lo que significa que, aunque siguen
siendo algo peores que los del otro método, incrementando el número de iteraciones hemos
disminuido cuatro veces la diferencia entre estos.

6 CONCLUSIONES Y LÍNEAS FUTURAS:

Después del estudio y comparación de los datos obtenidos por ambos métodos, llegamos a la
conclusión de que estos son muy parecidos, obteniendo medias ponderadas similares, con un error
relativo menor que el 10%. Siendo algo peores los del método de Deep Learning cuando tenemos
pocos datos de entrenamiento y mejorando conforme aumenta el número de estos datos hasta obtener
errores más bajos que el otro método.

También se han visto distintos factores que influían en los malos resultados obtenidos con el método
D.L. siendo el más relevante el número de iteraciones de entrenamiento.

Para la mejora de estos resultados se podría hacer una mezcla homogénea de datos de entrenamiento y
control sin estar separados ordenadamente ya que puede haber un aumento o disminución en el valor
del seguro de los coches dependiendo del mes o año en que se hayan realizado.

Además, se podría buscar un número óptimo de iteraciones de entrenamiento de la red, un seguimiento
de la evolución de los errores obtenidos de control quedándonos con el mínimo, en lugar de escoger el
final y distintas pruebas con otros valores de neuronas en cada capa y otro número de capas.

Del mismo modo, podríamos aumentar el número de iteraciones del método estadístico e incluir los
distintos términos de la función de aproximación. Todo esto teniendo en cuenta el tiempo de CPU,
dado que el tiempo de procesamiento debe ser similar.

Por último, podríamos estudiar los datos teniendo en cuenta en qué época del més o año se han
vendido, teniendo en cuenta las distintas ofertas que realiza la compañía al final de més o en periodos
de vacaciones y rebajas.

26

BIBLIOGRAFÍA:

1 Grapsas, Tatiana. (2019, 26 de Febrero). Deep Learning: Entiende sobre la tendencia de la
Inteligencia Artificial que copia al cerebro humano. Extraido el 15 de Junio de 2019 desde
https://rockcontent.com/es/blog/deep-learning/.

2 Grapsas, Tatiana. (2019, 26 de Febrero). Deep Learning: Entiende sobre la tendencia de la
Inteligencia Artificial que copia al cerebro humano. Extraido el 15 de Junio de 2019 desde
https://rockcontent.com/es/blog/deep-learning/.

3 Dot CSV. (2017, 1 de Noviembre). ¿Qué es el Machine Learning?¿Y Deep Learning? Un mapa
conceptual. Extraido el 3 de Marzo de 2019 desde
https://www.youtube.com/watch?v=MRIv2IwFTPg&t=2s.

4 AMP Tech. (2018, 20 de Mayo). Tipos de redes neuronales. Extraído el 3 de Marzo de 2019 desde

https://www.youtube.com/watch?v=V5BYRPJThjE

5 López Briega R. (2016, 2 de Agosto) Redes neuronales convolucionales con Tensorflow. Extraído el 5 de Marzo

de 2019 desde https://relopezbriega.github.io/blog/2016/08/02/redes-neuronales-convolucionales-con-
tensorflow/.

6 J.C.Gonzalez (2017, 20 de Noviembre). USE OF CONVOLUTIONAL NEURAL NETWORK FOR IMAGE
CLASIFICATION. Extraído el 5 de Marzo de 2019 desde https://www.apsl.net/blog/2017/11/20/use-
convolutional-neural-network-image-classification/

7 Kaz Sato (2017, 29 de Marzo). Using machine learning for insurance pricing optimization. Extraído el
20 de Marzo de 2019 desde https://cloud.google.com/blog/products/gcp/using-machine-learning-
for-insurance-pricing-optimization.

8 Tarancón Lafita, A. (2016, 4 de Febrero). Fisica Computacional, Tomo 1, Teoría, Problemas y
Prácticas.(pp.193-198,).

9 Tarancón Lafita, A. (2016, 4 de Febrero). Fisica Computacional, Tomo 1, Teoría, Problemas y

Prácticas.(pp.73-74,).

10 Tarancón Lafita, A. (2016, 4 de Febrero). Fisica Computacional, Tomo 1, Teoría, Problemas y

Prácticas.(pp.167-174).
11 Guido van Rossum. (2017, Octubre). El tutorial de Python .Recuperado de
https://www.python.org.arg/

12 Google Brain. (2015, 9 de Noviembre). Recuperado de https://www.tensorflow.org/

13 González J. C. (2017-2018).TENSORFLOW PARA PRINCIPIANTES. Recuperado de
https://www.apsl.net/blog/tag/redes-neuronales/

14 Moya R. (2015, 30 de Octubre).Pandas en Python, con ejemplos, Parte 1 y Parte 2. Extraido el 25 de
Marzo de 2019 de https://jarroba.com/pandas-python-ejemplos-parte-i-introduccion/

15Oliphant T.(2005). NumPy. Recuperado de https://www.numpy.org/

16 NumPy.(25 de Junio de 2019). En Wikipedia, la enciclopedia libre. Recuperado el 25 de Marzo de
2019 de https://docs.python.org/3/library/os.html

27

17Sharma S. (2017, 6 de Septiembre). Activation Functions in Neural Networks. Extraido el 6 de
Marzo de 2019 desde https://towardsdatascience.com/activation-functions-neural-networks-
1cbd9f8d91d6
18 Dot CSV (2018, 19 de Marzo). Parte 1: La Neurona. Extraido el 3 de Marzo de 2019 desde
https://www.youtube.com/watch?v=MRIv2IwFTPg&t=2s

19 Redes Neuronales. Extraido el 15 de Junio de 2019 de:
https://ml4a.github.io/ml4a/es/neural_networks/

20 Dot CSV (2017, 16 de Diciembre).Regresión Lineal y Mínimos Cuadrados Ordinarios. Extraido el 3
de Marzo de 2019 desde https://www.youtube.com/watch?v=k964_uNn3l0&t=20s

21 Dot CSV (2018, 4 de Febrero).¿Qué es el Descenso del Gradiente? Algoritmo de Inteligencia
Artificial. Extraido el 3 de Marzo de 2019 desde https://www.youtube.com/watch?v=A6FiCDoz8_4

22 Dot CSV (2018, 14 de Octubre).¿Qué es una Red Neuronal? Parte3.5: Las matemáticas de
Backpropagation. Extraido el 3 de Marzo de 2019 desde
https://www.youtube.com/watch?v=A6FiCDoz8_4

23 Weinberger K. (2018, 11 de Julio). Machine Learning Lecture 12 “Gradient Descent/ Newthon’s
Method”. Extraido el 14 de Abril de 2019 desde https://www.youtube.com/watch?v=o6FfdP2uYh4

24 Gylberth R. (2018, 3 de Mayo). An Introduction to AdaGrad. Extraido el 14 de Abril de 2019 desde
https://medium.com/konvergen/an-introduction-to-adagrad-f130ae871827

