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1. INTRODUCCIÓN: 

Hoy en día, las empresas o compañías informáticas como Google, IBM, Microsoft o Apple están 
centradas en el desarrollo  de nuevas técnicas y algoritmos relacionados con la Inteligencia Artificial 
para manejar la gran cantidad y diversidad de datos que disponen, generados por la sociedad que 
utiliza sus plataformas en busca de información, por ello, debemos primero estudiar la teoría en la que 
se basan estos nuevos algoritmos para poder aplicarlos a nuestro trabajo. 

1.1. INTRODUCCIÓN AL MACHINE LEARNING  

Para entender bien los nuevos modelos de aprendizaje que están apareciendo en la nueva década 
debemos tener claros ciertos conceptos. 

La Inteligencia Artificial (I.A.) es una “subdisciplina del campo de la informática que busca simular 
comportamientos inteligentes a través de la creación de máquinas”1.  

Dentro de esta podemos ver distintos tipos y métodos de comportamientos, en las que las máquinas 
suelen estar programadas para la realización de una tarea específica como el levantamiento de pesos, 
pegado de etiquetas, sellado, ordenamiento de objetos según determinadas características... funciones 
muy autómatas y específicas. 

El Machine Learning es una “rama de la I.A. que busca conceder a las máquinas la capacidad de 
aprendizaje. Este aprendizaje, sucede mediante la generalización del conocimiento a partir de un 
conjunto de experiencias”2.  

La diferencia de esta rama con las demás es que en esta no se programa a la máquina para que realice 
una tarea específica, sino que se programa para que aprenda a través de una serie de datos, encuentre 
patrones o haga predicciones y aprenda a responder en base a lo aprendido.  

“Dentro de esta rama existen diferentes técnicas o métodos para el aprendizaje utilizadas según el tipo 
de aplicaciones como los árboles de decisión, modelos de regresión, modelos de clasificación, técnicas 
de clusterización, y redes neuronales”3. 

Estas últimas son capaces de aprender de forma jerarquizada, la información se aprende por niveles y 
es solo con esta técnica con la que encontramos similitud con la capacidad humana de aprendizaje. 

El Deep Learning es un modelo que trabaja con redes neuronales, imitando la conectividad del cerebro 
humano, clasificando conjuntos de datos y encontrando correlaciones entre ellos. 

El objetivo de esta técnica es la creación de un modelo que intente imitar la realidad para dar el 
resultado pedido, por ello se necesita una interacción entre partes simples trabajando o 
interaccionando conjuntamente. Los tres tipos principales de redes neuronales los explicamos en el 
ANEXO 14, 5, 6. 
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1.2. CONTEXTO DEL TFG 

Esta gran cantidad de datos que pueden obtener las distintas compañías informáticas y el valor que se 
puede extraer de ellos, han servido de conciencia para las grandes empresas, las cuales han tomado 
este recurso durante las últimas décadas. 

Nosotros nos vamos a centrar en el sector de los seguros, donde gracias a la gran cantidad de datos que 
manejan las compañías de cada coche que van a vender y de cada comprador, pueden ayudarles a 
conocer mejor a sus clientes, los riesgos inherentes a cada contrato y actividad, pudiendo así establecer 
un precio del seguro estimado dependiente de las características de cada caso. 

 “Durante muchos años, las compañías han estado tratando con distintos modelos estadísticos y 
matemáticos para la determinación de los precios de los seguros dependiendo de los riesgos asociados 
a una póliza de seguro, utilizando distintas herramientas de data mining como modelos lineales 
generalizados hasta modelos bayesianos y de muy diversos tipos”7. 

Muy recientemente se están empezando a probar las técnicas de Deep Learning en algunos casos 
específicos del sector. Un ejemplo puede verse en la referencia (7) donde la compañía AXA predijo a 
los clientes que producían grandes pérdidas (en torno a un 1% ) debido a sus accidentes de coche, que 
requerían pagos en torno a los 10.000 dolares. Con su detección sería capaz de optimizar el precio de 
sus pólizas. 
 
Inicialmente se utilizaron métodos de Machine-Learning basados en Random Forests, el cual utiliza 
múltiples Decision Trees para el modelo predictivo, el cual llegaba a una precisión en torno al 40%. 
Con los modelos de redes neuronales llegaron a un porcentaje de predicción del 78%  lo cual dio una 
ventaja significativa a la hora de optimizar costes y precios de seguros. 

De este modo vemos que con Deep Learning  podemos capturar las correlaciones entre las numerosas 
variables asociadas a cada cliente y las del contexto que le rodea con las variables de negocio que se 
intentan prever (el precio de la póliza, en nuestro caso) que son tan intrincadas que los modelos 
clásicos no siempre pueden capturarlas adecuadamente. En este sentido, el Deep Learning abre pues 
una nueva ventana de oportunidad para la creación de modelos predictivos y de caracterización de 
clientes. 

1.3. DATOS UTILIZADOS 

En nuestro caso disponemos de todas las variables de las que dispone la compañía sobre cada coche y 
cada comprador, desde las variables más directamente asociadas al propio riesgo asegurado 
(características del vehículo, edad y experiencia del conductor) hasta variables no asociadas con la 
determinación del precio del seguro como el número de kilómetros que típicamente va a recorrer el 
asegurado. 

Para este trabajo, se ha hecho un filtro de las variables disponibles utilizado únicamente las variables 
que consideramos relevantes a la hora de determinar el precio del seguro (características del vehículo 
y del conductor principalmente) y limpieza de datos, ya que también se han descartado precios de 
seguros que no entraban dentro de la norma general, teniendo estos una desviación de la media muy 
por encima del resto. 
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Tenemos que indicar que trabajamos con una gran cantidad de datos, en total con 11.000.000 ejemplos 
de seguros proporcionados por tres compañías distintas de 43 ciudades y 6 modalidades. Por ello, 
hacemos una división de estos dependiendo de cada una de las tres etiquetas anteriores, llamando 
“modelo” a cada subdivisión de datos. 

 Obtenemos de esta manera un total de 489 modelos distintos, ya que cada compañía no nos ha 
proporcionado datos de todas las ciudades ni de todas las modalidades de los coches. 

Aunque cada modelo tiene una serie de primas parecidas, estas tienen mucha variabilidad entre 
ciudades , tanto de valores como de número, ya que dependiendo de lo grande que sea la ciudad o el 
número de clientes de la compañía el modelo tendrá más o menos primas con las que podamos 
entrenar. 

Además, debemos decir que tampoco tenemos todas las variables con las que trabajan las compañías, 
ya que vemos que en determinados datos, teniendo los mismos valores de todas las primas, obtenemos 
un precio del seguro distinto. Esto indica que las compañías poseen variables ocultas que no revelan y 
que nosotros no podemos manejar, como por ejemplo, la probabilidad de impago del cliente o 
probabilidad de accidente grave del cliente.  

DATOS TOTALES 11.000.000 

CIUDADES 43 

COMPAÑIAS 3 

MODALIDADES 6 

TOTAL MODELOS 489 

Tabla1: Esquema de la complejidad de los datos con los que trabajamos. 

Los datos de cada modelo los guardamos en archivos con extensión “.csv”  guardando cada ejemplo 
por filas y cada variable de cada ejemplo por columnas.  

1.4. OBJETIVOS 

Aunque sabemos que el Deep Learning es un método de predicción muy eficiente para algunas tareas 
como la predicción de caracteres o reconocimiento de objetos, una de las dudas más generales es la 
eficacia de los métodos de Deep Learning frente a la utilización de métodos estadísticos en la 
predicción de riesgos.Por ello vamos a comparar la eficacia en la predicción del precio de seguros 
mediante dos métodos distintos. Un primer método basado en la Mecánica Estadística y un segundo 
basado en el Deep Learning. 

Obtendremos distintos resutados con cada método y los compararemos viendo el funcionamiento de 
cada uno, sus características,  dificultades y condiciones en las que opera mejor cada uno de ellos 
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haciendo un estudio del error obtenido según el número de datos que disponemos para su 
entrenamiento. 

 

2. MÉTODOS A COMPARAR:  

2.1. ESTRUCTURA DE NUESTROS DATOS 

Como ya hemos dicho anteriormente, disponemos de datos de seguros de coches de distintas ciudades 
separados en distintas compañías y modalidades. 

Para la comparación “absoluta”1* entre los dos programas de predicción de precios vamos a trabajar 
con los mismos datos en ambos casos, dividiendo los datos proporcionados por las compañías de 
seguros (ya filtrados,  limpiados y separada la variable del precio del seguro en un archivo distinto del 
resto de las variables) en datos de entrenamiento o train (80% de los datos totales da cada modelo) y 
datos de test o de control2* (20% de los datos totales da cada modelo). 

Estos archivos los separaremos a su vez en otros dos, uno que contendrá la variable del precio para 
cada coche de cada modelo y otro que contendrá las 20 variables más relevantes que hemos 
considerado. Así pues tenemos una subdivisión en archivos de cada uno de: 

 Train_Data;  Train_Precio; Test_Data; Test_Precio. 

Las variables que van a intervenir en el precio del seguro pueden ser de distintos tipos como números 
enteros, reales o boleanos (0,1) que especifican si un coche determinado tiene cierta equipación o 
posee una característica determinada o no. Las variables son las siguientes: 

-Booleanos: Formados por las distintas covers del coche  y por la variable que determina si la 
compañía tiene zona de expedición  o no. 

cover_3, cover_4, cover_5, cover_6, cover_7, cover_8, cover_12, cover_14, expedition_zone 

-Variables reales: El precio del coche y la variable deductible. 

vehicle_price ,  deductible, (seguro con franquicia). 

-Variables enteras: Formado por el resto de variables que indican el valor del precio 

vehicle_years, driver_holder_type, vehicle_power,driver_age,experience,vehicle_type,km, 

garage_type, years_without_accidents. 

                                                 
1* Ponemos “absoluta” ya que la comparación no va a ser totalmente igual, debido a que con un método 
intentaremos hacer la predicción ajustando los distintos parámetros, utilizando todos los datos de un archivo y 
con el otro operaremos utilizando solamente un grupo de estos en cada iteración. Además para que la 
comparación fuera absoluta el tiempo de programación de la CPU debería ser el mismo en ambos métodos, 
cosa que tampoco se cumple.  
2 *Nos referiremos a estos archivos con los nombres de train o entrenamiento y test o control indistintamente. 
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En cada uno de estos archivos tenemos N datos o seguros reales de coches que ha ofrecido la 
compañía divididos en distintas filas. Según el archivo con el que estaremos operando lo 
denominaremos N_train o N_test. 

2.2. CARACTERÍSTICAS GENERALES 

En ambos métodos, los cuales luego serán explicados más detalladamente, entrenamos primero o 
hacemos predicciones con los datos de train, obtenemos un resultado y un error comparando el precio 
obtenido con el precio real, y cambiando algunos parámetros de la función que determina el precio, 
hacemos que este error disminuya con cada iteración o paso de entrenamiento.   

Aunque los métodos sean distintos, ya que uno trabaja con redes neuronales y otro trabaja viendo el 
problema como si la variable del precio fuera una función de las otras 20 variables restantes, y además 
no se entrenan de igual manera, estos operan de forma similar, comparando los resultados del valor 
predicho del precio con el valor real y buscando un valor menor del error entre ellos con el cambio de 
los parámetros de la red neuronal o de la función de aproximación. 

Después de entrenar cada modelo con los datos en el archivo de train (como su propio nombre indica) 
obtenemos un error medio (MAE: Mean Absolute Error) y del tanto por ciento (MAPE: Mean 
Absolute Percentage Error) con los datos proporcionados en los archivos test. Esto lo podemos hacer 
al final del programa,  después de haber entrenado suficiente con nuestros datos, o mientras vamos 
entrenando, viendo la evolución del error obtenido.  

 

3. MECÁNICA ESTADÍSTICA: 

El algoritmo de este método lo escribiremos en el lenguaje de programación C, el cual lo he estado 
utilizando durante el grado y estoy bastante familiarizado con él. 

Como ya hemos dicho en el apartado anterior, en este algoritmo tratamos la variable del precio como 
una función aproximada del resto de variables que suponemos que influyen de manera distinta en la 
determinación de nuestro resultado. 

Los valores más importantes con los que trabajamos en este programa son el MAE y el MAPE con los 
que iremos viendo la evolución de nuestro entrenamiento, ya que hacen referencia al error entre el 
valor predicho del precio y el valor real. El primero es un error absoluto y el segundo es un error en 
tanto por ciento como su nombre indica. Vienen dados por las siguientes fórmulas:  

��� = � |��	
��
������� − ��	
������|�
���

 

���� = � |��	
��
������� − ��	
������|��	
������
�

���
 

Aunque durante todo el grado hemos estado trabajando con el error cuadrático medio (RMSE), en este 
método entrenaremos y operaremos con estos dos errores ya que son con los que trabajan las empresas 
de seguros y ya que los resultados obtenidos son mejores, como podemos ver en el ANEXO 3. 
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���� = �∑ !��	
��
������� − ��	
������"#���� $  

Aunque trabajaremos principalmente con el error MAPE, generalmente este lo daremos y 
representaremos en %. 

3.1. PROGRAMA PRINCIPAL. 

Lo primero que hacemos es crear dos ficheros (Evolución y Resultados), con el nombre de cada 
Ciudad especificada con la compañía y la modalidad, para poder identificarla, en los que iremos 
escribiendo los resultados obtenidos del MAE y el MAPE, tanto de los datos de entrenamiento como 
de los datos de control cada cierto número de iteraciones, para ver su evolución. 

Lo segundo que hacemos es leer los dos archivos “.csv” tanto de train como de test, pero esto lo 
hacemos de distinta manera y con dos funciones diferentes ya que con unos vamos a entrenar nuestros 
parámetros y con otros solo vamos a evaluar nuestras predicciones: 

-Lectura de datos Train: 

Leemos y guardamos todas las variables del archivo Train_Data en un tensor de tipo double:  x&N()*+,-&20-, donde denotaremos a cada variable específica como 1��, donde i se refiere al tipo de 
variable y n al número de seguro vendido de todos los N_Train proporcionados. 

Después de esto hacemos varias operaciones por columnas del tensor, determinando si alguna variable 
toma el mismo valor para todos los datos proporcionados de ese modelo o si alguna toma siempre el 
valor 0 y mostrándolo por pantalla, ya que estas variables serán inútiles para el cálculo de la función 
del precio, ya que  al ser todas iguales no ofrecerán ninguna diferencia entre el cálculo de los diversos 
precios, sin poder hacer ningún tipo de estadística con ellas.  

Ahora procedemos a convertir nuestras variables 1�� en variables normalizadas, para poder fijar los 
coeficientes de la función aproximción en un mismo rango, ya que al tener las distintas variables 
tienen distintas escalas, si lo quisiéramos hacer sin normalizarlas, también deberíamos fijar distintas 
escalas para los coeficientes. 

Primero calculamos la media de todas las columnas, significando la media de los valores que toma 
cada variable de nuestro seguro y la suma de los cuadrados: 

��23�� ≡ 567 ≡ 〈5�〉 = 1$;<��� � 1��
�=>?@A

���
 

�B� ≡ 56#CCCC ≡ 〈5�#〉 = 1$;<��� � !1��"# �=>?@A

���
 

Así podemos calcular la desviación estándar: 

E� = F〈5�#〉 − 〈5�〉# 
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Y trabajar con una nueva variable normalizada para cada variable del seguro, que tendrá una media de 
cero y desviación 1: 

G�� = 5�� − 〈5�〉E�  

Seguidamente, leemos y guardamos en un array los datos del fichero de precios y normalizamos la 
variable del mismo modo que hemos hecho para las 20 variables anteriores. 

-Lectura de datos Test: 

En este caso volvemos a leer y guardar todas las variables de los archivos Data en un tensor de tipo 

double: x′&N(IJK-&20-, donde denotaremos a cada variable específica como 1L��, donde i se refiere al 
tipo de variable y n al número de seguro vendido de todos los N_Test proporcionados. 

3.2. FUNCION DE APROXIMACIÓN. 

Inicialmente, la función que hemos escogido para determinar el precio la dividimos en una parte 
analítica, que es el desarrollo en serie de Taylor hasta el tercer término, más la suma de otros términos 
no analíticos, ya que sabemos que estos términos tienen presencia en este tipo de análisis, los cuales 
los explicamos más adelante. La fórmula de la función viene dada por la siguiente ecuación: 

M!1N, 1#, 1O … . . 1#�"
= � R SMS1�T G�

#�

��� 
+ VN W� XNG�

#�

��� 
Y � Z[� \	]!Z[^_�`
�� ×

#�

���
G�"

+ 1$;<��� � � b SMS1�S1cd G�Gc
#�

e��

#�

��� 
+ 1$;<��� V# W� X#

#�

��� 
G�GcY

+ 1$;<���# � � � b SMS1�S1cS1fd G�Gc
fg�gccg�

#�

��� 
Gf 

Donde los G�′\ son las variables de entrada normalizadas, constantes durante todo el proceso, y los 
demás parámetro multiplicativos o funcionales son variables y los que vamos a ir ajustando para 
encontrar el mínimo. 

Al multiplicar la función por  Eh�
i`^  y sumarle la media obtenida con los datos de entrenamiento, 
entrará en el rango de los precios reales y obtendremos la función de estimación del precio. 

Los  términos significan: 

• ∑ j kl
km@n G�#���� : Hace referencia a la aproximación en primer orden en torno a un mínimo de 

una función analítica en las proximidades del mínimo. También lo podemos ver como los 

distintos pesos de las distintas características de cada coche, significando que no todas 

tienen la misma importancia individualmente a la hora de determinar el precio final. 

 

• VNo∑ XNG�#���� p: Es un término no analítico que hace referencia a una función escalón en 

función de un sumatorio pesado de las distintas variables, de forma que si este supera un 
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determinado número adquiere u valor positivo y en caso contrario adquiere el mismo valor 

absoluto pero con signo negativo.   

Este término es parecido a la activación de neuronas explicada en el ANEXO 4, por ello nos 

referiremos a él como término de activación. 

 

• ∑ Z[� \	]!Z[^_�`
�� ×#���� G�": Este término nos ayuda a obtener más rápido la forma de la 

función en torno a un mínimo, ya que sabemos que en torno a este, la función posee 

términos sinusoidales.  

 

• ∑ ∑ R kl
km@kmqT G�Gc#�e��#���� : Hace referencia a la derivada parcial de segundo orden en torno al 

mínimo de la función de estimación del precio como la aproximación en segundo orden. 

También la podemos ver como las relaciones entre las distintas características del seguro dos 

a dos a la hora de determinar el precio.  

 

• V#o∑ X##���� G�Gcp : Al igual que el tercer término del sumatorio, este es un término escalón, 

pero en este caso relacionando las distintas características por parejas.  

 

• ∑ ∑ ∑ R kl
km@kmqkmrT G�Gcfg�gccg�#���� Gf: Hace referencia a la derivada parcial de tercer orden 

en torno al mínimo de la función de estimación del precio como la aproximación en el 

desarrollo en serie hasta tercer orden. También la podemos ver como las relaciones entre 

tres características del seguro cualesquiera a la hora de determinar el precio. 

Las distintas derivadas de la función, coeficientes del término sinusoidal y funciones de activación  
son variables double generadas aleatoriamente en cada iteración de entrenamiento. En caso de que 
mejoren la predicción del precio de los seguros serán sustituidas por sus valores anteriores o no, 
siguiendo un algoritmo que  explicaremos en el ANEXO 2.  

La derivada de primer orden al igual que los coeficientes J’s del término sinusoidal del sumatorio  son 
vectores con tantas componentes como características tenemos de los coches. La derivada de segundo 
orden será un Tensor 20 × 20 y la derivada de tercer orden será un Tensor 20 × 20 × 20. 

Los términos de activación son variables double. 

3.3. PROCESO DE ENTRENAMIENTO 

Vamos a entrenar a nuestro modelo en una serie de iteraciones, entendiendo entrenar como ajustar 
nuestros parámetros de la función en cada iteración, dando valores aleatorios a los distintos 
coeficientes de la función de aproximación en cada una de ellas y quedándonos con estos valores 
aleatorios nuevos si el MAPE disminuye respecto al obtenido en la iteración anterior, buscando así el 
mínimo de este error que suponemos que será parecido al obtenido con los datos Test, ya que 
pertenecen a un mismo modelo. 

Esta búsqueda del mínimo la haremos utilizando el Método de Simulated Annealing8. Por ello nuestra 
función MAPE será la energía de nuestro sistema. 
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Como no sabemos la forma que tiene nuestra energía, y  seguramente no será suave, sino que al ser 
una función de veinte variables es posible que tenga varios mínimos relativos o que presente 
discontinuidades,  no nos basta con empezar con cualquier solución e ir cambiando ligeramente la 
misma aceptando los cambios si la energía disminuye, sino que permitiremos fluctuaciones térmicas al 
sistema para que este sea capaz de recorrer toda nuestra función energía , pasar por varios mínimos 
relativos e ir buscando estos mínimos al bajar la temperatura progresivamente, siendo probablemente 
próximos al mínimo absoluto. Para ello utilizamos el Algoritmo de Metrópolis9  y utilizaremos la 
Mecánica Estadística de Boltzman10 para la probabilidad de una determinada configuración de nuestro 
sistema. 

De este modo tenemos dos parámetros que dictarán la evolución de nuestro sistema principalmente: 

-Delta (δ): Dicta el rango en el que se mueven los números aleatorios que dan valor a los coeficientes 
de la función de aproximación. 

Con el objetivo de recorrer todos los valores de nuestra función de la energía, este empezará tomando 
valores en los que los números aleatorios generados uniformemente (que darán valor a los distintos 
coeficientes de la función de aproximación) estén en el rango (-0.5,0.5) ya que recordemos que  a 
medida que pasan las iteraciones su valor irá disminuyendo linealmente, ya que suponemos que al 
encontrarnos cerca del mínimo absoluto de la función energía los cambios en los coeficientes deberán 
ser pequeños. 

-Beta (β): Hace referencia a la Temperatura en la que se encuentra nuestro sistema, concretamente es 
proporcional al inverso de la Temperatura. 

Al igual que el parámetro anterior, tiene el objetivo de permitirnos recorrer todos los valores de 
nuestra función energía. Este empezará tomando valores pequeños que significarán que estamos a una 
temperatura alta y nos permitirá recorrer un rango amplio de nuestra función, ya que debido a que la 
temperatura es alta, los valores de los coeficientes nuevos serán aceptados en el mayor de los casos 
(como vemos en el ANEXO 2). Su valor inicial deberá ser aquel que multiplicado por la variación 
energética inicial de 1 → |`�`i`}~ × ∆�`�`i`}~ ≈ 1. 

A medida que vamos iterando, su valor irá aumentando linealmente también, simulando un 
enfriamiento de nuestro sistema que haga que disminuya la aceptancia y nuestro punto se mueva en 
torno al mínimo más cercano.  

Hay un  parámetro que revisa o controla la evolución y, si es preciso, cambia el valor de los 
parámetros descritos anteriormente, este es la Aceptancia: 

-Aceptancia: La aceptancia es el cociente del número de cambios tentativos que han sido aceptados 
entre el total después de realizar un proceso sweep. 

Este proceso  significa recorrer secuencialmente el vector que guarda los términos de primer orden de 
nuestra función, correspondientes a las distintas características según el número de iteración, recorrer 
secuencialmente los Tensores por filas, siendo el número de columna aleatoria en cada iteración y dar 
un número aleatorio para cada uno de los tres índices del Tensor de Einstein.  

Sabemos cómo debe evolucionar nuestra aceptancia en la teoría. Al principio deseamos que esta sea 
casi igual que 1, ya que queremos explorar todas las configuraciones posibles o valores que puede 
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tomar nuestra función de energía, y a medida que vamos acercándonos al mínimo de nuestra función 
suponemos que esta irá disminuyendo hasta  caer casi a cero cuando estemos muy próximos del 
mínimo. De este modo, si la vamos controlando podemos ser capaces de que el sistema evolucione 
como nosotros queramos. 

Así imponemos que si esta toma valores pequeños al principio de la evolución del sistema  (lo cual no 
queremos) disminuimos un poco el valor de |, o aumentamos la energía del sistema, siendo así más 
probable que el sistema pase por distintas configuraciones. Además programamos la disminución del 
valor de | en la siguiente iteración si la acaeptancia del sweep anterior ha sido muy baja.   

También controlamos el valor del parámetro  |. Como vamos disminuyendo su valor si la aceptancia 
es demasiado baja, este puede llegar a tomar valores muy pequeños, así que acotamos su valor en  un 
mínimo.  

3.4.  EVOLUCIÓN DE LOS COEFICIENTES Y RESULTADOS GUARDADOS AL FINAL DE CADA 

ITERACIÓN 

Necesitamos partir de una configuración inicial, la cual será la dada por todos los coeficientes de la 
función de aproximación igualados a cero, con lo cual, nuestra predicción inicial del precio será para 
todos los datos Test el precio medio obtenido con los datos Train. 

Así, obtendremos un error inicial, operando con los datos de entrenamiento, del valor de la dispersión 
de nuestros datos. Para el error de Test obtendremos otro error, ya que estos tienen una media y 
desviación distinta, por lo que al dar siempre el precio medio obtenido con los datos de entrenamiento 
tendremos un resultado diferente aunque parecido, ya que los distintos datos pertenecen a un mismo 
modelo.  

Una vez que entramos en el bucle de entrenamiento nos guardamos los distintos coeficientes en un 
archivo denominado “Configuración” en el cual reescribiremos los términos obtenidos al final de cada 
iteración o proceso sweep para partir de ellos en la siguiente. 

Además de guardarnos estos coeficientes nos guardamos en el el archivo “Evolución” el valor de Beta, 
aceptancia, MAPE_Train y MAPE_Test. 

En  cada iteración comparamos los errores obtenidos con los anteriores guardándonos el error mínimo, 
tanto MAPE como MAE, obtenido con los datos de test, de forma que este será el que nos importará al 
final del entrenamiento, ya que será la mejor predicción que hemos obtenido. 

3.5. MEJORAS EN EL PROGRAMA: 

 -Al principio entrenábamos los datos con el error cuadrático medio y veíamos la evolución del 
MAPE frente al número de iteraciones. Como debíamos trabajar con este último error, ya que es con 
este con el que trabajan las empresas de seguros decidimos entrenar nuestro programa también con 
este error, obteniendo mejores resultados. 

 -Después de una serie de pruebas para ver como evolucionaban los errores frente al número de 
iteraciones y frente al número de términos escogidos en la serie de nuestra función, observamos que si 
queríamos ejecutar los archivos con un tiempo de CPU que no fuera muy alto, el valor óptimo para el 
número de iteraciones era de 1500 y entrenamos escogiendo solamente los tres primeros términos de 
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la serie de Fourier. En el ANEXO 3 podemos ver un estudio más detallado de estos aspectos y una 
evolución de entrenamiento para un modelo grande con un número elevado de iteraciones, 
entrenándolo con todos los términos de la función aproximación. 

El problema de los términos siguientes descartados es que además de multiplicar el tiempo de 
ejecución del programa, les cuesta mucho termalizar y su contribución empieza a tener efecto varias 
iteraciones después de empezar a trabajar con ellos en la estimación del resultado. 

 -Creación de programas adicionales con el objetivo de clasificar, ordenar y juntar los archivos 
obtenidos. 

 -Modificación del programa principal para la eficacia de la obtención de datos en el que en 
vez de ir compilando los distintos modelos uno por uno se le da como entrada un archivo el cual 
contiene los nombres de varios modelos y el cual ejecuta iterativamente.  

4. DEEP LEARNING: 

En este caso hemos trabajado con el lenguaje de programación Python11 para la programación de 
nuestro código, que realiza toda la gestión de los procesos, tanto de entrada y salida de datos como de 
entrenamiento y test de los modelos, utilizando las librerías de Deep Learning de Tensorflow12, 13. 

Con este lenguaje no he trabajado a lo largo de la carrera, y ha sido necesario un estudio previo para su 
entendimiento y manejo.  

En este caso, entrenaremos cada modelo con una red neuronal profunda (DNN) constituida por una 
capa externa de 20 neuronas, en la que se introducen las 20 variables de cada ejemplo del modelo, una 
capa externa, en la que obtenemos el precio estimado del seguro, y 5 capas ocultas, cada una con [150, 

75, 50, 20, 10] neuronas consecutivamente y totalmente conectadas entre ellas. Estos números han 
sido elegidos  a base de prueba y error, ya que no conocemos ningún estudio ni fórmula que dicte el 
número óptimo ni de capas  ni de neuronas para la predicción de este caso. 

En este método también devolveremos los errores definidos previamente de MAE y MAPE para 
evaluar la precisión de nuestros resultados, pero trabajaremos con el error cuadrático medio (RMSE) 
para entrenar nuestro modelo, como podemos ver en el ANEXO 5. 

Al igual que en el método anterior, trabajaremos principalmente con el error MAPE, pero este lo 

daremos en % en la representación de la mayoría de gráficas. 

4.1.  PROGRAMA PRINCIPAL 

El programa tiene distintas librerías y archivos, utilizados para el manejo de datos, explicados en el 
ANEXO 412,13,14,15,16,17,18,19. El programa principal es el archivo llamado TRAIN_MODEL.py.  

Este contiene el código para entrenar los distintos modelos, incluyendo otros archivos para cada una 
de sus distintas funcionalidades. 

Lo primero que hacemos es indicar qué modelo vamos a entrenar, especificando su nombre, y crear 
una carpeta con su nombre en un determinado directorio, en la que guardamos los distintos parámetros 
de la red neuronal que vamos entrenando. 



 

14 
 

Después creamos un archivo llamado “estimación_’nombre del modelo’.dat” en el que guardaremos 
los valores del número de datos de entrenamiento, de testeo y los valores del MAPE, en tanto por 
ciento, y del MAE, obtenidos en la última iteración. 

Mediante el archivo IRIS_DATA.py accedemos a cada archivo de nuestro modelo, obteniendo así 
cuatro variables DataFrame con los datos de cada archivo (train_x, train_y, test_x, test_y).   

Seguidamente, definimos el número de iteraciones con el que vamos a entrenar nuestro modelo, 
siendo este distinto para cada modelo, en contra que en el método estadístico en el que era el mismo 
para todos los modelo. Su razón la podemos ver en el ANEXO 6.  

Así pues, el número de iteraciones depende del número de datos con el que vayamos a entrenar, 
teniendo la ecuación siguiente: 

����]_\�	�\ =  �]�!$_����] ∗ 25/���
ℎ_\��	" 
Donde la función �]�!" devuelve el número entero del número real entre corchetes, restándole a este 
último su parte decimal, $_����] es el número de datos de entrenamiento y ���
ℎ_\��	 el número de 
datos que escogemos en cada “batch” de entrenamiento del modelo, siendo este número igual para 
todos los modelos y teniendo un valor de 230.  

Una vez que tenemos definidas todas estas variables pasamos a definir nuestra red neuronal, utilizando 
el archivo LOAD_MODEL.py y utilizando otra vez el archivo IRIS_DATA.py, entrenamos nuestros 
datos de entrenamiento y obtenemos las predicciones, dadas por la red, de los datos de test. 

Estas predicciones las guardamos en un array que utilizamos para compararlas con los datos reales de 
los precios.  

Finalmente, calculamos los errores MAPE y MAE y guardamos estas variables en el archivo 
“estimación_nombre del modelo.dat”. 

4.2. ENTRENAMIENTO DE LA RED: 

En este archivo también especificamos el optimizador con el que trabajará la red neuronal, que en 
nuestro caso será Adagrad optimizer. Al igual que en el método anterior, lo que intentamos hacer es 
minimizar el valor de una función, llamada función de coste, que explicamos en el ANEXO 520, 21, 22. 

4.2.1. ADAGRAD OPTIMIZER23, 24 : 

Este optimizador se basa en el método del descenso del gradiente y especifica un buen ratio de 
aprendizaje. 
 
En mecánica estadística este ratio suele ser |, definido en el la explicación del entrenamiento del 
método estadístico, el cual es inversamente proporcional a la temperatura. 
 
Otro método seguro de hacerlo, es escoger, para este ratio, el valor de una constante dividida por el 
tiempo, o computacionalmente hablando, el número de iteraciones que llevamos entrenando a nuestro 

modelo: � = i
�  , así la función de coste convergerá, pero esta asignación no es muy buena, ya que el 

proceso es muy lento. 
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En el algoritmo Adagrad el ratio depende de la concavidad de la función, de forma que si estamos en 
un punto donde la función es muy cóncava, indicando que estamos cerca de un mínimo, el ratio será 
muy pequeño, y si la función es casi plana, el ratio será muy grande.  
 
Si trabajamos con varias variables, cada variable (o dimensión de la función) debe tener una tasa de 
aprendizaje distinta, ya que una función multidimensional no tiene el mismo gradiente para cada 
dimensión. 
 

Empezamos con un vector s⃗ que inicializamos a cero: (s⃗K�� = 0�⃗ ) 

En cada iteración hacemos la operación:  \⃗��N = s⃗K + o∇��⃗ F���(��p#.  
Donde ∇��⃗ F���(�� es el gradiente de la función de coste en el tiempo t y o∇��⃗ F���(��p#

 el vector 

∇��⃗ F���(�� con cada componente al cuadrado, no la multiplicación de vectores.  

Así la variación de cada peso de cada variable evolucionará en cada iteración de la siguiente 

manera: ���⃗ ��N = ���⃗ � − �∇��⃗ �������������⃗ �   

Donde � es la tasa de aprendizaje inicial y ¡ es un valor pequeño para no dividir por cero en la primera 

iteración cuando s⃗K�� = 0�⃗ . 
 
Esta ecuación significa que cuando el gradiente sea muy grande, el paso va a ser muy pequeño, debido 
a que está dividiendo, y cuando nos encontremos en superficies muy inclinadas, daremos pasos 
pequeños hacia el mínimo de la función. 
 
Como trabajamos en muchas dimensiones, puede ser que los valores del gradiente en estas sean muy 
dispares, dando pasos largos en una determinada dirección y cortos en otras en una misma iteración. 

4.3. MEJORAS EN EL PROGRAMA: 

Como más tarde veremos, este programa no funciona del todo bien para los modelos que tienen pocos 
datos de entrenamiento, y siendo falsa también la suposición de que el valor más pequeño obtenido del 
MAPE es el de la última iteración del entrenamiento. 

Para estudiar por qué con los archivos pequeños obtenemos unos valores altos del MAPE y observar 
como entrena la red neuronal hemos realizado una serie de modificaciones en el archivo 
TRAIN_MODEL.py: 

 -Predicción tanto de los precios del archivo test como del archivo train  y cálculo de las 
variables MAPE y MAE de ambos archivos, para ver la evolución de estos dos dependiendo del 
número de iteraciones.  

 - Creación de un archivo llamado “Evolución_nombre del modelo.dat”, en el que iremos 
guardando los errores MAPE y MAE tanto de los archivos de entrenamiento como de testeo cada 
cierto número de iteraciones, denominado “save_steps”, que tendrá el valor de: 

save_steps = �]� Rtrain_steps50 T 
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Ya que queremos dibujar una gráfica en la que se vea bien la evolución de nuestro entrenamiento, 
considerando así que con 50 puntos (o alguno más, ya que despreciamos el valor decimal del cociente) 
tendremos una buena visualización de esta. 

 -Adición de dos nuevas variables en el programa llamadas: error_minimo y precio_minimo. 

En cada iteración evaluaremos los valores de MAPE y MAE de los archivos test guardándonos estos 
valores en las variables definidas si el valor del MAPE es el mínimo encontrado y si el número de 
iteraciones es mayor que cierto número ya que al principio estos errores pueden depender mucho del 
“batch” utilizado para la predicción. 

 -Creación de un nuevo archivo Python llamado “EJECUTA_VARIOS_MODELOS.py” para 
la eficacia de la obtención de datos.  

Este archivo ejecuta sucesivamente varios modelos, leyendo, de un archivo de texto, el nombre de 
estos y guardando, en otro archivo de texto, el nombre del modelo entrenado, el número de datos de 
enternamiento y de test, y los errores mínimos de MAPE y MAE del archivo de test, obtenidos 
separando los datos de distintos modelos en distintas filas. 

5. COMPARACIÓN DE RESULTADOS OBTENIDOS POR LOS DOS METODOS: 

En este apartado procederemos a la comparación entre los dos métodos explicados anteriormente, 
analizaremos los resultados y compararemos sus entrenamientos y valores de los resultados. 
 
Para ello, primero dibujamos los resultados obtenidos del error MAPE  mínimo para todas las 
ciudades, dependiendo del número de datos con que hayamos entrenado a nuestro “modelo”, ya que 
cuantos más datos de entrenamiento tengamos, mejor estadística podremos hacer y mejores 
predicciones obtendremos. Debemos indicar que, aunque en el método de Mecánica estadística sí que 
nos quedamos con el error minimo obtenido en la evolución del proceso, en el método de 
Deep_Learning nos quedamos con el error final, debido a que suponemos que este será el mínimo, 
aunque más adelante veremos que no es así. 
 
Los resultados han sido los mostrados en la siguiente figura: 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figura 5.1: En esta figura podemos ver los valores mínimos obtenidos del error MAPE con los dos métodos en 
función del número de datos con el que se entrena cada modelo dibujando el eje x en escala logarítmica para su mejor 
visualización.  

 



 

17 
 

Observando la figura, podemos ver que los datos obtenidos con el método de Deep Learning son 
mucho menos precisos que los obtenidos por el estadístico (Mecánica Estadística), cuando entrenamos 
con pocos datos. Esta diferencia va disminuyendo a medida que aumentamos el número de datos de 
entrenamiento, hasta ser algo menores los obtenidos por el primer método mencionado. 
 
Si observamos más detalladamente la figura, vemos que los errores empiezan a empeorar a partir de 
un número de unos 10000 datos de entrenamiento aproximadamente. 
 
Por regla general vemos que en los dos métodos se cumple el hecho de que obtengamos mejores 
resultados dependiendo del número de datos con el que entrenamos, estando en concordancia con la 
teoría de que al tener más datos podemos realizar una estadística mejor. 

        
 
 
 
 
 
 
 
 
 
 
 

Figura 5.2: En esta figura podemos ver los valores mínimos obtenidos del MAE con los dos métodos en función del 
número de datos con el que se entrena cada modelo. También vemos una media del error de cada uno de los dos 
grupos de datos. 

 
Con el valor del MAE pasa lo mismo, pero este error no se ve tan claro, ya que es el error absoluto y la 
diferencia entre estos comparada con el valor real no se aprecia tanto en la figura  como en la anterior. 
 
Como sabemos que no es lo mismo obtener un error determinado entrenando con un número de 
N_Train bajo (2.000 primas), que con uno alto (40.000 primas), teniendo más relevancia el segundo, 
ya que ha sido mejor calculado, debemos realizar la media ponderada de los resultados obtenidos 
mediante ambos métodos: 

 

〈����〉 = ∑ ����� × $_§���]��_¨��������� ∑ $_§���]��_¨���������
 

〈���〉 = ∑ ���� × $_§���]��_¨���������∑ $_§���]��_¨���������
 

 
Teniendo unos valores de: 
 〈����〉¨�©á��©� 
����í���©� = !16.95 ± 0.91"%     〈����〉°��± ~��<���² = !18.32 ± 0.87"% 〈���〉¨�©á��©� 
����í���©� = !101.7 ± 6.1" €           〈���〉°��± ~��<���² = !104.9 ± 5.8" € 

 
Y obteniendo una diferencia entre los métodos de:  
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�¨}h
 = 〈����〉¨�©á��©� 
����í���©� −  〈����〉°��± ~��<���²〈����〉¨�©á��©� 
����í���©� × 100 ≅ 8% 

�¨}
 = 〈���〉¨�©á��©� 
����í���©� −  〈���〉°��± ~��<���²〈���〉¨�©á��©� 
����í���©� × 100 ≅ 2% 

 
Así pues, aunque ambos métodos nos dan resultados bastante parecidos, sabemos que el método de 
redes neuronales no funciona muy bien cuando tenemos pocos datos de entrenamiento, por ello 
pasamos a estudiarlo.  
 
5.1 DIFERENCIAS EN LA EVOLUCIÓN DE DISTINTOS MODELOS COMPARANDO LOS DOS MÉTODOS 

Aunque en este apartado veremos los distintos resultados fijándonos solo en un modelo para cada 
clase, en el ANEXO 7 proporcionamos más figuras en las que podemos ver más ejemplos. 
 
MODELOS GRANDES 
Con modelos grandes nos referimos a modelos que contienen un número de datos de entrenamiento 
mayor que 20.000. Veamos cuál es su evolución utilizando los dos métodos: 

 
Figura 5.1.1: Representación de la evolución del modelo Málaga c1 m3 con 100.000 datos de entrenamiento, en el 
que vemos que el método de D.L. llega a errores más bajos que el método M.E. 

 

En esta figura vemos que los modelos que contienen un número grande de datos  de entrenamiento, 
dan mejores resultados con el método de Deep Learning, como nos esperábamos al ver la Figura 5.1. 
El valor del MAPE va disminuyendo su valor progresivamente hasta alcanzar un mínimo al final del 
entrenamiento.  
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MODELOS MEDIOS 
Con modelos medios nos referimos a modelos desde 3.000 hasta 20.000 datos de entrenamiento: 

 
Figura 5.1.2: Representación de la evolución del modelo  Cantabria c2 m3 con 5.000 datos de entrenamiento, en el que 
vemos una tendencia decreciente, por lo que un aumento de pasos de entrenamiento podría haber disminuido el error. 

 
En esta figura apreciamos que estos modelos entrenados con el método de Deep Learning tienen 
muchas menos iteraciones de entrenamiento que los entrenados con el otro método. 
Observamos que, aunque hay modelos con los que parece que ese número de iteraciones es suficiente, 
ya que aparentemente no disminuye mucho el valor del MAPE, hay otros en los que van 
disminuyendo progresivamente y no llegan a un estado estable en las iteraciones finales, dando la 
sensación de que si hubieran sido entrenados con un número de iteraciones mayor, hubiéramos 
obtenido mejores resultados. 
 
MODELOS PEQUEÑOS 

Con modelos medios nos referimos a modelos con 2.000 o menos  datos de entrenamiento: 
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Figura 5.1.3 : Representación de la evolución del modelo Valladolid c2 m6 con 1.900 datos de entrenamiento. 
 
 

 

Al igual que en el caso anterior, los modelos entrenados con el método de Deep Learning tienen 
muchas menos iteraciones de entrenamiento y volvemos a tener casos en los que el valor mínimo del 
MAPE obtenido podría haber disminuido si hubiéramos utilizado un número mayor de iteraciones, ya 
que su evolución presenta una tendencia descendente en las últimas. 
 
Así, nos damos cuenta de que un aumento en el número de iteraciones de entrenamiento, para los 
archivos con menos de 20.000 datos, puede ser relevante en la mejora de nuestras predicciones  
obtenidas con el método de Deep Learning, y que este número puede ser un factor un condicionante 
para que los resultados de Deep Learning sean peores cuanto menor es el archivo. 
 
Esto nos indica que nuestra suposición de que el entrenamiento para los archivos pequeños necesite 
menos iteraciones no sea del todo cierta y que la asignación proporcional de los pasos de 
entrenamiento al número de datos de cada modelo no sea muy buena.  
 
Por otro lado, la suposición de que el error desciende conforme al entrenamiento también es falsa, ya 
que, como podemos comprobar,  vemos que hay modelos en los que el valor del MAPE no es 
continuamente descendente, y en estos casos el valor final obtenido no será el mínimo. Por ello, otro 
factor que nos ayudaría a obtener mejores resultados con el método de Deep Learning sería escoger el 
valor mínimo del MAPE obtenido en la evolución, en vez del último obtenido. 
 
Un aspecto característico de las figuras, es que en algunas obtenemos un valor del MAPE inicial 
mayor en los archivos Test que en los Train. Esto puede suceder si la dispersión de los precios del 
archivo de control es menor que la del archivo de entrenamiento y si el precio medio de los datos de 
entrenamiento queda entre el rango de los precios de control, echo bastante probable, ya que tenemos 
menos datos en los archivos de control que en los de entrenamiento, y estos son muy parecidos unos 
de los otros, haciendo posible las dos condiciones dichas anteriormente. 
 
Otro aspecto que presentan es que los errores iniciales con Deep Learning son mucho mayores que los 

del método estadíctico. Esto es debido a que con este segundo método hacemos una aproximación 
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inicial, en la que estimamos que el valor del precio de los datos de control va a ser la media 
obtenida con los datos de entrenamiento, y con el primer método no hacemos ninguna, 
inicializando todos los parámetros de la red a cero.  
 
Por último, analizando las gráficas, vemos que la evolución del método estadístico concuerda con el 
algoritmo establecido, ya que generalmente, el valor da una disminución brusca al añadir el segundo 
término (término de activación) en torno a las 350 iteraciones, indicando que este es un factor clave 
para la estimación final, y otra más suave al añadir el de Fourier, en torno a las 1000 iteraciones.  
 
5.1.1   COMPARACIÓN DE LA EVOLUCIÓN CON DEEP LEARNING DE  DISTINTOS MODELOS  

 
         Figura 5.1.4 : Evolución con el método Deep Learning de distintos modelos con tamaños diferentes. 

 
En esta gráfica hemos dibujado distintos modelos entrenados con Deep Learning y vemos que 
probablemente la asignación del número de iteraciones sea el factor más determinante en el hecho de 
que los errores obtenidos de modelos pequeños con este método sea peor que los obtenidos con el 
método estadístico. 
 
5.2 EVOLUCIÓN DEL MAPE AUMENTANDO EL NÚMERO DE PASOS DE ENTRANEMIENTO 

Debido a lo dicho en los dos apartados anteriores vamos a cambiar el algoritmo de nuestro código de 
Deep Learning, asignando un número de 1500 iteraciones  (de igual manera que en el método 
estadístico):  

����]_\�	�\ =  1500 

Vamos a comparar estas evoluciones con las obtenidas en el apartado anterior y vamos a ver si este es 
un factor relevante en la determinación del error. Este proceso lo vamos a hacer solo con los archivos 
medios y pequeños, ya que hemos visto que con los grandes hemos obtenido resultados satisfactorios. 
Los resultados han sido los siguientes: 
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MODELOS MEDIOS 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figura 5.2.1 : Representación de la evolución del MAPE Train del modelo Cantabria c2 m3 con el método D.L. 
tomando 1500 iterciones de   entrenamiento (dibujado en morado) y de las evoluciones representadas en el apartado 
anterior (dibujando M.E. en verde azulado y D.L. anterior en rojo). 

 

 
Figura 5.2.2: Representación de la evolución del MAPE Test del modelo Cantabria c2 m3 con el método D.L. tomando 
1500 iterciones de entrenamiento (dibujado en morado) y de las evoluciones representadas en el apartado anterior 
(dibujando M.E. en verde azulado y D.L. anterior en rojo). 
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 MODELOS PEQUEÑOS: 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figura 5.2.3 : Representación de la evolución del MAPE Train del modelo Valladolid c2 m6 con el método D.L. 
tomando 1500 iterciones de entrenamiento (dibujado en morado) y de las evoluciones representadas en el apartado 
anterior (dibujando M.E. en verde azulado y D.L. anterior en rojo). 
 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 

Figura 5.2.4 : Representación de la evolución del MAPE Test del modelo Valladolid c2 m6 con el método D.L. 
tomando 1500 iterciones de entrenamiento (dibujado en morado) y de las evoluciones representadas en el apartado 
anterior (dibujando M.E. en verde azulado y D.L. anterior en rojo). 

 
 
Con estas gráficas comprobamos que, efectivamente, el aumento del número de iteraciones de 
entrenamiento es un factor clave para la mejor predicción del precio y que ambas suposiciones 
tomadas de las redes neuronales han sido falsas, obteniendo una mejora con el seguimiento de la 
evolución del MAPE, ya que para algunos modelos obtenemos valores mínimos en pasos intermedios 
del entrenamiento. 
 
 Estas las hemos hecho ya que, por la propia definición de la red neuronal, esta obtiene mejores 
resultados cuantos más datos de entrenamiento tenga, cuanto más homogéneos sean estos comparados 
con los de test y cuantas más iteraciones.  
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También las hemos hecho porque, en una primera prueba vimos que los valores obtenidos mediante 
este método no variaban mucho al multiplicar el número de iteraciones por cinco, como se puede ver 
en el ANEXO 6. 
 
5.3 EVOLUCIÓN DEL MAPE PARA ARCHIVOS QUE HAN DADO UN VALOR GRANDE 

Aunque en las gráficas del apartado anterior hemos visto que hay casos en los que el valor del MAPE 
toma valores menores que el valor final, su valor final ha mejorado considerablemente con el aumento 
de iteraciones, por ello, en nuestro caso vamos a comparar solamente los resultados finales obtenidos 
cambiando el número de iteraciones de entrenamiento para los modelos con los que hemos obtenido 
un valor del MAPE con el método de Deep Learning mayor que el 25%, ya que este ha sido 
aproximadamente el valor máximo obtenido con el método de Mecánica Estadística. 
 
Esta decisión también la tomamos debido a que el seguimiento del entrenamiento cuesta ≅ 50 veces 
más de computar,  debido a que el proceso más costoso con los archivos de Python es cargar las 
librerías y carpetas en las que almacenamos los valores de los distintos parámetros, y esto lo 
realizamos cada vez que dibujamos el valor del MAPE. Al dibujar cincuenta valores distintos del 
MAPE en cada proceso de entrenamiento, el tiempo en realizar el entrenamiento siguiendo la 
evolución es ≅ 50 veces más largo. 

 
Los resultados los vamos a comparar tanto con los propios del método de Deep Learning, obtenidos 
anteriormente, como con los obtenidos con el método de Mecánica Estadística. Estos son los 
siguientes: 

 

 
Figura 5.3.1: Comparación de los datos obtenidos del MAPE fijando el número de pasos de entrenamiento a 1500, con 
los resultados anteriores.  

 

Vemos que los valores obtenidos han mejorado considerablemente obteniendo unos valores de medias 
ponderadas de: 
 〈����〉°.~.  }���� = 29.27 ± 4.88 %                   〈����〉°.~.  N¹�� `��< = 22.83 ± 2.76 % 〈����〉¨�©á��©� 
����í���©� = 20.54 ± 3.58 % 
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Obteniendo así una diferencia entre errores de: 

���º�°.~.L� = 〈����〉°.~.  }���� − 〈����〉°.~.   N¹�� `��<〈����〉°.~.   N¹�� `��< × 100 = 28.21% 

 

���º�°.~.  }�;
» = 〈����〉°.~.  }���� − 〈����〉¨�©á��©� 
����í���©�〈����〉¨�©á��©� 
����í���©� × 100 = 42.51% 

���º�°.~.  N¹�� `;
� = 〈����〉°.~.   N¹�� `��< − 〈����〉¨�©á��©� 
����í���©�〈����〉¨�©á��©� 
����í���©� × 100 = 11.15% 

 
De este modo, hemos disminuido el error relativo de un 40% a un 10% aproximadamente 
comparando los datos con los obtenidos con el método estadístico, lo que significa que, aunque siguen 
siendo algo peores que los del otro método, incrementando el número de iteraciones hemos 
disminuido cuatro veces la diferencia entre estos. 
 
6 CONCLUSIONES Y LÍNEAS FUTURAS: 

Después del estudio y comparación de los datos obtenidos por ambos métodos, llegamos a la 
conclusión de que estos son muy parecidos, obteniendo medias ponderadas similares, con un error 
relativo menor que el 10%. Siendo algo peores los del método de Deep Learning  cuando tenemos 
pocos datos de entrenamiento y mejorando conforme aumenta el número de estos datos hasta obtener 
errores más bajos que el otro método.  
 
También se han visto distintos factores que influían en los malos resultados obtenidos con el método 
D.L. siendo el más relevante el número de iteraciones de entrenamiento. 
 
Para la mejora de estos resultados se podría hacer una mezcla homogénea de datos de entrenamiento y 
control sin estar separados ordenadamente ya que puede haber un aumento o disminución en el valor 
del seguro de los coches dependiendo del mes o año en que se hayan realizado. 
 
Además, se podría buscar un número óptimo de iteraciones de entrenamiento de la red, un seguimiento 
de la evolución de los errores obtenidos de control quedándonos con el mínimo, en lugar de escoger el 
final y distintas pruebas con otros valores de neuronas en cada capa y otro número de capas. 
  
Del mismo modo, podríamos aumentar el número de iteraciones del método estadístico e incluir los 
distintos términos de la función de aproximación. Todo esto teniendo en cuenta el tiempo de CPU, 
dado que el tiempo de procesamiento debe ser similar. 
 
Por último, podríamos estudiar los datos teniendo en cuenta en qué época del més o año se han 
vendido, teniendo en cuenta las distintas ofertas que realiza la compañía al final de més o en periodos 
de vacaciones y rebajas. 
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