
ANEXOS 
 

ANEXO 1: TIPOS DE REDES NEURONALES4. 

Las redes neuronales se dividen en diferentes tipos según su estructura y funcionamiento 
pudiendo diferenciarlas en tres tipos más comunes: 

-Red Neuronal Profunda (Deep Neural Net: DNN):  

Esta red está formada por distintas capas neuronales, teniendo cada una de ellas un número 
determinado de neuronas y dividiéndose en tres tipos principales, como indica la Figura 1.1. 

Una capa de entrada en la cual introducimos los datos que tenemos.  
Una o varias capas ocultas, las cuales establecen las distintas relaciones entre las distintas 
variables de nuestro modelo.  

Y por último una capa de salida, la cual realiza la predicción del resultado final según los 
distintos valores de las variables de la capa de entrada y las correlaciones que se hayan dado 
en las capas ocultas. 

 
 
 
 
 
 
 
 
 

Figura A1.1: Representación de una red neuronal profunda: DNN 
 

-Red Neuronal Convolucional5 (CNN): 
Usualmente utilizada para el procesamiento de texto, pero su uso más común es el 
procesamiento o reconocimiento de imágenes. 
Tiene una estructura similar a la anterior, pero en la capa oculta se realizan operaciones de 
convoluciones, para obtener características importantes de la imagen de entrada como 
detección de bordes, afilado, reconocimiento de figuras, desenfoque  reconocimiento de 
determinados elementos  y max-poling6 o conversión de la imagen en otra más simple pero 
que siga teniendo las características más importantes. 

 
 
 
 
 
 

Figura A1.2: Representación esquemática de los dos procesos principales que se dan en las redes convolucionales que son el 
proceso de convolución y  max-pooling. 



-Red Neuronal Recurrente (RNN): 
Esta se utiliza cuando los datos con los que operamos son secuenciales, lo que significa que 
hay una correlación temporal entre ellos, utilizándose mucho para texto, ya que este tiene un 
orden secuencial. 
Presenta una estructura similar al primer tipo, en la que la salida de las capas ocultas alimenta 
de nuevo a la capa oculta, ayudando así a que la red tenga una noción de lo que sucedió antes. 

 
FIGURA A1.3: Representación esquemática del proceso de recurrencia que se da en las redes neuronales recurrentes. 
 
Gracias a  este modelo han surgido técnicas como el reconocimiento de voz, reconocimiento 
facial, aplicaciones e interfaces en la Web como recomendación de vídeos en determinadas 
páginas de la Web o publicidad personalizada según las últimas búsquedas o preferencias, 
búsqueda de artículos o información mediante palabras clave e interacción mediante la voz 
con nuestros dispositivos. 
 
En nuestro caso vamos a utilizar un tipo DNN llamado Deep Feedforward Net (o red 
totalmente conectada o full-conected), que se carcteriza porque la salida de la función de la 
primera capa es la entrada a la segunda capa, esa salida es la entrada a la tercera capa y así 
sucesivamente. 
 
A1.1 CAPAS OCULTAS DE LA RED NEURONAL: 
Cuanta más cantidad de capas, más matizada puede ser la toma de decisiones, lo cual quiere 
decir que más conexiones podremos establecer entre las distintas variables o más 
correlaciones entre ellas, lo que es algo parecido a los términos del desarrollo en serie de 
Taylor del método estadístico. 
Aunque hay casos en los que se ha estudiado cuál es el número óptimo de neuronas o capas 
que posea la red neuronal, en nuestro caso no lo hay, lo que supondrá una elección de estas a 
base de prueba y error. 
 
 
 
 
 
 
 
 
 
 



ANEXO 2: ACEPTANCIA DE CAMBIOS O EVOLUCION DE LA 
CONFIGURACIÓN  

Como ya hemos dicho en un apartado anterior, supondremos que nuestro sistema sigue la 
Mecánica Estadística siguiendo la probabilidad de aparición de una determinada 
configuración la distribución de Boltzman: 
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Siendo � la constante de Boltzman y �� la configuración obtenida en un tiempo t, 
significando  t una determinada iteración. 

Para la aceptancia o no de la nueva configuración dada por los coeficientes de nuestra función 
de aproximación utilizamos el método de Metrópolis ya que si suponemos la distribución 
indicada anteriormente, aunque no conozcamos la probabilidad de una determinada 
configuración sí que conocemos la relativa o el cociente entre esta y la obtenida por otra 
configuración cualquiera. El método viene dado por los siguientes pasos: 

1. Partimos de una configuración �� 

2. Calculamos su probabilidad relativa ����� 

3. Calculamos otra configuración aleatoria ���
 y volvemos a calcular su probabilidad relativa 

�����
�. 

4. Calculamos el cociente de ambas probabilidades: � = �������
�����  

5. Generamos un número aleatorio � en el intervalo [0, 1] uniformemente. 

6. Si  � > �, elegimos la configuración ���
, si no, nos quedamos con la anterior 

7. Volvemos al paso 3 sucesivamente tomando como �� la elegida en el paso 6. 

Vemos que si �����
� > �����, aceptaremos siempre el cambio ya que el cociente será mayor 
que uno de manera que si la probabilidad de la configuración nueva es mayor aceptaremos el 
cambio. En caso de que  �����
� < ����� también hay cierta probabilidad de aceptar el 
cambio, dependiendo del cociente entre probabilidades y el número aleatorio generado �. 

Podemos ver que estas probabilidades dependerán del valor de � escogido, de manera que si 
es muy próximo a cero la exponencial se podrá aproximar a la unidad siendo así casi todas las 
configuraciones igual de probables y aceptando el cambio en casi todas las iteraciones. 

Nosotros no queremos saber la distribución de la energía sino hallar el valor más pequeño de 
esta, por lo que nuestro algoritmo es algo más simple sin necesidad de guardar nuestras 
configuraciones sino que solo avanzaremos por estas llegando y guardándonos el punto 
mínimo alcanzado de la energía que es el equivalente a la probabilidad máxima de 
determinada configuración.   

Cuando hablamos de configuración nueva nos referimos a la configuración dada después de 
un proceso sweep explicado en el apartado 3.3 en el que el cambio en cada índice de los 



coeficientes de la funicón aproximada sí que se realiza de forma secuencial, pero los nuevos 
coeficientes son generados aleatoriamente de forma uniforme en un rango determinado. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



ANEXO 3: SELECCIÓN DE TÉRMINOS Y NÚMERO DE ITERACIONES DE LAS 
SIMULACIONES CON M.E. 

Hemos establecido el número de iteraciones  y el número de términos de la función 
aproximación a escoger para la estimación de nuestros datos después de haber realizado 
varias pruebas. En estas nos hemos basado tanto en los mejores resultados obtenidos como en 
un tiempo aceptable de compilación de nuestro programa. 
 
Hemos decidido que el número óptimo para nuestro entrenamiento sea un número de 1500 
iteraciones y operar solamente con los tres primeros términos de la función de aproximación.  
 
Vemos algunas gráficas que lo ilustren:  
 
Primero hemos entrenado con el error cuadrático medio, llamado “DELTA”, y con este 
hemos estudiado la influencia en los resultados de la evolución del error con la adicción del 
término de activación: 

Figura A3.1: Representación de la evolución del error de un mismo modelo escogiendo tres números distintos de 
iteraciones y divididas en dos grupos. Uno en el que solo utilizamos el primer término de la función de aproximación, 
con el que ajustamos los distintos pesos de cada variable para la estimación del precio, y un segundo en el que 
tenemos en cuenta el término de activación, empezando a iterar con este cuando llevaos 350 pasos. 
 

En esta gráfica podemos ver una mejora notable e inmediata al empezar a operar con el 
segundo término, afirmando así que existe un término de sesgo, estableciendo una función 
escalón de altura variable en función de un sumatorio pesado de las distintas variables. 
 
Después, hemos realizado pruebas para ver si mejorábamos nuestras predicciones 
estableciendo como energía de nuestro sistema el error con el que trabajan las empresas y 
error que dábamos como solución. Esto quiere decir que, ya que damos la solución del 
MAPE, podemos entrenarlo tomando este error como energía de nuestro sistema, y no el error 
cuadrático medio con el que trabajamos primeramente:  



 

Figura A3.2: Dependencia en la evolución del MAPE de un mismo modelo, tomando como energía el propio       
MAPE o el error cuadrático medio (RMSE) convencional. En ambas representaciones utilizamos 1500 iteraciones y 
empezamos a operar con el segundo término cuando llevamos 200 pasos de entrenamiento. 

 
Seguidamente, hemos pasado a estudiar la trascendencia del resto de términos, viendo si 
añadiendo alguno de estos podemos mejorar nuestros resultados significativamente. 
 

 
Figura A3.3: Dependencia en la evolución del MAPE de un mismo modelo utilizando en ambas el término de 
activación a partir de los 200 pasos de entrenamiento y en una de ellas el término de Fourier a partir de los 1000. En 
ambas representaciones utilizamos 1500 iteraciones. 

 



 
Figura A3.4 : Dependencia en la evolución del MAPE de un mismo modelo utilizando en las tres evoluciones el 
término de activación a partir de los 200 pasos de entrenamiento, en una de ellas el término de Fourier a partir de 
los 1000 en otra el término de segundo orden en la expansión de la función en serie de Taylor. Utilizamos 1500 
iteraciones en los tres casos. 

 
Aunque las evoluciones son bastante parecidas, sí que podemos apreciar una pequeña mejoría 
en la obtención de un mínimo si añadimos el término de Fourier o la segunda derivada parcial 
(tensor que relaciona las variables dos a dos), obteniendo resultados mínimos parecidos. 
 
En nuestro caso hemos decidido operar añadiendo solo el término de Fourier, ya que el 
tiempo de ejecución del programa se multiplica por 10 si añadimos el término de segundo 
orden. 
 
Haciendo varias pruebas para modelos de distinto tamaño, hemos obtenido unos resultados 
similares, por ello hemos establecido el mismo número de términos y de iteraciones para 
todos ellos. 
 
Finalmente, con estos términos y número de iteraciones escogidos, cada evolución de los 
distintos modelos ha tardado una media de 10 minutos de ejecución, (variando mucho el 
tiempo entre esta según el número de datos que contenía cada modelo) y como tenemos 489 
modelos distintos, tardando unos 3 días en la obtención de los distintos resultados. 
 
Aunque con el método D.L. la obtención de resultados es más rápida, ya que no guardamos 
datos intermedios, sino que nos quedamos con el resultado final, al necesitar ver la evolución 
de los resultados y guardar 50 datos en cada entrenamiento, el tiempo de iteración se 
multiplicaba por 50, dando una media para el tiempo de ejecución, de algo más de media 
hora.  
 
Por este motivo en el apartado 7.3 solo se han dado los resultados finales al aumentar el 
número de iteraciones de entrenamiento para los modelos que no nos dieron un buen 
resultado. 
 
 
 
 
 



A3.1 COMPARACION EVOLUCIÓN TENIENDO EN CUENTA MÁS TÉRMINOS DE 
LA FUNCIÓN 
 
Si hubiéramos dispuesto de más tiempo y nuestro objetivo hubiera sido el de obtener datos 
mucho más precisos y llegar a ver las distintas relaciones entre las variables de la estimación 
del precio de un seguro, podríamos haber añadido más términos en la función de 
aproximación del método de Mecánica Estadística y aumentado el número de iteraciones. 
 
Aunque la influencia de los primeros términos la podíamos ver casi inmediatamente después 
de operar con ellos, las distintas relaciones entre los valores de las distintas variables tienen 
cierto tiempo de estabilización. Al principio incluso empeoran nuestros resultados cuando 
empezamos a entrenar con ellas, pero luego, después de un tiempo empiezan a tomar 
relevancia en la evolución y empiezan a notarse sus efectos llegando a disminuir el error 
bastante. 
 
Aquí podemos ver un ejemplo de esto: 
 

 
Figura A3.5: Dependencia en la evolución del MAPE tanto de train como de test de un mismo modelo utilizando 
80000 pasos de entrenamiento, ejecución que duró algo más de una semana. En esta utilizamos todos los términos 
de la función de aproximación y podemos ver su efecto claramente. Los términos se han empezado a utilizar en las 
iteraciones 4000 (activación), 8000 (Fourier), 16000 (Tensor), 24000 (Tensor de activación) y 40000 (Einstein). 
Vemos que aunque el efecto de la adicción de los dos primeros términos es brusca e inmediata, el de los demás 
necesita un proceso de estabilización y en cuanto esto sucede empezamos a ver la disminución progresiva del error.  

 
 
 
 
 
 
 
 
 
 
 
 



ANEXO 4: LIBRERÍAS Y ARCHIVOS COMPLEMENTARIOS. 
 
A4.1 LIBRERÍAS UTILIZADAS 

Además da trabajar con el lenguaje de programación Python, en este método hemos incluido 
4 librerías que nos ayudan a manejar nuestros datos: 

• TENSORFLOW12,13 : 

Es una librería de código libre para Machine Learning a través de un rango de tareas.  Está 
basado en redes neuronales de aprendizaje profundo y fue desarrollado por Google para 
satisfacer sus necesidades a partir de redes neuronales artificiales. 

• PANDAS14: 

Es una librería de Python para el análisis de datos que cuenta con las estructuras de datos que 
necesitamos para limpiar los datos en bruto y que son aptos para el análisis. 

Tiene dos estructuras de datos principales: 

-Series: Son arrays unidimensionales con indexación (arrays con índice o etiquetados) 

-DataFrame: Son estructuras de datos similares a las tablas de bases de datos relacionales 
como SQL. 

Esta librería también incluye funciones para leer datos a partir de diferentes formatos como 
texto, excell y csv. 

• NUMPY15: 

“Es la librería fundamental para la computación científica con Python, añadiendo soporte para 
matrices N-dimensionales y una colección de funciones matemáticas de alto nivel  para operar 
con estas matrices”16. 

• OS: 

Este módulo proporciona una forma portátil de utilizar la funcionalidad dependiente del 
sistema operativo e incluye funciones para obtener direcciones de archivos, nombres de 
archivos  y crear carpetas en la dirección que queramos. 

A4.2 ARCHIVOS UTILIZADOS 

En este método utilizamos cuatro archivos Python cada uno con una función determinada.  

Los archivos Python son los siguientes: 

 



• IRIS_DATA.py 

Este es un fichero auxiliar, el cual hace una pequeña transformación y especificación de las 
columnas que contienen nuestros archivos “.csv”, para que la librería tensorflow sea capaz de 
leer bien los datos, y define funciones de evaluación y entrenamiento de nuestros datos.  

Leemos los archivos de entrenamiento y testeo (tanto el archivo del precio como el de las 
demás variables) y, mediante una función de la librería de Pandas, los almacenamos en cuatro 
variables DataFrame, que son: train_x, train_y, test_x, test_y. 

Definimos funciones para la evaluación y entrenamiento de nuestros datos, con las que 
simplemente dividimos nuestras primas en grupos menores de datos denominados “batch”, 
para que cada vez que estemos entrenando o evaluando nuestros resultados lo hagamos con 
uno distinto, ya que hacerlo con toda la cantidad de datos de un modelo sería muy costoso. 
Estos grupos se cambian aleatoriamente en cada iteración de entrenamiento. 

En este método vamos entrenando y evaluando con distintos batchs en cada iteración, de 
distinto modo que en el método anterior, en el que ajustábamos los parámetros de la función 
en cada iteración teniendo en cuenta todos los datos del archivo de entrenamiento.  

Por último, especificamos el nombre de cada columna, que son las distintas características del 
seguro y especificamos que tipo de variable va a ser toda esa columna dividiéndolas en los 
tipos vistos en el apartado (2.1). 

• LOAD_MOEL.py 

En este archivo especificamos el modelo que vamos a utilizar y las variables en tensorflow. 

Empezamos especificando qué tipo de variable estamos almacenando en cada columna de 
nuestro DataFrame con las siguientes funciones, accediendo a cada columna por la variable de 
su nombre definida en el archivo IRIS_DATA.py: 

-tf.feature_column.categorical_column_with_identity: Con esta función especificamos que las 
distintas columnas a las que se aplica la función van a ser columnas categóricas que 
devuelven valores de identidad (0 o 1). Esta función se aplica a las distintas covers. 

- tf.feature_column.numeric_column: Con esta función especificamos que la columna a la que 
se le aplica va a representar valores reales o características numéricas. Se aplica al resto de 
columnas. 

Una vez especificado el tipo de variable de todas las columnas, juntamos los nobres de las 
columnaslas en un vector de tensorflow llamado “my_feature_columns”, para unirlo 
posteriormente a la red neuronal. 

Por último, generamos nuestra red neuronal con tensorflow. Esto lo hacemos con la función: 

-tf.estimator.DNNRegressor: Esta función nos devuelve un estimados DNNRegressor. 



En esta especificamos las capas ocultas que va a tener nuestra red, que en nuestro caso serán 
cinco, cada una con las siguientes neuronas: [150, 75, 50, 20, 10]. 

También especificamos las columnas de características que tenemos, que será el  vector 
“my_feature-columns” el cual será la capa de entrada de la red y por ello estará formada por 
20 neuronas, una por cada columna. 

Además especificamos la función de activación de las neuronas, la cual será la función ReLU. 

A4.3 FUNCIÓN DE ACTIVACIÓN17, 18: 

La neurona es la unidad básica de procesamiento dentro de una red neuronal, la cual tiene 
unos ciertos valores de entrada con los que la neurona realiza un cálculo interno y genera un 
valor de salida. 

 

 

 

 

 

Figura A4.1: Modelo de una neurona en la que vemos sus distintas entradas Xi’s con sus respectivos pesos wi’s, que junto 
con la suma del valor umbral generan la salida Yi. 

Como ya hemos dicho anteriormente, cada neurona de una capa está totalmente conectada a 
las neuronas de la capa anterior, por ello, esta tendrá por tanto tantas entradas como neuronas 
tenga la capa anterior. 

En el cálculo numérico realizado, la neurona tiene en cuenta todas las entradas que le llegan, 
haciendo una suma ponderada de esta mediante los pesos que se le asignan a cada una de las 
entradas. Estos pesos son los parámetros de nuestro modelo y los iremos ajustando en cada 
iteración para que nuestra red neuronal pueda predecir el valor del precio del seguro. 

Además de los pesos de cada entrada solemos tener un parámetro de sesgo, que indica un 
valor umbral del sumatorio para que la neurona se active, quedando así una función de las 
distintas entradas: 
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Siendo las �%′2 las distintas entradas de la neurona,  los $%32 los pesos de cada entrada y  ! el 

sesgo de cada neurona, el cual es distinto para cada una. 



La salida de nuestra neurona  viene determinada por una función de activación, a la que se le 
pasa el valor de la suma ponderada de nuestras entradas y, dependiendo de ese valor, 
tendremos un valor de salida u otro. 

Generalmente estas funciones de activación son no lineales y devuelven un valor en el rango 
[0,1] decidiendo de este modo si la neurona está activada o no. 

Históricamente, la función sigmoide es la función de activación más antigua y popular, 
definida como: 

4��� = 1
1 + �	7 

Esta función ha sido la base de la mayoría de las redes neuronales por muchas décadas, 
aunque en años recientes han perdido popularidad, debido a que las redes neuronales de 
muchas capas se vuelven muy difíciles de entrenar, debido al problema de desaparición del 
gradiente (función que nos sirve para entrenar la red que explicaremos más adelante). 

En su lugar, la mayoría de redes neuronales utilizan otro tipo de funciones de activación, 
como es en nuestro caso, que trabajamos con la función de activación ReLU19 (Rectified 
Linear Unit): 

8�9 = ���⃗,  !�" = max �0, 9�)  

 

       Figura A4.2 :Función de activación ReLU 

Con esta función obtenemos un valor de la salida si la suma ponderada de las entradas es 
menor que cero, simulando que la neurona está desactivada,  y el mismo valor de la suma si 
este es mayor que cero, simulando que la neurona está activada y enviando una respuesta a las 
neuronas de la siguiente capa.  

 

 

 



ANEXO 5: FUNCIÓN DE COSTE 

Para entrenar nuestro modelo definimos una función de coste20, la cual evalúa el error que 
tenemos de nuestras predicciones y de los valores reales obtenidos de nuestro precio, siendo 
esta generalmente el error cuadrático medio entre salidas de la red neuronal y valores reales: 
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Un optimizador es un operador que, dada la función de coste, hace un reajuste de nuestros 
parámetros minimizando el valor de esta función mediante el algoritmo denominado 
“Backpropagation” y así, entrenando nuestro modelo. 

Este algoritmo se basa en el método del descenso del gradiente21, vector que nos indica la 
dirección hacia la que nuestra pendiente asciende. Por tanto, como queremos encontrar el 
mínimo de nuestra función, deberemos evolucionar en sentido opuesto a este vector, 
“caminando cuesta abajo”. Otro parámetro que debemos tener en cuenta es el ratio de 
aprendizaje, que indica cuánto afecta el gradiente a la actualización de nuestros parámetros en 
cada iteración, aspecto que veremos más adelante. 

Como la función de coste depende de la salida de nuestra red, que a su vez depende de los 
distintos pesos de las distintas salidas de todas las neuronas de la última capa oculta, que a su 
vez dependen de los distintos pesos de las distintas salidas de las neuronas de la capa anterior 
y así sucesivamente, el gradiente de la función se calculará mediante derivadas parciales 
utilizando la regla de la cadena, de ahí su nombre de “Backpropagation”22. 

Cada derivada parcial tendrá un valor, el cual dictará la importancia de este en la variación de 
la función de coste, viendo así que neuronas y capas son las más importantes para la variación 
de la función. 

 

 

 

 

 

 

 

 



ANEXO 6: COMPARACIÓN DE RESULTADOS OBTENIDOS CON OTROS 
PROPORCIONADOS POR ALFREDO 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figura A6: Comparación de nuestros resultados con otros calculados anteriormente y proporcionados por el ayudante 
Alfredo. 

 
Vemos que los datos son parecidos a los obtenidos por Alfredo anteriormente, comprobando 
así que el problema no está en el algoritmo empleado. 
 
Realizando la media ponderada de estos resultados obtenemos los siguientes valores: 
 

〈TUVW〉LMYH
I? = 22.09%      〈TUVW〉HLÚM = 18.32% 
 
Obteniendo un error relativo entre ellos del: 
 

W88a8H
ML�Jb? = 20.6% 
 
En nuestro caso hemos obtenido un valor del 〈TUVW〉 más pequeño, ya que realizamos más 
iteraciones y entrenamos con un dato más, ya que al principio, el primer dato de cada modelo 
nos lo saltábamos y no trabajamos con él. 
 
Debido a que el número de pasos de entrenamiento fue cinco veces el utilizado por Alfredo y 
obtuvimos unos resultados similares, supusimos que el número de estos estaba bien 
determinado, que el error habría llegado a un mínimo y que la adicción de más pasos no 
modificaría mucho la mejora de nuestros datos. 
 
 
 
 
 
 
 



ANEXO 7: COMPARACIÓN DE EVOLUCIONES ENTRE AMBOS MÉTODOS 

A7.1 FIGURAS QUE MUESTRAN LAS DIFERENCIAS EN LA EVOLUCIÓN DE 
DISTINTOS MODELOS COMPARANDO LOS DOS MÉTODOS. 
MODELOS GRANDES 

  
Figura A7.1: Representación de la evolución del MAPE del modelo Sevilla c1 m3,(proporcionado por la compañía 
1 y de la modalidad3), con 144.000 datos de entrenamiento. 
 

         
Figura A7.2: Representación de la evolución del modelo Murcia c1 m3 con 140.000 datos de entrenamiento. 

       
Figura A7.3: Representación de la evolución del modelo Murcia c1 m7 con 90.000 datos de entrenamiento. 



MODELOS MEDIOS 

       
Figura A7.4: Representación de la evolución del modelo Badajoz c2 m8 con 6.000 datos de entrenamiento. 

 

       
Figura A7.5: Representación de la evolución del modelo Vizcaya c2 m8 con 4.000 datos de entrenamiento. 

 

       
Figura A7.6: Representación de la evolución del modelo Girona c2 m3 con 3.000 datos de entrenamiento. 

 
 
 



MODELOS PEQUEÑOS 

       
Figura A7.7: Representación de la evolución del modelo Girona c2 m8 con 1900 datos de entrenamiento. 

 
 

      
Figura A7.8: Representación de la evolución del modelo Tenerife c2 m5 con 1600 datos de entrenamiento. 

 
 

       
Figura A7.8: Representación de la evolución del modelo Girona c2 m5 con 1000 datos de entrenamiento. 

 
 



A7.2 FIGURAS QUE MUESTRAN LA EVOLUCIÓN DEL MAPE AUMENTANDO EL 
NÚMERO DE ITERACIONES DE ENTRANEMIENTO. 
 
MODELOS MEDIOS 

       
Figura A7.9.1: Representación de la evolución del MAPE Train del modelo Badajoz c2 m8 con el método D.L. 
tomando 1500 iterciones de   entrenamiento. 

      
Figura A7.9.2: Representación de la evolución del MAPE Test del modelo Badajoz c2 m8 con el método D.L. 
tomando 1500 iterciones de   entrenamiento. 

 

    
Figura A7.10.1: Representación de la evolución del MAPE Train del modelo Vizcaya c2 m8 con el método D.L. 
tomando 1500 iterciones de   entrenamiento. 



    
Figura A7.10.2: Representación de la evolución del MAPE Test del modelo Vizcaya c2 m8 con el método D.L. 
tomando 1500 iterciones de   entrenamiento. 

 

      
Figura A7.11.1: Representación de la evolución del MAPE Train del modelo Girona c2 m3 con el método D.L. 
tomando 1500 iterciones de   entrenamiento. 

 

      
Figura A7.11.2: Representación de la evolución del MAPE Test del modelo Girona c2 m3 con el método D.L. 
tomando 1500 iterciones de   entrenamiento. 

 
 
 



MODELOS PEQUEÑOS 

       
Figura A7.12.1: Representación de la evolución del MAPE Train del modelo Girona c2 m8 con el método D.L. 
tomando 1500 iterciones de   entrenamiento. 

 

       
Figura A7.12.2: Representación de la evolución del MAPE Test del modelo Girona c2 m8 con el método D.L. 
tomando 1500 iterciones de   entrenamiento. 

 
 
 
 



       
Figura A7.13.1: Representación de la evolución del MAPE Train del modelo Tenerife c2 m5 con el método D.L. 
tomando 1500 iterciones de   entrenamiento. 

 

       
Figura A7.13.2: Representación de la evolución del MAPE Test del modelo Tenerife c2 m5 con el método D.L. 
tomando 1500 iterciones de   entrenamiento. 

 
 
 
 
 



       
Figura A7.14.1: Representación de la evolución del MAPE Train del modelo Girona c2 m5 con el método D.L. 
tomando 1500 iterciones de   entrenamiento. 

 

       
Figura A7.14.2: Representación de la evolución del MAPE Test del modelo Girona c2 m5 con el método D.L. 
tomando 1500 iterciones de   entrenamiento. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 


