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Abstract

Neurons are cells of the nervous system whose main function is to receive, process and transmit
information through chemical and electrical signals due to the excitability of their plasma membrane.
They are specialized in the reception of stimuli and the conduction of the nerve impulse, as action
potential, which occurs when the membrane potential rises and falls rapidly.

There are mathematical models of neurons that pattern the behavior of a segment of a neuron plasma
membrane during the electrical activity generated by the transmission of the nerve impulse.

To begin this project, we will briefly recall some well-known concepts about dynamic systems which
will be used in the development of work and we will analyze the most important mathematical models
of neurons.

The first mathematical neuron model appeared in 1939 by A. Hodgkin and A. Huxley, who were
also the first scientists to record the course of an action potential. The model they proposed was an
interesting advance for a time when the nervous system was not widely known and the available scien-
tific technology was far from the current one. This model tried to model the plasma membrane as an
electrical circuit and achieved results that closely approximated the data obtained experimentally, so it
can be considered quite good. For this reason it has served as the basis for many later models that have
tried to improve and simplify it. Among these the Hindmarsh-Rose model stands out since it is a very
rich simplification dynamically and with a lower computational cost than the Hodgkin-Huxley.

To extend the mathematical aspect of these neuron models, in the second chapter we continue the
work giving a comprehensive, detailed analysis of bifurcations in dynamic systems of ODES. A bifur-
cation of a dynamic system is a qualitative change in its dynamics produced by modifying parameters.
We will focus on the saddle-node and Andronov-Hopf bifurcations since they are the most relevant in
these models and we will study the characteristics a generic dynamic system must present to exhibit
each of these bifurcations, arriving at general theorems that determine the normal form of these two
bifurcations and characterize the “similarities” (topological equivalence) that the systems having this
type of bifurcation display. We will also study a type of global bifurcation that has some relevance in
the models, homoclinical bifurcation of limit cycles.

And finally, we will talk about the phenomena of bursting observable in neuronal activity. Bursting
is a dynamic state where a neuron sometimes fires discrete groups or bursts of spikes. Each such burst
is followed by a period of quiescence before the next burst occurs. So that we are going to analyze what
happens in the model for the neurons to “jump” from quiescence to the active phase. In this regard, we
will discuss on the first Fenichel’s theorem that guarantees an equivalence between theoretical systems
and perturbed systems which are more similar to reality, so that the analysis we carry out theoretically
can be extended, under certain hypotheses, to modified models.

We will also explain the topological classification of bursting types, again focusing on the bifurca-
tions that appear in the mathematical models of neurons which model how neurons actually go from
resting to spiking. For that purpose we analyze the fold-homoclinic and fold-Hopf bifurcations.
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Capitulo 1

Introduccion

Las neuronas[16] transmiten ondas de naturaleza eléctrica que se originan como consecuencia de
un cambio transitorio de la permeabilidad en la membrana plasmadtica. Su propagacién se debe a la
existencia de una diferencia de potencial, llamado potencial de membrana[9], entre la parte interior y
exterior de la célula. El potencial de membrana en reposo estd determinado por la distribucion desigual
de iones entre el interior y el exterior celular y por la diferente permeabilidad de la membrana ante los
distintos tipos de iones.

En las neuronas y en su liquido circundante, los iones mds abundantes son cationes sodio (Na*t) y
potasio (K1), aniones cloruro (CI™) y otros aniones orgdnicos (como los de las proteinas y los aminod-
cidos). En la mayoria de las neuronas, el K™ y los aniones orgdnicos se encuentran en concentraciones
mds altas dentro que fuera de la célula. En cambio, el Nat y el CI~ generalmente se encuentran en
concentraciones mas altas fuera de la célula. Esto significa que a través de la membrana hay gradientes
de concentracion estables para todos los tipos de iones mds abundantes.

Debido a su carga, los iones no pueden pasar directamente a través de las regiones de lipidos hi-
drofébicos de la membrana; en cambio, tienen que utilizar canales de proteinas especializados que
proporcionan un tinel hidrofilico que cruza la membrana.

Cuando un canal i6nico se abre, el transito idnico es a favor de su gradiente electroquimico, es decir,
pretende equilibrar el nimero de iones, independientemente del potencial transmembrana actual. Este
mecanismo de movimiento idénico permite el trdnsito entre estados de polarizacion y despolarizacion.

Cuando el potencial de membrana de una célula excitable se despolariza més alld de un cierto
umbral, la célula genera un potencial de accién. Un potencial de accién es un cambio muy rapido en la
polaridad de la membrana.

El primer registro detallado de un potencial de accidn lo realizaron los investigadores Alan Lloyd
Hodgkin y Andrew Fielding Huxley, quienes midieron las corrientes idnicas que aparecen durante el
potencial de accion en el ax6n gigante de un calamar en 1939.

1.1. Conceptos previos

A continuacién vamos a definir una serie de conceptos clave para comprender el desarrollo del
trabajo. Todas las nociones que aparecen en esta seccion han sido obtenidos de [11].

Definicion. Llamaremos puntos de equilibrio o fijos de un sistema diferencial X = f(x) a los puntos
X tales que f(xp) = 0.

Definicion. Sea x = f(x) y sea xo un equilibrio. Diremos que xj es un equilibrio hiperbélico si para

1)
todo A valor propio de S—f se tiene Re(A) # 0.
X

X=X0

Definicion. Sea x = f(x) en D C R”, diremos que un conjunto M C D es un invariante del flujo
generado por la EDO si toda solucién x(z) tal que x(0) e M = x(t) e M Vt
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Definicion. Dada A € R"*", separamos sus valores propios en tres grupos: Oy, 0, y O, dependiendo del
signo de la parte real. De modo que

A€oy si ReA <0
A€o, si ReA >0
A€o, si ReA=0

El subespacio generado por los vectores propios cuyos valores propios pertenecen a Oy se llama subes-
pacio estable (E°), el generado por los vectores propios cuyos valores propios pertenecen a o, es el
subespacio inestable (E*) y el generado por los vectores propios cuyos valores propios pertenecen a
O,, subespacio central (£€). Y se cumple R" = ESG E* G EC

Veamos qué ocurre sin = 2. Sea X = AX y sean A = detA, T = trazaA con A € R**2, Entonces:
= Si A < 0 = Punto silla.

» SiA>0y1>—4A > 0= Nodo. Si 7 < 0, el nodo es estable y si T > 0, inestable.

» SiA>0y1>—4A <0, con T # 0= Foco. Si 7 < 0 el foco es estable y si T > 0, inestable.
= SiA>0y 7=0= Centro.

Hay tres clases topoldgicas de equilibrios en el plano: nodos (focos) estables, puntos silla y nodos
(focos) inestables. Los nodos y los focos (de la estabilidad correspondiente) son topolégicamente equi-
valentes pero se pueden identificar mediante los valores propios; notemos que los valores propios son
las raices de la ecuacién caracteristica A2 — 64 + A = 0. Los puntos estables tienen variedades estables
de dimensién 2 y no tienen variedades inestables. Y para los equilibrios inestables, al revés. Los pun-
tos silla tienen variedades estable e inestable, ambas de dimensién 1 (que generalmente se denominan
separatrices).

)

s j (real positive eigenvalues)
-|-% = unstable node
eigenvalues ST

-
- unstable focus
g (complex eigenvalues, o
@ . Positive real part)
o

. 7 ?-g *

0 ) ( Andronov-Hopf bifurcation A
T
saddle

(real eigenvalues, different signs)

._|__

saddle-node bifurcation

-
* stable focus
(complex eigenvalues, *
X) negative real part)
A
“-_.v(‘

stable node T2 4
(real negative eigenvalues) 4 = 0

Figura 1.1: Clasificacién de los equilibrios de un sistema dindmico 2-dimensional en funcién de la traza
(7) y el determinante (A) de la matriz jacobiana y de los valores propios.

Teorema 1.1 (Hartman-Grobman). Sean los sistemas % = f(x) y X = Ax, con xo un equilibrio hiperbo-

lico, f(xo) =0y A= of

5 . Entonces los flujos de ambos sistemas son conjugados.

X X=X0

Definicion. Sea x = f(x), x € R", y sea xp tal que f(xp) = 0. Definimos la variedad estable de x
generada por el flujo @, como el conjunto W* = {x € R" | ¢,(x) == x}. Y la variedad inestable
como W* = {x e R" | ¢ (x) === xo}.
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Definicion. Sea xo un punto de equilibrio. Una 6rbita y; se dice 6rbita homoclinica de x si

lim y;(x) = lim y;(x) =xo

f—+oo t——oo

Y si xo, yo son equilibrios del sistema, y;(x) es una érbita heteroclinica de x( e y¢ si

Jm oy (x) =xo, lim i (x) = yo
Definicion. Diremos que xp es un punto @-limite de x € R” (y lo denotamos @(x)), si existe una
sucesion {z;}, con t; — +oo, tal que @, (x) — xo. El conjunto de todos los puntos que son ®-limite de x
se llama @-limite de x.
Andlogamente, xo es un a-limite de x € R” (y lo denotamos o(x)), si existe una sucesion {¢;}, con
ti — —oo , tal que @, (x) — xo.

Diremos que una 6rbita periddica I es un ciclo limite si es @-limite o a-limite de algtn punto.

Por ultimo, definimos tres conceptos relacionados con criterios de equivalencia de sistemas.

Definicion. Una funcién # : X — Y es un homeomorfismo si es continua, biyectiva y su inversa, h 1
es también continua.

Definicion. Sean F : X — X y G : Y — Y dos funciones. Diremos que F' y G son topolégicamen-
te conjugadas si existe un homeomorfismo 4 : X — Y tal que ho F = G o h; o equivalentemente,
h(F(x)) = G(h(Y)). Este homeomorfismo 4 se llama conjugado topoldgico.

Entonces, si consideramos dos sistemas dindmicos dados por F : X — Xy G:Y — Y, son topoldgi-
camente conjugados si las dindmicas que definen sobre X e Y son equivalentes, y el conjugado / lleva
las 6rbitas de un conjunto a las del otro.

Definiciéon. Diremos que los flujos F : X — X y G : Y — Y son topolégicamente equivalentes si
existe un homeomorfismo 4 : X — Y que lleva 6rbitas de G a drbitas de F de manera homeomorfa y
preservando la orientacion de las drbitas.

La equivalencia topoldgica es un tipo de equivalencia mds débil que la conjugacién topolégica, ya
que no requiere que el término temporal se preserve junto con las érbitas y su orientacién.

1.2. Modelos matematicos de neuronas

1.2.1. Modelo de Hodgkin-Huxley

Como ya habfamos comentado, fueron los cientificos A. Hodgkin y A. Huxley quienes lograron el
primer registro directo del curso detallado de un potencial de accién. Pero mds adelante también fue-
ron ellos los que consiguieron desarrollar un modelo matemético “ideal” cuyo comportamiento resulta
bastante paralelo a las observaciones experimentales.

El logro de una descripcidn satisfactoria del potencial de accién dependié del desarrollo de sofis-
ticadas técnicas experimentales, minuciosas mediciones y asi, finalmente, consiguieron desarrollar un
complejo modelo fisico-matematico. La primera version de este modelo es la desarrollada por Hodgkin
y Huxley (modelo HH)[3] [5] [6] [14], pero posteriormente aparecen modelos més refinados basados en
este modelo, entre los que destacamos el modelo de Hindmarsh-Rose (modelo HR)[1][3][13].

Hodgkin y Huxley realizaron las mediciones en el axén gigante de calamar, ya que esta fibra ner-
viosa tiene un didmetro de casi de un milimetro, lo que permite una mejor manipulacién experimental
que la mayoria de las células nerviosas conocidas (un axén tipico tiene un didmetro mil veces menor).
Manipularon las concentraciones iénicas en el axén y en su medio circundante de modo que fueron
capaces de probar que hay dos componentes iénicas principales: Iy, € Ix.

La hipétesis que Hodgkin y Huxley se propusieron probar era la siguiente: la membrana tiene ca-
nales que permiten el paso de iones en la direccidén que determina su potencial electroquimico. Este
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cortical GH neuron (in vivo) thalamocortical (TC) neuron (in vivo)

600 pA 50 pA
J nagative DC
cortical IB nauron (in vitra)
|20 mV

50 ms

=

pre-Boizinger bursting neuron (in vitro)

1 sac

Figura 1.2: Ejemplos en diferentes tipos de neuronas.

movimiento i6nico provoca corrientes eléctricas y origina el cambio conocido como potencial de ac-
cién, que se debe a un aumento en la conductancia al ion sodio (Gy,), lo que le permite entrar a la
célula haciendo positivo el interior y esto a su vez aumenta la Gy, ain mds. La conductancia cambia
como funcién del tiempo y empieza a disminuir aproximadamente en el maximo del potencial de ac-
cién, por lo que Gy, también depende del voltaje, es decir, Gy, = F(t,V). Asi, el problema a resolver
era: ;cudl es la funcion del voltaje y del tiempo que describe las conductancias Gy, y Gk?

Interior \'A
L, b, b,
Gra Gy G,
- Cm
Via TVK TVL

Exterior

Figura 1.3: Circuito eléctrico equivalente propuesto por Hodgkin y Huxley para un pequefio segmento
de ax6n gigante de calamar.

El modelo de HH se basa en la idea de que las propiedades eléctricas de un segmento de membrana
nerviosa puede ser modelado como un circuito eléctrico equivalente de la forma mostrada en la Figura
1.3. En el circuito equivalente, las corrientes que fluyen a través de la membrana tienen dos compo-
nentes principales, una asociada con la carga de la capacitancia de la membrana y otra asociada con
el movimiento de tipos especificos de iones atravesando la membrana. Ademds, la corriente idnica se
subdivide en tres distintas componentes, una corriente de sodio Iy,, una corriente de potasio Ix y una
pequeiia corriente de escape I;, compuesta principalmente por iones de cloro.
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Las ecuaciones del modelo propuesto son

CV =1—Ggn*(V — Eg) — Gnam®h(V — Ena) — GL(V — EL)

"= Tn(‘l/) (V) =) (L1
fzz V) (1mes (V) —m) '
h= o) (heo(V) — )

siendo / la corriente aplicada. Los valores ne, Mo, s, Ty, T, T ¥ las conductancias se obtienen experi-
mentalmente.

En el trabajo original de Hodgkin-Huxley se expresaban 7, 7i1 y & en términos de unas constantes de
proporcién dependientes del voltaje, o(V) y B(V), que describen la transicion de los estados abierto a
cerrado y viceversa de los canales i6nicos,

O=a(V)(1-6)+B(V)0

donde O representa cualquiera de las funciones n, h o m.

Este modelo, aunque describe muy bien la fenomenologia del comportamiento de la neurona y
es bastante realista, no es comodo para el estudio de las caracteristicas de la neurona como sistema
dindmico pues el espacio de fases asociado al problema es de cuatro dimensiones y hace realmente
farragoso analizar y entender las caracteristicas dindmicas de la neurona como sistema excitable, ademds
de que las simulaciones realizadas con este modelo resultan muy costosas computacionalmente.

1.2.2. Modelo de Hindmarsh-Rose

El modelo de Hindmarsh-Rose es una aproximacién mds simple del modelo de Hodgkin-Huxley
descrito como un sistema de tres ecuaciones diferenciales no lineales. Por su robustez dindmica, este
modelo es uno de los modelos neuronales mas interesantes en la actualidad. Se utiliza para el estudio de
la actividad neuronal y particularmente, para analizar el comportamiento del potencial de membrana.

El modelo HR se describe de la siguiente manera:

¥=y—ax  +bx*—z+1
y=c—dx’*—y (1.2)
z=¢€(s(x—x0)—2)

donde x representa el potencial de accién de membrana, y representa la variable de recuperacién de
los canales i6nicos répidos que atraviesan la membrana (como los de Na™ y KT) y la variable z es la
andloga a y en los canales lentos (representa la variable lenta puesto que el pardmetro € es muy pequeiio,
0 < € < 1). Dentro de los pardmetros, I representa la corriente externa aplicada a la membrana, s es
el nivel de influencia del voltaje de membrana en la dindmica lenta y a, b, ¢ y d son pardmetros que
definen el comportamiento de la neurona modelada. € es la escala de tiempo de la corriente lenta que
controla la velocidad de variacién de la variable z, y xp es un pardmetro de control que retrasa o potencia
la activacién de la corriente lenta. Normalmente los pardmetros de (1.2) se fijanena=1,c=1,d =
5,s=4,xp=1,6 y e =0,01. De modo que las corrientes regulares del bursting en el modelo HR con
una corriente aplicada I = 4 se corresponden con el tipo square-wave para b = 2,7 y se transforma en
un bursting Plateau-like en b = 2,52.

La Figura 1.5 muestra una simulacién del comportamiento del sistema del modelo HR en funcién
de los valores que tomen los pardmetros b e I. Fijando la corriente aplicada (rectas horizontales) vamos
variando el valor de b y analizamos qué ocurre mediante la técnica de spike-counting (recuento de
picos). La barra vertical de la derecha indica la leyenda de colores del diagrama en funcién del nimero
de picos por burst.

En esta figura, el plano (b, I) queda dividido en regiones con diferentes tipos de comportamiento:
tonic spiking, square-wave y plateau-like bursting, quiescence (inactividad) y bursting cadtico.
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0 100 200 300 400 500 0 200 . 400 600
time t timet

Figura 1.4: Esquema de burstings square-wave (A) y plateau like (B) en el modelo de Hindmarsh-Rose
parab =27y b = 2,52, respectivamente.

.
Plateau-bursting

Spike-Count (SC)

quiescence

parameter |

28 .~ Square-wave bursting

Spiking |

24 ; /

25 26 27 28 29 3 31 32
parameter b

Figura 1.5: Barrido por los pardmetros (b, I) en el modelo HR basado en un enfoque spike-counting.

En la esquina inferior derecha tenemos una zona de tonic-spiking seguida de una regién de inac-
tividad (quiescence) donde el SC toma valores minimos. De la zona de actividad spiking pasamos al
bursting y observamos dos comportamientos: una escalera de square-wave bursting con diferentes SC
separados por curvas bifurcacién en cuya parte superior aparecen unas regiones en forma de diente (en
rojo en el diagrama) que se corresponden con comportamientos de bursting cadtico. Por tltimo, en la
esquina superior izquierda tenemos otro comportamiento a destacar, plateau-like bursting.
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Bifurcaciones

Definicion. Una bifurcacion[11][4] de un sistema dindmico es un cambio cualitativo en sus dindmicas
producido por una variacién de los parametros del sistema.

Definicion. Consideremos un sistema dindmico auténomo de EDOS
i=fx,a), xeR", aeR (2.1)

donde la funcion f es suave con respecto axy a «.

Tenemos una bifurcacién en o = 0 si existe un valor del pardmetro ¢ arbitrariamente préximo a oy tal
que su dindmica es topoldgicamente no-equivalente a la de . Por ejemplo, el nimero o la estabilidad
de los equilibrios o de las drbitas periddicas de f puede cambiar por variaciones de & en .

La teoria de bifurcaciones proporciona una estrategia para investigar las bifurcaciones que ocurren
dentro de una familia, mediante una extendida identificacion de patrones en bifurcaciones.

Asociada a cada tipo de bifurcacion hay ecuaciones caracteristicas que localizan bifurcaciones de
cada tipo en una familia X = f(x, o) y formas normales que dan modelos de sistemas genéricos que
ejemplifican el tipo de bifurcacién.

Hay que imponer ciertas condiciones de no-degeneracidn, inecuaciones que forman parte de la es-
pecificacioén de un tipo de bifurcacion. La teorfa de bifurcaciones analiza las bifurcaciones en la forma
normal e investiga las similitudes entre las dindmicas de los sistemas con la bifurcacién estudiada. El pa-
trén de referencia que utiliza esta teoria para comparar la “semejanza” de los sistemas es la equivalencia
topolégica. En algunos casos, se puede probar la estabilidad estructural de una familia de bifurcaciones.
De hecho, uno de los principales objetivos de la teoria de bifurcaciones es demostrar la estabilidad es-
tructural de las formas normales; aunque existen tipos de bifurcaciones para los cuales no existe forma
normal estructuralmente estable.

Volvamos al sistema (2.1). Sea x = xp un equilibrio hiperbdlico del sistema en o = ¢f. Si el para-
metro varia levemente, el equilibrio se desplaza ligeramente pero sigue siendo hiperbdlico. Entonces,
podemos ir variando el pardmetro y ver qué ocurre con el equilibrio. Hay dos formas en las que la condi-
cién de hiperbdlico puede perderse. La primera es si un valor propio real se vuelve cero, es decir, A; = 0;
y la segunda, si la parte real de una pareja de valores propios complejos conjugados se vuelve cero, es
decir, A; » = %iay, @y > 0. La primera condicion se corresponde con la aparicién de la bifurcacién fold
y la segunda con la bifurcacién Hopf.

Definicion. La bifurcacién genérica asociada con la aparicién de un valor propio A; = 0 se llama bi-
furcacién silla-nodo o fold.

La bifurcacién que se corresponde con la aparicién de dos valores propios complejos conjugados
A2 = iy, wp > 0 se llama bifurcacién de Hopf (o Andronov-Hopf).

Notemos que la bifurcacién fold puede aparecer en sistemas de dimensién n > 1 pero para que haya
una bifurcacion de Hopf necesitamos dimension n > 2.

7
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2.1. Bifurcacion silla-nodo

La bifurcacién silla-nodo[11][12] es una colisién y posterior desaparicién de dos equilibrios en un
sistema dindmico. Esto ocurre cuando un equilibrio tiene un valor propio nulo.

2.1.1. Forma normal
Consideremos el sistema dinamico unidimensional
i=a+x*=f(x,a), xeR, a €R (2.2)

En a = 0 el sistema tiene un equilibrio no-hiperbdlico xo = 0, con A = £,(0,0) = 0. El comportamiento
del sistema para cualquier otro valor de o es también claro, para o < 0 hay dos equilibrios en el sistema:
x12 = £v/—a (el negativo estable y el positivo inestable). Para o > 0, el sistema no tiene equilibrios.
En la Figura 2.1 podemos ver como los dos equilibrios (estable e inestable) conviven cuando o < 0y
“chocan” en o = 0 formando un solo equilibrio que después, cuando o > 0, desaparece. Esto es una
bifurcacion silla-nodo.

g Y Y| y=fixa
y=S(x0)
y=f(x.0)

a<0 o=0 a>0

Figura 2.1: Bifurcacién fold
Otra forma de representar el comportamiento de los equilibrios en funcién del pardmetro o es un

diagrama de bifurcacion en el espacio de fase y pardmetros (plano-(x, &)). La ecuacién f(x,a) =0
define una variedad de equilibrios, la pardbola o = —x? (Figura 2.2).

X (@)

§x2 (o)

oa=-x2

Figura 2.2: Bifurcacién silla-nodo en el espacio pardmetro-fase

Con esta representacion, fijando un valor de o podemos determinar el nimero de equilibrios en el
sistema para tal valor.

Por otro lado, notemos que el sistema x = o — x? tiene las mismas caracteristicas, con la diferencia
de que los equilibrios aparecen para ¢ > 0.
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Ahora, veamos qué ocurre si aiadimos al sistema (2.2) términos de orden superior que dependen del
parametro . Resulta que estos términos no cambian cualitativamente el comportamiento del sistema
cerca del origen x = 0 para valores del pardmetro préximos a & = 0. De hecho, se cumple el siguiente
teorema:

Teorema 2.1. El sistema
x=a+x+ 0
es localmente topologicamente equivalente cerca del origen al sistema
X=a+x
Demostracion. La demostracién de este teorema tiene dos etapas y se basa en el hecho de que para

sistemas escalares, un homeomorfismo que lleva equilibrios a equilibrios también une sus 6rbitas.

» Paso 1: Andlisis de equilibrios. Introducimos la variable escalar y y reescribimos el primer siste-
ma como

y=F(,0)=a+y" +y(ya) (2.3)

donde y = &(y?) es una funcién de (y, &) suave cerca de (0,0).
Consideramos la variedad de equilibrios de (2.3) cerca del origen en el plano-(y, &t):

M={(y0): F(y,a) = a+y*+y(ya)=0}.

La curva M pasa por el origen (F(0,0) = 0). Por el Teorema de la Funcién Implicita' (puesto que
Fy(0,0) = 1), se puede parametrizar localmente por y:

M={(y,a):a=gy)},

siendo g una funcién suave definida para |ct| suficientemente pequefio. Ademds, g(y) = —y* +
O(y®). Por tanto, para a < 0 suficientemente pequefio, hay dos equilibrios de (2.3) cerca del
origen, yi(a) e y»(), que estdn proximos al equilibrio de (2.2), es decir, xj(@) = +v/—a y
x2(a) = —y/—a., para el mismo valor del pardmetro (como podemos ver en la Figura 2.3).

» Paso 2: Construccion del homeomorfismo. Para un |a| pequefio, construimos una aplicacion, que
depende del pardmetro o, y = hq(x) de la siguiente forma. Para o < 0, la aplicacion identidad

ha(x) =x
Y para o < 0, tomamos una transformacion lineal
ho(x) =a(o) +b(o)x
donde los coeficientes a, b quedan univocamente determinados por las condiciones:

ho (xj(0)) = yj(@), j=1,2

Entonces la aplicacion y : R — R es un homeomorfismo que lleva las correspondientes 6rbitas
de (2.2) cerca del origen a las correspondientes Orbitas de (2.3), preservando la direccionalidad
temporal. Luego los sistemas son localmente topolégicamente equivalentes.

O]

!Teorema de la funcién implicita. Sean Q abierto en R2, f: Q —s R de clase € (7(Q) con 1 < p < oo, (x0,y0) € Q tal
que f(x0,y0) =0, fy(x0,y0) # 0. Entonces existen a, b > 0 tales que (xo —a,xp+a) x (yo —b,yo +b) C Qy de forma que para
cada x € (xg —a,xp +a) hay una tnica y € (yg — b,yo+b) con f(x,y) =0y la funcién @ : (xg —a,xo +a) — (yo — b,yo +b)
definida por x — @(x) = “Unica y tal que f(x,y) = 0" cumple:

@ o¢(x0) =yo;
(b) f(x,(x)) =0 para cada x € (xg —a,xy +a);
(c) ¢ esdeclase %P
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1 4
Fuw>kjnm

vy

Sro)=0
Figura 2.3: Bifurcacién silla-nodo para el sistema con perturbacién.

2.1.2. Forma general

Vamos a mostrar que el sistema (2.2) (con un posible cambio de signo en el término de %) es la
forma normal topoldgica de un sistema unidimensional genérico con una bifurcacién tipo fold.

Teorema 2.2. Sea el sistema unidimensional
i=f(x,a), xeR,aeR

con f suave, que tiene en o = 0 un equilibrio x =0y sea L = f,(0,0) = 0.
Si asumimos que se cumplen las siguientes condiciones:

(A1) fx(0,0) #0
(A.2) fa(0,0)#0

entonces existe un cambio de coordenadas regular y un cambio de pardmetros que transforma el sistema
en

=Bg+n*+0(n’)
Demostracion. Consideramos el sistema

i=f(x,a), xeR, aeR 2.4)

con f una funcién suave que tiene en & = 0 un equilibrio x = 0 con A = £,(0,0) = 0.
Si expandimos f(x, ) como una serie de potencias con respecto a x en x = 0 tenemos:

fx,0) = fola) + fi(a)x+ fr(a)® + O(x).
Se satisfacen dos condiciones:
= f0(0) = £(0,0) = 0 (condicion de equilibrio)
» f1(0) = f+(0,0) = 0 (condicién de bifurcacién silla-nodo)

La idea principal es transformar el sistema (2.4), mediante cambios regulares de coordenadas y del
pardmetro, a la forma del sistema (2.2) hasta el término de segundo grado (incluido). Entonces podremos
aplicar el Teorema 2.1 y suprimir los términos de orden superior.

En el desarrollo tendremos que imponer nuevas condiciones de no-degeneracién y transversalidad
para poder llevar a cabo las transformaciones necesarias. De hecho, estas condiciones especificardn qué
sistemas uni-paramétricos con una bifurcacion silla-nodo pueden ser considerados genéricos.
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» Primer paso: Cambio de coordenadas. Llevamos a cabo un cambio de coordinadas lineal intro-
duciendo una nueva variable &:
E=x+6 (2.5)

donde 8 = d( o) es una funcidn, a priori desconocida, que definiremos mds adelante. La transfor-
macién inversa es x = £ — 4.

Sustituyendo (2.5) en (2.4) se sigue que
§ == fola)+ fi(a)(§—8)+ fr(a)(§ —8)+6((§-5)°)

Por lo tanto,

& = [fola) — fi(@)d + f2()8* + O(8)] + [fi(e) = 2f2(@)8 + O ())& + [fa( ) + O (8)IE> +
0(&%)

Asumimos

(A1) £2(0) = 3 £(0,0) #0

Entonces, por el Teorema de la Funcién Implicita, existe una funcién suave o (o) que anula los
términos lineales en la ecuacidn anterior para un || suficientemente pequefio. En efecto, la con-
dicién para que este término desaparezca se puede escribir como

F(a,8) = fi(e) = 2fo(a)8 + 8y (@,8) =0
con ¥ una funcién suave. Entonces se cumple

dF dF ,

o =-25(0) #0, =£(0
05 f2(0) # 1(0)

F(0,0) =0, —
da 0,0)

lo que implica la existencia y unicidad local de una funcién & = d(«) tal que 6(0) =0y
F(a,d(a)) = 0. Entonces se sigue que

o) = 2f}2(<00)> @+ 0(a).

Por tanto ahora la ecuacién para & solo contiene términos no-lineales:
& =1f5(0)a+0(a?)] +[£2(0) + O ())& + O(E7) (2.6)

= Segundo paso: Introduccion de un nuevo pardmetro. Consideramos como nuevo parametro [ =
i () el término indendiente de (2.6):

u(a) = f3(0)o+ o’ (),
con ¢ una funcién suave. Entonces tenemos:
(@) u(0)=0
(b) 1'(0) = £5(0) = fa(0,0)

Si asumimos

(A.2) fa(0,0) #0,
entonces el Teorema de la Funcién Implicita implica la existencia y unicidad local de la funcién
inversa o = a¢(u) con a(0) = 0. Por lo tanto, la ecuacién (2.6) resulta

E=u+a(p)E>+0(&%),

donde a(u) es una funcién suave con a(0) = f»(0) # 0, por la primera hipétesis (A.1).
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» Paso 3: Escala final. Sean 11 = |a(u)|& y B = |a(u)| 1. Entonces tenemos
n=B+sm’+0(n’)
siendo s = sign (a(0)) = £1.
O

De hecho, utilizando el teorema 2.1, podemos eliminar los términos ¢'(1?) y asf llegamos finalmente
al siguiente resultado general.

Teorema 2.3 (Forma normal topoldgica de la bifurcacién silla-nodo). Cualquier sistema escalar con
un pardmetro

x:f(xaa)v

que tenga en o. = 0 el equilibrio x =0 con A = f,(0,0) = 0, es localmente topolégicamente equivalente
cerca del origen a una de las siguientes formas normales:

il =B=En

2.2. Bifurcaciéon de Andronov-Hopf

La bifurcacién de Hopf[10][11] es la aparicién o desapariciéon de una 6rbita periédica debido a
un cambio en la estabilidad de un punto de equilibrio, al variar un pardmetro del sistema. Esto ocurre
cuando un sistema tiene una pareja de valores propios complejos conjugados.

2.2.1. Forma normal

Consideremos el siguiente sistema de ecuaciones diferenciales,

{ X] = oxy —xz—xl(x%—l-x%) (2 7)
X :xl—i-axz—xz(x%—i-x%) ’
Este sistema tiene como equilibrio x; = x, = 0 para todo ¢, con matriz Jacobiana
a —1

()
con valores propios A;» = « £ i. Introducimos la variable compleja z = x1 +ix2, 7 = x| — ix2, z!z =
Z= x% +x§. Estas variables verifican la ecuacién diferencial

Z= ) iy = a(x) +ixg) +ix) +ixg) — (x1 +ixa) (xF +23),

y entonces podemos reescribir el sistema (2.7) en forma compleja como

= (a+i)z—zlz)* (2.8)

Y finalmente si utilizamos la representacién en forma polar z = pe’?, obtenemos
= pe® +ippe?,
o bien (por (2.8)),
pe? +ipge® = pe'®(ati—p?),
de donde se sigue la forma polar del sistema (2.7):

N 2
(5o
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Las bifurcaciones del diagrama de fases del sistema cuando & pasa por 0 pueden analizarse facil-

mente con la forma polar, ya que las ecuaciones para p y ¢ en (2.9) son de variables separadas.
La primera ecuacién (que se debe considerar solo para p > 0) tiene un equilibrio en p = 0 para cual-
quier valor de «. El equilibrio es linealmente estable si & < 0; permanece estable en o = 0, aunque
no-linealmente y para o > 0 el equilibrio se vuelve linealmente inestable. Ademds, hay otro equilibrio
estable po(a) = \/a, para @ > 0.

La segunda ecuacidn describe una rotacién con velocidad constante. Entonces, por superposicion
de los movimientos definidos por las dos ecuaciones de (2.9), obtenemos el siguiente diagrama de
bifurcacién para el sistema bidimensional original (2.7) (Figura 2.4).

El sistema siempre tiene un equilibrio en el origen. Este equilibrio es un foco estable para a < 0
y un foco inestable para ¢« > 0. En el valor critico o = 0 el equilibrio es no-linealmente estable y
topolégicamente equivalente al foco, a veces se le llama foco débilmente atrayente. Este equilibrio estd
rodeado, para @ > 0, por una 6rbita cerrada aislada (ciclo limite) que es Unica y estable. El ciclo es una
circunferencia de radio po(@) = v/a.

Todas las 6rbitas que comienzan en un punto exterior o interior al ciclo exceptuando el origen, tienden
al ciclo cuando ¢t — +oo. Esto es una bifurcacién de Andronov-Hopf.

e Dy
I

a<0 a=0 o>0

Figura 2.4: Bifurcacién de Hopf supercritica.

Si tuviésemos un sistema con los términos no lineales de signo opuesto,

o 2, .2
{ X = ax) —x2 +x1(x7 +x3) (2.10)

X2 = X1 + g +x2(xF +x3)

que se puede expresar en forma compleja como: z = (o + i)z +z|z|%, y se puede analizar de la misma
forma que el anterior (Figura 2.5). El sistema presenta la bifurcacién de Andronov-Hopf para o =0. ' Y
al revés que en el sistema (2.7), hay un ciclo limite inestable en (2.10), que desaparece cuando ¢ cruza el
cero desde valores negativos hacia valores positivos. El equilibrio en el origen tiene la misma estabilidad
para & # 0 que en el sistema (2.7): es estable para o < 0 e inestable para o > 0. Su estabilidad en el
valor critico es la opuesta a la de (2.7), es no-linealmente inestable en @ = 0.

Xy '\ / Xy

7
N\

<0 a=0 a>0

Figura 2.5: Bifurcacion de Hopf subcritica

Por tanto, hemos visto que hay dos tipos de bifurcaciones de Andronov-Hopf. La bifurcacién del
sistema (2.7) se conoce como supercritica ya que el ciclo existe para valores del pardmetro o positivos
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(“después” de la bifurcacion). Y la bifurcacion del sistema (2.10) se conoce como subcritica puesto
que el ciclo se presenta “antes” de la bifurcacion. Es claro que esta terminologia puede ser confusa ya
que “antes” y “después” son relativos segin la direccién elegida para variar el pardmetro.

Ahora, afiadimos términos de orden superior al sistema (2.7) y lo escribimos en forma vectorial

( 2 ) - ( | _al ) ( 2 )‘Mﬂ%) ( 2 )+ﬁ(HXH4), 2.11)

donde x = (x1,x2)7, ||x||* = x? +x3 y los términos & (||x||*) pueden depender suavemente de o.

Teorema 2.4. El sistema (2.11) es localmente topologicamente equivalente al sistema (2.7) cerca del
origen.

Para demostrar este teorema, vamos a demostrar el siguiente enunciado, que es el teorema 2.4 rees-
crito en forma compleja:

Teorema 2.5. El sistema
t=(a+i)z—zlz>+0(z*) (2.12)

es topologicamente equivalente, cerca del origen, al sistema
i=(a+i)z—7|7? (2.13)

Demostracion. » Primer paso: Existencia y unicidad del ciclo. Escribimos el sistema (2.12) en
forma polar (los cdlculos son andlogos a lo anterior),

{¢=1+me) @19

donde ® = O(|p|*), ¥ = O(|p|?) (la dependencia en o de estas funciones no se indica para
simplificar la notacién).

Figura 2.6: Aplicacién de Poincaré para la bifurcacién de Hopf

Una 6rbita de (2.14) que empieza en (p, @) = (po,0) se representa como en la Figura 2.6. p =
p(9;p0), po=p(0;p0) con p verificando la ecuacién

dp _pla—p>)+@ _ a2
do~ 11w =p(a—p)+R(p,9) (2.15)

donde R = O(|p|*). Notemos que la transicién de (2.14) a (2.15) equivale a la introduccién de
una nueva parametrizacion del tiempo en la cual ¢ = 1, lo que implica que el tiempo de retorno
al semieje @ = 0 es el mismo para todas las orbitas que empiezan en este eje con pg > 0. Como
p(9;0) = 0, podemos escribir la expansion en serie de Taylor de p(@;pp),

p = ui(@)po+uz(9)pg +us(9)pg + O(|pol*). (2.16)
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Sustituyendo (2.16) en (2.15) y resolviendo el sistema lineal de ecuaciones diferenciales en las
correspondientes potencias de py con condiciones iniciales u;(0) = 1, u2(0) = u3(0) = 0, obte-

nemos
1— eth(p

_ap _ _ o9
ur (@) =e“?, ur(9) =0, uz(p) =e °a

Notemos que estas expresiones no dependen del término R(p, ¢). Luego la aplicacion de retorno
po— p1 = p (2w, py) tiene la forma

p1 = e %py— 2w+ O (a)]ps + O (pg) (2.17)

para todo R = &(p*). La aplicacién (2.17) puede analizarse facilmente para py y |o| suficien-
temente pequeiios. Existe un entorno del origen en el cual la aplicacion solo tiene un punto fijo
trivial para @ < 0 pequefio y otro punto fijo , p(go) =+/a+..., para o > 0 (Figura 2.7). La esta-
bilidad de los puntos fijos se puede obtener a partir de (2.17). Teniendo en cuenta que un punto
fijo positivo de la aplicacion corresponde a un ciclo limite del sistema, podemos concluir que el
sistema (2.14) (o (2.12)) con cualesquiera términos & (!z|4) tiene un unico ciclo limite (estable)
que se bifurca del origen y existe para & > 0 como en el sistema (2.13).

P

a<0

()
Py (o) Py

Figura 2.7: Puntos fijos de la aplicacién retorno.

Por tanto, en otras palabras, los términos de orden superior no afectan a la bifurcacion ciclo limite
en un entorno de z = 0 para || suficientemente pequefio.

= Segundo paso: Construccion del homeomorfismo. La existencia y unicidad establecidas del ciclo
limite es suficiente para todas las aplicaciones. Sin embargo, hay que hacer un trabajo extra para
probar la equivalencia topoldgica del diagrama de fase.

Fijamos a pequefio pero positivo. Ambos sistemas (2.12) y (2.13) tienen un ciclo limite en un
entorno del origen. Aplicamos una escala lineal de coordenadas en el sistema (2.12) tal que el
punto de interseccién del ciclo y del semieje horizontal ocurre en x| = \/a.

Definimos la aplicacién z — 7 de la siguiente forma. Tomamos un punto z = x1 + ix; y encontra-
mos los valores (po, 7p), siendo Tp el minimo tiempo requerido por una Orbita del sistema (2.13)
para aproximarse al punto x empezando en el semieje horizontal con p = pg. Ahora, tomamos el
punto de este eje con p = pp y construimos una Orbita del sistema (2.12) en el intervalo de tiempo
[0, 7] empezando en dicho punto. Denotamos al punto resultante 7 = x; + ix, (Figura 2.8). Sea
Z=0paraz=0.

La aplicacion construida es un homeomorfismo que, para ¢ > 0, lleva 6rbitas del sistema (2.13)
en un entorno del origen a 6rbitas del sistema (2.12), preservando la direccién del tiempo.

El caso o < 0 se puede considerar de la misma forma sin reescalar las coordenadas.
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(-"1; x2) (¥, X

ARy Ny
NPV

Figura 2.8: Construccién del homeomorfismo cerca de la bifurcacién de Hopf.

2.2.2. Forma general

De una forma similar a lo visto en la bifurcacién silla-nodo, vamos a enunciar dos teoremas que
muestran que el sistema (2.7) es la forma normal topoldgica de un sistema genérico de dimensién 2
con una bifurcacién de tipo Hopf, salvo un cambio de signo en los términos no lineales que depende del
primer coeficiente de Lyapunov del sistema, del cual hablaremos mds adelante, y que a su vez determina
si la bifurcacidn es subcritica o supercritica.

Teorema 2.6. Consideramos el sistema bidimensional

%:f(x,a), xeR* aeR (2.18)
con f suave y tal que para todo |¢| suficientemente pequeiio, tiene un equilibrio x = 0 con valores
propios A z(a) = u(o) £io(a), donde 11(0) =0y 0(0) = awy > 0.
Si se cumplen las siguientes condiciones:

(B.1)1,(0) # 0, donde 1,(0) es el primer coeficiente de Lyapunov.

(B.2) 1'(0) #0
Entonces existe un cambio invertible de coordenadas y pardmetros y una reparametrizacion temporal
que transforma el sistema (2.18) en

S()=(F 5 ) () retien () +am
siendo & = sign(l;(0)) = £1

Aplicando el Teorema 2.4, podemos eliminar los términos &(||y||*) y llegamos al siguiente resultado
general.

Teorema 2.7 (Forma normal topolégica de la bifurcacién de Hopf). Dado un sistema genérico bidi-
mensional y que depende de un pardmetro

x=f(x,a),

tal que presenta en oo = 0 un equilibrio x = 0 con valores propios A1 » = £ity, @y > 0. Entonces es
localmente topologicamente equivalente, cerca del origen, a una de las siguientes formas normales:

wy_(B -1 i 2 oy N
(3)=(7 5 ) )=oten(3))
(en funcion del signo de 1,(0)).

Estos teoremas tienen demostraciones anélogas a las realizadas para los teoremas de la forma ge-
neral de la bifurcacion silla-nodo, pero bastante mds largas. Por lo tanto, como la idea principal de las
demostraciones es la misma, hemos considerado omitirlas en este trabajo.
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2.2.3. Primer coeficiente de Lyapunov

Como hemos visto, si la bifurcacién de Hopf es subcritica o supercritica queda determinado por o,
que es el signo del primer coeficiente de Lyapunov /; (0) del sistema dindmico cerca del equilibrio. Este
coeficiente puede calcularse en o = 0 de la siguiente forma.

Escribimos el desarrollo de Taylor de f(x,0) en x = 0 como

1 1
f(xv 0) =Apx + EB(X,X) + EC(X,X,X) + 0(”)(”4),

donde B(x,y) y C(x,y,z) son funciones multilineales con componentes

< 62fj(§70)

Bj(x,y) = ’ XY
/ k=1 5€k5‘§l E=0
n 63](1 g 0)
X ya XkY1Zm
kl; 1 556515;" E=0

donde j = 1,2,...,n. Sea g € C" el vector propio de Ay correspondiente al valor propio iwy: Agg =
iapg. Introducimos también el vector propio adjunto p € C": Al p = —iwyp, (p,q) = 1. Considerando
{p,q) = p~Tq el producto escalar en C".

Entonces

1 _ _ _ _h _

1(0) = 5-Re[(p.C(q.9,2)) = 2(p,B(q.A;'B(¢.3))) +{p,B(G. (2ienl, —A0) ' B(q,9))]
donde I, es la matriz identidad n x n. Notemos que el valor (pero no el signo) de /;(0) depende de
la escala del vector propio g. Normalizarlo, (g,q) = 1, es una opcidn para descartar esta ambigiiedad.
Existen software estandar de bifurcaciones, como matcont, que calculan automaticamente /; (0).

Para un sistema plano C* de EDOs con

= (1) o= )+ ()

1 .
tomando g = p = % <—i> se sigue que

1

ll (0) — 7(Puuu +Puvv + Quuv + viv) ‘|'

80)() [Puv(Puu +va) - qu(Quu + vi) - PuuQuu ‘|'vavi],

2
8wy

donde los subindices indican las derivadas parciales evaluadas en x = 0.

2.3. Bifurcaciones globales

Hay bifurcaciones que no se pueden detectar tan solo estudiando un pequefio entorno de un equili-
brio o de un ciclo, estas bifurcaciones se llaman globales[11].

2.3.1. Bifurcacion homoclinica

Vamos a analizar la bifurcacién global que se corresponde con la aparicién de una 6rbita homo-
clinica que conecta equilibrios hiperbdlicos en sistemas dindmicos continuos. Consideramos el sistema
dindmico dado por

x=f(x), x=(x1,x2,....x,)" €R" (2.19)

con f suave. Sean xg, x| y x; equilibrios del sistema.
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Iy

Figura 2.9: Orbita homoclinica de un punto silla.

Un 6rbita I'y con origen en un punto x € R” se llama homoclinica del equilibrio x( del sistema (2.19)
si @"x — xo cuando 7 — oo, Es claro que una 6rbita homoclinica I'y de un equilibrio xy pertenece a la
interseccion de sus variedades estable e inestable: I'g C W*(xp) N W*(xg).

Vamos a caracterizar con mayor detalle el comportamiento de las variedades estable e inestable
cerca de bifurcaciones homoclinicas en un sistema de dimension 2.

Consideremos un sistema plano que tiene una 6rbita homoclinica en un punto silla xg, como pode-
mos ver en la parte central de la Figura 2.10.

-~ S P - . I
/N N\ N\
/ \ | \'l
/ | / ‘ |

f |
| _u / uf

A LAY 5 j W/ e /
<) [we 1 4 41 N

/ e & e

p=<0 p=0 B=0

Figura 2.10: Funcién split en el caso plano n =2

Introducimos una seccion X transversal a la variedad estable W*(x) cerca del punto silla, como ve-
mos en la Figura 2.10. Tomamos la coordenada & de X tal que el punto de interseccion con la variedad
estable sea & = 0. Esta construccion puede llevarse a cabo para cualquier sistema suficientemente pré-
ximo. Sin embargo, para tales sistemas la variedad inestable W*(xy) genéricamente no vuelve al punto
silla. La Figura 2.10 muestra dos posibilidades: la variedad se divide o bien hacia arriba o bien hacia
abajo. Denotamos por £ el valor de £ en el que se produce la intersecciéon de W” con X. A este escalar
E¥ se le llama funcion split.

De hecho, la funcién split es un funcional definido en los sistemas original y perturbado. Se convierte
en una funcién suave de pardmetros para un sistema que dependa de pardmetros. La ecuacion

& =0

es una condicién de bifurcacién para una bifurcacién homoclinica en R?. Por tanto, la bifurcacién
homoclinica en este caso tiene codimensién uno.



Capitulo 3

Bursting

Se denomina bursting[7] al estado dindmico en el cual una neurona dispara grupos o burst de picos
en el potencial de accién. Cada grupo de estallidos viene seguido de un periodo de inactividad.

Bifurcation
of limit cycle

Bifurcation
of rest state

Vit)

Bursting

Diferentes mecanismos idnicos de bursting pueden traducirse en diferentes mecanismos matema-
ticos que a su vez determinan las propiedades neuro-computacionales de los bursters, es decir, como
responden a la corriente. Por lo tanto, se estd dedicando mucho esfuerzo a estudiar y clasificar las di-
namicas del bursting. La mayoria de los modelos matematicos de bursters se pueden escribir como un
sistema fast-slow:

{ x= f(x,y) (fast spiking) (3.1)

y=pg(x,y) (slow spiking)
donde el vector x describe el estado del subsistema rdpido, responsable de los picos de actividad, el
vector y describe el estado del subsistema lento que modula los picos, fy g son funciones tipo Hodgkin-
Huxley y 4 < 1 es la relacién entre las escalas de tiempo.

Un método estandar de andlisis de los bursters fast-slow, asi como de cualquier sistema singularmen-
te perturbado, es fijar 4 = 0 y considerar los subsistemas rapido y lento por separado. Esto se conoce
como “diseccion del bursting neuronal”, ya que nos permite estudiar el sistema rapido x = f(x,y) y
tratar y como un vector que va cambiando lentamente los pardmetros de bifurcacién. Normalmente el
subsistema rdpido tiene un ciclo limite atractor (potencial de accién) para ciertos valores de y, y un
equilibrio atractor (potencial de reposo) para otros valores de y. Cuando la variable lenta oscila entre los
dos valores, el subsistema rapido, y por tanto todo el sistema, produce un burst.

3.1. Teorema de Fenichel

Vamos estudiar el primer teorema de Fenichel[15][2] para variedades compactas con frontera.
Dado un sistemas de ecuaciones diferenciales tipo fast-slow

x:f(x7y78) n [
) conxeR", yeR yeeR. 3.2)
{ y = eg(x,y,€) Y Y

Asumimos las siguientes hipdtesis sobre el sistema:
(H.1) Suponemos que las funciones f y g son de clase € en un conjunto U x I donde U C RY es

un abierto, siendo N =n+1, e I es un intervalo abierto que contiene a € = 0.
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Estamos asumiendo la condicién ¢ en los términos no lineales, lo cual es innecesario pero simpli-
fica notablemente el problema.
Sea € = 0. El conjunto de puntos criticos f(x,y,0) = 0 para el sistema

i = f(x,y,0)
{ =0 (3.3)

se calcula resolviendo n ecuaciones en R", siendo N = n -+ y se espera que sea, al menos localmente,
una variedad de dimensidn /. Lo natural seria esperar que tuviese una parametrizacion por la variable y.
Entonces deberfamos asumir que tenemos una variedad /-dimensional, posiblemente con frontera, sea
M, contenida en {f(x,y,0) = 0}. El primer teorema de Fenichel afirma la existencia de una variedad
que es una perturbacion de .#(. Se conectara con el flujo del sistema

y=¢£g8 (x,y ) 8)
cuando € = 0.

Usaremos la notacion x - t para denotar la aplicacion del flujo tras un tiempo ¢ a una condicién inicial
X, y diremos que un conjunto M es localmente invariante bajo el flujo de (3.4) si tiene un entorno V
tal que ninguna trayectoria puede abandonar M sin abandonar también V. Es decir, un conjunto M es
localmente invariante si para todo x € M, x-[0,7] C V implica x-[0,7] C M.

Introducimos una nueva hipétesis sobre (3.2), ademds de la hipdtesis (H.1) antes mencionada, antes
de enunciar el primer teorema de Fenichel.
(H.2) El conjunto .#; es una variedad compacta, posiblemente con frontera, y es normalmente hiperbé-
lica con respecto a (3.3).

Nos referiremos al conjunto .# como variedad critica.

Y ahora estamos en posicién de enunciar el primer teorema probado por Fenichel, bajo las hipétesis
(H.1) y (H.2).

Teorema 3.1 (Primer teorema de Fenichel). Si € > 0 suficientemente pequeiio, existe una variedad .#
que se encuentra dentro de O (€) de M y es difeomorfo a M. Mds aiin, es localmente invariante bajo
el flujo de (3.2) y es de clase €, incluido en €, para todo r < oo.

Llamaremos a la variedad .#; variedad lenta. Notemos que la tnica asociacion con el flujo es a
través del enunciado que indica que la variedad perturbada .#, es localmente invariante. Parece una
declaracion débil, pero en realidad no lo es, ya que implica que que podemos restringir el flujo a esta
variedad que es de dimensién menor, con el fin de encontrar estructuras interesantes. El hecho de que la
variedad sea localmente invariante en lugar de invariante se debe a la posible presencia de frontera y la
posibilidad por lo tanto de que haya trayectorias que puedan caer fuera de .#, escapando a través de la
frontera.

3.2. Clasificacion topologica

A primera vista, todos los bursters pueden parecer lo mismo: grupos de picos en el potencial separa-
dos por largos periodos de inactividad. Si nos fijamos mds detenidamente podemos ver que los bursters
son cuantitativamente diferentes, pero ;son diferentes cualitativamente?

Los bursters se distinguen cualitativamente de acuerdo con su tipo topolégico[7]. Hay dos importantes
bifurcaciones del subsistema rapido que determinan el tipo topolédgico:

= resting to spiking: Bifurcacién de un equilibrio estable (resting) que aparece en la transicién a un
ciclo limite atractor (spiking).

= spiking to resting: Bifurcacién de un ciclo limite atractor (spiking) que aparece en la transicién a
un equilibrio (resting).
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bifurcations of limit cycles

WUMJU‘ —» | saddle-node saddle supercritical fold
i ' on invariant hoemoclinic Andronov- limit
‘L - circle orhit Hopf cycle
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(fold) circle homaoclinic Hopf fold cycle
=
S
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gl o invariant circle homoclinic Hopf fold cycle
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(=]
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5 | supercritical
= o Hopf/ Hopf/ Hopff Hopf!
8 circle homoclinic Hopf fold cycle
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subcritcal subHopt/ subHopf/ subHopt/ subHop/
Hopf circle homoclinic Hopf fold cycle

Figura 3.1: Clasificacién topoldgica de un burster fast-slow con subsistema rdpido (spiking) bidimen-
sional.

Solo hay cuatro bifurcaciones posibles de codimension 1 de equilibrios, representadas en la primera
columna del gréfico de la Figura 3.1. Si el subsistema rdpido es de dimensién 2 entonces hay cuatro
bifurcaciones posibles de codimensién 1 de un ciclo limite atractor, representadas en la primera fila
del gréfico. Es decir, hay dieciséis combinaciones diferentes que dan como resultado dieciséis tipos
topoldgicos diferentes de fast-slow bursters con subsistema rdpido de dimensién 2. Se nombran en
funcién del tipo de bifurcacién que involucran.

En este trabajo nos interesa analizar dos de ellas, la fold-homoclinica y la fold-Hopf.

3.2.1. Fold-homoclinica

El tipo de bursting que mds frecuentemente aparece en las simulaciones es el tipo fold-homoclinica[ 8],
también conocido como square-wave bursting debido a que el perfil del burst se asemeja a un cuadrado,
como podemos ver en la parte inferior de la Figura 3.2.

En esta bifurcacion, se abandona la rama de la fase inactiva (resting) mediante una bifurcacién
tipo silla-nodo (fold), de la que ya hemos hecho un amplio anélisis en el capitulo anterior. Mediante
esta bifurcacion el sistema “salta” a la fase activa (spiking) y da lugar a una serie de ciclos limite que
aparecen mientras la variable rdpida avanza hacia la derecha por esta rama. Cuando el ciclo limite choca
con la variedad de equilibrios, se produce una bifurcacién homoclinica en el ciclo que provoca que el
sistema pase de nuevo al estado de reposo, esta bifurcacion, no casualmente, también la hemos estudiado
en profundidad anteriormente.

3.2.2. Fold-Hopf

El bursting tipo Fold-Hopf[8] también se conoce como bursting Plateu-like y, a diferencia del ante-
rior, su perfil en la fase activa tiene forma triangular, como podemos ver en la parte inferior de la
Figura 3.3.

En esta bifurcacién el sistema también abandona la fase de reposo (resting) por medio de una bifur-
cacion silla-nodo (fold) y pasa a la dindmica activa (spiking). Segin el subsistema rdpido avanza por la
fase spiking, los ciclos limite van teniendo una amplitud cada vez menor, de modo que el tubo de ciclos
limite tiene forma de paraboloide, como podemos ver en la Figura 3.3, hasta abandonar la fase spiking
mediante una bifurcacién de Andronov-Hopf supercritica, que ya hemos analizado anteriormente.
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Figura 3.2: Fold-homoclinic bursting.
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Figura 3.3: Fold-Hopf bursting.
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En los graficos de la parte izquierda de la Figura 3.4, tenemos dos imdgenes que representan un caso
real. En negro observamos una érbita real y podemos ver que efectivamente se cumple el teorema de
Fenichel; en ambos casos (fold-Hopf (en la parte superior) y fold-homoclinica (en la parte inferior)),
aunque la dindmica lenta se aleja un poco de la variedad de equilibrios, al producirse la bifurcacién y
saltar a la fase activa podemos apreciar lo que hemos explicado anteriormente para ambas bifurcaciones,
pues la region tubular gris de esta figura totalmente similar a la regién amarilla de las Figuras 3.3 y 3.2.
Por otro lado, en los graficos de la parte de la derecha de la Figura 3.4 aparece representada en azul
y rojo la variedad de equilibrios, donde se marcan las bifurcaciones silla-nodo (SN) y Andronov-Hopf
(AH). Y la curva de color verde simboliza los valores maximos y minimos del sistema rapido.

1.5

plateau-like bursting

fold/Hopf fold/Hopf
o e
05 ﬂf 150 AH -
[ 1
0.
05
* o Sy i x . gr\HI
1 o X
ZI=0 —-0.5 min
1% -1
SN
2_5 eq w155 —2 1 0 1 2
[ _ L
B 1.2 14 18 18 2 z
Y z
square-wave bursting
2.
fold/hom

- T
51-00‘?6 07 08 0g 1 14 1.2

Figura 3.4: [1] En la parte superior podemos ver un bursting tipo Fold-Hopf o plateau like, que empieza
después de que la variedad M. se vuelva tangente a la rama central de M,, y termina a través de una
bifurcacion inversa Andronov-Hopf supercritica en la rama despolarizada superior de M,,.

En la parte inferior tenemos un bursting tipo square-wave, también llamada Fold-homoclinica, cuya
caracteristica principal segin el modelo HR es la terminacion de la variedad spiking M;. en una bifur-
cacién homoclinica en el espacio de fase del subsistema rapido.

En ambos casos, Fold representa una bifurcacion tipo silla-nodo en el punto de inflexion (SN) en la
rama inferior hiperpolarizada M,,.
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