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Abstract

Neurons are cells of the nervous system whose main function is to receive, process and transmit
information through chemical and electrical signals due to the excitability of their plasma membrane.
They are specialized in the reception of stimuli and the conduction of the nerve impulse, as action
potential, which occurs when the membrane potential rises and falls rapidly.

There are mathematical models of neurons that pattern the behavior of a segment of a neuron plasma
membrane during the electrical activity generated by the transmission of the nerve impulse.

To begin this project, we will briefly recall some well-known concepts about dynamic systems which
will be used in the development of work and we will analyze the most important mathematical models
of neurons.

The first mathematical neuron model appeared in 1939 by A. Hodgkin and A. Huxley, who were
also the first scientists to record the course of an action potential. The model they proposed was an
interesting advance for a time when the nervous system was not widely known and the available scien-
tific technology was far from the current one. This model tried to model the plasma membrane as an
electrical circuit and achieved results that closely approximated the data obtained experimentally, so it
can be considered quite good. For this reason it has served as the basis for many later models that have
tried to improve and simplify it. Among these the Hindmarsh-Rose model stands out since it is a very
rich simplification dynamically and with a lower computational cost than the Hodgkin-Huxley.

To extend the mathematical aspect of these neuron models, in the second chapter we continue the
work giving a comprehensive, detailed analysis of bifurcations in dynamic systems of ODES. A bifur-
cation of a dynamic system is a qualitative change in its dynamics produced by modifying parameters.
We will focus on the saddle-node and Andronov-Hopf bifurcations since they are the most relevant in
these models and we will study the characteristics a generic dynamic system must present to exhibit
each of these bifurcations, arriving at general theorems that determine the normal form of these two
bifurcations and characterize the “similarities” (topological equivalence) that the systems having this
type of bifurcation display. We will also study a type of global bifurcation that has some relevance in
the models, homoclinical bifurcation of limit cycles.

And finally, we will talk about the phenomena of bursting observable in neuronal activity. Bursting
is a dynamic state where a neuron sometimes fires discrete groups or bursts of spikes. Each such burst
is followed by a period of quiescence before the next burst occurs. So that we are going to analyze what
happens in the model for the neurons to “jump” from quiescence to the active phase. In this regard, we
will discuss on the first Fenichel’s theorem that guarantees an equivalence between theoretical systems
and perturbed systems which are more similar to reality, so that the analysis we carry out theoretically
can be extended, under certain hypotheses, to modified models.

We will also explain the topological classification of bursting types, again focusing on the bifurca-
tions that appear in the mathematical models of neurons which model how neurons actually go from
resting to spiking. For that purpose we analyze the fold-homoclinic and fold-Hopf bifurcations.
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Capítulo 1

Introducción

Las neuronas[16] transmiten ondas de naturaleza eléctrica que se originan como consecuencia de
un cambio transitorio de la permeabilidad en la membrana plasmática. Su propagación se debe a la
existencia de una diferencia de potencial, llamado potencial de membrana[9], entre la parte interior y
exterior de la célula. El potencial de membrana en reposo está determinado por la distribución desigual
de iones entre el interior y el exterior celular y por la diferente permeabilidad de la membrana ante los
distintos tipos de iones.

En las neuronas y en su líquido circundante, los iones más abundantes son cationes sodio (Na+) y
potasio (K+), aniones cloruro (Cl−) y otros aniones orgánicos (como los de las proteínas y los aminoá-
cidos). En la mayoría de las neuronas, el K+ y los aniones orgánicos se encuentran en concentraciones
más altas dentro que fuera de la célula. En cambio, el Na+ y el Cl− generalmente se encuentran en
concentraciones más altas fuera de la célula. Esto significa que a través de la membrana hay gradientes
de concentración estables para todos los tipos de iones más abundantes.

Debido a su carga, los iones no pueden pasar directamente a través de las regiones de lípidos hi-
drofóbicos de la membrana; en cambio, tienen que utilizar canales de proteínas especializados que
proporcionan un túnel hidrofílico que cruza la membrana.

Cuando un canal iónico se abre, el tránsito iónico es a favor de su gradiente electroquímico, es decir,
pretende equilibrar el número de iones, independientemente del potencial transmembrana actual. Este
mecanismo de movimiento iónico permite el tránsito entre estados de polarización y despolarización.

Cuando el potencial de membrana de una célula excitable se despolariza más allá de un cierto
umbral, la célula genera un potencial de acción. Un potencial de acción es un cambio muy rápido en la
polaridad de la membrana.

El primer registro detallado de un potencial de acción lo realizaron los investigadores Alan Lloyd
Hodgkin y Andrew Fielding Huxley, quienes midieron las corrientes iónicas que aparecen durante el
potencial de acción en el axón gigante de un calamar en 1939.

1.1. Conceptos previos

A continuación vamos a definir una serie de conceptos clave para comprender el desarrollo del
trabajo. Todas las nociones que aparecen en esta sección han sido obtenidos de [11].

Definición. Llamaremos puntos de equilibrio o fijos de un sistema diferencial ẋ = f (x) a los puntos
x0 tales que f (x0) = 0.

Definición. Sea ẋ = f (x) y sea x0 un equilibrio. Diremos que x0 es un equilibrio hiperbólico si para

todo λ valor propio de
δ f
δx

∣∣∣∣
x=x0

se tiene Re(λ ) 6= 0.

Definición. Sea ẋ = f (x) en D ⊆ Rn, diremos que un conjunto M ⊂ D es un invariante del flujo
generado por la EDO si toda solución x(t) tal que x(0) ∈M ⇒ x(t) ∈M ∀t

1



2 Capítulo 1. Introducción

Definición. Dada A∈Rn×n, separamos sus valores propios en tres grupos: σs, σu y σc, dependiendo del
signo de la parte real. De modo que

λ ∈ σs si Reλ < 0
λ ∈ σu si Reλ > 0
λ ∈ σc si Reλ = 0

El subespacio generado por los vectores propios cuyos valores propios pertenecen a σs se llama subes-
pacio estable (Es), el generado por los vectores propios cuyos valores propios pertenecen a σu es el
subespacio inestable (Eu) y el generado por los vectores propios cuyos valores propios pertenecen a
σc, subespacio central (Ec). Y se cumple Rn ≡ Es⊕Eu⊕Ec

Veamos qué ocurre si n = 2. Sea Ẋ = AX y sean ∆ = detA, τ = trazaA con A ∈ R2×2. Entonces:

Si ∆ < 0 =⇒ Punto silla.

Si ∆ > 0 y τ2−4∆≥ 0 =⇒ Nodo. Si τ < 0, el nodo es estable y si τ > 0, inestable.

Si ∆ > 0 y τ2−4∆ < 0, con τ 6= 0 =⇒ Foco. Si τ < 0 el foco es estable y si τ > 0, inestable.

Si ∆ > 0 y τ = 0 =⇒ Centro.

Hay tres clases topológicas de equilibrios en el plano: nodos (focos) estables, puntos silla y nodos
(focos) inestables. Los nodos y los focos (de la estabilidad correspondiente) son topológicamente equi-
valentes pero se pueden identificar mediante los valores propios; notemos que los valores propios son
las raíces de la ecuación característica λ 2−σλ +∆ = 0. Los puntos estables tienen variedades estables
de dimensión 2 y no tienen variedades inestables. Y para los equilibrios inestables, al revés. Los pun-
tos silla tienen variedades estable e inestable, ambas de dimensión 1 (que generalmente se denominan
separatrices).

Figura 1.1: Clasificación de los equilibrios de un sistema dinámico 2-dimensional en función de la traza
(τ) y el determinante (∆) de la matriz jacobiana y de los valores propios.

Teorema 1.1 (Hartman-Grobman). Sean los sistemas ẋ = f (x) y ẋ = Ax , con x0 un equilibrio hiperbó-

lico, f (x0) = 0 y A =
δ f
δx

∣∣∣∣
x=x0

. Entonces los flujos de ambos sistemas son conjugados.

Definición. Sea ẋ = f (x), x ∈ Rn, y sea x0 tal que f (x0) = 0. Definimos la variedad estable de x0

generada por el flujo ϕt como el conjunto W s = {x ∈ Rn | ϕt(x)
t→+∞−−−→ x0}. Y la variedad inestable

como W u = {x ∈ Rn | ϕt(x)
t→−∞−−−→ x0}.
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Definición. Sea x0 un punto de equilibrio. Una órbita ψt se dice órbita homoclínica de x0 si

lı́m
t→+∞

ψt(x) = lı́m
t→−∞

ψt(x) = x0

Y si x0, y0 son equilibrios del sistema, ψt(x) es una órbita heteroclínica de x0 e y0 si

lı́m
t→+∞

ψt(x) = x0 , lı́m
t→−∞

ψt(x) = y0

Definición. Diremos que x0 es un punto ω-límite de x ∈ Rn (y lo denotamos ω(x)), si existe una
sucesión {ti}, con ti→+∞, tal que ϕti(x)→ x0. El conjunto de todos los puntos que son ω-límite de x
se llama ω-límite de x.
Análogamente, x0 es un α-límite de x ∈ Rn (y lo denotamos α(x)), si existe una sucesión {ti}, con
ti→−∞ , tal que ϕti(x)→ x0.

Diremos que una órbita periódica Γ es un ciclo límite si es ω-límite o α-límite de algún punto.

Por último, definimos tres conceptos relacionados con criterios de equivalencia de sistemas.

Definición. Una función h : X → Y es un homeomorfismo si es continua, biyectiva y su inversa, h−1,
es también continua.

Definición. Sean F : X −→ X y G : Y −→ Y dos funciones. Diremos que F y G son topológicamen-
te conjugadas si existe un homeomorfismo h : X −→ Y tal que h ◦ F = G ◦ h ; o equivalentemente,
h(F(x)) = G(h(Y )). Este homeomorfismo h se llama conjugado topológico.
Entonces, si consideramos dos sistemas dinámicos dados por F : X −→ X y G : Y −→ Y , son topológi-
camente conjugados si las dinámicas que definen sobre X e Y son equivalentes, y el conjugado h lleva
las órbitas de un conjunto a las del otro.

Definición. Diremos que los flujos F : X −→ X y G : Y −→ Y son topológicamente equivalentes si
existe un homeomorfismo h : X −→ Y que lleva órbitas de G a órbitas de F de manera homeomorfa y
preservando la orientación de las órbitas.

La equivalencia topológica es un tipo de equivalencia más débil que la conjugación topológica, ya
que no requiere que el término temporal se preserve junto con las órbitas y su orientación.

1.2. Modelos matemáticos de neuronas

1.2.1. Modelo de Hodgkin-Huxley

Como ya habíamos comentado, fueron los científicos A. Hodgkin y A. Huxley quienes lograron el
primer registro directo del curso detallado de un potencial de acción. Pero más adelante también fue-
ron ellos los que consiguieron desarrollar un modelo matemático “ideal” cuyo comportamiento resulta
bastante paralelo a las observaciones experimentales.

El logro de una descripción satisfactoria del potencial de acción dependió del desarrollo de sofis-
ticadas técnicas experimentales, minuciosas mediciones y así, finalmente, consiguieron desarrollar un
complejo modelo físico-matemático. La primera versión de este modelo es la desarrollada por Hodgkin
y Huxley (modelo HH)[3] [5] [6] [14], pero posteriormente aparecen modelos más refinados basados en
este modelo, entre los que destacamos el modelo de Hindmarsh-Rose (modelo HR)[1][3][13].

Hodgkin y Huxley realizaron las mediciones en el axón gigante de calamar, ya que esta fibra ner-
viosa tiene un diámetro de casi de un milímetro, lo que permite una mejor manipulación experimental
que la mayoría de las células nerviosas conocidas (un axón típico tiene un diámetro mil veces menor).
Manipularon las concentraciones iónicas en el axón y en su medio circundante de modo que fueron
capaces de probar que hay dos componentes iónicas principales: INa e IK .

La hipótesis que Hodgkin y Huxley se propusieron probar era la siguiente: la membrana tiene ca-
nales que permiten el paso de iones en la dirección que determina su potencial electroquímico. Este
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Figura 1.2: Ejemplos en diferentes tipos de neuronas.

movimiento iónico provoca corrientes eléctricas y origina el cambio conocido como potencial de ac-
ción, que se debe a un aumento en la conductancia al ion sodio (GNa), lo que le permite entrar a la
célula haciendo positivo el interior y esto a su vez aumenta la GNa aún más. La conductancia cambia
como función del tiempo y empieza a disminuir aproximadamente en el máximo del potencial de ac-
ción, por lo que GNa también depende del voltaje, es decir, GNa = F(t,V ). Así, el problema a resolver
era: ¿cuál es la función del voltaje y del tiempo que describe las conductancias GNa y GK?

Figura 1.3: Circuito eléctrico equivalente propuesto por Hodgkin y Huxley para un pequeño segmento
de axón gigante de calamar.

El modelo de HH se basa en la idea de que las propiedades eléctricas de un segmento de membrana
nerviosa puede ser modelado como un circuito eléctrico equivalente de la forma mostrada en la Figura
1.3. En el circuito equivalente, las corrientes que fluyen a través de la membrana tienen dos compo-
nentes principales, una asociada con la carga de la capacitancia de la membrana y otra asociada con
el movimiento de tipos específicos de iones atravesando la membrana. Además, la corriente iónica se
subdivide en tres distintas componentes, una corriente de sodio INa, una corriente de potasio IK y una
pequeña corriente de escape IL compuesta principalmente por iones de cloro.
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Las ecuaciones del modelo propuesto son

ĊV = I−GKn4(V −EK)−GNam3h(V −ENa)−GL(V −EL)

ṅ =
1

τn(V )
(n∞(V )−n)

ṁ =
1

τm(V )
(m∞(V )−m)

ḣ =
1

τh(V )
(h∞(V )−h)

(1.1)

siendo I la corriente aplicada. Los valores n∞, m∞, h∞,τn,τm,τh y las conductancias se obtienen experi-
mentalmente.

En el trabajo original de Hodgkin-Huxley se expresaban ṅ, ṁ y ḣ en términos de unas constantes de
proporción dependientes del voltaje, α(V ) y β (V ), que describen la transición de los estados abierto a
cerrado y viceversa de los canales iónicos,

θ̇ = α(V )(1−θ)+β (V )θ

donde θ representa cualquiera de las funciones n, h o m.
Este modelo, aunque describe muy bien la fenomenología del comportamiento de la neurona y

es bastante realista, no es cómodo para el estudio de las características de la neurona como sistema
dinámico pues el espacio de fases asociado al problema es de cuatro dimensiones y hace realmente
farragoso analizar y entender las características dinámicas de la neurona como sistema excitable, además
de que las simulaciones realizadas con este modelo resultan muy costosas computacionalmente.

1.2.2. Modelo de Hindmarsh-Rose

El modelo de Hindmarsh-Rose es una aproximación más simple del modelo de Hodgkin-Huxley
descrito como un sistema de tres ecuaciones diferenciales no lineales. Por su robustez dinámica, este
modelo es uno de los modelos neuronales más interesantes en la actualidad. Se utiliza para el estudio de
la actividad neuronal y particularmente, para analizar el comportamiento del potencial de membrana.

El modelo HR se describe de la siguiente manera:
ẋ = y−ax3 +bx2− z+ I
ẏ = c−dx2− y
ż = ε (s(x− x0)− z)

(1.2)

donde x representa el potencial de acción de membrana, y representa la variable de recuperación de
los canales iónicos rápidos que atraviesan la membrana (como los de Na+ y K+) y la variable z es la
análoga a y en los canales lentos (representa la variable lenta puesto que el parámetro ε es muy pequeño,
0 < ε � 1). Dentro de los parámetros, I representa la corriente externa aplicada a la membrana, s es
el nivel de influencia del voltaje de membrana en la dinámica lenta y a, b, c y d son parámetros que
definen el comportamiento de la neurona modelada. ε es la escala de tiempo de la corriente lenta que
controla la velocidad de variación de la variable z, y x0 es un parámetro de control que retrasa o potencia
la activación de la corriente lenta. Normalmente los parámetros de (1.2) se fijan en a = 1, c = 1, d =
5, s = 4, x0 = 1,6 y ε = 0,01. De modo que las corrientes regulares del bursting en el modelo HR con
una corriente aplicada I = 4 se corresponden con el tipo square-wave para b = 2,7 y se transforma en
un bursting Plateau-like en b = 2,52.

La Figura 1.5 muestra una simulación del comportamiento del sistema del modelo HR en función
de los valores que tomen los parámetros b e I. Fijando la corriente aplicada (rectas horizontales) vamos
variando el valor de b y analizamos qué ocurre mediante la técnica de spike-counting (recuento de
picos). La barra vertical de la derecha indica la leyenda de colores del diagrama en función del número
de picos por burst.

En esta figura, el plano (b, I) queda dividido en regiones con diferentes tipos de comportamiento:
tonic spiking, square-wave y plateau-like bursting, quiescence (inactividad) y bursting caótico.
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1 Introduction

Individual and networked neurons can generate various complex oscillations known
as bursting, formed by alternating fast repetitive spiking and quiescent or subthresh-
old oscillatory phases. Bursting is a manifestation of composite, multiple time scale
dynamics observed in various fields of science as diverse as food chain ecosystems,
nonlinear optics, medical studies of the human immune system, and neuroscience.
The role of bursting is especially important for rhythmic movements determined by
Central Pattern Generators (CPG). Many CPGs can be multifunctional and produce
polyrhythmic bursting patterns on distinct time scales, like fast swimming and slow
crawling in leeches [1]. Such CPGs are able to switch between different rhythms
when perturbed [2, 3].

In mathematical neuroscience a deterministic description of endogenously oscil-
latory activities, like two-time scale bursting, is done by revealing generic properties
of mathematical and realistic models of neurons; the latter are derived through the
Hodgkin-Huxley formalism for gating variables. Either bursting model falls into a
class of dynamical systems with at least two time scales, known as slow-fast systems.

Configurations and classification schemes for bursting activities in neuronal mod-
els first proposed in [4] and extended in [5, 6] are based on geometrically trans-
parent mechanisms that initiate and terminate the so-called slow motion manifolds
composed of the limiting solutions, such as equilibria and limit cycles, of the fast
subsystem of a model [7–11]. These manifolds constitute the backbones of burst-
ing patterns in a neuronal model. A typical Hodgkin-Huxley model possesses a pair
of such manifolds [4]: quiescent and tonic spiking. The existing classifications of
bursting are based on codimension-one bifurcations that initiate or terminate the fast
trajectory transitions between such one-dimensional [1D] and two-dimensional [2D]
slow motion manifolds in the phase space of a model. These classifications single
out the classes of bursting by subdividing neuronal models into the following types:
elliptic or Hopf-fold; square-wave burster, or fold-homoclinic; parabolic, or circle-
circle class describing top-hat models. These terms are either due to specific shapes
of voltages traces in time, or after the static underlying bifurcations that occur in the
fast subsystem of the given neuron model.

The types of the static bursting configurations in the Hindmarsh-Rose model
shown in Figures 1 and 2 are also named fold/homoclinic and fold/Hopf, as this would
indicate that the terminal phases of the fast spiking and slow quiescent periods are de-
termined, respectively, by a homoclinic bifurcation of a saddle equilibrium state, or
a supercritical Andronov-Hopf bifurcation, along with a saddle-node bifurcation of
equilibria, respectively, which all occur in the fast subsystem of the model. In the

Fig. 1 (A) Square-wave and (B) plateau-like bursting traces in the Hindmarsh-Rose model at b = 2.7 and
2.52, respectively. Transformations of bursting can be detected quantitatively by a sudden change of the
number of spikes per burst.

Figura 1.4: Esquema de burstings square-wave (A) y plateau like (B) en el modelo de Hindmarsh-Rose
para b = 2,7 y b = 2,52, respectivamente.Journal of Mathematical Neuroscience (2011) 1:6 Page 9 of 22

Fig. 3 (A) (b, I )-parameter sweep of the Hindmarsh-Rose model based on the spike-counting approach.
The color-coded bar to the right gives the spike-number range. The diagram clearly shows the boundaries of
the spike-addition sequence, and the border between square-wave and plateau-like bursting. It also reveals
the clove-shape structure of the zones of chaotic bursting which adjoin to the regions of tonic-spiking.
(B) Same-range screening based on the evaluation of the the duty-cycle of bursting. The duty cycle value
comes close to one near the boundary between bursting and tonic-spiking and drops close to zero near the
border of the spiking region. Compare (A) and (B) with the screening diagram based on the Lyapunov
exponents for solutions of the model in Figure 4 below.

on the metamorphoses of the structure transformations. One can see that plateau-like
bursting takes the place of square-wave bursting after the spiking manifold, Mlc, be-
comes tangent to the saddle branch of in the middle of Meq and further terminates
on the upper depolarized branch of Meq through the supercritical Andronov-Hopf bi-
furcation. In general, this is not a cod-1 bifurcation, but a degeneracy due to loss of
transversality.

Figura 1.5: Barrido por los parámetros (b, I) en el modelo HR basado en un enfoque spike-counting.

En la esquina inferior derecha tenemos una zona de tonic-spiking seguida de una región de inac-
tividad (quiescence) donde el SC toma valores mínimos. De la zona de actividad spiking pasamos al
bursting y observamos dos comportamientos: una escalera de square-wave bursting con diferentes SC
separados por curvas bifurcación en cuya parte superior aparecen unas regiones en forma de diente (en
rojo en el diagrama) que se corresponden con comportamientos de bursting caótico. Por último, en la
esquina superior izquierda tenemos otro comportamiento a destacar, plateau-like bursting.
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Bifurcaciones

Definición. Una bifurcación[11][4] de un sistema dinámico es un cambio cualitativo en sus dinámicas
producido por una variación de los parámetros del sistema.

Definición. Consideremos un sistema dinámico autónomo de EDOS

ẋ = f (x,α), x ∈ Rn, α ∈ R (2.1)

donde la función f es suave con respecto a x y a α .
Tenemos una bifurcación en α = α0 si existe un valor del parámetro α1 arbitrariamente próximo a α0 tal
que su dinámica es topológicamente no-equivalente a la de α0. Por ejemplo, el número o la estabilidad
de los equilibrios o de las órbitas periódicas de f puede cambiar por variaciones de α en α0.

La teoría de bifurcaciones proporciona una estrategia para investigar las bifurcaciones que ocurren
dentro de una familia, mediante una extendida identificación de patrones en bifurcaciones.

Asociada a cada tipo de bifurcación hay ecuaciones características que localizan bifurcaciones de
cada tipo en una familia ẋ = f (x,α) y formas normales que dan modelos de sistemas genéricos que
ejemplifican el tipo de bifurcación.

Hay que imponer ciertas condiciones de no-degeneración, inecuaciones que forman parte de la es-
pecificación de un tipo de bifurcación. La teoría de bifurcaciones analiza las bifurcaciones en la forma
normal e investiga las similitudes entre las dinámicas de los sistemas con la bifurcación estudiada. El pa-
trón de referencia que utiliza esta teoría para comparar la “semejanza” de los sistemas es la equivalencia
topológica. En algunos casos, se puede probar la estabilidad estructural de una familia de bifurcaciones.
De hecho, uno de los principales objetivos de la teoría de bifurcaciones es demostrar la estabilidad es-
tructural de las formas normales; aunque existen tipos de bifurcaciones para los cuales no existe forma
normal estructuralmente estable.

Volvamos al sistema (2.1). Sea x = x0 un equilibrio hiperbólico del sistema en α = α0. Si el pará-
metro varía levemente, el equilibrio se desplaza ligeramente pero sigue siendo hiperbólico. Entonces,
podemos ir variando el parámetro y ver qué ocurre con el equilibrio. Hay dos formas en las que la condi-
ción de hiperbólico puede perderse. La primera es si un valor propio real se vuelve cero, es decir, λ1 = 0;
y la segunda, si la parte real de una pareja de valores propios complejos conjugados se vuelve cero, es
decir, λ1,2 =±iω0, ω0 > 0. La primera condición se corresponde con la aparición de la bifurcación fold
y la segunda con la bifurcación Hopf.

Definición. La bifurcación genérica asociada con la aparición de un valor propio λ1 = 0 se llama bi-
furcación silla-nodo o fold.

La bifurcación que se corresponde con la aparición de dos valores propios complejos conjugados
λ1,2 =±iω0, ω0 > 0 se llama bifurcación de Hopf (o Andronov-Hopf).

Notemos que la bifurcación fold puede aparecer en sistemas de dimensión n≥ 1 pero para que haya
una bifurcación de Hopf necesitamos dimensión n≥ 2.

7
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2.1. Bifurcación silla-nodo

La bifurcación silla-nodo[11][12] es una colisión y posterior desaparición de dos equilibrios en un
sistema dinámico. Esto ocurre cuando un equilibrio tiene un valor propio nulo.

2.1.1. Forma normal

Consideremos el sistema dinámico unidimensional

ẋ = α + x2 ≡ f (x,α), x ∈ R, α ∈ R (2.2)

En α = 0 el sistema tiene un equilibrio no-hiperbólico x0 = 0, con λ = fx(0,0) = 0. El comportamiento
del sistema para cualquier otro valor de α es también claro, para α < 0 hay dos equilibrios en el sistema:
x1,2 = ±

√
−α (el negativo estable y el positivo inestable). Para α > 0, el sistema no tiene equilibrios.

En la Figura 2.1 podemos ver como los dos equilibrios (estable e inestable) conviven cuando α < 0 y
“chocan” en α = 0 formando un solo equilibrio que después, cuando α > 0, desaparece. Esto es una
bifurcación silla-nodo.

Figura 2.1: Bifurcación fold

Otra forma de representar el comportamiento de los equilibrios en función del parámetro α es un
diagrama de bifurcación en el espacio de fase y parámetros (plano-(x, α)). La ecuación f (x,α) = 0
define una variedad de equilibrios, la parábola α =−x2 (Figura 2.2).

Figura 2.2: Bifurcación silla-nodo en el espacio parámetro-fase

Con esta representación, fijando un valor de α podemos determinar el número de equilibrios en el
sistema para tal valor.

Por otro lado, notemos que el sistema ẋ = α− x2 tiene las mismas características, con la diferencia
de que los equilibrios aparecen para α > 0.
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Ahora, veamos qué ocurre si añadimos al sistema (2.2) términos de orden superior que dependen del
parámetro α . Resulta que estos términos no cambian cualitativamente el comportamiento del sistema
cerca del origen x = 0 para valores del parámetro próximos a α = 0. De hecho, se cumple el siguiente
teorema:

Teorema 2.1. El sistema
ẋ = α + x2 +O(x3)

es localmente topológicamente equivalente cerca del origen al sistema

ẋ = α + x2

Demostración. La demostración de este teorema tiene dos etapas y se basa en el hecho de que para
sistemas escalares, un homeomorfismo que lleva equilibrios a equilibrios también une sus órbitas.

Paso 1: Análisis de equilibrios. Introducimos la variable escalar y y reescribimos el primer siste-
ma como

ẏ = F(y,α) = α + y2 +ψ(y,α) (2.3)

donde ψ = O(y3) es una función de (y,α) suave cerca de (0,0).
Consideramos la variedad de equilibrios de (2.3) cerca del origen en el plano-(y,α):

M = {(y,α) : F(y,α) = α + y2 +ψ(y,α) = 0}.

La curva M pasa por el origen (F(0,0) = 0). Por el Teorema de la Función Implícita1 (puesto que
Fα(0,0) = 1), se puede parametrizar localmente por y :

M = {(y,α) : α = g(y)},

siendo g una función suave definida para |α| suficientemente pequeño. Además, g(y) = −y2 +
O(y3). Por tanto, para α < 0 suficientemente pequeño, hay dos equilibrios de (2.3) cerca del
origen, y1(α) e y2(α), que están próximos al equilibrio de (2.2), es decir, x1(α) = +

√
−α y

x2(α) =−
√
−α , para el mismo valor del parámetro (como podemos ver en la Figura 2.3).

Paso 2: Construcción del homeomorfismo. Para un |α| pequeño, construimos una aplicación, que
depende del parámetro α , y = hα(x) de la siguiente forma. Para α ≤ 0, la aplicación identidad

hα(x) = x

Y para α < 0, tomamos una transformación lineal

hα(x) = a(α)+b(α)x

donde los coeficientes a, b quedan unívocamente determinados por las condiciones:

hα (x j(α)) = y j(α), j = 1,2

Entonces la aplicación hα : R−→R es un homeomorfismo que lleva las correspondientes órbitas
de (2.2) cerca del origen a las correspondientes órbitas de (2.3), preservando la direccionalidad
temporal. Luego los sistemas son localmente topológicamente equivalentes.

1Teorema de la función implícita. Sean Ω abierto en R2, f : Ω −→ R de clase C (p(Ω) con 1 ≤ p ≤ ∞, (x0,y0) ∈ Ω tal
que f (x0,y0) = 0, fy(x0,y0) 6= 0. Entonces existen a,b > 0 tales que (x0−a,x0+a)×(y0−b,y0+b)⊆Ω y de forma que para
cada x ∈ (x0−a,x0 +a) hay una única y ∈ (y0−b,y0 +b) con f (x,y) = 0 y la función ϕ : (x0−a,x0 +a)→ (y0−b,y0 +b)
definida por x 7→ ϕ(x) = “única y tal que f (x,y) = 0” cumple:

(a) ϕ(x0) = y0;

(b) f (x,ϕ(x)) = 0 para cada x ∈ (x0−a,x0 +a);

(c) ϕ es de clase C (p
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Figura 2.3: Bifurcación silla-nodo para el sistema con perturbación.

2.1.2. Forma general

Vamos a mostrar que el sistema (2.2) (con un posible cambio de signo en el término de x2) es la
forma normal topológica de un sistema unidimensional genérico con una bifurcación tipo fold.

Teorema 2.2. Sea el sistema unidimensional

ẋ = f (x,α), x ∈ R, α ∈ R

con f suave, que tiene en α = 0 un equilibrio x = 0 y sea λ = fx(0,0) = 0.
Si asumimos que se cumplen las siguientes condiciones:

(A.1) fxx(0,0) 6= 0

(A.2) fα(0,0) 6= 0

entonces existe un cambio de coordenadas regular y un cambio de parámetros que transforma el sistema
en

η̇ = β ±η
2 +O(η3)

Demostración. Consideramos el sistema

ẋ = f (x,α), x ∈ R, α ∈ R (2.4)

con f una función suave que tiene en α = 0 un equilibrio x = 0 con λ = fx(0,0) = 0.
Si expandimos f (x,α) como una serie de potencias con respecto a x en x = 0 tenemos:

f (x,α) = f0(α)+ f1(α)x+ f2(α)x2 +O(x3).

Se satisfacen dos condiciones:

f0(0) = f (0,0) = 0 (condición de equilibrio)

f1(0) = fx(0,0) = 0 (condición de bifurcación silla-nodo)

La idea principal es transformar el sistema (2.4), mediante cambios regulares de coordenadas y del
parámetro, a la forma del sistema (2.2) hasta el término de segundo grado (incluido). Entonces podremos
aplicar el Teorema 2.1 y suprimir los términos de orden superior.

En el desarrollo tendremos que imponer nuevas condiciones de no-degeneración y transversalidad
para poder llevar a cabo las transformaciones necesarias. De hecho, estas condiciones especificarán qué
sistemas uni-paramétricos con una bifurcación silla-nodo pueden ser considerados genéricos.
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Primer paso: Cambio de coordenadas. Llevamos a cabo un cambio de coordinadas lineal intro-
duciendo una nueva variable ξ :

ξ = x+δ (2.5)

donde δ = δ (α) es una función, a priori desconocida, que definiremos más adelante. La transfor-
mación inversa es x = ξ −δ .

Sustituyendo (2.5) en (2.4) se sigue que

ξ̇ = ẋ = f0(α)+ f1(α)(ξ −δ )+ f2(α)(ξ −δ )2 +O((ξ −δ )3)

Por lo tanto,

ξ̇ = [ f0(α)− f1(α)δ + f2(α)δ 2 +O(δ 3)]+ [ f1(α)−2 f2(α)δ +O(δ 2)]ξ +[ f2(α)+O(δ )]ξ 2 +
O(ξ 3)
Asumimos
(A.1) aquí centrando la ecuación f2(0) = 1

2 fxx(0,0) 6= 0
Entonces, por el Teorema de la Función Implícita, existe una función suave δ (α) que anula los
términos lineales en la ecuación anterior para un |α| suficientemente pequeño. En efecto, la con-
dición para que este término desaparezca se puede escribir como

F(α,δ )≡ f1(α)−2 f2(α)δ +δ
2
ψ(α,δ ) = 0

con ψ una función suave. Entonces se cumple

F(0,0) = 0,
dF
dδ

∣∣∣∣
(0,0)

=−2 f2(0) 6= 0,
dF
dα

∣∣∣∣
(0,0)

= f ′1(0)

lo que implica la existencia y unicidad local de una función δ = δ (α) tal que δ (0) = 0 y
F(α,δ (α))≡ 0. Entonces se sigue que

δ (α) =
f ′1(0)

2 f2(0)
α +O(α2).

Por tanto ahora la ecuación para ξ solo contiene términos no-lineales:

ξ̇ = [ f ′0(0)α +O(α2)]+ [ f2(0)+O(α)]ξ 2 +O(ξ 3) (2.6)

Segundo paso: Introducción de un nuevo parámetro. Consideramos como nuevo parámetro µ =
µ(α) el término indendiente de (2.6):

µ(α) = f ′0(0)α +α
2
φ(α),

con φ una función suave. Entonces tenemos:

(a) µ(0) = 0

(b) µ ′(0) = f ′0(0) = fα(0,0)

Si asumimos
(A.2) aquí centrando la ecuación fα(0,0) 6= 0,
entonces el Teorema de la Función Implícita implica la existencia y unicidad local de la función
inversa α = α(µ) con α(0) = 0. Por lo tanto, la ecuación (2.6) resulta

ξ̇ = µ +a(µ)ξ 2 +O(ξ 3),

donde a(µ) es una función suave con a(0) = f2(0) 6= 0, por la primera hipótesis (A.1).



12 Capítulo 2. Bifurcaciones

Paso 3: Escala final. Sean η = |a(µ)|ξ y β = |a(µ)|µ . Entonces tenemos

η̇ = β + sη
2 +O(η3)

siendo s = sign(a(0)) =±1.

De hecho, utilizando el teorema 2.1, podemos eliminar los términos O(η3) y así llegamos finalmente
al siguiente resultado general.

Teorema 2.3 (Forma normal topológica de la bifurcación silla-nodo). Cualquier sistema escalar con
un parámetro

ẋ = f (x,α),

que tenga en α = 0 el equilibrio x = 0 con λ = fx(0,0) = 0, es localmente topológicamente equivalente
cerca del origen a una de las siguientes formas normales:

η̇ = β ±η
2.

2.2. Bifurcación de Andronov-Hopf

La bifurcación de Hopf[10][11] es la aparición o desaparición de una órbita periódica debido a
un cambio en la estabilidad de un punto de equilibrio, al variar un parámetro del sistema. Esto ocurre
cuando un sistema tiene una pareja de valores propios complejos conjugados.

2.2.1. Forma normal

Consideremos el siguiente sistema de ecuaciones diferenciales,{
ẋ1 = αx1− x2− x1(x2

1 + x2
2)

ẋ2 = x1 +αx2− x2(x2
1 + x2

2)
(2.7)

Este sistema tiene como equilibrio x1 = x2 = 0 para todo α , con matriz Jacobiana

A =

(
α −1
1 α

)
con valores propios λ1,2 = α ± i. Introducimos la variable compleja z = x1 + ix2, z = x1− ix2 , |z|2 =
zz = x2

1 + x2
2. Estas variables verifican la ecuación diferencial

ż = ẋ1 + iẋ2 = α(x1 + ix2)+ i(x1 + ix2)− (x1 + ix2)(x2
1 + x2

2),

y entonces podemos reescribir el sistema (2.7) en forma compleja como

ż = (α + i)z− z|z|2. (2.8)

Y finalmente si utilizamos la representación en forma polar z = ρeiϕ , obtenemos

ż = ρ̇eiϕ + iρϕ̇eiϕ ,

o bien (por (2.8)),
ρ̇eiϕ + iρϕ̇eiϕ = ρeiϕ(α + i−ρ

2),

de donde se sigue la forma polar del sistema (2.7):{
ρ̇ = ρ(α−ρ2)
ϕ̇ = 1

(2.9)
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Las bifurcaciones del diagrama de fases del sistema cuando α pasa por 0 pueden analizarse fácil-
mente con la forma polar, ya que las ecuaciones para ρ y ϕ en (2.9) son de variables separadas.
La primera ecuación (que se debe considerar solo para ρ ≥ 0) tiene un equilibrio en ρ = 0 para cual-
quier valor de α . El equilibrio es linealmente estable si α < 0; permanece estable en α = 0, aunque
no-linealmente y para α > 0 el equilibrio se vuelve linealmente inestable. Además, hay otro equilibrio
estable ρ0(α) =

√
α , para α > 0.

La segunda ecuación describe una rotación con velocidad constante. Entonces, por superposición
de los movimientos definidos por las dos ecuaciones de (2.9), obtenemos el siguiente diagrama de
bifurcación para el sistema bidimensional original (2.7) (Figura 2.4).

El sistema siempre tiene un equilibrio en el origen. Este equilibrio es un foco estable para α < 0
y un foco inestable para α > 0. En el valor crítico α = 0 el equilibrio es no-linealmente estable y
topológicamente equivalente al foco, a veces se le llama foco débilmente atrayente. Este equilibrio está
rodeado, para α > 0, por una órbita cerrada aislada (ciclo límite) que es única y estable. El ciclo es una
circunferencia de radio ρ0(α) =

√
α .

Todas las órbitas que comienzan en un punto exterior o interior al ciclo exceptuando el origen, tienden
al ciclo cuando t→+∞. Esto es una bifurcación de Andronov-Hopf.

Figura 2.4: Bifurcación de Hopf supercrítica.

Si tuviésemos un sistema con los términos no lineales de signo opuesto,{
ẋ1 = αx1− x2 + x1(x2

1 + x2
2)

ẋ2 = x1 +αx2 + x2(x2
1 + x2

2)
(2.10)

que se puede expresar en forma compleja como: ż = (α + i)z+ z|z|2, y se puede analizar de la misma
forma que el anterior (Figura 2.5). El sistema presenta la bifurcación de Andronov-Hopf para α = 0. Y
al revés que en el sistema (2.7), hay un ciclo límite inestable en (2.10), que desaparece cuando α cruza el
cero desde valores negativos hacia valores positivos. El equilibrio en el origen tiene la misma estabilidad
para α 6= 0 que en el sistema (2.7): es estable para α < 0 e inestable para α > 0. Su estabilidad en el
valor crítico es la opuesta a la de (2.7), es no-linealmente inestable en α = 0.

Figura 2.5: Bifurcación de Hopf subcrítica

Por tanto, hemos visto que hay dos tipos de bifurcaciones de Andronov-Hopf. La bifurcación del
sistema (2.7) se conoce como supercrítica ya que el ciclo existe para valores del parámetro α positivos
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(“después” de la bifurcación). Y la bifurcación del sistema (2.10) se conoce como subcrítica puesto
que el ciclo se presenta “antes” de la bifurcación. Es claro que esta terminología puede ser confusa ya
que “antes” y “después” son relativos según la dirección elegida para variar el parámetro.

Ahora, añadimos términos de orden superior al sistema (2.7) y lo escribimos en forma vectorial(
ẋ1
ẋ2

)
=

(
α −1
1 α

)(
ẋ1
ẋ2

)
− (x2

1 + x2
2)

(
ẋ1
ẋ2

)
+O(‖x‖4), (2.11)

donde x = (x1,x2)
T , ‖x‖2 = x2

1 + x2
2 y los términos O(‖x‖4) pueden depender suavemente de α .

Teorema 2.4. El sistema (2.11) es localmente topológicamente equivalente al sistema (2.7) cerca del
origen.

Para demostrar este teorema, vamos a demostrar el siguiente enunciado, que es el teorema 2.4 rees-
crito en forma compleja:

Teorema 2.5. El sistema
ż = (α + i)z− z|z|2 +O(|z|4) (2.12)

es topológicamente equivalente, cerca del origen, al sistema

ż = (α + i)z− z|z|2 (2.13)

Demostración. Primer paso: Existencia y unicidad del ciclo. Escribimos el sistema (2.12) en
forma polar (los cálculos son análogos a lo anterior),{

ρ̇ = ρ(α−ρ2)+Φ(ρ,ϕ)
ϕ̇ = 1+Ψ(ρ,ϕ)

(2.14)

donde Φ = O(|ρ|4), Ψ = O(|ρ|3) (la dependencia en α de estas funciones no se indica para
simplificar la notación).

Figura 2.6: Aplicación de Poincaré para la bifurcación de Hopf

Una órbita de (2.14) que empieza en (ρ,ϕ) = (ρ0,0) se representa como en la Figura 2.6. ρ =
ρ(ϕ;ρ0), ρ0 = ρ(0;ρ0) con ρ verificando la ecuación

dρ

dϕ
=

ρ(α−ρ2)+Φ

1+Ψ
= ρ(α−ρ

2)+R(ρ,ϕ) (2.15)

donde R = O(|ρ|4). Notemos que la transición de (2.14) a (2.15) equivale a la introducción de
una nueva parametrización del tiempo en la cual ϕ̇ = 1, lo que implica que el tiempo de retorno
al semieje ϕ = 0 es el mismo para todas las órbitas que empiezan en este eje con ρ0 > 0. Como
ρ(ϕ;0)≡ 0, podemos escribir la expansión en serie de Taylor de ρ(ϕ;ρ0),

ρ = u1(ϕ)ρ0 +u2(ϕ)ρ
2
0 +u3(ϕ)ρ

3
0 +O(|ρ0|4). (2.16)
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Sustituyendo (2.16) en (2.15) y resolviendo el sistema lineal de ecuaciones diferenciales en las
correspondientes potencias de ρ0 con condiciones iniciales u1(0) = 1, u2(0) = u3(0) = 0, obte-
nemos

u1(ϕ) = eαϕ , u2(ϕ)≡ 0, u3(ϕ) = eαϕ 1− e2αϕ

2α

Notemos que estas expresiones no dependen del término R(ρ,ϕ). Luego la aplicación de retorno
ρ0 7→ ρ1 = ρ(2π,ρ0) tiene la forma

ρ1 = e2πα
ρ0− e2πα [2π +O(α)]ρ3

0 +O(ρ4
0 ) (2.17)

para todo R = O(ρ4). La aplicación (2.17) puede analizarse fácilmente para ρ0 y |α| suficien-
temente pequeños. Existe un entorno del origen en el cual la aplicación solo tiene un punto fijo
trivial para α < 0 pequeño y otro punto fijo , ρ

(0)
0 =

√
α + . . ., para α > 0 (Figura 2.7). La esta-

bilidad de los puntos fijos se puede obtener a partir de (2.17). Teniendo en cuenta que un punto
fijo positivo de la aplicación corresponde a un ciclo límite del sistema, podemos concluir que el
sistema (2.14) (o (2.12)) con cualesquiera términos O(|z|4) tiene un único ciclo límite (estable)
que se bifurca del origen y existe para α > 0 como en el sistema (2.13).

Figura 2.7: Puntos fijos de la aplicación retorno.

Por tanto, en otras palabras, los términos de orden superior no afectan a la bifurcación ciclo límite
en un entorno de z = 0 para |α| suficientemente pequeño.

Segundo paso: Construcción del homeomorfismo. La existencia y unicidad establecidas del ciclo
límite es suficiente para todas las aplicaciones. Sin embargo, hay que hacer un trabajo extra para
probar la equivalencia topológica del diagrama de fase.

Fijamos α pequeño pero positivo. Ambos sistemas (2.12) y (2.13) tienen un ciclo límite en un
entorno del origen. Aplicamos una escala lineal de coordenadas en el sistema (2.12) tal que el
punto de intersección del ciclo y del semieje horizontal ocurre en x1 =

√
α .

Definimos la aplicación z 7→ z̃ de la siguiente forma. Tomamos un punto z = x1 + ix2 y encontra-
mos los valores (ρ0,τ0), siendo τ0 el mínimo tiempo requerido por una órbita del sistema (2.13)
para aproximarse al punto x empezando en el semieje horizontal con ρ = ρ0. Ahora, tomamos el
punto de este eje con ρ = ρ0 y construimos una órbita del sistema (2.12) en el intervalo de tiempo
[0,τ0] empezando en dicho punto. Denotamos al punto resultante z̃ = x̃1 + ix̃2 (Figura 2.8). Sea
z̃ = 0 para z = 0.

La aplicación construida es un homeomorfismo que, para α > 0, lleva órbitas del sistema (2.13)
en un entorno del origen a órbitas del sistema (2.12), preservando la dirección del tiempo.

El caso α < 0 se puede considerar de la misma forma sin reescalar las coordenadas.
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Figura 2.8: Construcción del homeomorfismo cerca de la bifurcación de Hopf.

2.2.2. Forma general

De una forma similar a lo visto en la bifurcación silla-nodo, vamos a enunciar dos teoremas que
muestran que el sistema (2.7) es la forma normal topológica de un sistema genérico de dimensión 2
con una bifurcación de tipo Hopf, salvo un cambio de signo en los términos no lineales que depende del
primer coeficiente de Lyapunov del sistema, del cual hablaremos más adelante, y que a su vez determina
si la bifurcación es subcrítica o supercrítica.

Teorema 2.6. Consideramos el sistema bidimensional

dx
dt

= f (x,α), x ∈ R2, α ∈ R (2.18)

con f suave y tal que para todo |α| suficientemente pequeño, tiene un equilibrio x = 0 con valores
propios λ1,2(α) = µ(α)± iω(α), donde µ(0) = 0 y ω(0) = ω0 > 0.
Si se cumplen las siguientes condiciones:

(B.1) l1(0) 6= 0, donde l1(0) es el primer coeficiente de Lyapunov.
(B.2) µ ′(0) 6= 0

Entonces existe un cambio invertible de coordenadas y parámetros y una reparametrización temporal
que transforma el sistema (2.18) en

d
dτ

(
y1
y2

)
=

(
β −1
1 β

)(
y1
y2

)
+σ(y2

1 + y2
2)

(
y1
y2

)
+O(‖y‖4)

siendo σ = sign(l1(0)) =±1

Aplicando el Teorema 2.4, podemos eliminar los términos O(‖y‖4) y llegamos al siguiente resultado
general.

Teorema 2.7 (Forma normal topológica de la bifurcación de Hopf). Dado un sistema genérico bidi-
mensional y que depende de un parámetro

ẋ = f (x,α),

tal que presenta en α = 0 un equilibrio x = 0 con valores propios λ1,2 = ±iω0, ω0 > 0. Entonces es
localmente topológicamente equivalente, cerca del origen, a una de las siguientes formas normales:(

ẏ1
ẏ2

)
=

(
β −1
1 β

)(
y1
y2

)
± (y2

1 + y2
2)

(
y1
y2

)
(en función del signo de l1(0)).

Estos teoremas tienen demostraciones análogas a las realizadas para los teoremas de la forma ge-
neral de la bifurcación silla-nodo, pero bastante más largas. Por lo tanto, como la idea principal de las
demostraciones es la misma, hemos considerado omitirlas en este trabajo.
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2.2.3. Primer coeficiente de Lyapunov

Como hemos visto, si la bifurcación de Hopf es subcrítica o supercrítica queda determinado por σ ,
que es el signo del primer coeficiente de Lyapunov l1(0) del sistema dinámico cerca del equilibrio. Este
coeficiente puede calcularse en α = 0 de la siguiente forma.
Escribimos el desarrollo de Taylor de f (x,0) en x = 0 como

f (x,0) = A0x+
1
2

B(x,x)+
1
6

C(x,x,x)+O(‖x‖4),

donde B(x,y) y C(x,y,z) son funciones multilineales con componentes

B j(x,y) =
n

∑
k,l=1

δ 2 f j(ξ ,0)
δξkδξl

∣∣∣∣
ξ=0

xkyl

C j(x,y,z) =
n

∑
k,l,m=1

δ 3 f j(ξ ,0)
δξ δξlδξm

∣∣∣∣
ξ=0

xkylzm

donde j = 1,2, ...,n. Sea q ∈ Cn el vector propio de A0 correspondiente al valor propio iω0: A0q =
iω0q. Introducimos también el vector propio adjunto p ∈Cn : AT

0 p =−iω0 p, 〈p,q〉= 1. Considerando
〈p,q〉= p−T q el producto escalar en Cn.

Entonces

l1(0) =
1

2ω0
Re
[
〈p,C(q,q,q)〉−2〈p,B(q,A−1

0 B(q,q))〉+ 〈p,B(q,(2iω0In−A0)
−1B(q,q))〉

]
,

donde In es la matriz identidad n× n. Notemos que el valor (pero no el signo) de l1(0) depende de
la escala del vector propio q. Normalizarlo, 〈q,q〉 = 1, es una opción para descartar esta ambigüedad.
Existen software estándar de bifurcaciones, como matcont, que calculan automáticamente l1(0).
Para un sistema plano C∞ de EDOs con

x =
(

u
v

)
, f (x,0) =

(
0 −ω0

ω0 0

)(
u
v

)
+

(
P(u,v)
Q(u,v)

)

tomando q = p = 1√
2

(
1
−i

)
se sigue que

l1(0) =
1

8ω0
(Puuu +Puvv +Quuv +Qvvv)+

1
8ω2

0
[Puv(Puu +Pvv)−Quv(Quu +Qvv)−PuuQuu +PvvQvv],

donde los subíndices indican las derivadas parciales evaluadas en x = 0.

2.3. Bifurcaciones globales

Hay bifurcaciones que no se pueden detectar tan solo estudiando un pequeño entorno de un equili-
brio o de un ciclo, estas bifurcaciones se llaman globales[11].

2.3.1. Bifurcación homoclínica

Vamos a analizar la bifurcación global que se corresponde con la aparición de una órbita homo-
clínica que conecta equilibrios hiperbólicos en sistemas dinámicos continuos. Consideramos el sistema
dinámico dado por

ẋ = f (x), x = (x1,x2, . . . ,xn)
T ∈ Rn (2.19)

con f suave. Sean x0,x1 y x2 equilibrios del sistema.
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Figura 2.9: Órbita homoclínica de un punto silla.

Un órbita Γ0 con origen en un punto x∈Rn se llama homoclínica del equilibrio x0 del sistema (2.19)
si ϕ tx→ x0 cuando t→±∞. Es claro que una órbita homoclínica Γ0 de un equilibrio x0 pertenece a la
intersección de sus variedades estable e inestable: Γ0 ⊂W u(x0)∩W s(x0).

Vamos a caracterizar con mayor detalle el comportamiento de las variedades estable e inestable
cerca de bifurcaciones homoclínicas en un sistema de dimensión 2.

Consideremos un sistema plano que tiene una órbita homoclínica en un punto silla x0, como pode-
mos ver en la parte central de la Figura 2.10.

Figura 2.10: Función split en el caso plano n = 2

Introducimos una sección Σ transversal a la variedad estable W s(x0) cerca del punto silla, como ve-
mos en la Figura 2.10. Tomamos la coordenada ξ de Σ tal que el punto de intersección con la variedad
estable sea ξ = 0. Esta construcción puede llevarse a cabo para cualquier sistema suficientemente pró-
ximo. Sin embargo, para tales sistemas la variedad inestable W u(x0) genéricamente no vuelve al punto
silla. La Figura 2.10 muestra dos posibilidades: la variedad se divide o bien hacia arriba o bien hacia
abajo. Denotamos por ξ u el valor de ξ en el que se produce la intersección de W u con Σ. A este escalar
ξ u se le llama función split.

De hecho, la función split es un funcional definido en los sistemas original y perturbado. Se convierte
en una función suave de parámetros para un sistema que dependa de parámetros. La ecuación

ξ
u = 0

es una condición de bifurcación para una bifurcación homoclínica en R2. Por tanto, la bifurcación
homoclínica en este caso tiene codimensión uno.



Capítulo 3

Bursting

Se denomina bursting[7] al estado dinámico en el cual una neurona dispara grupos o burst de picos
en el potencial de acción. Cada grupo de estallidos viene seguido de un periodo de inactividad.

Diferentes mecanismos iónicos de bursting pueden traducirse en diferentes mecanismos matemá-
ticos que a su vez determinan las propiedades neuro-computacionales de los bursters, es decir, cómo
responden a la corriente. Por lo tanto, se está dedicando mucho esfuerzo a estudiar y clasificar las di-
námicas del bursting. La mayoría de los modelos matemáticos de bursters se pueden escribir como un
sistema fast-slow: {

ẋ = f (x,y) (fast spiking)
ẏ = µg(x,y) (slow spiking)

(3.1)

donde el vector x describe el estado del subsistema rápido, responsable de los picos de actividad, el
vector y describe el estado del subsistema lento que modula los picos, f y g son funciones tipo Hodgkin-
Huxley y µ � 1 es la relación entre las escalas de tiempo.

Un método estándar de análisis de los bursters fast-slow, así como de cualquier sistema singularmen-
te perturbado, es fijar µ = 0 y considerar los subsistemas rápido y lento por separado. Esto se conoce
como “disección del bursting neuronal”, ya que nos permite estudiar el sistema rápido ẋ = f (x,y) y
tratar y como un vector que va cambiando lentamente los parámetros de bifurcación. Normalmente el
subsistema rápido tiene un ciclo límite atractor (potencial de acción) para ciertos valores de y, y un
equilibrio atractor (potencial de reposo) para otros valores de y. Cuando la variable lenta oscila entre los
dos valores, el subsistema rápido, y por tanto todo el sistema, produce un burst.

3.1. Teorema de Fenichel

Vamos estudiar el primer teorema de Fenichel[15][2] para variedades compactas con frontera.
Dado un sistemas de ecuaciones diferenciales tipo fast-slow{

ẋ = f (x,y,ε)
ẏ = εg(x,y,ε)

con x ∈ Rn, y ∈ Rl y ε ∈ R. (3.2)

Asumimos las siguientes hipótesis sobre el sistema:
(H.1) Suponemos que las funciones f y g son de clase C ∞ en un conjunto U × I donde U ⊂ RN es

un abierto, siendo N = n+ l, e I es un intervalo abierto que contiene a ε = 0.

19
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Estamos asumiendo la condición C ∞ en los términos no lineales, lo cual es innecesario pero simpli-
fica notablemente el problema.

Sea ε = 0. El conjunto de puntos críticos f (x,y,0) = 0 para el sistema{
ẋ = f (x,y,0)
ẏ = 0

(3.3)

se calcula resolviendo n ecuaciones en RN , siendo N = n+ l y se espera que sea, al menos localmente,
una variedad de dimensión l. Lo natural sería esperar que tuviese una parametrización por la variable y.
Entonces deberíamos asumir que tenemos una variedad l-dimensional, posiblemente con frontera, sea
M0, contenida en { f (x,y,0) = 0}. El primer teorema de Fenichel afirma la existencia de una variedad
que es una perturbación de M0. Se conectará con el flujo del sistema{

ẋ = f (x,y,ε)
ẏ = εg(x,y,ε)

(3.4)

cuando ε = 0.
Usaremos la notación x · t para denotar la aplicación del flujo tras un tiempo t a una condición inicial

x, y diremos que un conjunto M es localmente invariante bajo el flujo de (3.4) si tiene un entorno V
tal que ninguna trayectoria puede abandonar M sin abandonar también V . Es decir, un conjunto M es
localmente invariante si para todo x ∈M, x · [0, t]⊂V implica x · [0, t]⊂M.

Introducimos una nueva hipótesis sobre (3.2), además de la hipótesis (H.1) antes mencionada, antes
de enunciar el primer teorema de Fenichel.
(H.2) El conjunto M0 es una variedad compacta, posiblemente con frontera, y es normalmente hiperbó-
lica con respecto a (3.3).

Nos referiremos al conjunto M0 como variedad crítica.
Y ahora estamos en posición de enunciar el primer teorema probado por Fenichel, bajo las hipótesis

(H.1) y (H.2).

Teorema 3.1 (Primer teorema de Fenichel). Si ε > 0 suficientemente pequeño, existe una variedad Mε

que se encuentra dentro de O(ε) de M0 y es difeomorfo a M0. Más aún, es localmente invariante bajo
el flujo de (3.2) y es de clase C r, incluido en ε , para todo r < ∞.

Llamaremos a la variedad Mε variedad lenta. Notemos que la única asociación con el flujo es a
través del enunciado que indica que la variedad perturbada Mε es localmente invariante. Parece una
declaración débil, pero en realidad no lo es, ya que implica que que podemos restringir el flujo a esta
variedad que es de dimensión menor, con el fin de encontrar estructuras interesantes. El hecho de que la
variedad sea localmente invariante en lugar de invariante se debe a la posible presencia de frontera y la
posibilidad por lo tanto de que haya trayectorias que puedan caer fuera de Mε , escapando a través de la
frontera.

3.2. Clasificación topológica

A primera vista, todos los bursters pueden parecer lo mismo: grupos de picos en el potencial separa-
dos por largos periodos de inactividad. Si nos fijamos más detenidamente podemos ver que los bursters
son cuantitativamente diferentes, pero ¿son diferentes cualitativamente?
Los bursters se distinguen cualitativamente de acuerdo con su tipo topológico[7]. Hay dos importantes
bifurcaciones del subsistema rápido que determinan el tipo topológico:

resting to spiking: Bifurcación de un equilibrio estable (resting) que aparece en la transición a un
ciclo límite atractor (spiking).

spiking to resting: Bifurcación de un ciclo límite atractor (spiking) que aparece en la transición a
un equilibrio (resting).
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Figura 3.1: Clasificación topológica de un burster fast-slow con subsistema rápido (spiking) bidimen-
sional.

Solo hay cuatro bifurcaciones posibles de codimensión 1 de equilibrios, representadas en la primera
columna del gráfico de la Figura 3.1. Si el subsistema rápido es de dimensión 2 entonces hay cuatro
bifurcaciones posibles de codimensión 1 de un ciclo límite atractor, representadas en la primera fila
del gráfico. Es decir, hay dieciséis combinaciones diferentes que dan como resultado dieciséis tipos
topológicos diferentes de fast-slow bursters con subsistema rápido de dimensión 2. Se nombran en
función del tipo de bifurcación que involucran.

En este trabajo nos interesa analizar dos de ellas, la fold-homoclínica y la fold-Hopf.

3.2.1. Fold-homoclínica

El tipo de bursting que más frecuentemente aparece en las simulaciones es el tipo fold-homoclínica[8],
también conocido como square-wave bursting debido a que el perfil del burst se asemeja a un cuadrado,
como podemos ver en la parte inferior de la Figura 3.2.

En esta bifurcación, se abandona la rama de la fase inactiva (resting) mediante una bifurcación
tipo silla-nodo (fold), de la que ya hemos hecho un amplio análisis en el capítulo anterior. Mediante
esta bifurcación el sistema “salta” a la fase activa (spiking) y da lugar a una serie de ciclos límite que
aparecen mientras la variable rápida avanza hacia la derecha por esta rama. Cuando el ciclo límite choca
con la variedad de equilibrios, se produce una bifurcación homoclínica en el ciclo que provoca que el
sistema pase de nuevo al estado de reposo, esta bifurcación, no casualmente, también la hemos estudiado
en profundidad anteriormente.

3.2.2. Fold-Hopf

El bursting tipo Fold-Hopf[8] también se conoce como bursting Plateu-like y, a diferencia del ante-
rior, su perfil en la fase activa tiene forma triangular, como podemos ver en la parte inferior de la
Figura 3.3.

En esta bifurcación el sistema también abandona la fase de reposo (resting) por medio de una bifur-
cación silla-nodo (fold) y pasa a la dinámica activa (spiking). Según el subsistema rápido avanza por la
fase spiking, los ciclos límite van teniendo una amplitud cada vez menor, de modo que el tubo de ciclos
límite tiene forma de paraboloide, como podemos ver en la Figura 3.3, hasta abandonar la fase spiking
mediante una bifurcación de Andronov-Hopf supercrítica, que ya hemos analizado anteriormente.
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Figura 3.2: Fold-homoclinic bursting.
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Fig. 63. “Fold/Hopf” (”tapered”) bursting via “fold/fold” hysteresis loop: The rest state disappears via fold bifurcation,
and the repetitive spiking disappears via supercritical Andronov–Hopf bifurcation. Simulations of (15) with slow subsystem
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Figura 3.3: Fold-Hopf bursting.
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En los gráficos de la parte izquierda de la Figura 3.4, tenemos dos imágenes que representan un caso
real. En negro observamos una órbita real y podemos ver que efectivamente se cumple el teorema de
Fenichel; en ambos casos (fold-Hopf (en la parte superior) y fold-homoclínica (en la parte inferior)),
aunque la dinámica lenta se aleja un poco de la variedad de equilibrios, al producirse la bifurcación y
saltar a la fase activa podemos apreciar lo que hemos explicado anteriormente para ambas bifurcaciones,
pues la región tubular gris de esta figura totalmente similar a la región amarilla de las Figuras 3.3 y 3.2.
Por otro lado, en los gráficos de la parte de la derecha de la Figura 3.4 aparece representada en azul
y rojo la variedad de equilibrios, donde se marcan las bifurcaciones silla-nodo (SN) y Andronov-Hopf
(AH). Y la curva de color verde simboliza los valores máximos y mínimos del sistema rápido.Journal of Mathematical Neuroscience (2011) 1:6 Page 3 of 22

Fig. 2 Top: a plateau-like or fold/Hopf bursting starts after the spiking manifold Mlc becomes tangent to
the middle, saddle branch of Meq and terminates further through the reverse supercritical Andronov-Hopf
bifurcation on the upper depolarized branch of Meq. Bottom: the primary feature of the square-wave
bursting activity in the HR model also referred to as of fold/homoclinic type is the termination of the
spiking manifold Mlc by the homoclinic bifurcation in the phase space of the fast subsystem. In both
cases: fold stands for a saddle-node bifurcation at the turning point (SN) on the lower, hyperpolarized
branch of Meq.

next section we will examine the transition bifurcation patterns between these types
of bursting.

These manifolds, especially their stable branches, can be easily traced and visual-
ized in the phase space by utilizing the slow variable as a sweeping parameter in the
decoupled fast subsystem. Far from bifurcations, this slow-fast dissection approach
allows for exhaustive simplifications that let one treat the dynamics of the full model
as on overlay the uncorrelated dynamics of its fast subsystem mediated by repetitive
passages of the slow variable.

The slow-fast dissection has been proven to work very well for a low-order model
of a bursting neuron as long as it stays away from a bifurcation that is due to recipro-
cal interactions of the dynamics of both subsystems. Such a bifurcation, underlying a
bursting transition(s), gives rise to the emergence of dynamical phenomena that can

Figura 3.4: [1] En la parte superior podemos ver un bursting tipo Fold-Hopf o plateau like, que empieza
después de que la variedad Mlc se vuelva tangente a la rama central de Meq y termina a través de una
bifurcación inversa Andronov-Hopf supercrítica en la rama despolarizada superior de Meq.
En la parte inferior tenemos un bursting tipo square-wave, también llamada Fold-homoclínica, cuya
característica principal según el modelo HR es la terminación de la variedad spiking Mlc en una bifur-
cación homoclínica en el espacio de fase del subsistema rápido.
En ambos casos, Fold representa una bifurcación tipo silla-nodo en el punto de inflexión (SN) en la
rama inferior hiperpolarizada Meq.
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