
 

 

 

 

 

 

 

 

Trabajo Fin de Grado 

 

CARACTERIZACIÓN DE UN MODELO IN VITRO 

DE CULTIVO CELULAR 3D DE 

NEUROBLASTOMA PARA EL ESTUDIO DE 

INMUNOTERAPIA CON CÉLULAS NK 
 

 

IN VITRO 3D NEUROBLASTOMA CELULAR 

MODEL CHARACTERIZATION FOR THE STUDY 

OF IMMUNOTHERAPY WITH NK CELLS 
 

 

 

 

Autora 

 

Cecilia Pesini Martín 

 

 

 

Directores 

 

Julián Pardo Jimeno 

 

Ariel Ramírez Labrada 

 

 

 

 

 

 

Facultad de Ciencias / Grado de Biotecnología 

2018-2019 



 ABREVIATURAS 

13cis RA: ácido retinoico con enlace en posición cis entre los carbonos 13 y 14 

2D: dos dimensiones 

3D: tres dimensiones 

ABB: tampón de unión de Anexina 

CAR: receptor quimérico de antígeno  

CEACAM-1: molécula de adhesión celular relacionada con el antígeno del carcinoma embrionario 1 

DNA: ácido desoxirribonucleico 

DMEM: medio de cultivo Eagle modificado por Dubelcco  

DMSO: dimetilsulfóxido  

GD2: gangliósido GD2 

GFP: proteína fluorescente verde 

GM-CSF: factor estimulante de colonias de granulocitos y macrófagos 

HLA-I: antígeno leucocitario humano de clase 1 

HLA-II: antígeno leucocitario humano de clase 2 

IACS: Instituto Aragonés de Ciencias de la Salud 

ICAM-1: molécula de adhesión celular 1 

IL2: interleucina 2 

IL15: interleucina 15 

INGR: Grupo internacional de riesgo del neuroblastoma  

KIR: receptor de inhibición de células asesinas naturales 

MHC-I: complejo mayor de histocompatibilidad de clase 1 

NCR: receptor citotóxico de células NK 

NB: neuroblastoma  

NK: “natural killer” o asesina natural  

PBMC: célula mononuclear de sangre periférica 

PBS: tampón fosfato salino  
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PD1: proteína de muerte celular programada 1 

PDL1: ligando 1 de muerte celular programada  

RNA: ácido ribonucleico  

RPMI: medio de cultivo Roswell Park Memorial Institute 

SFB: suero fetal bovino 

TMA: microambiente tumoral 

TAA: antígeno asociado a tumor 

TSA: antígeno específico de tumor 
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1. RESUMEN 

La inmunoterapia se presenta como un nuevo y prometedor tratamiento contra cánceres infantiles 

como el neuroblastoma (NB). Una de estas nuevas terapias en desarrollo es el uso de células asesinas 

naturales (NK) modificadas genéticamente para la expresión de receptores de antígenos quiméricos 

(NK-CAR). En concreto, en nuestro grupo de investigación se está desarrollando un NK-CAR frente a 

las proteínas CD47 y calreticulina, las cuales son sobreexpresadas en NB. Para el desarrollo de esta 

terapia, se estudió como paso inicial un modelo de la línea celular SH-SY5Y cultivado en tres 

dimensiones (3D). Mediante cultivo en 3D se generaron agregados celulares compactos, llamados 

esferoides, que mimetizan de forma más exacta la arquitectura de un tumor real. Los esferoides de la 

línea celular SH-SY5Y presentaron diferencias respecto al cultivo tradicional en dos dimensiones en 

cuanto a sus características fenotípicas y la resistencia frente a los tratamientos estudiados. Se 

aplicaron las quimioterapias usadas normalmente contra el NB y el tratamiento con células NK 

activadas para usarlos como referencia para en un futuro evaluar el nivel de actividad de las células 

NK-CAR desarrolladas. La importancia del modelo celular seleccionado quedó patente en los 

resultados, y se aceptó el modelo de cultivo de la línea celular SH-SY5Y en 3D como modelo 

adecuado para el desarrollo de la terapia con células NK-CAR.  

ABSTRACT 

Immunotherapy is a new and promising therapy against childhood cancer as neuroblastoma (NB). One 

of these new therapies is a chimeric antigen receptor modified natural killer (NK) cell (NK-CAR). Our 

laboratory is developing an NK-CAR against CD47 and calreticulin proteins, which are over-

expressed in NB. Three-dimension (3D) culture of SH-SY5Y cellular line has been studied for the 

initial development of this immunotherapy. This culture technique generates high density cellular 

aggregates, called spheroids, which mimic tumors in a more faithful way. SH-SY5Y spheroids showed 

phenotypic differences and resistances against treatments compared with traditional two dimensions 

cell cultures. Regularly used chemotherapy drugs for NB and activated NK cells were tested 

independently to use them to evaluate the activity of NK-CAR therapy in the future. The results 

showed the relevance of the chosen cellular culture model. Additionally, SH-SY5Y spheroid model 

was accepted for the study of the NK-CAR therapy.  

2. INTRODUCCIÓN Y ANTECEDENTES 

2.1.El cáncer. 

Se denomina cáncer a un gran grupo de enfermedades caracterizadas por el crecimiento celular 

desproporcionado y se clasifican en función del tejido en el que se da la transformación maligna (e. g. 

cáncer de páncreas). El cáncer es la segunda causa de muerte mundial, produciendo más de nueve 

millones de muerte en 20181, y la primera causa de muerte infantil por enfermedad en los países 

desarrollados, diagnosticándose más de mil casos cada año en España2. Los cánceres infantiles más 

comunes son las leucemias y cánceres del sistema nervioso central. Los nuevos tratamientos han 

aumentado la supervivencia a los 5 años para aproximadamente un 80% de los pacientes, pese a que 

las terapias en infantes no han aumentado a la par que en adultos. El cáncer, y en concreto el cáncer 

infantil, genera un gran impacto social, sobre todo por la vulnerabilidad de la población afectada. Para 

reducir la morbilidad, el sufrimiento y las muertes por cáncer es necesario el desarrollo de nuevos 

tratamientos paliativos y terapias por lo que continuar su estudio y compresión es necesario 1,3,4.  

En el año 2000, D. Hanahan y A. Weinberg definieron seis marcas distintivas (conocidas como 

“hallmarks”) o puntos claves en el desarrollo del cáncer5. El número de hallmarks descritos ha 
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aumentado hasta diez siendo actualmente los siguientes: i) suministro de señales proliferativas, ii) 

evasión de supresores del crecimiento, iii) establecimiento de inmortalidad por replicación, iv) 

activación de invasión y metástasis, v) inducción de la angiogénesis, vi) inestabilidad genómica y 

mutaciones, vii) resistencia a la muerte celular, viii) desregulación del metabolismo energético, ix) 

evasión del ataque del sistema inmune y x) promoción de la inflamación6. De los 10 hallmarks 

definidos se conocen implicaciones de células no tumorales en todos ellos, exceptuando el desarrollo 

de inmortalidad y la modificación del metabolismo. Los tipos celulares no tumorales que se ven 

implicados en estos procesos son principalmente: células tipo fibroblastos, células madre 

mesenquimales relacionadas con las angiogénesis y células del sistema inmune. El conjunto de esas 

interacciones celulares y las condiciones ambientales amplían la visión de tumor como un cúmulo de 

células cancerosas y aparece el concepto de microambiente tumoral (TMA), en el que el sistema 

inmune participa de diversas formas7. 

2.2.Cáncer y sistema inmune. 

El sistema inmune ejerce un papel imprescindible como barrera primaria contra el cáncer, eliminando 

selectivamente aquellas células que sufren una transformación tumoral. Pese a esto, la generación de 

tumores y la progresión del cáncer no son siempre controladas, e incluso se tiende a pensar en la 

posible implicación del sistema inmune en su evolución. Este modelo recibe el nombre de 

inmunoedición del cáncer y describe el papel dual del sistema inmune frente a los tumores, estando 

implicado tanto en la supresión del desarrollo, como en la progresión del cáncer6. 

El papel protumoral del sistema inmune se debe a dos mecanismos: selección de las células 

cancerígenas resistentes y generación de un TMA que favorezca su crecimiento8. El origen de la 

resistencia de algunas células tumorales se debe a su expresión alterada de proteínas de membrana, 

teniendo aumentada la exposición de inhibidores del sistema inmune y disminuida la de aquellas 

proteínas que son una señal de activación. Las células tumorales usan los mecanismos fisiológicos de 

inhibición del sistema inmune que evitan una acción desmesurada, para protegerse de su ataque, 

siendo uno de los más relevantes el sistema PD-1/PDL110. La sobreexpresión de estas proteínas las 

convierte en antígenos asociados a tumores (TAAs), siendo marcadores de células malignas con 

distintos niveles de selectividad8. 

2.3.El neuroblastoma. 

El neuroblastoma (NB) es un tumor sólido originario de neuroblastos de la cresta neural periférica en 

desarrollo, que migran para formar el sistema nervioso simpático. Sus homólogas no tumorales 

continúan con su diferenciación a neuronas adrenérgicas, formando las fibras nerviosas 

postganglionares del sistema nervioso simpático11–13. 

El NB supone el 8% de los cánceres infantiles y el principal tumor sólido extracraneal13. Se detecta en 

su mayoría durante el primer año de vida y suele localizarse en torno a la glándula suprarrenal (65%) o 

a lo largo del sistema simpático, en torso o abdomen13. Es un tumor de rápido crecimiento y suele 

presentar zonas de necrosis. En torno al 50% de los casos son considerados de bajo riesgo, los cuales 

responden al tratamiento, son susceptibles a eventos de regresión espontánea o de diferenciación 

benigna. La supervivencia para pacientes con tumores de bajo riesgo es de más de un 90%. En la otra 

mitad de casos, considerados de alto riesgo, el porcentaje de supervivencia pese a tratamientos 

intensivos y combinados disminuye hasta el 50%. Debido a esto, el neuroblastoma es responsable del 

15% de la mortalidad infantil asociada al cáncer11. 

La clasificación pretratamiento del grupo internacional de riesgo del neuroblastoma (INGR, por su 

sigla en inglés)14 se hace en función de la edad, factores genéticos, estado del cáncer y grado de 

diferenciación celular. Los tumores localizados y/o que no presentan factores genéticos desfavorables, 

son por lo general considerados de bajo riesgo, mientras que aquellos tumores originados más 

tardíamente (más de 18 meses) y/o con factores génicos como la ampliación del proto-oncogén 
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MYCN o la aberración 11q (extremo distal del brazo largo del cromosoma 11), son considerados de 

alto riesgo, al estar relacionados con pronósticos más desfavorables14.  

El INGR define las bases para la determinación del estadio del NB pretratamiento mediante métodos 

de imagen, generando cuatro estadios. El estadio L1 y L2 corresponden a tumores localizados, 

diferenciándose en la observación de factores de riesgo definidos por imagen (IDRFs) en el caso L2. 

Estos factores de riesgo se relacionan con la posibilidad de la extirpación total o parcial del tumor 

debida a su localización anatómica (e. g. crecimiento entorno a vena cava y/o aorta). El estadio M 

implica la presencia de metástasis, excluyendo los casos del estadio MS. En el estadio MS la 

metástasis se localiza en piel, hígado y/o médula ósea y se da en pacientes menores a 18 meses(18).  

El diagnóstico del NB se hace mediante biopsias del tumor o por detección en orina de una alta 

concentración de compuestos generados en la degradación de catecolaminas (neurotransmisores 

empleados por el sistema nervioso simpático), los cuales están presentes en el 85% de los casos11,12. 

2.3.1. Tratamiento. 

El tratamiento contra el cáncer difiere tanto en función del tipo de cáncer a tratar como de su estadio. 

Los tratamientos más comúnmente utilizados son la cirugía, la radioterapia y la quimioterapia. Hasta 

ahora han sido estas terapias, y sus combinaciones, las que han mostrado mayores eficacias. Su uso se 

ha extendido debido a la gran necesidad de actuación frente al cáncer, pero estas terapias presentan 

varias deficiencias susceptibles de mejoras. La extirpación quirúrgica está limitada a tumores 

localizados y la aplicación de radioterapias y quimioterapias está limitada por su alta citotoxicidad4. 

La selección de terapias a aplicar en cada cáncer se determina generalmente por el estadio del cáncer, 

pero en el caso del NB se hace en función al nivel de riesgo asignado a cada caso13. En NB de bajo 

riesgo la extirpación quirúrgica se recomienda como tratamiento único, abogándose cada vez más al 

control periódico del tumor, esperando su neutralización de forma autónoma. En NB de riesgo 

intermedio, en los que una vez extirpado el tumor se detecta alguna condición de mal pronóstico, se 

les aplica quimioterapia neoadyuvante, radioterapia y ácido retinoico (13cis RA). El 13cis RA induce 

la maduración de los neuroblastos, ayudando a la diferenciación de estos hacia neuronas. Los 

pacientes con NB de alto riesgo reciben un tratamiento combinado: en un primer paso quimioterapia 

de alta intensidad, con compuestos como el Cisplatino, Etopósido o Doxorrubicina, para reducir el 

tumor como paso previo a la extirpación quirúrgica. Posteriormente el trasplante de progenitores 

hematopoyéticos y radioterapia. Finalmente, como terapia de mantenimiento se aplica inmunoterapia y 

13cis RA. Las nuevas líneas de tratamiento contra el NB se centran en la administración dirigida de 

fármacos, nuevas radioterapias e inmunoterapias, en las que se centra este trabajo12,13,15. 

2.4.Inmunoterapias. 

Las inmunoterapias surgen como una alternativa novedosa y eficaz al tratamiento del cáncer, cuyas 

aplicaciones se han incorporado rápidamente a la clínica. Los resultados obtenidos son más favorables 

en el caso de canceres hematológicos, es decir, aquellos de células circulantes en el torrente 

sanguíneo, más accesibles al sistema inmune, que frente a tumores sólidos. Esto es debido 

principalmente a las características del microambiente de los tumores sólidos y las barreras que este 

supone en la migración y actuación normal de las células efectoras. Una de las líneas de trabajo de las 

inmunoterapias contra canceres sólidos se centra en modular la respuesta del sistema inmune frente los 

TAAs o antígenos específicos de tumores (TSAs) (estudiados en canceres desencadenados por 

infecciones víricas), eliminando su tolerancia y proporcionando tanto una respuesta inmediata como a 

largo plazo. Ejemplo de estas terapias son el suministro de anticuerpos monoclonales o células 

inmunes modificadas (propias o alogénicas) que atacan directamente el tumor al reconocer TSAs o 

TAAs8,16. Dentro de estos tratamientos, las inmunoterapias con células asesinas naturales (NK) 

recientemente han demostrado eficacias relevantes, no solo frente a leucemias, un tumor 

hematológico, si no también frente a tumores sólidos como el carcinoma pulmonar de Lewis (LLC) y 
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cáncer colorrectal (CCR) en diferentes estudios in vitro17–19. Además, en el caso de algunos tipos de 

leucemia, han demostrado buena eficacia también en ensayos clínicos20.  

2.4.1. Inmunoterapias con células asesinas naturales. 

Las células NK, pertenecientes al sistema inmune innato, tienen la capacidad de acabar con células 

tumorales activándose por diversos mecanismos. Uno de ellos es la citotoxicidad celular dependiente 

de anticuerpo (ADCC) que se desencadena durante el reconocimiento de la región no variable (Fc) de 

determinados isotipos de inmunoglobulinas unidas a su antígeno específico, es decir la célula responde 

ante un objetivo previamente señalado por el sistema inmune8. Otra vía de activación es por ausencia 

de complejo mayor de histocompatibilidad de clase 1 (MHC-I, o HLA-I en humanos). Esta molécula 

está presente en prácticamente la totalidad de las células en estado fisiológico y su falta se relaciona a 

infección vírica, estrés celular o transformación tumoral. La activación por ausencia se explica como 

la descompensación del equilibrio activación-inhibición en el que se encuentran las células NK 

(Figura 1). Los receptores de inhibición de células NK (KIRs) reconocen la proteína HLA-1, unión 

que favorece la latencia. En el caso contrario, la unión a sus ligandos de los receptores citotóxicos de 

células NK (NCRs) o la proteína NKG2D promueve la activación. Los ligandos de estos receptores 

son proteínas de expresión constitutiva en la membrana celular, por lo que en el caso de no estar 

contrarrestados con suficientes señales de inhibición, se produce la activación de las células NK8. 

 
Figura 1. Modelo de la actividad citotóxica de las células NK frente a células propias alteradas8. 

(a) Contacto entre una célula sana y una célula NK. Las señales de inhibición y activación en la célula 

NK generadas por la interacción de los distintos ligandos se compensan, dando un balance global de 

señales que no induce la activación de la célula NK. La célula NK reconoce la célula propia como 

sana y no la elimina. (b) Contacto entre una célula NK y una célula infectada por un virus (como 

ejemplo de situación de estrés) cuya expresión de MHC-I en membrana está reducida. La interacción 

de ligandos genera señales de activación en la célula NK, las cuales no se ven compensadas por las de 

inhibición, por lo que se desencadena su actividad citotóxica. La célula NK reconoce la célula alterada 

y la elimina. En los casos de células alteradas que no disminuyen la expresión en membrana de la 

proteína MHC-1, el balance entre la intensidad de las señales de activación e inhibición regulará la 

eliminación de la célula diana.   

La posibilidad de activación de las células NK de forma independiente a la presencia de antígenos 

específicos, aporta una gran relevancia de estas células ante tumores, incluyendo aquellos de baja 

inmunogenicidad, es decir, que presentan pocas mutaciones21. Para su uso en inmunoterapia se 

suministran células NK activadas in vitro originarias del propio paciente (terapia autóloga) o 

alogénicas, procedentes de donantes sanos22. Además de activarlas, también es posible modificarlas 

genéticamente, aumentando la expresión de receptores de activación o receptores quiméricos frente a 

antígenos tumorales (CAR). De esta forma se potencia el desplazamiento del equilibrio hacia la 

estimulación de las células NK, a la vez que se aumenta su especificidad antitumoral, al determinar el 
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antígeno ante el cual actuaran. Las células NK modificadas reciben el nombre de células NK-CAR. Se 

diseña e integra en las células una proteína con un dominio extracelular que reconoce un TAA del 

tumor de interés y un dominio intracelular de señalización, que desencadena la actividad efectora. 

Además, la posibilidad de hacer una expresión combinada con receptores frente a varios antígenos 

permite crear sistemas de doble regulación, lo que reduce significativamente la posible toxicidad de 

estas terapias21. 

2.4.2. Inmunoterapias para el tratamiento del neuroblastoma. 

Actualmente las inmunoterapias para NB se administran únicamente a pacientes con tumores de alto 

riesgo como tratamiento de mantenimiento tras observar su respuesta a las terapias previas. Se aplica 

por su alto potencial de búsqueda y selectividad a la hora de acabar con aquellas células tumorales no 

eliminadas con los tratamientos convencionales. El tratamiento actual aplicado en NB se basa en la 

activación del sistema inmune suministrando anticuerpos anti-GD2 junto con otros compuestos. El 

gangliósido GD2 (GD2) es expresado en la membrana de varios tipos de células malignas, entre ellas 

las del NB. La unión específica de los anticuerpos monoclonales anti-GD2 sobre las células del tumor 

lo marcan ante el sistema inmune como diana a eliminar mediante ADCC23. El fármaco con 

anticuerpos anti-GD2 más ampliamente usado recibe el nombre de Unituxin y fue autorizado para su 

uso en Europa y Estados Unidos en 201524,25. El Unituxin combina anticuerpos anti-GD2 con 13cis 

RA, interleucina 2 (la cual estimula la proliferación y activación de células NK) y el factor estimulante 

de colonias de granulocitos y macrófagos (GM-CSF). Los aspectos negativos de esta terapia son el 

dolor como efecto secundario al afectar a nervios sensitivos o el hecho de que no todos los casos de 

NB presentan una expresión de GD2 suficientemente alta para poder ser eliminados de forma 

efectiva26. 

Los avances en el entendimiento del desarrollo del cáncer y el sistema inmune generan múltiples 

enfoques para nuevas inmunoterapias contra NB pasando por la determinación de TAAs para NB. Dos 

antígenos ya asociados a NB son las proteínas de membrana calreticulina y CD4727,28. Esta 

observación ha inducido un nuevo proyecto de terapia contra el NB. Ambas proteínas se han 

seleccionado para su inserción en un nuevo NK-CAR específico para este cáncer. Mientras que la 

proteína calreticulina se expresa únicamente en membranas de células tumorales, la proteína CD47 

también se encuentra en células sanas del cerebro. Por ello, el proyecto propone la modificación de 

células NK para la expresión combinada de ambas. La unión entre CD47 y el receptor de CD47 

expresado de forma constitutiva en células NK desencadena la expresión en membrana de un segundo 

receptor anti-calreticulina, el cual al contactar con su diana promueve la activación de la célula 

inmune3. 

2.5.Cultivo celular en 3 dimensiones. 

Para el desarrollo de nuevas terapias contra el cáncer más eficaces, no solo tiene peso la investigación 

de nuevas formas de eliminar las células tumorales, si no disponer de modelos de estudio que 

mimeticen las condiciones fisiológicas en las que se desarrolla esta patología. Los modelos celulares 

in vitro son un paso previo lógico y necesario a los modelos animales debido a sus múltiples ventajas 

en cuanto a la facilidad de trabajo, dinamismo, ética29 y menor coste económico. Su limitación 

principal es su bajo potencial de predicción de la respuesta celular en un sistema fisiológico completo. 

Debido a esto, es común que al realizar estudios in vivo los resultados obtenidos varíen con respecto a 

los estudios in vitro previos. Un modelo más fiel permitiría optimizar y seleccionar las nuevas terapias 

en función de su actividad en condiciones más similares a las fisiológicas, consiguiendo una mayor 

reproducibilidad de los resultados al aplicarlos en modelos in vivo. Esto se traduciría a su vez en una 

reducción de los tiempos y costes de desarrollo de nuevas terapias efectivas30,31.  

Los modelos celulares se definen según dos factores: la línea celular escogida y el método de cultivo 

empleado. El reservorio de líneas celulares es amplio y variado y en el caso del NB se disponen de 
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numerosas líneas celulares con las que trabajar. Por otra parte, la búsqueda de modelos celulares con 

mayor mimetismo ha generado un gran interés por nuevos métodos de cultivo, destacando el cultivo 

en tres dimensiones (3D). Los modelos de cultivo en 3D recrean características más similares a un 

sistema fisiológico y por ello, se obtienen resultados con mayor reproducibilidad in vivo. Estos 

modelos permiten mayor interacción célula-célula, generan oposición a la difusión y reducen el estrés 

creado por el crecimiento de las células en condiciones tan distantes a las fisiológicas31. Los modelos 

3D se usan ampliamente en el estudio de la citotoxicidad de drogas al mimetizar de forma más fiel la 

compleja arquitectura multicelular, la barrera al transporte masivo y la difusión a través de la matriz 

extracelular. En el caso de modelos 3D para el estudio de tumores sólidos como el NB, la disposición 

de las células se asemeja en mayor medida a la anatomía tumoral32, posibilitando características como 

la plasticidad metabólica, el TMA o la presencia de núcleo necrótico. Actualmente se han desarrollado 

numerosos métodos de cultivo 3D, como el crecimiento de células sobre soportes, embebidas en geles 

o en agregados celulares denominados esferoides. Dentro de las numerosas opciones de cultivo en 3D, 

los esferoides confieren una alta relevancia clínica a los resultados obtenidos al crecer libres de 

contacto con agentes externos. Con esta forma de cultivo se forman agregados de células donde se 

permiten su interacción y su crecimiento en la matriz extracelular30,33. 

3. HIPÓTESIS. 

Según los antecedentes expuestos se planteó la hipótesis de que el desarrollo inicial de una 

inmunoterapia con la tecnología de células NK-CAR con receptores frente a las proteínas CD47 y 

calreticulina en modelos celulares de NB obtendría distintos resultados en función del modelo de 

estudio seleccionado. En este trabajo se estudiaron las hipótesis iníciales para la puesta a punto del 

modelo, siendo las siguientes:  

1. La fisiología celular de los modelos en 3D de NB se diferenciará de la presente en los modelos 

en 2D. 

2. Los resultados de un mismo tratamiento en modelos de cultivo en 2D y 3D diferirán, siendo 

más resistentes los modelos en 3D. 

3. El modelo celular de la línea SH-SY5Y en esferoides se adecua para el estudio de la terapia 

con células NK-CAR con receptores frente a las proteínas CD47 y calreticulina.  

4. OBJETIVOS. 

El objetivo principal de este trabajo fue el desarrollo y estudio de un modelo de cultivo celular 3D de 

NB, como fase inicial para el desarrollo de una inmunoterapia con la tecnología NK-CAR. 

Para ello, se establecieron los siguientes objetivos intermedios: 

1. Optimización de un modelo de cultivo 3D para NB. 

2. Caracterización de líneas celulares de NB en función de su expresión de ligandos de células 

NK: HLA-I, HLA-II, CEACAM-1, ICAM-1, PDL1, galectina-9, tanto en modelos 2D como 

3D. 

3. Caracterización de líneas de NB en función de la expresión de las dianas del NK-CAR en 

desarrollo: CD47 y calreticulina.  

4. Análisis de la sensibilidad de líneas de NB a los fármacos habituales en quimioterapia: 

Cisplatino, Etopósido y Doxorrubicina, comparando cultivos en 2D y 3D.  

5. Análisis la actividad citotóxica de células NK expandidas sobre cultivos en 2D y 3D.  

6. Generación de líneas celulares de NB que expresan la proteína verde fluorescente (GFP) y 

luciferasa para el posterior estudio en modelos in vivo de la terapia con células NK-CAR. 
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5. MATERIALES Y MÉRODOS 

5.1.Cultivo celular. 

5.1.1. Líneas celulares. 

En este trabajo se emplearon las líneas celulares humanas SK-N-BE(2)-C, SH-SY5Y, SH-SY5Y 

modificadas para la expresión de la proteína GFP (SH-SY5Y GFP), HepG2, K562 y HEK 293T. Las 

células SK-N-BE(2)-C, SH-SY5Y, SH-SY5Y GFP son líneas celulares derivas de NB humano y 

fueron usadas como modelo de NB. Fueron cedidas por el Dr. Eduardo Ruiz. La línea celular HepG2, 

procedente de hepatocitos, fue usada como control de la generación y desarrollo de los esferoides34, 

línea cedida por el grupo del Dr. Pedro Baptista. Las células K562, derivadas de leucemia mielógena 

se emplearon en el protocolo de expansión de células NK, por su propiedad de activar a estas últimas, 

detallado posteriormente. Se hizo uso de las células embrionaria de riñón humano HEK 293T para la 

generación de partículas lentivirales. Las líneas celulares K562 y HEK 293T son propias del 

laboratorio. 

En este trabajo también se dispuso de células mononucleares de sangre periférica (PBMCs) extraídas 

de muestras proporcionadas por el Banco de Sangre y Tejidos de Aragón. 

5.1.2. Mantenimiento y manipulación de los cultivos de líneas celulares. 

Se cultivaron en frascos de cultivo de 25 cm2 (Corning) usando medio de cultivo Eagle modificado por 

Dubelcco (DMEM) (Sigma) a excepción de la línea celular K562 y las PBMCs, con las que se usó 

medio de cultivo Roswell Park Memorial Institute (RPMI) (Sigma). Ambos medios de cultivos se 

suplementaron al 10% con suero fetal bovino (SFB) (Sigma), penicilina (100U/ml)/estreptomicina 

(100ug/ml) (Sigma-Aldrich) y 2 mM Glutamax (Lonza). Los medios fueron atemperados a 37ºC en 

baño termostatizado previamente a su uso. Para su disociación se utilizó Tripsina-EDTA (Sigma) 

permitiendo su actuación durante 1 minuto a 37ºC, tras lavar con tampón fosfato salino (PBS) para 

evitar la inactivación de la Tripsina por el suero. El EDTA es un quelante de calcio que favorece la 

disgregación celular. Las células se mantuvieron en incubador termostatizado a 37ºC, 5% de CO2 y 

saturado de humedad (Panasonic), realizando cultivos frescos cada dos o tres días dependiendo tanto 

de su crecimiento como su uso.  

La manipulación de los cultivos se realizó en condiciones de esterilidad en campana de flujo laminar 

(Tesltar Bio All). 

5.1.3. Recuento y viabilidad celular. 

Los recuentos se realizaron con el colorante selectivo Azul de Tripano (Sigma) en dilución 1:1 con la 

suspensión celular a evaluar, haciendo uso de la cámara de Neubauer y un microscopio óptico 

(Nikon). El Azul de Tripano penetra únicamente en células que han perdido la integridad de la 

membrana plasmática, por lo que las células muertas adquirirán una coloración azul mientras que las 

células vivas y las apoptóticas, al mantener su membrana intacta, no se teñirán.   

5.1.4. Congelación y descongelación de líneas celulares. 

Para reducir el número de pases de las células se congelaron varios viales al comienzo de su cultivo. 

Se almacenaron en un ultracongelador a -80ºC en viales estériles para congelación (Thermo Scientific 

Nunc) y posteriormente almacenadas en nitrógeno líquido. La suspensión celular se centrifugó 

suavemente (335g, 5 min.) para conseguir la precipitación de las células viables. El pellet se 

resuspendió en SFB al 10% de dimetilsulfóxido (DMSO) (Sigma) y trasladado al vial. El DMSO es un 

agente criopreservante que evita la formación de cristales de hielo en el interior celular, evitando 

daños en la célula, pero es altamente tóxico en células con metabolismo activo, es decir a temperaturas 

fisiológicas, por lo que se debe trabajar manteniendo el vial en hielo.  

Para la descongelación de los viales, se resuspendió la disolución de células en 5 ml de medio 

atemperado y se centrifugó (335g, 5 mim.). El pellet celular se resuspendió en medio completo.  
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5.1.5. Cultivo celular 3D por método de gota colgante. 

La formación de esferoides de las líneas celulares de NB y HepG2 se realizó por el método de la gota 

colgante. A partir de células cultivadas en placa (2D) se dispone una suspensión celular de la 

concentración deseada en gotas invertidas. Las células se resupendieron en medio DMEM completo 

con un 20% de metilcelulosa (Methocell, Sigma) para aumentar su tensión superficial. Gotas de 20-30 

µl se dispusieron en la tapa de placas Petri o de placa de 96 pocillos (Thermo Scientific Nunc), 

quedando suspendidas al voltear la tapa. El fondo de las placas se mantuvo cubierto con agua miliQ 

para mantener una alta humedad y evitar el secado de las gotas.  

5.1.6. Disgregación de esferoides. 

Para aquellos ensayos en los que fue necesario el estudio de las células que conformaban los 

esferoides de forma individual, estos fueron disgregados de la forma descrita para 2D (apartado 5.1.2) 

aumentando el tiempo de actuación de la solución Tripsina-EDTA a 5 minutos. Tras la incubación, se 

realizó una rápida resuspensión mecánica.  

5.2.Caracterización de líneas celulares. 

5.2.1. Marcaje extracelular.  

Se analizó la expresión en membrana de distintas proteínas en las líneas celulares SH-SY5Y y SK-N-

BE(2)-C mediante citometría de flujo. Este equipo permite analizar individualmente cada célula de 

una muestra dada. El citómetro empleado fue el Citómetro analizador Gallios (Beckman Coulter), el 

cual dispone de tres láseres(488, 630, 405nm), y 10 detectores de fluorescencia además de dos 

detectores que nos permiten analizar el tamaño y la complejidad celular (FSC o Forward Scatter y 

SSC o SideScatter).Se utilizaron para el marcaje los siguientes anticuerpos monoclonales conjugados 

con fluoróforos: i) anti-HLA-I FITC (Invitrogen), ii) anti-HLA-II APC-VIO770 (Miltenyi Biotec), iii) 

anti-Calreticulina PE (abcam), iv) anti-ICAM-1 APC (BD Biosciences), v) anti-CEACAM-1 PE-

VIO770 (Miltenyi Biotec), vi) anti-PDL1 APC (Biolegend) y vii) anti-CD47 V450 (BD Biosciences). 

El marcaje se realizó con una dilución del anticuerpo 1:50 en PBS 5% SFB 0.5µM EDTA durante 20 

minutos a 4ºC para un marcaje más específico y en oscuridad para no afectar a la fluorescencia de los 

fluoróforos. El suero se añadió para favorecer el mantenimiento de la viabilidad celular durante el 

proceso. Con el fin de reducir las uniones inespecíficas, se usó un anticuerpo bloqueante frente a los 

receptores de la región constante (Fc) de los anticuerpos (CD16 y CD32). También se usaron como 

controles el isotipo correspondiente de la inmunoglobulina con el fluoróforo. El isotipo no se une a 

ninguna diana de forma específica al no reconocer ninguna proteína en su región variable, pero 

conserva las características inespecíficas de la Fc de la inmunoglobulina usada en el experimento. 

Tanto para los marcajes en cultivos 2D como 3D se siguió el mismo protocolo, variando el paso 

previo de disgregación de los esferoides, explicado en el apartado 5.1.6. 

5.2.2. Marcaje intracelular. 

Se analizó la expresión intracelular de la galectina-9 en las líneas celulares SH-SY5Y y SK-N-BE(2)-

C mediante citometría de flujo. En primer lugar, se fijaron las células con paraformaldehido al 4% 15 

minutos a 4ºC. A continuación, se permeabilizaron con saponina 0,5 % en PBS, detergente orgánico 

suave, durante 30 minutos a 4ºC. Se añadió entonces 1 µl de anti-Galectina-9 PE (Miltenyi Biotec), 

que se incubó 30 min. a 4ºC en oscuridad. Entre todos los pasos se lavó con PBS 5% SFB 0,5 mM 

EDTA al igual que en el marcaje extracelular.   

5.2.3. Análisis de resultados. 

El análisis de los resultados obtenidos por citometría siguió los siguientes pasos (Figura 2): i) Sobre un 

diagrama de puntos (cada célula se ve representada por un punto) se enfrentó FSC PEAK LOG contra 

SSC INT LOG para delimitar la región sin agregados de más de una célula ni restos celulares. ii) Se 

delimitó la población de estudio a la región seleccionada. iii) Se enfrentó el canal de lectura del 

fluoróforo en cada caso contra FSC INT LOG. iv) Se activó la opción de lectura de fluorescencia 
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media en el eje de coordenadas. v) Se dividió el valor de fluorescencia obtenido en el marcaje con el 

anticuerpo específico entre el obtenido en el isotipo o el control sin marcar en el caso de no 

disponerlo.  

Figura 2. Análisis de datos por citometría. Ejemplo: marcaje con isotipo 

IgG1 PE (parte superior) y anti-calreticulina PE (parte inferior). 

5.3. Caracterización de la sensibilidad a drogas usadas en quimioterapia en cultivos 2D 

y 3D para la línea celular SH-SY5Y.  

Se testaron diluciones seriadas de tres fármacos utilizados habitualmente en quimioterapia: Cisplatino, 

Etopósido y Doxorrubicina, así como la combinación de ellos. Las diluciones fueron de 50, 5, 0.5, 

0.05, 0.005, 0.0005 µM para el Cisplatino y el Etopósido y 92, 9.2, 0.92, 0.092, 0.0092 y 0.00092 µM 

para la Doxorrubicina. Los resultados se estudiaron mediante dos métodos explicados en los apartados 

contiguos. 

5.3.1. Estudio de la proliferación mediante Presto Blue. 

El PrestoBlue (Thermo Fisher) es un reactivo de viabilidad celular, cuya metabolización por las oxido-

reductasas celulares produce un compuesto fluorescente. Sobre 20000 células adheridas y 6 esferoides 

de 2000 células se testaron las distintas drogas. A las 24 y 48 horas de actuación de las drogas se 

añadieron 20 µl de PrestoBlue a cada pocillo, y tras una incubación de 3-5 horas, se midió la 

fluorescencia (máx. excitación 535nm/ máx. emisión 615nm). La medida de la fluorescencia se realizó 

con un lector de placas (Bio-Tek). Se hicieron blancos de todas las concentraciones de drogas para 

poder restar la fluorescencia basal (fluorescencia no producida por el metabolismo celular). 

5.3.2. Estudio de muerte celular por Anexina V.  

La Anexina V es una proteína celular usada en citometría por su unión a fosfatidilserina, fosfolípido 

mayoritario de la parte interna de la membrana celular que se transloca a la parte exterior durante el 

proceso de apoptosis. Sobre 50000 células adheridas en placa de 48 pocillos y 6 esferoides de 2000 

células se testaron las distintas drogas. Se marcaron las células con Anexina V FITC de manera 

análoga a la explicada en el apartado 5.2.1, diferenciándose en que los lavados se realizaron con 

tampón de unión de Anexina (ABB) (Thermo Fisher). Además, el medio de cultivo no sé desecho, 

para evitar perder con él las posibles células muertas, y por ello en suspensión. También se utilizó 

yoduro de propidio (PI) como marcador de muerte por necrosis. El PI es un compuesto fluorescente 

que se intercala en el DNA, pero no es permeable a través de la membrana de las células viables.  
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5.4.Expansión de células NK de donantes sanos. 

5.4.1. Aislamiento de PBMCs. 

Partiendo de muestras de “buffy-coat” (capa leucocitaria obtenida a partir de la centrifugación de 

sangre total)  proporcionadas por el Banco de Sangre y Tejidos de Aragón se realizó un aislamiento de 

células mononucleares de sangre periférica (PBMCs). Para ello se usó la centrifugación en gradiente 

de densidad (524 g, 30 min., deceleración 3) de 13 ml de buffy-coat (1:4) junto con 13ml de Ficoll 

Histopaque (MiltenyiBiotech). Las PBMCs forman una fase blanquecina intermedia entre el plasma y 

el Ficoll. Los eritrocitos que pudieran haber sido arrastrados se eliminaron mediante la incubación (5 

min.) con RBC Lysis Buffer (ThermoFisher). Una vez aislados se realizó un recuento celular para 

determinar el volumen del que iniciar la expansión. 

5.4.2. Expansión de células NK. 

La expansión de células NK se realizó durante 21 días añadiendo cada 3 días interleucinas 2 y 15 y 

células K562 en ratio 1:10 en RPMI completo con SFB inactivado. La IL-15 está involucrada en el 

mantenimiento de la viabilidad de las células NK, mientras la IL-2 en su activación8. Las células K562 

no expresan HLA-I, por lo que son una buena diana para las células NK y con ello promueven su 

activación. La inactivación del suero (30min. a 50ºC y centrifugación 2851g, 10min.) se realizó para 

inactivar las proteínas inmunitarias del complemento presentes en este y evitar su influencia en los 

mecanismos de citotoxicidad posterior.   

5.4.3. Seguimiento de la expansión. 

El seguimiento de la expansión se realizó por citometría mediante la caracterización de las 

poblaciones de células presentes con marcaje extracelular de las proteínas CD3 y CD56. Este marcaje 

sobre PBMCs genera cuatro poblaciones: dobles positivos, correspondiendo a linfocitos NKT (con 

fenotipo mezcla entre células NK y linfocito T); CD3+ CD56-, los linfocitos T; CD3- CD56+, las 

células NK, y dobles negativos, el resto de los leucocitos aislados. Los marcajes y su lectura fueron 

realizados siguiendo el protocolo de marcaje extracelular del apartado 5.2.1. 

5.5.Citotoxicidad de células NK expandidas sobre células SH-SY5Y GFP. 

Se evaluó la citotoxicidad de células NK de un donante sano expandidas durante 5 y 21 días. Se 

realizó usando como células diana, células SH-SY5Y GFP en cultivos 2D y 3D. Los ratios célula 

NK:diana fueron 6:1 y 1:1 y se analizaron los resultados a 5 y 24 horas para el modelo 2D y 24 y 48 

horas en el caso de los esferoides. Se usó como control células SH-SY5Y GFP incubadas sin células 

NK. Se cuantificó el número de células viables por citometría con la lectura de células GFP positivas. 

Al morir la célula la fluorescencia de la GFP se pierde, por lo que manteniendo los tiempos de 

adquisición del citómetro se realizó una medida relativa de la viabilidad específica de las células 

diana35. 

5.5.1. Puesta a punto del uso de células GFP positivas como valor representativo de células 

viables. 

Se comprobó que la medida de células GFP positivas era una medida representativa del valor de 

células viables en el cultivo. Para ello se sembraron disoluciones con número decreciente de células 

SH-SY5Y GFP, de 50.000 hasta 5.000 y a las 24 horas se analizaron en el citómetro. 

5.5.2. Purificación de células NK 

Para la purificación de las células NK en expansión se usaron columnas magnéticas MACS (Miltenyi 

Biotec). Se incubó el cultivo completo de PBMCs con el anticuerpo anti-CD56 MicroBeads (Miltenyi 

Biotec) (20ul de anticuerpo por cada 10 millones de PBMCs totales). Las “microperlas” son partículas 

magnéticas que permite la retención en una columna metálica bajo un campo magnético. La proteína 

CD56 es expresada únicamente por células NK y NKT, por lo que con este método se aíslan 

únicamente estas poblaciones, siendo las células NK mayoritarias en sangre. 
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5.6. Visualización celular por microscopía.  

5.6.1. Determinación de la morfología de esferoides por microscopia óptica. 

Los esferoides fueron observados por microscopia en campo claro en un microscopio óptico invertido 

Nixon. Se observó su morfología y se determinó el grado de compactación como la observación de 

una frontera definida entre células y medio. Se fotografiaron los esferoides de la línea celular SH-

SY5Y a día 4 y 7 para el estudio su formación y desarrollo, usando como control positivo esferoides 

de la línea celular HepG2 con un mismo número de células iníciales34. 

5.6.2. Microscopia de fluorescencia. 

Se empleó un microscopio invertido de fluorescencia, modelo Olympus IX81, para la toma de 

imágenes de fluorescencia total (suma de todos los planos) tanto en cultivo de células en 2D como en 

3D. Se realizó la lectura de fluorescencia emitida por la proteína GFP (máx. excitación 395nm-máx. 

emisión 509nm) y por el compuesto PI (máx. excitación 535nm- máx. emisión 617nm). 

5.6.3. Microscopía confocal. 

La obtención de imágenes de secciones individuales de los esferoides se realizó mediante microscopía 

confocal. Esta tecnología permite observar planos independientes del interior de los esferoides. Para 

ello la medida de “pinhole” utilizada fue igual o menor a 1AU. El pinhole es un término inglés 

(traducción literal: agujero de alfiler) que define la apertura del diafragma que restringe el paso de 

fluorescencia, permitiéndolo únicamente a la correspondiente con el plano enfocado. El microscopio 

empleado fue un Microscopio Confocal Espectral Zeiss LSM 880 con Airyscan. 

5.6.4. Preparación de muestras de esferoides para su observación. 

Todos los pasos de la manipulación con micropipeta de los esferoides para su visionado fueron con 

puntas de micropipeta cortadas para aumentar su diámetro y evitar la deformación o fragmentación de 

la estructura 3D. Los esferoides fueron lavados con PBS 5% SFB y marcados con PI durante 15 min a 

temperatura ambiente.  

5.7.Estudio de la estructura de esferoides de la línea celular S-SY5Y por anatomía 

patológica. 

Las preparaciones se llevaron a cabo en el servicio de anatomía patológica del Instituto Aragonés de 

Ciencias de la Salud (IACS). Se utilizaron muestras de esferoides SH-SY5Y fijados (4% 

paraformaldehído, 30min.). Se realizó un procesado por inclusión en parafina y cortes cada 5 µm 

mediante el Microtomo de rotación Leica RM2255. Posteriormente se realizó su tinción con 

hematoxilina-eosina. La hematoxilina, de color azul, se une a las estructuras aniónicas, como el 

núcleo, y la eosina a estructuras catiónicas, tiñendo citoplasma y membrana de color rosa.   

5.8.Generación de línea celular SH-SY5Y + GFP-Luciferasa. 

5.8.1. Obtención de lentivirus e infección de células SH-SY5Y.  

Se empleó la línea celular HEK 293T como células empaquetadoras para la generación de partículas 

virales con el plásmido de interés, ZsGreen (cedido por la Graduada Sandra Hortelano). El plásmido 

contiene la secuencia de la proteína GFP, proteína fluorescente de membrana que nos permite una 

fácil observación de las células por microscopía, y de la luciferasa. La luciferasa es una encima de 

interés por permitir el seguimiento de la célula que la expresa en organismos vivos debido a su 

capacidad de degradar luciferina para dar un compuesto luminiscente, pudiendo ser observadas in 

vivo, sin interferencia de la propia fluorescencia de los tejidos. La generación de lentivirus se realizó 

añadiendo 2,5 µg de plásmido pMD2.G y 6ug de pPAX2, con información de proteínas víricas, y 6 µg 

de ZsGreen. Se adicionó a la mezcla 40 µL de polietilenimina (PEI) (Sigma), un polímero catiónico 

que condensa el DNA en partículas con carga positiva, facilitando su endocitosis y la liberación en el 

citoplasma. Tras una fuerte agitación y 15 minutos de incubación a temperatura ambiente, se añadió al 

cultivo de células HEK 293T en DMEM sin suplementar. Tras 16 horas de incubación, se reemplazó 



 

12 

 

el medio por DMEM completo y se dejaron las células 2 días en cultivo. Se recogió el medio y se 

concentraron los virus con Lentivirus-X Concentrator (Takarabio), centrifugando 45 min. a 1455g y 

4ºC. El pellet obtenido se resuspendió en un volumen mínimo de medio y agregó al cultivo 2D de 

células SH-SY5Y. Los lentivirus son virus de RNA con retrotranscriptasas e integrasas para la 

inserción de su RNA como DNA en el genoma del hospedador.  

5.8.2. Aislamiento de células transformadas.  

El grado de internalización del plásmido se equiparó el grado de expresión de la proteína GFP. Se 

midió tanto cualitativamente por observación en microscopio invertido de fluorescencia, como 

cuantitativamente por citometría de flujo. El aislamiento de células infectadas se planificó mediante 

dilución límite por el aislamiento de colonias individuales que presentaban fluorescencia en placa de 

96 pocillos y su posterior cultivo en volúmenes de medios crecientes.  

5.9.Análisis estadístico 

El análisis estadístico de los resultados se realizó con el programa GraphPad Prism 7. En la 

comparación de la expresión de ligandos de células NK (resultados 6.2) se aplicó el test Mann-

Whitney para variables no paramétricas, ya que con una n tan pequeña no se pudo testar su 

normalidad. En la comparación de los IC50 obtenidos con el tratamiento de drogas (resultados 6.3.) se 

realizó el test estadístico de Fisher. 

6. RESULTADOS 

6.1.Estudio de la morfología de los esferoides. 

Para estudiar la morfología de los esferoides se procedió al cultivo en 3D de las células según el 

método de la gota colgante explicado en materiales y métodos (apartado 5.1.5). A través de la 

observación en el microscopio invertido se estableció el tiempo de formación de esferoides en la línea 

celular SH-SY5Y en un periodo de 48 horas desde la siembra, por lo que se tomó ese tiempo de 

incubación para la creación de esferoides en los ensayos posteriores. La línea celular SK-N-BE(2)-C 

no formó esferoides compactos por el método de la gota colgante, observándose cúmulos de células de 

baja compactación que no fueron considerados esferoides. 

Como control se usó esferoides de la línea celular HepG2, ya que estos están descritos en la 

bibliografía34. La comparación por microscopía óptica de esferoides de las líneas celulares SH-SY5Y 

y HepG2 del mismo número de células en origen (2.000 y 10.000 células) mostró diferencias en el 

desarrollo de ambos (Figura 3 B). La variación en el volumen entre esferoides de 2.000 y 10.000 

células iníciales fue menor en la línea celular SH-SY5Y. Así mismo, los esferoides para esta línea 

celular fueron de menor tamaño en todos los casos. El crecimiento de los esferoides de SH-SY5Y 

mostró un punto de inflexión entre los días 7 y 14 en el que perdieron su forma esférica y comenzaron 

un desarrollo longitudinal (Figura 3 A). 

Para una mejor caracterización, se obtuvieron imágenes de los cortes de esferoides teñidos con 

hematoxilina y eosina. Los esferoides de células SH-SY5Y mostraron una estructura reticular, con una 

mayor densidad celular en la periferia y relativamente constante en el resto de la estructura (Figura 3 

D). La arquitectura celular de los esferoides también se analizó a través de microscopía de 

fluorescencia convencional y confocal. Para ello se hicieron esferoides de células SH-SY5Y que 

expresaban la proteína fluorescente GFP. Estos esferoides GFP positivos se marcaron con PI como 

sonda de viabilidad celular. Los estudios mostraron una viabilidad celular alta, al detectarse 

únicamente señal de fluorescencia roja (PI) localizada en puntos concretos, correspondiendo con el 

marcaje de células muertas en zonas generalmente de la periferia, no observándose la formación de un 

núcleo necrótico (Figura 3 E). En microscopia confocal, las imágenes de secciones del interior de los 

esferoides mostraron células viables, presentando ciertas células muertas (PI positivo) en la periferia 

(Figura 3 C). Las imágenes de zonas interiores del esferoide (z >60µM) mostraban una pérdida 
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gradual de la fluorescencia según se profundizaba en la masa celular por lo que no se pudo llegar a 

observar al completo su estructura. 

 Figura 3. Estudio de la morfología de los esferoides. 

A) Imágenes de esferoides de la línea celular SH-SY5Y de 2000 células en originen a distintos días 

desde su siembra. Los días desde la siembra se indican bajo cada imagen. Las imágenes se obtuvieron 

con un microscopio óptico invertido a 20 aumentos.  

B) Comparación de esferoides de las líneas celulares SH-SY5Y y HepG2. En cada imagen se indica el 

número de células en origen para cada esferoide, habiendo esferoides de 2000 y de 10000 células. Se 

fotografiaron a dos tiempos desde su siembra, 4 y 7 días, con un microscopio óptico invertido a 20 

aumentos. 

C) Esferoides de células SH-SY5Y GFP marcados con PI de 2000 células en origen a día 8 desde su 

siembra. En verde se muestra la fluorescencia de la proteína GFP y en rojo la fluorescencia 

correspondiente al compuesto PI. Las imágenes se obtuvieron por microscopía confocal siendo i) a 10 

aumentos, e ii) a 20. La línea de escala representa 200 µm.  

D) Esferoides SH-SY5Y con tinción hematoxilina-eosina. Se muestran imágenes obtenidas por 

microscopio óptico invertido de dos cortes realizados por anatomía patológica (material y métodos 

5.7.) de esferoides SH-SY5Y de 2000 células en origen. 

E) Esferoide de células SH-SY5Y GFP marcado con PI de 2000 células en origen a día 8 desde su 

siembra. En verde se muestra la fluorescencia de la proteína GFP y en rojo la fluorescencia 

correspondiente al PI. Las imágenes se obtuvieron en microscopio invertido de fluorescencia a 10 

aumentos. La línea de escala representa 25 µm. 
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6.2.Caracterización de las líneas celulares SH-SY5Y y SK-N-BE(2)-C en función de 

su expresión de ligandos de células NK: HLA-I, HLA-II, CEACAM-1, ICAM-1, 

PDL1, galectina-9 y los TAAs del NB calreticulina y CD47, en modelos 2D y 3D. 

Se estudió por citometría de flujo la expresión de ligandos de células NK en modelos 2D de la línea 

celular SK-N-BE(2)-C y en modelos 2D y 3D de la línea celular SH-SY5Y, para observar tanto la 

diferencia entre líneas celulares, como entre formas de cultivo. Los datos se representaron como 

número de veces que aumentó la intensidad media de fluorescencia (IMF) respecto al control (isotipo), 

por lo que un valor igual a uno corresponde con expresión nula de la proteína (Figura 4). Se adjunta 

como Figura I en los anexos un diagrama de puntos y un histograma representativo del marcaje en la 

línea celular SK-N-BE(2)-C para cada una de las proteínas estudiadas.  

Las proteínas estudiadas fueron las siguientes: i) HLA-II, presente en células presentadoras de 

antígenos. Su nivel de expresión fue bajo en los tres modelos. ii) ICAM-1, proteína de adhesión, 

estabiliza el contacto entre células, como células inmunes y células diana. Se localiza en la llamada 

parte periférica de la sinapsis (psMAC), refiriéndose a sinapsis como intercambio de señales entre 

célula inmune y diana8. Aumentó en la línea celular SH-SY5Y y de mayor forma en su modelo 3D. iii) 

CEACAM-1, proteína reconocida por el punto de control inmunológico TIM3, se detectó únicamente 

en el modelo 2D de células SH-SY5Y. TIM3 se expresa en el TMA de diferentes tipos de cáncer, 

donde bloquea su eliminación36. iv) La galectina-9 modula varios procesos celulares, como la 

agregación celular, así como la apoptosis en células tumorales, teniendo efectos antiproliferativos en 

tumores. También se trata de un ligando para el punto de control inmunológico TIM337. Su expresión 

intracelular fue marcadamente mayor en el modelo celular 3D que respecto a ambas líneas en 2D. v) 

CD47, proteína sobreexpresada en NB que evita la fagocitosis por el sistema inmune27. Se confirmó su 

alto nivel de expresión en los tres modelos, disminuyendo en la línea celular SH-SY5Y y siendo 

menor en el modelo 3D. vi) HLA-I es la diana principal de numerosos KIRs, por lo que su expresión 

manda señales inhibitorias potentes a las células NK. Su expresión fue elevada en todos los casos, 

siendo mayor en la línea celular SK-N-BE(2)-C. vii) PDL1, ligando del punto de control 

inmunológico PD1, expresado en células inmunes, cuya unión inhibe la actuación de estas. La 

expresión de PDL1 se presenta ampliamente en varios tumores con lo que frenan su eliminación10. La 

expresión en cultivos 2D de células SH-SY5Y fue marcadamente mayor que en los otros dos modelos 

estudiados. viii) La calreticulina es una chaperona que participa en diferentes procesos celulares. Se ha 

descrito que las células tumorales aumentan su expresión en membrana28. Su expresión disminuyó 

agudamente en el modelo SH-SY5Y en cultivo 3D, pero se mantuvo en un nivel de incremento de 

IMF de dos, por lo que se siguió considerando positiva.  

Se obtuvo un aumento de la fluorescencia frente al control para todas las proteínas. En el caso de la 

expresión de la proteína CEACAM-1 únicamente la línea celular SH-SY5Y en modelo de cultivo 2D 

mostró un aumento superior a 2. El estudio de la expresión de las proteínas HLA-I, PD-L1 y 

calreticulina obtuvo valores de IMF mucho mayores que para el resto proteínas, superando una IMF 

diez veces la del control, excluyendo el caso de la calreticulina en el modelo 3D de células SH-SY5Y.   

El análisis estadístico mostró diferencias significativas para la expresión de las proteínas PDL1 y 

calreticulina entre los modelos 2D y 3D de la línea celular SH-SY5Y. A pesar de que no se obtuvieron 

otras diferencias estadísticamente significativas se observaron tendencias que quizá aumentando las 

repeticiones del estudio se consolidarían.  
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Figura 4. Resultados del análisis de la expresión de las proteínas HLA-II, ICAM-1, 

CEACAM-1, galectina-9, CD47, HLA-I, PDL1 y calreticulina en un modelo de 

cultivo 2D de la línea celular SK-N-BE(2)-C y modelos de cultivo 2D y 3D de la línea 

celular SH-SY5Y. Se siguió el procedimiento especificado en el apartado de material y 

métodos 6.2., utilizando anticuerpos contra esas proteínas unidos a distintos fluoróforos y 

se utilizó como control negativo los anticuerpos del mismo isotipo y fluoróforo que el 

usado en el marcaje. Las gráficas presentan el aumento de intensidad media de 

fluorescencia en número de veces respecto al control (n≥2). En línea de puntos se indica el 

valor igual a 1, a partir del cual se considera positiva la expresión de la proteína. En la 

leyenda, SK 2D corresponde con el cultivo en 2D de la línea celular SK-N-BE(2)-C y SH 

2D y SH 3D con los modelos de cultivo 2D y 3D de la línea celular SH-SY5Y. En el eje x, 

la abreviatura gal 9 corresponde a la proteína galectina-9 y CLRT a la calreticulina. Se 

aplicó el test estadístico Mann-Whitney, mostrándose el símbolo * cuando se obtuvo una 

diferencia estadísticamente significativa para un p<0,05. Si no se representa es que la 

diferencia de expresión no es estadísticamente significativa. 

6.3.Comparación de la sensibilidad de los cultivos 2D y 3D de la línea celular SH-

SY5Y a los fármacos usados en clínica. 

La sensibilidad de la línea células SH-SY5Y a diferentes drogas se analizó con un ensayo de 

proliferación por el método de PrestoBlue. El porcentaje de proliferación muestra la variación de la 

población celular en cada condición respecto al control sin tratamiento (Figura 5). En este caso, la 

concentración de droga a la que la proliferación celular alcanza la mitad del valor del control recibe el 
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nombre de concentración inhibitoria media (IC50). Los fármacos usados fueron los empleados 

comúnmente en clínica para el tratamiento del NB (Cisplatino, Etopósido y Doxorrubicina). En todos 

los casos estudiados, se observó la disminución de proliferación al aumentar la concentración de 

fármacos y la disminución del IC50 de la combinación de ellos respecto a cualquiera de sus análogos 

como una única droga. La proliferación se ve alterada por el método de cultivo, obteniéndose una 

menor sensibilidad al efecto antiproliferativo de las drogas en cultivos 3D. En el caso del Etopósido, 

las diferencias son muy bajas, mientras que en el caso de las drogas combinadas es más acusado. La 

dispersión de los resultados 3D es mayor que en 2D, pudiendo deberse a la complejidad a la hora de 

asegurar un mismo número de esferoides por pocillo en cada experimento.  

Debido a que el estudio de proliferación por el método del PrestoBlue no nos indica si la inhibición 

observada es por inducción de muerte o por inhibición del crecimiento, se realizó un estudio similar, 

detectando muerte celular por citometría de flujo con Anexina V e yoduro de propidio. En la figura II 

de los anexos se muestran los resultados de un ejemplo representativo del tratamiento con 

Doxorrubicina en cultivo en 2D en forma de diagramas de puntos. Los resultados del modelo 2D a 

distintos tiempos mostraron una mayor muerte con las concentraciones más altas de todas las drogas, 

así como con su combinación (Figura 6). En el modelo 3D, se obtuvo una muerte basal muy alta que 
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Figura 5. Efecto del tratamiento con drogas de quimioterapia en cultivos 2D y 3D sobre la 

proliferación de la línea celular SH-SY5Y. Se incubaron las células con distintas 

concentraciones de Cisplatino, Doxorrubicina, Etopósido, así como su combinación y se analizó 

la proliferación celular por la degradación de PrestoBlue según se describe en el apartado de 

material y métodos 6.3.1. Las gráficas representan el porcentaje de proliferación frente a 

concentración de drogas (µM) (n=3). En el caso de la mezcla, las concentraciones indicadas son la 

concentración de cada droga individualmente. Se muestra en rojo, los valores obtenidos para un 

periodo de incubación de 24 horas en cultivo en 2D, en negro para 48 horas en cultivo en 2D y en 

azul 48 horas de incubación de las drogas con esferoides. En las leyendas se indican los IC50 en 

µM obtenidos utilizando el programa GraphPad. Se realizó un test de Fisher, el cual no definió los 

valores de IC50 obtenidos como distintos para ninguno de los casos.  
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dificultó la interpretación de los resultados, pero se vio una tendencia en el aumento de muerte a dosis 

altas en los casos de la Doxorrubicina, la mezcla y débilmente en el Etopósido. Para el estudio de la 

muerte definimos el EC50 como la concentración a la que la muerte celular alcanza el 50% de la 

población total. Los EC50 obtenidos mostraron más sensibilidad a las drogas a las 48 horas en modelo 

2D frente a su análogo a 24 horas. En la comparación entre modelo 2D y 3D se mostró más 

sensibilidad en el 2D únicamente en el tratamiento con Cisplatino y las mezcla. Para descartar que la 

muerte basal en los esferoides se debiera al protocolo de disgregación aplicado, se llevó a cabo el 

mismo protocolo en un cultivo en 2D y se estudió su viabilidad, obteniéndose un 94% de células 

viables, por lo que esta teoría se descartó.  

0

5
·1

0
-4

5
·1

0
-3

5
·1

0
-2

5
·1

0
-1

5
·1

0
0

5
·1

0
1

0

2 0

4 0

6 0

8 0

1 0 0

C IS P L A T IN O

C is p la tin o  u M

A
n

e
x

in
a

 V
 +

4 8 H  2D

2 4 H  2D

4 8 H  3D

E C 50  uM

2 .14

0 .82

0 .91

 

0

9
·1

0
-4

9
·1

0
-3

9
·1

0
-2

9
·1

0
-1

9
·1

0
0

9
·1

0
1

0

2 0

4 0

6 0

8 0

1 0 0

D O X O R R U B IC IN A

D o x o rru b ic in a  u M

A
n

e
x

in
a

 V
 +

2 D  2 4H

2 D  4 8H

3 D  4 8H

E C 50  uM

9 .96

0 .98

e rro r

 

0

5
·1

0
-4

5
·1

0
-3

5
·1

0
-2

5
·1

0
-1

5
·1

0
0

5
·1

0
1

0

2 0

4 0

6 0

8 0

1 0 0

E T O P Ó S ID O

E to p ó s id o  u M

A
n

e
x

in
a

 V
 +

2 4 H  2 D

4 8 H  2 D

4 8 H  3 D

E C 50  uM

5 .77

1 .62

1 .67

 

0

5
·1

0
-4

5
·1

0
-3

5
·1

0
-2

5
·1

0
-1

5
·1

0
0

5
·1

0
1

0

2 0

4 0

6 0

8 0

1 0 0

M E Z C L A

C is p , D o x o , E to p  u M

A
n

e
x

in
a

 V
 +

2 4 H  2D

4 8 H  2D

4 8 H  3D

E C 50  uM

1 .84

0 .41

3 5 .17

 

Figura 6. Efecto del tratamiento con drogas de quimioterapia en cultivos 2D y 3D sobre la 

viabilidad de la línea celular SH-SY5Y. Se incubaron las células con distintas concentraciones de 

Cisplatino, Doxorrubicina, Etopósido, así como su combinación y se analizó la muerte por detección 

de Anexina V según se describe en el apartado de material y métodos 6.3.2. Las gráficas representan 

el porcentaje de muerte celular frente a concentración de drogas (µM) en la línea celular SH-SY5Y 

(n=3). En la mezcla, las concentraciones indicadas son concentraciones individuales de cada droga y 

en el caso de la Doxorrubicina no serían las indicadas si no las siguientes: 0, 9·10-4, 9·10-3, 9·10-2, 

9·10-1, 9·100 y 9·101µM. Se muestra en rojo, los valores obtenidos para un periodo de incubación de 

24 horas en modelo 2D, en negro para 48 horas en modelo 2D y en azul 48 horas de incubación de las 

drogas en esferoides. En las leyendas se indican los EC50 en µM obtenidos utilizando el programa 

GraphPad. 
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Los valores de EC50 resultantes deberían ser mayores que los IC50, obtenidos en el experimento de 

proliferación, ya que para una misma concentración de droga su efecto sobre la disminución de la 

proliferación es mayor que en el aumento de la muerte, debido a que la primera es consecuencia 

necesaria para la segunda. En este estudió solo se cumplen en el caso de la Doxorrubicina y la mezcla 

de las drogas, pudiendo deberse a la alta muerte basal detectada o a la perdida de células en el análisis 

en el caso de que la muerte sea muy avanzada. 

6.4.Comparación de la sensibilidad de los cultivos 2D y 3D de la línea celular SH-

SY5Y a células NK activadas. 

Partiendo de un “buffy-coat” de un donante sano se procedió a la purificación de PBMCs y la 

activación de las células NK. Se realizaron marcajes de CD3 y CD56 de los PBMCs mostrando un 

aumento progresivo del porcentaje de la población de células NK: 5,21%, 8,28%, 67,2% y 68,5% 

respectivamente (Figura 7). La población doble negativa desaparece a partir del día 14, debido 

probablemente a la muerte de aquellas células que no han recibido señales de activación. A día 14 se 

trabajó en otro citómetro debido a un problema técnico, por lo que el protocolo del citómetro varió, 

observándose una distribución distinta de las poblaciones, aunque los porcentajes no variaron respecto 

a los obtenidos a día 21. 

 
Figura 7. Caracterización de la población de células en expansión. Se analizaron las poblaciones 

presentes en el cultivo de células NK en expansión en función de la expresión de las proteínas CD56 y 

CD3 mediante citometría de flujo según se describe en materiales y métodos 5.6. Se muestra el 

diagrama de puntos enfrentando CD56 y CD3. De izquierda a derecha días 5, 7, 14 y 21 (n=1). 

Para analizar la actividad citotóxica de las células NK activadas se puso a punto una técnica basada en 

la cuantificación del número de células GFP positivas por citometría de flujo (apartado de material y 

métodos 5.7.1.). Para validar este método se sembraron en los pocillos un número decreciente de 

células. Se estableció el mayor número de células sembradas como el 100% y se limitó el tiempo de 

toma de muestra del citómetro a 100 segundos. En la tabla 1 se muestran los resultados obtenidos. El 

número de células detectadas por citometría muestran un descenso proporcionado al número de células 

presentes en cada pocillo. Se consideró que los resultados se adecuaban por lo que se decidió aplicar 

esta técnica para el estudio de células viables tras tratamiento con células NK. Este método facilita en 

gran medida el protocolo de lectura de la citotoxicidad de las células NK frente a las dianas, células 

SH-SY5Y GFP, permitiendo distinguir de forma fiable las poblaciones celulares.  
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Tabla 1. Porcentaje de células viables respecto al cultivo de 

50.000 células. El porcentaje de células sembradas representa el 

descenso en el número de células presentes en cada pocillo y el 

porcentaje de células leído, el descenso de células detectadas en 

el citómetro tras su procesado (n=1). 

 

Una vez validado el método se procedió al estudio de citotoxicidad con las células NK y las células 

SH-SY5Y GFP cultivadas en 2D y 3D. Se observó un menor número de células en los pocillos en los 

que se usó un mayor ratio de células NK: células SH-SY5Y GFP (Figura 8). En el caso del ratio 1:1 

solo se observó disminución de células viables a tiempos mayores de 5h en cultivos 2D o 24h en 

cultivos 3D. En la figura III de los anexos se muestra un diagrama de puntos representativo de los 

datos obtenidos. Para el ratio 6:1, se observó una disminución marcada a todos los tiempos. En la 

comparación de la actividad citotóxica de células NK activadas durante un periodo de 5 o 21 días, se 

detectó un menor número de células viables al enfrentarse con células NK activadas durante 21 días. 

Comparando los modelos 2D y 3D a 24 horas de actuación de las células NK, se observa una 

resistencia mayor en el modelo 3D, encontrándose un mayor número de células viables.  
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Figura 8. Muerte celular inducida por células NK activadas sobre la línea celular SH-SY5Y GFP 

cultivadas en 2D y 3D. En los diagramas de barras se representa el porcentaje de células SH-SY5Y 

GFP respecto al control sin tratar. Se consideró la fluorescencia de la GFP como marcador de viabilidad 

y para estandarizar los resultados obtenidos, se dividió el número de células viables entre las células en 

el control respectivo. Modelos 2D y 3D de la línea celular SH-SY5Y GFP fueron incubados durante 

distintos tiempos con: A) Células NK expandidas durante 5 días a distintos ratios de células NK: células 

diana: en negro ratio 1:1, en gris 6:1. B) Células NK a ratio 1:1 activadas durante distintos tiempos: en 

negro 5 días de activación, en gris 21 días de activación. (n=1). 

6.5.Expresión de las proteínas GFP y luciferasa en células SH-SY5Y. 

Para obtener células GFP-luciferasa positivas se produjeron partículas virales en las células HEK 293T 

y con estas partículas virales se infectaron las células SH-SY5Y (materiales y métodos 5.10.1). Se usó 

la expresión de la proteína GFP como marcador de la transfección en las células HEK 293T y de la 

infección en las células SH-SY5Y de ambas proteínas, GFP y luciferasa. La transfección tuvo una 

eficiencia mayor que la infección según las imágenes obtenidas por microscopia. Por citometría de 

flujo se determinó la eficiencia de la infección de las células SH-SY5Y en un 63,3% (Figura 9). 
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Figura 9. Expresión de la proteína GFP en células HEK 293T y SH-SY5Y. A) Células 

empaquetadoras HEK 293T durante la producción de virus a día 2 desde la aplicación de los 

plásmidos (n=3). B) Células SH-SY5Y infectadas a día 1 desde la aplicación de las partículas virales 

recogidas del medio de cultivo de las células HEK 293T (n=3). Los protocolos seguidos se describen 

en el apartado 6.8.1. A y B) Imágenes obtenidas en microscopio invertido de fluorescencia con el 

objetivo de 10 aumentos. Se muestran las imágenes de campo claro, de la fluorescencia de la proteína 

GFP y la combinación de ambas. C) Histograma obtenido por citometría de flujo de la intensidad de 

fluorescencia de la proteína GFP en las células SH-SY5Y. En negro como control, células SH-SY5Y 

sin expresión de proteína GFP, en rojo, cultivo de células SH-SY5Y a los dos días de su infección 

(n=1). 

7. DISCUSIÓN DE RESULTADOS. 

El modelo celular seleccionado para el estudio de un nuevo tratamiento tiene amplias repercusiones en 

los resultados obtenidos, y mientras está premisa ha desencadenado la generación de miles de líneas 

celulares, pudiendo encontrar alrededor de 4.000 líneas celulares en la Colección Americana de 

Cultivos Tipo (ATCC por sus siglas en inglés), las formas de cultivo no muestran tal desarrollo. 

Actualmente esta corriente se está potenciando, apareciendo técnicas de cultivo alternativas al modelo 

de cultivo en 2D de crecimiento celular en adhesión sobre placas de cultivo. Se ha visto que esferoides 

de gran tamaño son capaces de mimetizar las propiedades de los tumores sólidosInvalid source 

specified., propiedades que influyen en los efectos terapéuticos de diversos tratamientos de forma 

similar a la observada en tumores sólidos in vivo. 

En este trabajo se han obtenido esferoides de NB la línea celular SH-SY5Y y estudiado sus 

características. Se observó una muerte basal mayor en los esferoides respecto al cultivo en 2D (Figura 
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6) y pese a ello, en los ensayos de citotoxicidad los esferoides mostraron mayor proliferación y 

viabilidad respecto a las condiciones de control (Figuras 5 y 8). Este hecho podría deberse al estrés 

generado en las células por el cambio de modelo de cultivo de 2D a 3D. Esto concuerda con la 

observación de células muertas en la superficie de los esferoides observadas por microscopía confocal 

y de fluorescencia (Figura 3). Una parte de la población de células no lograría adaptarse al crecimiento 

en 3D y morirían, aumentando la muerte basal de manera independiente a los tratamientos posteriores. 

En cambio, aquellas células que se adaptasen al cultivo en 3D y formaran esferoides, mostrarían 

mayor resistencia a los tratamientos. Esto cuestiona el método de gota colgante empleado para la 

generación de esferoides, que fuerza a las células a pasar de un cultivo 2D a 3D puntualmente, y se 

plantea como alternativa el cultivo continuado de las células en 3D como una posible mejora de la 

técnica. Actualmente se están desarrollando medios de cultivos que fomentan la agregación de células 

adherentes y promueven el crecimiento de las células en 3D, permitiendo el cultivo de líneas celulares 

en 3D. Estos métodos estimulan a las células a crecer en cultivo en 3D, pero no aseguran la 

homogeneidad de los esferoides obtenidos, por lo cual la combinación de ambos métodos, cultivo con 

medio pro-agregación y generación de esferoides homogéneos por gota colgante, podrían reducir la 

muerte basal encontrada en los ensayos posteriores. Este aumento de la muerte basal con el paso de 

cultivo en 2D a 3D no sucede en todos los tipos tumorales ya que en otros modelos no se observó que 

el cultivo puntual en 3D afectara a la viabilidad celular17. 

En este estudio también se observaron diferencias en la arquitectura del cultivo de la línea celular SH-

SY5Y entre los modelos 2D y 3D. Los esferoides presentaron una alta compactación, pese a esto, no 

se observó núcleo necrótico, el cual sí está descrito en otros modelos 3D31. El núcleo necrótico 

también se observa frecuentemente en tumores de neuroblastoma de pacientes13, lo que muestra la 

disparidad aun presente entre esta aproximación y la realidad. 

Los estudios de viabilidad y muerte celular con los tratamientos aplicados (quimioterapia y células NK 

activadas), mostraron mayor resistencia en las células en cultivo 3D. El aumento de la resistencia se 

observó mayor para el tratamiento con células NK. Esto podría deberse a una menor accesibilidad de 

las células NK a las células tumorales con respecto al cultivo 2D. La oposición a la difusión 

presentada tanto por la compleja arquitectura celular de los esferoides como por la matriz extracelular 

existente supondría un impedimento para la difusión de las células NK, sin embargo, afectaría en 

menor medida en la acción de los fármacos, debido a su alta solubilidad.  

La mayor resistencia frente a los fármacos estudiados de los modelos celulares in vitro de cultivo en 

3D con respecto a los modelos 2D tendría una explicación más compleja que la simple dificultad de 

difusión. Procesos como una mayor eficiencia en los mecanismos de reparación del DNA, o un 

aumento en la expresión en membrana de transportadores ABC de multiresistencia a drogas, entre 

otros, podrían estar implicados. Esta descrito la existencia de un gradiente de oxígeno, así como de 

otros nutrientes, que se reduce desde el exterior al interior del esferoide38. Como consecuencia, esto 

crearía un ambiente de hipoxia, lo cual provocaría un aumento en la expresión de factores de la familia 

inducible por hipoxia (HIF). Tian et al., demostró que la proteína HIF-1 se expresa en cultivos en 3D 

mientras que no lo hace en cultivos 2D39. La expresión de HIF-1 podría contribuir a la aparición de 

varios mecanismos de resistencia como los mencionados anteriormente. De hecho, se describe que 

HIF-1 aumenta la expresión de proteínas de resistencia a multidrogas como por ejemplo P-

glicoproteína (P-gp). P-gp es una proteína de membrana que expulsa activamente fármacos, entre otras 

moléculas, de las células, y se ha descrito su implicación en el aumento de resistencia frente a 

Doxorrubicina en esferoides de carcinoma de mama40,41. 

En cuanto al estudio de expresión de proteínas que regulan la actividad de las células NK se mostraron 

diferencias tanto entre las líneas celulares estudiadas (SH-SY5Y y SK-N-BE(2)-C) como entre los 

modelos de cultivo 2D y 3D (Figura 4). Esto muestra que la variabilidad fenotípica no existe 

únicamente entre las líneas celulares sino también entre las formas de cultivo. Este hecho remarca la 
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importancia de la selección de las dos variables a la hora de determinar un modelo celular: la línea 

celular y el método de cultivo. En el cultivo 3D de las células SH-SY5Y se observó una menor 

expresión en membrana respecto al cultivo en 2D de varias proteínas cuya acción se relaciona con el 

sistema inmune: CEACAM-1, ICAM-1, CD47, PDL1 y calreticulina. En el caso de la galectina-9, 

proteína secretada e inhibitoria para la actuación de las células NK, fue mayor en el cultivo en 3D, y 

ambos modelos expresaron niveles similares de la proteína HLA-I y mínimos de HLA-II. Mientras se 

conoce el papel crítico de la proteína HLA-I en la inhibición de las células NK, no se conoce la 

magnitud inhibitoria del resto de estos ligandos, por lo que concluir una mayor resistencia en uno u 

otro modelo ante el ataque de células NK por este motivo sería inconsistente. Además, la capacidad de 

inhibición de estos ligandos está ligada a la capacidad de infiltración de las células NK en el tumor. 

Los ligandos que se mostraron disminuidos en el cultivo 3D son aquellos expresados en la membrana 

celular, los cuales exigen un contacto célula-célula entre las células NK y las células diana. Por otro 

lado, se observó un marcado aumento de la proteína galectina-9 (ligando de TIM3), la cual es 

secretada37, por lo que no exige un contacto directo entre células NK y células diana. La infiltración de 

las células NK en tumores genera controversia en la literatura, describiéndose casos en los que la 

presencia de células NK en el interior del esferoide es alta y casos en los que es muy reducida42. En el 

caso de una baja infiltración, la secreción de galectina-9 podría ser el mecanismo más eficaz del 

esferoide para inhibir la actuación de las células NK. Al generar un gradiente de concentración 

inhibitorio en torno al esferoide que inhibiría la actividad citotóxica de las células NK sin necesidad de 

un contacto íntimo entre las células NK y células SH-SY5Y. 

Estas consideraciones apuntan a la importancia del modelo celular seleccionado para el estudio de 

nuevas terapias como las células NK-CAR nombrada anteriormente para el tratamiento del NB. Estas 

células NK-CAR se han diseñado para dirigirse contra CD47 y calreticulina, cuya expresión fue 

constatada en las dos líneas celulares de NB estudiadas en 2D, y su expresión se mantuvo en 

esferoides de la línea celular SH-SY5Y, aunque disminuyó su magnitud. Esto valida el modelo de 

cultivo en esferoides de la línea celular SH-SY5Y como modelo adecuado para el desarrollo de la 

nueva inmunoterapia contra NB. 

El estudio de terapias sobre modelos in vitro que simulan un mayor número de las condiciones de 

sistemas fisiológicos completos permite seleccionar y centrar el desarrollo en terapias con más 

probabilidad de éxito en los ensayos clínicos posteriores, lo que se traduce en una reducción de los 

tiempos y costes de desarrollo de nuevas terapias efectivas. Las tecnologías relacionadas con los 

cultivos celulares se han desarrollado adaptándose al trabajo con modelos de cultivo en 2D, por ello, el 

trabajo con modelos 3D muestra limitaciones, necesitándose el desarrollo de métodos de visualización 

más accesibles y de métodos de “screening” para posibilitar el procesado a mayor escala.  

8. CONCLUSIONES 

• La línea celular SH-SY5Y cultivada en un modelo de cultivo 3D en esferoides mostró una 

disminución marcada en la expresión de las proteínas CEACAM-1, CD47, PDL1 y 

calreticulina y un aumento de galectina-9 respecto al modelo de cultivo en 2D. 

• Los esferoides de la línea celular SH-SY5 mostraron mayor resistencia frente a los 

tratamientos estudiados (drogas empleadas en quimioterapia y células NK activadas) respecto 

a la misma línea en cultivos convencionales en 2D. 

• La línea celular SH-SY5Y expresa las proteínas CD47 y calreticulina tanto en cultivo 2D 

como 3D lo que nos permite usarla como modelo celular para el desarrollo de células NK-

CAR dirigido contra células que expresen esta proteína.  

• Se ha conseguido generar células SH-SY5Y que expresan las proteínas GFP y luciferasa, y 

serán útiles para los estudios de la eficacia del NK-CAR in vivo. 
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CONCLUSIONS 

• 3D culture of SH-SY5Y cell line in spheroids showed a marked expression decrease of 

CEACAM-1, CD47, PDL1, and calreticulin proteins, and an increase of galectin-9 in compare 

with the 2D culture model.  

• SH-SY5Y cell line spheroids showed higher resistance against the studied therapies 

(chemotherapy drugs and activated NK cells) in comparison with conventional 2D culture 

model. 

• SH-SY5Y cell line expresses CD47 and calreticulin proteins in 2D and 3D culture models, 

allowing its use as a cellular model for the development of NK-CAR cells targeted against 

cells that express them. 

• SH-SY5Y cells expressing GFP and luciferase proteins were generated, and they will be 

useful to evaluate the NK-CAR therapy in vivo. 
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