ANEXOS

ANEXO 1: TIPOS DE REDES NEURONALES

Las redes neuronales se dividen en diferentes $gp@3n su estructura y funcionamiento
pudiendo diferenciarlas en tres tipos mas comunes:

-Red Neuronal Profunda (Deep Neural Net: DNN):

Esta red esta formada por distintas capas neusriafeendo cada una de ellas un nimero
determinado de neuronas y dividiéndose en tres ppacipales, como indica Egura 1.1

Una capa de entrada en la cual introducimos lassdaie tenemos.
Una o varias capas ocultas, las cuales establasehstintas relaciones entre las distintas
variables de nuestro modelo.

Y por ultimo una capa de salida, la cual realizar&adiccion del resultado final segun los
distintos valores de las variables de la capa ttadmy las correlaciones que se hayan dado
en las capas ocultas.
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Figura Al.1: Representacion de una red neuronal profunda: DNN

-Red Neuronal Convoluciorral CNN):

Usualmente utilizada para el procesamiento de t@e® su uso mas comun es el
procesamiento o reconocimiento de imagenes.

Tiene una estructura similar a la anterior, pertaerapa oculta se realizan operaciones de
convolucionespara obtener caracteristicas importantes dedgemde entrada como
deteccion de bordes, afilado, reconocimiento deréig, desenfoque reconocimiento de
determinados elementosmax-poling o conversion de la imagen en otra mas simple pero
gue siga teniendo las caracteristicas mas impegant
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Figura A1.2: Representacion esquemética de los dos procesmipales que se dan en las redes convolucionaéesaruel
proceso deonvoluciény max-pooling.



-Red Neuronal Recurrente (RNN):

Esta se utiliza cuando los datos con los que opes@mn secuenciales, lo que significa que
hay una correlacion temporal entre ellos, utilizzsEdmucho para texto, ya que este tiene un
orden secuencial.

Presenta una estructura similar al primer tipdaegue la salida de las capas ocultas alimenta
de nuevo a la capa oculta, ayudando asi a qud tamga una nocion de lo que sucedi6 antes.
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FIGURA A1.3: Representacion esquematica del proceso de reciarigue se da en las redes neuronales recurrentes

Gracias a este modelo han surgido técnicas comsez@hocimiento de voz, reconocimiento
facial, aplicaciones e interfaces en la Web corsomeendacion de videos en determinadas
paginas de la Web o publicidad personalizada skgialtimas busquedas o preferencias
basqueda de articulos o informacion mediante pasatiave e interaccion mediante la voz
con nuestros dispositivos.

En nuestro caso vamos a utilizar un tipo DNN llamBeep Feedforward Net (o red
totalmente conectada o full-conected), que se@dzatporque la salida de la funcién de la
primera capa es la entrada a la segunda capaletaes la entrada a la tercera capa y asi
sucesivamente.

Al.1 CAPAS OCULTAS DE LA RED NEURONAL:

Cuanta mas cantidad de capas, mas matizada puddd@®ea de decisiones, lo cual quiere
decir que mas conexiones podremos establecerlagttgstintas variables o0 mas
correlaciones entre ellas, lo que es algo parexids términos del desarrollo en serie de
Taylor del método estadistico.

Aunque hay casos en los que se ha estudiado cabhémero 6ptimo de neuronas o capas
gue posea la red neuronal, en nuestro caso nyJdchque supondra una eleccion de estas a
base de pruebay error.



ANEXO 2: ACEPTANCIA DE CAMBIOS O EVOLUCION DE LA
CONFIGURACION

Como ya hemos dicho en un apartado anterior, supord que nuestro sistema sigue la
Mecanica Estadistica siguiendo la probabilidadpgieion de una determinada
configuracion la distribucion de Boltzman:

1
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SiendoK la constante de Boltzmancy la configuracion obtenida en un tiempo t,
significando t una determinada iteracion.

Para la aceptancia o no de la nueva configura@da gor los coeficientes de nuestra funcion
de aproximacion utilizamos el método de Metrépgdisiue si suponemos la distribucién
indicada anteriormente, aunque no conozcamos tmpiodad de una determinada
configuracion si que conocemos la relativa o elerde entre esta y la obtenida por otra
configuracion cualquiera. El método viene dadolpsisiguientes pasos:

Partimos de una configuracién C;
Calculamos su probabilidad relativa p(C;)

won e

Calculamos otra configuracién aleatoria C;, 1 y volvemos a calcular su probabilidad relativa
p(Cet1)-
. . C
Calculamos el cociente de ambas probabilidades: y = p;(—?)l)
t

Generamos un numero aleatorio 8 en el intervalo [0, 1] uniformemente.
Si y > 0, elegimos la configuracién C;.4, si no, nos quedamos con la anterior

No v &

Volvemos al paso 3 sucesivamente tomando como C; la elegida en el paso 6.

Vemos que sp(C:,,) > p(C;), aceptaremos siempre el cambio ya que el cocseméemayor
que uno de manera que si la probabilidad de lagumaicion nueva es mayor aceptaremos el
cambio. En caso de qu&(C;,,) < p(C;) también hay cierta probabilidad de aceptar el
cambio, dependiendo del cociente entre probabiisigdel nimero aleatorio generatio

Podemos ver que estas probabilidades dependeraaldetief escogido, de manera que si
es muy proximo a cero la exponencial se podra apema la unidad siendo asi casi todas las
configuraciones igual de probables y aceptandamabio en casi todas las iteraciones.

Nosotros no queremos saber la distribucién dedagéa sino hallar el valor mas pequefio de
esta, por lo que nuestro algoritmo es algo maslsisip necesidad de guardar nuestras
configuraciones sino que solo avanzaremos por Bstmsdo y guardandonos el punto
minimo alcanzado de la energia que es el equivatela probabilidad maxima de
determinada configuracion.

Cuando hablamos de configuracion nueva nos referaria configuracion dada después de
un procesaweepexplicado en el apartado 3.3 en el que el cambiada indice de los



coeficientes de la funicon aproximada si que d&zeede forma secuencial, pero los nuevos
coeficientes son generados aleatoriamente de fonifi@me en un rango determinado.



ANEXO 3: SELECCION DE TERMINOS Y NUMERO DE ITERACNKES DE LAS
SIMULACIONES CON M.E.

Hemos establecido el nUmero de iteraciones yralend de términos de la funcién
aproximacion a escoger para la estimacion de ragegaitos después de haber realizado
varias pruebas. En estas nos hemos basado talu® mejores resultados obtenidos como en
un tiempo aceptable de compilacién de nuestro progr

Hemos decidido que el nimero éptimo para nuestremamiento sea un nimero de 1500
iteraciones y operar solamente con los tres priggnoninos de la funcidon de aproximacion.

Vemos algunas graficas que lo ilustren:

Primero hemos entrenado con el error cuadraticaankaimado “DELTA”, y con este
hemos estudiado la influencia en los resultadda deolucion del error con la adiccion del
término de activacion:
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Figura A3.1: Representacion de la evolucidn del error de umamisiodelo escogiendo tres nimeros distintos de
iteraciones y divididas en dos grupos. Uno en elgplo utilizamos el primer término de la funci@agproximacion,
con el que ajustamos los distintos pesos de cadiblapara la estimacion del precio, y un seguerdel que
tenemos en cuenta el término de activacion, emplezaiiterar con este cuando llevaos 350 pasos.

En esta grafica podemos ver una mejora notablmedrata al empezar a operar con el
segundo término, afirmando asi que existe un térménsesgo, estableciendo una funcion
escalén de altura variable en funcién de un suneap@sado de las distintas variables.

Después, hemos realizado pruebas para ver si rhejoas nuestras predicciones
estableciendo como energia de nuestro sistemeoeloein el que trabajan las empresas y
error que dabamos como solucién. Esto quiere deeiyya que damos la solucion del

MAPE, podemos entrenarlo tomando este error coramgénde nuestro sistema, y no el error
cuadréatico medio con el que trabajamos primeramente



MAPE

0.33

0.32

0.31

EVOLUCION MAPE;zsr

DELTA 1500 ITERACIONES +
MAPE 1500 ITERACIONES X

0 200 400 600 800 1000 1200 1400 1600

ITERACIONES

Figura A3.2: Dependencia en la evolucion del MAPE de un mismdelo, tomando como energia el propio
MAPE o el error cuadratico medio (RMSE) convencioEal ambas representaciones utilizamos 1500 iterasiy
empezamos a operar con el segundo término cuangoribs 200 pasos de entrenamiento.

Seguidamente, hemos pasado a estudiar la trascgamdehresto de términos, viendo si
afadiendo alguno de estos podemos mejorar nuessasados significativamente.
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Figura A3.3: Dependencia en la evolucion del MAPE de un mismdelo utilizando en ambas el término de

activacion a partir de los 200 pasos de entrendamiean una de ellas el término de Fourier a peetilos 1000. En

ambas representaciones utilizamos 1500 iteraciones.
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Figura A3.4 : Dependencia en la evolucion del MAPE de un mismdelo utilizando en las tres evoluciones el
término de activacion a partir de los 200 pasosrdeenamiento, en una de ellas el término de Foarnpartir de
los 1000 en otra el término de segundo orden erdansion de la funcién en serie de Taylor. Utilina 1500
iteraciones en los tres casos.

Aunque las evoluciones son bastante parecidagegd@demos apreciar una pequefia mejoria
en la obtencion de un minimo si afiadimos el térrdmé&ourier o la segunda derivada parcial
(tensor que relaciona las variables dos a dosgnaitdo resultados minimos parecidos.

En nuestro caso hemos decidido operar afiadiend@ktdrmino de Fourier, ya que el
tiempo de ejecucion del programa se multiplicalibsi afladimos el término de segundo
orden.

Haciendo varias pruebas para modelos de distintafta, hemos obtenido unos resultados
similares, por ello hemos establecido el mismo marde términos y de iteraciones para
todos ellos.

Finalmente, con estos términos y nimero de itenasi@scogidos, cada evolucién de los
distintos modelos ha tardado una media de 10 nsrdgajecucion, (variando mucho el
tiempo entre esta segun el nUmero de datos querdiardada modelo) y como tenemos 489
modelos distintos, tardando unos 3 dias en la oldtere los distintos resultados.

Aunque con el método D.L. la obtencion de resuagtomas rapida, ya que no guardamos
datos intermedios, sino que nos quedamos conudtads final, al necesitar ver la evolucion
de los resultados y guardar 50 datos en cada entiento, el tiempo de iteracion se
multiplicaba por 50, dando una media para el tiengejecucién, de algo mas de media
hora.

Por este motivo en el apartado 7.3 solo se hanldadesultados finales al aumentar el
namero de iteraciones de entrenamiento para logle®due no nos dieron un buen
resultado.



A3.1 COMPARACION EVOLUCION TENIENDO EN CUENTA MAS ERMINOS DE
LA FUNCION

Si hubiéramos dispuesto de mas tiempo y nuesteadiobjhubiera sido el de obtener datos
mucho mas precisos y llegar a ver las distintaci@hes entre las variables de la estimacion
del precio de un seguro, podriamos haber afiadidaén@inos en la funcién de
aproximacion del método de Mecanica Estadistiaanyemtado el nimero de iteraciones.

Aunque la influenciale los primeros términos la podiamos ver casi inat@shente después
de operar con ellos, las distintas relaciones éogrgalores de las distintas variables tienen
cierto tiempo de estabilizacioAl principio incluso empeoran nuestros resultadsesmdo
empezamos a entrenar con ellas, pero luego, dedpuéstiempo empiezan a tomar
relevancia en la evolucion y empiezan a notarsef&esos llegando a disminuir el error
bastante.

Aqui podemos ver un ejemplo de esto:

EVOLUCION LARGA DEL MAPE CON EL METODO DE MECANICA ESTADISTICA

0.2 TRAIN  +
MADRID c1 m3 (70.000 datos]] : TEST x

MAPE
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Figura A3.5: Dependencia en la evolucion del MAPE tanto dia tamo de test de un mismo modelo utilizando
80000 pasos de entrenamiento, ejecucion que dgohads de una semana. En esta utilizamos todosrinsos
de la funcion de aproximacién y podemos ver sutefelaramente. Los términos se han empezado aautén las
iteraciones 4000 (activacion), 8000 (Fourier), 1B00ensor), 24000 (Tensor de activacion) y 40000€in).
Vemos que aunque el efecto de la adiccién de lepdmeros términos es brusca e inmediata, elsiddmas
necesita un proceso de estabilizacion y en cuattosecede empezamos a ver la disminucion progresiverror.



ANEXO 4: LIBRERIAS Y ARCHIVOS COMPLEMENTARIOS.

A4.1 LIBRERIAS UTILIZADAS

Ademas da trabajar con el lenguaje de programdytimon, en este método hemos incluido
4 librerias que nos ayudan a manejar nuestros:datos

*  TENSORFLOW13:

Es una libreria de cédigo libre para Machine Leayr través de un rango de tareas. Esta
basado en redes neuronales de aprendizaje projuindodesarrollado por Google para
satisfacer sus necesidades a partir de redes rdesartificiales.

e PANDAS™:

Es una libreria de Python para el analisis de daiescuenta con las estructuras de datos que
necesitamos para limpiar los datos en bruto y qneaptos para el analisis.

Tiene dos estructuras de datos principales:
-Series: Son arrays unidimensionales con indexgeidays con indice o etiqguetados)

-DataFrame: Son estructuras de datos similarestalidas de bases de datos relacionales
como SQL.

Esta libreria también incluye funciones para legosl a partir de diferentes formatos como
texto, excell y csv.

*  NUMPY®:

“Es la libreria fundamental para la computaciémiifeea con Python, afiadiendo soporte para
matrices N-dimensionales y una coleccion de furesanatematicas de alto nivel para operar
con estas matrice¥’

e OS:

Este mddulo proporciona una forma portétil de zdilila funcionalidad dependiente del
sistema operativo e incluye funciones para obtdimecciones de archivos, nombres de
archivos y crear carpetas en la direccion queasnes.

A4.2 ARCHIVOS UTILIZADOS
En este método utilizamos cuatro archivos Pythala cgno con una funcion determinada.

Los archivos Python son los siguientes:



« IRIS_DATA.py

Este es un fichero auxiliar, el cual hace una peguensformacion y especificacion de las
columnas que contienen nuestros archivos “.csv§ gae la libreria tensorflow sea capaz de
leer bien los datos, y define funciones de eva@ragientrenamiento de nuestros datos.

Leemos los archivos de entrenamiento y testeoco(&rdrchivo del precio como el de las
demas variables) y, mediante una funcién de ladiarde Pandas, los almacenamos en cuatro
variables DataFrame, que son: train_x, train_y, iegest .

Definimos funciones para la evaluacion y entrenatoiele nuestros datos, con las que
simplemente dividimos nuestras primas en gruposonesrde datos denominados “batch”,
para que cada vez que estemos entrenando o evalnaeskros resultados lo hagamos con
uno distinto, ya que hacerlo con toda la cantidadatos de un modelo seria muy costoso.
Estos grupos se cambian aleatoriamente en cadaiderde entrenamiento.

En este método vamos entrenando y evaluando comtossbatchs en cada iteracion, de
distinto modo que en el método anterior, en elajustabamos los parametros de la funcion
en cada iteracion teniendo en cuenta todos los disicarchivo de entrenamiento.

Por ultimo, especificamos el nombre de cada colymua son las distintas caracteristicas del
seguro y especificamos que tipo de variable va toda esa columna dividiéndolas en los
tipos vistos en el apartado (2.1).

e LOAD_MOEL.py
En este archivo especificamos el modelo que vanubdizar y las variables en tensorflow.

Empezamos especificando qué tipo de variable estamtacenando en cada columna de
nuestro DataFrame con las siguientes funcionesdaawdo a cada columna por la variable de
su nombre definida en el archivo IRIS_DATA.py:

-tf.feature_column.categorical_column_with_ident®pn esta funcion especificamos que las
distintas columnas a las que se aplica la funcénasser columnas categodricas que
devuelven valores de identidad (0 o 1). Esta funsgaplica a las distintas covers.

- tf.feature_column.numeric_column: Con esta fun@épecificamos que la columna a la que
se le aplica va a representar valores reales oteaisticas numéricas. Se aplica al resto de
columnas.

Una vez especificado el tipo de variable de todasblumnas, juntamos los nobres de las
columnaslas en un vector de tensorflow llamado ‘fegture_columns”, para unirlo
posteriormente a la red neuronal.

Por ultimo, generamos nuestra red neuronal comtéms. Esto lo hacemos con la funcion:

-tf.estimator.DNNRegressor: Esta funcion nos dexaiah estimados DNNRegressor.



En esta especificamos las capas ocultas que veearteestra red, que en nuestro caso seran
cinco, cada una con las siguientes neuronas: FE®&0, 20, 10].

También especificamos las columnas de caractexgstige tenemos, que sera el vector
“my_feature-columns” el cual sera la capa de eatdlla red y por ello estara formada por
20 neuronas, una por cada columna.

Ademas especificamos la funcion de activacion d@éronas, la cual sera la funcion ReLU.
A4.3 FUNCION DE ACTIVACION"- 18

La neurona es la unidad basica de procesamientmdiuna red neuronal, la cual tiene
unos ciertos valores de entrada con los que laonauealiza un calculo interno y genera un
valor de salida.

Figura A4.1: Modelo de una neurona en la que vemos sus distaritradas % con sus respectivos pesosygue junto
con la suma del valor umbral generan la salida Y

Como ya hemos dicho anteriormente, cada neuronaaeapa esta totalmente conectada a
las neuronas de la capa anterior, por ello, estirdepor tanto tantas entradas como neuronas
tenga la capa anterior.

En el calculo numérico realizado, la neurona temeuenta todas las entradas que le llegan,
haciendo una suma ponderada de esta mediantesios gee se le asignan a cada una de las
entradas. Estos pesos son los parametros de noexiedo y los iremos ajustando en cada
iteracion para que nuestra red neuronal pueda girezleralor del precio del seguro.

Ademas de los pesos de cada entrada solemos teparametro de sesgo, que indica un
valor umbral del sumatorio para que la neuronacteea quedando asi una funcién de las
distintas entradas:

NENTRADAS

fEB)=C ) wx)-b

i=0

Siendo las;’s las distintas entradas de la neurona,wlpslos pesos de cada entrada; el
sesgo de cada neurona, el cual es distinto pasawsd



La salida de nuestra neurona viene determinadanaduncion de activacigra la que se le
pasa el valor de la suma ponderada de nuestraslasty, dependiendo de ese valor,
tendremos un valor de salida u otro.

Generalmente estas funciones de activacion soimealés y devuelven un valor en el rango
[0,1] decidiendo de este modo si la neurona esiéaa o no.

Histéricamente, la funcion sigmoide es la funciénadtivacion mas antigua y popular,
definida como:

1

W=

Esta funcion ha sido la base de la mayoria deeldessrneuronales por muchas décadas,
aungue en afnos recientes han perdido populariebttjala que las redes neuronales de
muchas capas se vuelven muy dificiles de entree@ido al problema de desaparicion del
gradiente (funcion que nos sirve para entrenadague explicaremos mas adelante).

En su lugar, la mayoria de redes neuronales utitiza tipo de funciones de activacion,
COMO es en nuestro caso, que trabajamos con lefude activacion ReLt (Rectified
Linear Unit):

R(z = f(%,b;)) = max(0,z))

. ReLU

Riz)=max(0, z)

Figura A4.2 :Funcién de activacion ReLU

Con esta funcién obtenemos un valor de la salittasgsima ponderada de las entradas es
menor que cero, simulando que la neurona estatdesta; y el mismo valor de la suma si
este es mayor que cero, simulando que la neuréa@aes/ada y enviando una respuesta a las
neuronas de la siguiente capa.



ANEXO 5: FUNCION DE COSTE

Para entrenar nuestro modelo definimos funaion de costé, la cual evalGa el error que
tenemos de nuestras predicciones y de los valeadssrobtenidos de nuestro precio, siendo
esta generalmente el error cuadratico medio ealigas de la red neuronal y valores reales:

Ngatos

1
Z (YPREDICCION - YREAL)Z
i=0

N, datos

Feoste =

Un optimizador es un operador que, dada la fundeéooste, hace un reajuste de nuestros
parametros minimizando el valor de esta funcioniamgd el algoritmo denominado
“Backpropagation” y asi, entrenando nuestro modelo.

Este algoritmo se basa en el método del descehgpaditenté’, vector que nos indica la
direccion hacia la que nuestra pendiente ascidtmieanto, como queremos encontrar el
minimo de nuestra funcion, deberemos evolucionaeatido opuesto a este vector,
“caminando cuesta abajo”. Otro parametro que debdemer en cuenta es el ratio de
aprendizaje, que indica cuanto afecta el gradiefdeactualizacién de nuestros parametros en
cada iteraciéon, aspecto que veremos mas adelante.

Como la funcién de coste depende de la salida dstraured, que a su vez depende de los
distintos pesos de las distintas salidas de t@asduronas de la Ultima capa oculta, que a su
vez dependen de los distintos pesos de las dissaladas de las neuronas de la capa anterior
y asi sucesivamente, el gradiente de la funci@akellara mediante derivadas parciales
utilizando laregla de la cadenade ahi su nombre de “Backpropagatfén”

Cada derivada parcial tendra un valor, el cuabdicla importancia de este en la variacion de
la funcion de coste, viendo asi que neuronas yscamalas mas importantes para la variacion
de la funcion.



ANEXO 6: COMPARACION DE RESULTADOS OBTENIDOS CON ®&DS
PROPORCIONADOS POR ALFREDO

COMPARACION DE RESULTADOS CALCULADOS
ANTERIORMENTE CON DEEP LEARNING
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Figura A6: Comparacion de nuestros resultados con otrosladirsianteriormente y proporcionados por el aywant
Alfredo.

Vemos que los datos son parecidos a los obtenmloalfsedo anteriormente, comprobando
asi que el problema no esté en el algoritmo emplead

Realizando la media ponderada de estos resultédesemos los siguientes valores:

(MAPE)ALFREDO = 2209% (MAPE)RA[’JL = 1832%
Obteniendo un error relativo entre ellos del:

ERRORRELATIVO = 206%

En nuestro caso hemos obtenido un valoKM&IPE) mas pequefio, ya que realizamos mas
iteraciones y entrenamos con un dato mas, ya quinaipio, el primer dato de cada modelo
nos lo saltAbamos y no trabajamos con él.
Debido a que el niumero de pasos de entrenamieatrfaoo veces el utilizado por Alfredo y
obtuvimos unos resultados similares, supusimostnémero de estos estaba bien

determinado, que el error habria llegado a un mdnjimue la adiccion de mas pasos no
modificaria mucho la mejora de nuestros datos.



ANEXO 7: COMPARACION DE EVOLUCIONES ENTRE AMBOS MEJDOS

A7.1 FIGURAS QUE MUESTRAN LAS DIFERENCIAS EN LA EVQJCION DE
DISTINTOS MODELOS COMPARANDO LOS DOS METODOS.
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Figura A7.1: Representacion de la evolucion del MAPE del mo&elailla c1 m3,(proporcionado por la compaiiia
1y de la modalidad3), con 144.000 datos de erinemdo.
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Figura A7.2: Representacion de la evolucion del modelo Murtien8 con 140.000 datos de entrenamiento.
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Figura A7.3: Representacion de la evolucién del modelo Murtien@ con 90.000 datos de entrenamiento.




MODELOS MEDIOS
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Figura A7.4: Representacion de la evolucién del modelo Bad&an& con 6.000 datos de entrenamiento.
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Figura A7.5: Representacion de la evolucién del modelo Viza@ym8 con 4.000 datos de entrenamiento.
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Figura A7.6: Representacion de la evolucion del modelo Gir@m8 con 3.000 datos de entrenamiento.



MODELOS PEQUENOS
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Figura A7.7: Representacion de la evolucién del modelo Giréha8 con 1900 datos de entrenamiento.
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Figura A7.8: Representacion de la evolucién del modelo Tene#ifsm5 con 1600 datos de entrenamiento.
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Figura A7.8: Representacion de la evolucién del modelo Giréha$ con 1000 datos de entrenamiento.



A7.2 FIGURAS QUE MUESTRAN LA EVOLUCION DEL MAPE AUMNTANDO EL
NUMERO DE ITERACIONES DE ENTRANEMIENTO.
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Figura A7.9.1: Representacion de la evolucion del MAPE Trainndetielo Badajoz c2 m8 con el método D.L.
tomando 1500 iterciones de entrenamiento.
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Figura A7.9.2: Representacion de la evolucion del MAPE Test deleto Badajoz c2 m8 con el método D.L.
tomando 1500 iterciones de entrenamiento.
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Figura A7.10.1: Representacion de la evolucion del MAPE Trainndedielo Vizcaya c2 m8 con el método D.L.
tomando 1500 iterciones de entrenamiento.
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Figura A7.10.2: Representacion de la evolucion del MAPE Test deleto Vizcaya c2 m8 con el método D.L.
tomando 1500 iterciones de entrenamiento.
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Figura A7.11.1: Representacion de la evolucion del MAPE Trainndetlelo Girona ¢c2 m3 con el método D.L.
tomando 1500 iterciones de entrenamiento.
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Figura A7.11.2: Representacion de la evolucion del MAPE Test deleto Girona c2 m3 con el método D.L.
tomando 1500 iterciones de entrenamiento.



MODELOS PEQUENOS

EVOLUCION MAPE g1
0.4
MECANICA ESTADISTICA GIROMA_c2_m8  Train 3
n
DEEP LEARNING GIRONA_C2_m8 Train { Normal _—
- Train steps= 1500 +
0.35
f
& iy
<031 4
E A
i
0.25
0.2
0 200 400 600 800 1000 1200 1400 1600

ITERACIONES

Figura A7.12.1: Representacion de la evolucion del MAPE Trainndetielo Girona ¢c2 m8 con el método D.L.
tomando 1500 iterciones de entrenamiento.
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Figura A7.12.2: Representacion de la evolucion del MAPE Test dmleto Girona c2 m8 con el método D.L.
tomando 1500 iterciones de entrenamiento.
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Figura A7.13.1: Representacion de la evolucion del MAPE Trainndetielo Tenerife c2 m5 con el método D.L.
tomando 1500 iterciones de entrenamiento.
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Figura A7.13.2: Representacion de la evolucion del MAPE Test deleto Tenerife c2 m5 con el método D.L.

tomando 1500 iterciones de entrenamiento.



EVOLUCION MAPE g,

0.45
MECANICA ESTADISTICA GIRONA_c2_m5 Train
DEEP LEARNING GIRONA_c2_m5 Train Normal +
o4 Train steps= 1500 —+

] 200 400 600 800 1000 1200 1400 1600
ITERACIONES

Figura A7.14.1: Representacion de la evolucion del MAPE Trainndetlelo Girona c2 m5 con el método D.L.
tomando 1500 iterciones de entrenamiento.
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Figura A7.14.2: Representacion de la evolucion del MAPE Test deleto Girona c2 m5 con el método D.L.
tomando 1500 iterciones de entrenamiento.



