20

21

22

23

24

25

26

27

28

Anexo I
Cddigo utilzado para las simulaciones 1D:

#include <stdlib.h>
#include <stdio.h>
#include <time.h>
#include <math.h>

#define rho 2.0

#define Potencial
//#define Exponencial

int size_vect,N,M,NSim;

/* Ak kA hhkrh A rhka*kdkrx*k A XAk A STRUCT *A * K,k * Kk k kK * Kk *k**k** */
struct almacenaje_vecinos{

int cuml, cum2, cum3, cum4;
}; typedef struct almacenaje_vecinos Almacenaje_vecinos;

/* R e S dh Sh b b b b b b i S Sh Sb Sb b b b b b b d dh Sh Ib b b b b b e S S Ih b b b o */

/* A hkhkrkhkhkrxhhkrxkrxhkkrxdkhkrxkxxk FUNCIONES **,*xkrxhkhkrxkhkhxkkhk*xk */

double random_ 01 () ;

double probabilidades_ruptura (double cargas[N][M], double
probabilidades [N] [M]);

void calcula_elemento_a_romper (double probabilidades[N] [M],

int xfila, int *columna);

/********Reparto de cargas***********/

void reindexa_grietas (int matriz_indices[N] [M], int =«
rotos_grieta, int colum, int fila, int xindice_nuevo);
//Matriz_indices=grietas

void iguala_indices_2grietas (int matriz[N] [M], int =«
rotos_grieta, int indice_asignado, int cambia); //Matriz
=grietas

void iguala_indices_3grietas (int matriz[N] [M], int =«
rotos_grieta, int indice_asignado, int cambial, int
cambial2);

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

void iguala_indices_4grietas (int matriz[N] [M], int =«
rotos_grieta, int indice_asignado, int cambial, int
cambia?2, int cambia3l);
void encuentra_vecinos (int matriz_indices[N] [M], int
numero_vecinos[size_vect], Almacenaje_vecinos vecinos [N
1[M1);
void calcula_cargas_red(double cargas_red[N] [M], int
matriz_etiquetas[N] [M], Almacenaje_vecinos vecinos[N] [M
1,
int rotos_grieta[size_vect],
int numero_vecinos]|
size_vect]);
/***‘k********************************/
void inicializa_vector (int *vector, int valor, int tamano);
void inicializa_cargas (double cargas|[N] [M]);
void inicializa_grietas (int grietas[N] [M]);
void Histograma (double x,double *, int,int , double x,
double *, double «);

/* R b b 2 b b b b S b b b b b A b b g b b I 2 b b d b b S b b S b b b b b A b b i b b4 */

int main ()
//Voy a poner aqui las modificaciones para haver TvsN
/*********************************/

int TamanoFinal, TamanoInicial;

TamanoInicial=50;
TamanoFinal=500;

/********************************/
srand (time (NULL)) ;
int i, j,Npasos, k, contador;

FILE+f;
char name3[128];

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

sprintf (name3, "TvsN1lD (rho=5)V2.txt",NSim) ;
f=fopen (name3, "w");

for (TamanoInicial; TamanoInicial<=TamanoFinal;

TamanoInicial=TamanoInicial*10)

N=TamanoInicial;

M=1;
size_vect=(int)NxM/2+1;
Npasos=NxM;

printf ("\nN=M=%d\n",N) ;

if (TamanoInicial<5001)
{
NSim=400;
}
else
{
if (TamanoInicial<10001)
{
NSim=150;
}
else
{
if (TamanoInicial<50001)
{
NSim=30;
}

else

{
NSim=10;

99

100

101

102

103

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

double cargas|[N

int grietas|[N] [
grietas

int rotos_grietal[size_vect];//Almacena el tama o
de cada grieta

int perimetros([size_vect];//Almacena el numero de
vecinos de cada grieta

double probabilidades[N] [M]; //Matriz para las
probabilidades de ruptura

int fila,columna; //Indices del elemento que se va

]1[M]; //Matriz de cargas
M]; //Matriz que almazena las

a romper

int indice_nuevo; //Indice de la proxima grieta a
indexarse

double delta,T; //Tiempo para cada paso y tiempo
total

double v[NSim]; //Vector donde guardamos el valor
de T para cada simulacion

Almacenaje_vecinos vecinos [N] [M]; //Hoshen-
Kopelman: para cada elemento asocio un vector
con sus cuatro vecions

for (3=0; j<NSim; j++)
{
indice_nuevo=1;
inicializa_cargas (cargas);
inicializa_grietas(grietas);
for (i=0;i<size_vect; i++)
rotos_grieta[i]=0;

T=0;

delta=0;

delta=probabilidades_ruptura (cargas,
probabilidades) ;

T+=delta;

for (i=0; i<Npasos-1;i++)//Debemos contar hasta N

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

-1 porque sino estariamos asociando delta al

vector cuando se ha roto por completo

calcula_elemento_a_romper (probabilidades, &

fila, &columna) ;

//Rompo el elemento indicado

cargas[fila] [columnal=0;

//Inicia el reparto de cargas

reindexa_grietas (grietas, rotos_grieta,
columna, fila, &indice_nuevo) ;
encuentra_vecinos (grietas,perimetros,

vecinos) ;

calcula_cargas_red(cargas,grietas,vecinos,
rotos_grieta,perimetros);

delta=0;

delta=probabilidades_ruptura (cargas,

probabilidades) ;
T+=delta;

/* Progreso por pantalla =/
if (j*x100 $NSim==0)

printf ("Progreso = %% %\n"
[k hkkk kA kA AAAAAAAAAAAA */
V[j]=TI

//Calculo el valor medio de T as

double media, var, err;
var=0;
media=0;

, J*x100/NSim) ;

como sSu error.

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

for (1i=0; 1<NSim; i++)
{
media+=vI[i];
var+=v[i]*xv[i];

media=media/ (double)NSim;
var=var/ (double)NSim;
var=var-media*media;
var=sgrt (var) ;
err=var/sqrt ((double)NSim) ;

printf ("\nN=M=%d\t<T>=%f\terr=%f\tNSim=%d\n", N,
media, err,NSim) ;
fprintf (£, " &d\t %\t $f\n", N, media, err) ;

/ *
if (TamanoInicial==100000)
{

TamanoInicial=500;

*/
}
fclose (f);

/* R R b b S b b S 2 b b S b b b b b b A b b S 2 b b 2 b b O b b 4 */

}
/* *hkkhkkhkrkhkhkrxkkxk*k*** REPARTO DE CARGAS* %% %% % %% %% % %k % % % */

void inicializa_vector (int *vector, int valor, int tamano)
{
for (int 1=0; i<tamano; i++) {
vector[i]=valor;

}
void iguala_indices_2grietas (int matriz[N] [M], int =«
rotos_grieta, int indice_asignado, int cambia)

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

if (cambia!=indice_asignado) { //Si es igual, no hay

que hacer nada No se tendria que cumplir siempre

que es distinto?

int ncambiados=0;

for (int i=0; i<N; i++) {

for (int j=0; j<M; Jj++) {
if (matriz[i] [j]l==cambia) { // Cambiamos

los del ndice a cambiar por el ndice
a asignar
matriz[i] [j]=indice_asignado;
ncambiados++;

}
rotos_grieta[indice_asignado]+=ncambiados;
rotos_grietal[cambial=0;

void iguala_indices_3grietas (int matriz[N] [M], int =«
rotos_grieta, int indice_asignado, int cambial, int
cambia?2)

if (indice_asignado==cambial) { // Si el
primero ya es igual, no hace falta reindexarlo
iguala_indices_2grietas (matriz, rotos_grieta,
indice_asignado, cambiaZ2);
}else if (indice_asignado==cambia?2) { // Si el
segundo ya es igual, no hace falta reindexarlo
iguala_indices_2grietas(matriz, rotos_grieta,
indice_asignado, cambial);
lelse{
int ncambiados=0;
for (int i=0; i<N; i++) {
for (int j=0; j<M; J++){
if (matriz[i] [j]==cambial || matriz[i][]j]l==
cambia?) {
matriz[i] [j]=indice_asignado;
ncambiados++;

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

}
rotos_grietal[indice_asignado]+=ncambiados;
rotos_grieta[cambial]=0;
rotos_grieta[cambiaz2]=0;

}

void iguala_indices_4grietas (int matriz[N] [M], int =«
rotos_grieta, int indice_asignado, int cambial, int
cambia?2, int cambia3l)

if (indice_asignado==cambial) { // Si el
tercero ya es el asignado no hace falta cambiarlo
iguala_indices_3grietas(matriz, rotos_grieta,
indice_asignado, cambia2, cambia3);
}else if (indice_asignado==cambia?2) { // Si el
segundo ya es el asignado no hace falta cambiarlo
iguala_indices_3grietas(matriz, rotos_grieta,
indice_asignado, cambial, cambia3);
}else if (indice_asignado==cambia3) { // Si el
tercero ya es el asignado no hace falta cambiarlo
iguala_indices_3grietas (matriz, rotos_grieta,
indice_asignado, cambial, cambia?2);
}else({
int ncambiados=0;
for (int i=0; i<N; i++) {
for (int j=0; Jj<M; Jj++) {
if (matriz[i] [j]l==cambial || matriz[i][]j]l==
cambia? || matriz[i] [j]==cambial) {
matriz[i] [j]=indice_asignado;
ncambiados++;

}

rotos_grieta
rotos_grieta
rotos_grieta
rotos_grieta

indice_asignado] +=ncambiados;
cambiall=0;
cambia2]=0;
cambia3]=0;

— — — —

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

}

//Nota: Matriz indices=grietas
void reindexa_grietas (int matriz_indices[N] [M], int =«
rotos_grieta, int colum, int fila, int xindice_nuevo)

/+*———Calculamos las coordenadas de los elementos
adyacentes, respetando las condiciones peri dicas
==

int fila up, fila_down, colum_left, colum_right;

colum_left=(colum+2+M-1) 2M; // Si colum es O,
colum_left=M-1; en caso contrario, colum_left=colum
=1

fila_up=(fila+2+N-1) %N; // Si fila es 0,
fila_up=M-1; en caso contrario, fila_up=fila-1

colum_right=(colum+M+1) %; // Si colum es M-1,
colum_right=0; en caso contrario, colum_right=colum
+1

fila down=(fila+N+1) %N; // Si fila es N-1,

fila_down=0; en caso contrario, fila down=fila+1l

/+*———Calculamos los ndices de los elementos
adyacentes———x/
int up, down, left, right, indice_asignado; //
ndice_asignado : indice de la grieta que va a
perdurar, y el que se asocia al nuevo roto
int cambia; //

ndice a sustituir por ndice_asignado en la

reindexacin
up=matriz_indices[fila_up] [colum];
down=matriz_indices[fila_down] [colum];
left=matriz_indices[fila] [colum_left];
right=matriz_indices[fila] [colum_ right];

/+*——-Distinguimos casos seg n el n mero de vecinos
rotos———x/
switch (!!up + !!left + !!down + !!right) { // "!'la

" devuelve 1 si a!=0, 0 si a=0. Esto da el # de
vecinos que no son 0
case 0: // Nueva grieta

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

indice_asignado=+indice_nuevo;
(*indice_nuevo)++; // La siguiente grieta nueva
estar asociada al siguiente ndice nuevo
break;
case 1: // El elemento roto es vecino de una s la
grieta. Se le asocia el ndice no nulo.
if (up!=0) {
indice_asignado=up;
}else if (left!=0) {
indice_asignado=left;
}else if (right!=0) {
indice_asignado=right;
lelse{
indice_asignado=down;

}

break;
case 2: // El elemento roto es vecino de 2 grietas.
Se le asocia el ndice !=0, respetando prioridad
(up, left, right, down)
if (up!=0) {
indice_asignado=up;
cambia=down+left+right; // Alguno de estos

3 es no nulo, el resto son nulos
lelse if (left!=0) {
indice_asignado=left;
cambia=down+right; // Uno es nulo y el
otro no
lelse{
indice_asignado=right;
cambia=down;
}
iguala_indices_2grietas (matriz_indices,
rotos_grieta, indice_asignado, cambia); // Se
igualan los ndices de ambas grietas

break;
case 3: // El1 elemento roto es vecino de 3 grietas.
Se le asocia el ndice !=0, respetando prioridad

(up, left, right, down)
if (up==0) {
indice_asignado=left;

10

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

iguala_indices_3grietas (matriz_indices,
rotos_grieta, indice_asignado, right, down);
// Se igualan los ndices de las 3
grietas
}else(
indice_asignado=up;
if (left==0) {
iguala_indices_3grietas (matriz_indices,
rotos_grieta, indice_asignado, right,
down) ;
lelse{
if (right==0) {
iguala_indices_3grietas (matriz_indices,
rotos_grieta, indice_asignado, left
, down) ;
}else(
iguala_indices_3grietas (matriz_indices,
rotos_grieta, indice_asignado,
right, left);

}
break;
case 4: // El1 elemento roto es vecino de 4 c mulos
.Se le asocia el ndice !=0, respetando prioridad
(up, left, right, down)
indice_asignado=up;
iguala_indices_4grietas (matriz_indices,
rotos_grieta, indice_asignado, down, left, right
) 5 // Se igualan los ndices de las 4 grietas
}
matriz_indices[fila] [colum]=indice_asignado; // Se
asigna el ndice adecuado al nuevo elemento roto
rotos_grietal[indice_asignado]++; //
Nuevo elemento para la grieta con la que est en
contacto
}
void encuentra_vecinos (int matriz_indices[N] [M], int
numero_vecinos[size_vect], Almacenaje_vecinos vecinos[N

1 M])

11

334

335

336

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

362

int col_left, col_right, fila_up, fila_down;
int indice_up, indice_left, indice_right, indice_down;
inicializa_vector (numero_vecinos, 0, size_vect);
// E1l n mero de vecinos se calcula cada vez que se
ejecuta esta funci n

/+*———Leemos la matriz:—-——x/
for (int i=0; i<N; i++) {
fila_up=(i-1+2xN) N;
fila_down=(i+1+N) &N;
for (int 3=0; j<M; J++) {
col_left=(j-1+2*M) %M;
col_right=(j+1+M) &;
if (matriz_indices[i][]J]!=0){ // Los
elementos ya rotos, como no tienen carga, no
los utilizaremos
vecinos[i] [J] .cuml=0;

vecinos[1] []] .cum2=0;
vecinos[i] [J] .cum3=0;
vecinos[1] []] .cumé4=0;

lJelse(// Si no es O,

no es un vecino, sino un elemento roto
indice_up=matriz_indices[fila_up]l[]j];
indice_left=matriz_indices[i] [col_left];
indice_right=matriz_indices[i] [col_right];
indice_down=matriz_indices[fila_down][]j];

/* Guardamos los ndices de los c mulos
contiguos al elemento i, 7.

* Si alguna es 0, se guarda un 0, que al
no corresponder a ning n c mulo,
significa

* que en realidad no tiene vecino en esa
direccin.

* Incrementamos el n mero de vecinos de
la(s) grieta(s) dada(s) por el (los)
ndice (s)
* del (de los) elemento(s) contiguo(s).

12

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

* Si alguno es 0, se incrementa el numero

de vecinos del "c mulo 0", que es el
c mulo

* de los elementos no rotos y no se

utiliza para calcular las cargas.

vecinos[i] [J] .cuml=indice_up;

numero_vecinos[indice_up]++;
if (indice_left!=indice_up)

{

vecinos([i] [J] .cum2=indice_left;

numero_vecinos[indice_left]++;

if (indice_right!=indice_up &&
indice_right!=indice_left)

vecinos[i] [Jj] .cum3=indice_right;
numero_vecinos[indice_right]++;
if (indice_down!=indice_up &&
indice _down!=indice left &&
indice_down!=indice_right) //Los
4 son distintos

vecinos[i] [J] .cumd4=indice_down;
numero_vecinos[indice_down]++;
}else //3 son distintos
{
vecinos[1] [J] .cum4d=0; //
Si es doblemente vecino de
alguno, solo lo guardamos 1
vez
}
lelse
{
if (indice_down!=indice_up &&
indice_down!= indice_left) //3
son distintos

vecinos[i] [J] .cum3=indice_down;
numero_vecinos[indice_down]++;

13

391

392

393

394

395

396

397

398

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

}else //2 son distintos
{
vecinos[i] [j] .cum3=0;
}
vecinos[i] [j] .cum4=0;
}
lelse
{
if (indice_right!=indice_up) {
vecinos[i] [J] .cum2=indice_right;
numero_vecinos[indice_right]++;
if(indice_down!=indice_up &&
indice_down!=indice_right) {
vecinos[1] [Jj] .cum3=indice_down;
numero_vecinos[indice_down]++;
}else
{
vecinos[i] [j] .cum3=0;
}
lelse
{
if (indice_down!=indice_up)
{
vecinos[i] [J] .cum2=indice_down;
numero_vecinos[indice_down]++;
lelse
{
vecinos[i] []] .cum2=0;
}
vecinos[i] []] .cum3=0;
}

vecinos[1] []] .cumé4=0;

}
void calcula_cargas_red(double cargas_red[N] [M], int
matriz_etiquetas[N] [M], Almacenaje_vecinos vecinos[N][M

1,

14

428

429

431

432

433

434

435

436

437

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

int rotos_grieta[size_vect], int
numero_vecinos[size vect])

int etiqueta;

for (int i=0;

1<N; 1i++) {

for (int J=0; j<M; J++) {
etiqueta=matriz_etiquetas[i] []];
if (etiqueta!=0) { // Elemento ya roto, no

soporta carga
cargas_red[1][]3]1=0;

}else{ // Elemento sin romper

/+ Incrementamos las cargas, como la suma (
restringida a los vecinos no nulos),
mediante: r k/s_k

* siendo r el n mero de elementos rotos
de la grieta y s el n mero de vecinos
de la grieta.

*/

cargas_red[i][]
if ((vecinos[1i] [

=

31 .cuml) !'=0) {
cargas_red[1i

[

[1

]

][j]+ ((double) rotos_grieta
il [j].cuml]/ (numero_vecinos
i][03].

[vecinos
[vecinos[i] cuml]));
}
if ((vecinos[i][J] .cum2) !=0) {
cargas_red[i] [j]+=((double) rotos_grieta
[vecinos[i] [J] .cum2]/ (numero_vecinos
[vecinos[i][Jj].cum2]));
}
if ((vecinos[i][]J].cum3) !=0) {
cargas_red[i] [j]+=((double) rotos_grieta
[vecinos[i] [J] .cum3]/ (numero_vecinos
[vecinos[i][Jj].cum3]));
}
if ((vecinos[i][]J].cumé) !'=0) {
cargas_red[i] [j]+=((double) rotos_grieta
[vecinos[i] [J] .cum4]/ (numero_vecinos
[vecinos[i][]j].cumd]));

15

454

455

456

458

459

460

461

462

463

464

465

467

468

469

470

471

472

473

474

475

476

478

479

480

481

482

483

484

485

487

488

}
/ %

R e b e b b A i b b A i b A b b A i b S d b b b b i i b B i b e b b i b b A b i b b i b b i b b g i b 4

*/

void inicializa_cargas (double cargas[N] [M])
{
int i, j;
for (i=0;i<N;i++)
{
for (j=0; j<M; j++)
{

cargas([i][]j]l=1;

}
void inicializa_grietas(int grietas[N] [M])
{
int i, j;
for (i=0;i<N;i++)
{
for (j=0; j<M; j++)
{
grietas[i][]1=0;

}
#ifdef Potencial

double probabilidades_ruptura (double cargas[N] [M], double
probabilidades[N] [M])

double gamma_total=0; // Tiempo de vida de la
configuracion actual
double gamma [N] [M]; // Matriz para el calculo de
las probabilidades

for (int i=0; 1i<N; 1i++) { // Calculo de las gammas

16

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

for (int J=0; J<M; J++) {
gamma [i] [j]=pow ((cargas[i] []]),rho);
gamma_total+=gammal[i] [];

}

for (int i=0; i<N; i++) { // Calculo de las
probabilidades
for (int 3=0; j<M; J++) {
probabilidades[i] [j]l=(gamma[i] [J])/ (gamma_total
)i
}
}
return 1/gamma_total; // Se devuelve el valor de
delta

#endif // Potencial

#ifdef Exponencial
double probabilidades_ruptura (double cargas[N] [M], double
probabilidades [N] [M])

double gamma_total=0; // Tiempo de vida de la
configuracion actual
double gamma [N] [M]; // Matriz para el calculo de

las probabilidades

//Inicializo gamma
for (int i=0; i<N; i++) {
for (int j=0; j<M; J++) {
gamma [1] [J]=0;

for (int i=0; i<N; i++)//Calculo las gammas

{
for (int j=0; j<M; Jj++)

17

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

if (cargas[i][]]!=0)

{
gamma [1] [J]=exp (cargas[i] []]);
gamma_total+=gammal[i] [j];

for (int 1i=0; i<N; i++) { // Calculo de las
probabilidades
for (int j=0; j<M; J++){
probabilidades[i] [j]l=(gamma[i] [J])/ (gamma_total
)i
}
}
return 1/gamma_total; // Se devuelve el valor de
delta

#endif // Exponencial

void calcula_elemento_a_romper (double probabilidades[N] [M],
int xfila, int =*columna)

double numero=random_01 () ;
double acum_prob=0;
int j, 1i;

/+ El1 intervalo [0,1) se divide en segmentos, cada uno
de una longitud
* igual a la probabilidad de ruptura del elemento. El
numero entre 0 y 1
* determina el segmento en el que cae, al cual se le
asocian las coordenadas,
* que son los parametros de salida
*/
for (1i=0; i<N; i++) {
for (j=0; J<M; J++){

18

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

acum_prob+=probabilidades[i] [j];

if (acum_prob>numero) { // El indice se
devuelve cuando el numero esta entre dos
separaciones de segmentos

+fila=i;
*columna=7j;
return; // Para salir del bucle

void Histograma (double xdata,double xHist, int N_data, int
N_intervalos, double *d, double *m, double x*Max)

/ *

*data —-> input, Datos sobre los que se genera el
histograma

*Hist —-> output Histograma calculado

N_data —-> input Numero de datos

N_intervalos —> input, Numero de intervalos del
histograma

*d —> output Medida de cada intervalo del histograma

*m —> output Valor minimo de los datos

*M —> output Valor maximo de los datos

*/

int i, Indice;// Importante que el indice sea int ya que

va a redondear al entero

double Norm,delta,minimo, maximo;

for (i=0;i<N_intervalos;i++)

{
Hist [1]=0;

}

minimo=10000000;

maximo=-10000000;

for (i=0;i<N_data;i++) //Calculo el minimo y maximo
valor

if (datal[i]>maximo)maximo=datali];
if (data[i]l<minimo)minimo=datali];

19

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

}

delta=(maximo-minimo) /N_intervalos;

if (delta==0)

{
printf ("No se pueden calcular los intervalos");
exit (1) ;

}

//Nucleo del programa

for (i=0;i<N_data; i++)

{

Indice=(data[i]-minimo) /delta;

Hist [Indice]=Hist [Indice]+1;

}

x*d=delta;

*m=minimo;

*Max=maximo;

//Ahora normalizo

Norm=1.0/ (N_dataxdelta);
for (i=0;i<N_intervalos; i++)
{

Hist[i]=Hist[i]*Norm;

[k xkxhkhkkxkhkhkkkkhkhkkkxkkkkxkkkxxxx PARIST RAPUANO

****************/

##define NormParisi (2.3283063671E-10F) //Para normalizar
el valor generado en la rueda de Parisi-Rapuano

double random_01 ()
{

int i;
unsigned int rueda[256], aleatorio;

unsigned char indice_ran, indicel, indice2, indice3;
//Inicializar rueda

20

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

for(i = 0; 1 < 256; i++)

rueda[i] = (rand()<<1l6) + rand();
//Inicializar indices
indice_ran = 0; indicel = 0; indice2 = 0; indice3 = 0;
//Modificamos los indices
indicel = indice_ran - 24;
indice?2 = indice_ran - 55;
indice3 = indice_ran - 61;
//Modificamos la rueda
ruedal[indice_ran] = rueda[indicel] + rueda[indice2];
//Generamos un numero aleatorio entre 0 y 2732-1
aleatorio = (ruedal[indice_ran] "ruedal[indice3]);

//Cambiamos la posicion base para el siguiente numero
aleatorio
indice_ran++;
//Devolvemos el numero aleatorio normalizado, entre 0 y
1
return aleatorio x NormParisij;
}
[k xkxkhkkkkhhkkkxhkhkkkrkhkkkxxhkkkxxkkkxtxxx FIN PARISI RAPUANO

Ak kA A AAKR KRR/

Cédigo utilizado para las simulaciones 2D (entorno de Von Neumann):

#include <stdlib.h>
#include <stdio.h>
#include <time.h>
#include <math.h>

int size_vect,N,M,NSim;

/* Ak hhkhkhhkdrhkdkrxkdkxk*dkx*k*STRUCT %, * % %, % % % % % % % % % % % % */
struct almacenaje_vecinos{

int cuml, cum2, cum3, cum4;
}; typedef struct almacenaje_vecinos Almacenaje_vecinos;

/* R R b S 2 b b g b b S 2 b b A b b S b b A b b S b b b b b S b b d b b b b 4 */

/* *hkhkhkhkhkhkhkrxkhkrxkhkhkrxkhkrkrhkrktkx FUNCIONES *xk,k*kkkhkhkkhkhkkhxkkhtkk */

double random_ 01 () ;

21

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

double probabilidades_ruptura (double cargas|[N] [M], double
probabilidades [N] [M]);

void calcula_elemento_a_romper (double probabilidades[N] [M],
int xfila, int *columna);

[****xxx*Reparto de cargast****xxxx*+*/

void reindexa_grietas (int matriz_indices[N] [M], int =«
rotos_grieta, int colum, int fila, int xindice_nuevo);

void iguala_indices_2grietas (int matriz[N] [M], int =«
rotos_grieta, int indice_asignado, int cambia);

void iguala_indices_3grietas (int matriz[N] [M], int =«
rotos_grieta, int indice_asignado, int cambial, int
cambial);

void iguala_indices_4grietas (int matriz[N] [M], int =«
rotos_grieta, int indice_asignado, int cambial, int
cambia?2, int cambia3l);

void encuentra_vecinos (int matriz_indices[N] [M], int
numero_vecinos[size_vect], Almacenaje_vecinos vecinos|[N
1[M1);

void calcula_cargas_red(double cargas_red[N] [M], int
matriz_etiquetas[N] [M], Almacenaje_vecinos vecinos[N][M
]I

int rotos_grieta[size_vect], int numero_vecinos
[size_vect]);

/************************************/

void inicializa_vector (int *vector, int valor, int tamano);

void inicializa_cargas (double cargas|[N] [M]);

void inicializa_grietas (int grietas[N] [M]);

void Histograma (double x,double *, int,int , double x,
double *, double +«);

/* R A b b S 2 b b b b S b b b b b b b I b b B 2 b b d b b S b b A b b b i b b A b b i b b4 */

int main ()
{
/*********************************/

int TamanoFinal, TamanoInicial;

TamanoInicial=20;
TamanoFinal=200;

/********************************/

22

43

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

srand (time (NULL)) ;
int i, j,Npasos, k;

FILE+f;

char name3[128];

sprintf (name3, "TvsN2D (Neumann) .txt",NSim);
f=fopen (name3, "w");

for (TamanoInicial; TamanoInicial<=TamanoFinal;
TamanoInicial+=10)

NSim=2000;
N=TamanoInicialj;
M=TamanoInicial;
size_vect=(int)N+M/2+1;
Npasos=NxM;

printf ("\nN=M=%d\n",N) ;

if (TamanoInicial>=50)
{
if (TamanoInicial>=100)
{
NSim= (int)NSim/100;
lelse
{
NSim= (int)NSim/10;

double cargas|[N

int grietas|[N] [
grietas

int rotos_grieta[size_vect];//Almacena el tama o
de cada grieta

int perimetros([size_vect];//Almacena el numero de
vecinos de cada grieta

double probabilidades[N] [M]; //Matriz para las
probabilidades de ruptura

] [M]; //Matriz de cargas
M]; //Matriz que almazena las

23

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

int fila,columna; //Indices del elemento que se va
a romper

int indice_nuevo; //Indice de la proxima grieta a
indexarse

double delta,T; //Tiempo para cada paso y tiempo
total

double v [NSim]; //Vector donde guardamos el valor
de T para cada simulacion

Almacenaje_vecinos vecinos [N] [M]; //Hoshen-
Kopelman: para cada elemento asocio un vector
con sus cuatro vecions

for (3j=0; j<NSim; j++)
{
indice_nuevo=1;
inicializa_cargas (cargas);
inicializa_grietas(grietas);
for (i=0;i<size_vect;i++)
rotos_grieta[i]=0;

T=0;

delta=0;

delta=probabilidades_ruptura (cargas,
probabilidades) ;

T+=delta;

for (i=0; i<Npasos-1;1i++) //Debemos contar hasta N
-1 porque sino estariamos asociando delta al
vector cuando se ha roto por completo

calcula_elemento_a_romper (probabilidades, &
fila, &columna) ;
//Rompo el elemento indicado

cargas[fila] [columna]=0;
//Inicia el reparto de cargas

24

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

reindexa_grietas(grietas, rotos_grieta,
columna, fila, &indice_nuevo) ;
encuentra_vecinos (grietas, perimetros,

vecinos) ;

calcula_cargas_red(cargas,grietas, vecinos,
rotos_grieta,perimetros);

delta=0;

delta=probabilidades_ruptura (cargas,

probabilidades) ;
T+=delta;

/* Progreso por pantalla x/
if (3100 $NSim==0)

printf ("Progreso = %% %\n"

[,k hkkkkk kAR AAAAAAAAAAA */

v[Jl=T;

//Calculo el valor medio de T as

double media, var, err;
var=0;
media=0;

for (1i=0; 1<NSim; i++)
{
media+=vI[i];
var+=v[i]*v[i];

media=media/ (double)NSim;
var=var/ (double)NSim;
var=var—-media*media;

25

, J*100/NSim) ;

como Su €rror.

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

var=sqrt (var) ;
err=var/sqrt ((double)NSim) ;

printf ("\nN=M=%d\t<T>=%f\terr=%f\tNSim=%d\n", N,
media, err,NSim) ;
fprintf (£, " &\t &d\t £\t $£\n", N, (int) NN, media, err);

}
fclose (f);

/* R I S S dh Ib b b b b b b I SR Sh b b b b b i e S b b b b b ‘k/

}
[k Khkkkhkkkhkkhkkkkkkk* %% *REPARTO DE CARGAS***x*x*x*x*xkkkkkkkk*x %/

void inicializa_vector (int *vector, int valor, int tamano)
{
for (int i=0; i<tamano; i++) {
vector[i]l=valor;

}
void iguala_indices_2grietas (int matriz[N] [M], int =«
rotos_grieta, int indice_asignado, int cambia)

if (cambia!=indice_asignado) { //S1i es igual, no hay

que hacer nada No se tendria que cumplir siempre

que es distinto?

int ncambiados=0;

for (int i=0; i<N; i++) {

for (int j=0; j<M; J++) {
if (matriz[i] [j]==cambia) { // Cambiamos

los del ndice a cambiar por el ndice
a asignar
matriz([i] [j]=indice_asignado;
ncambiados++;

26

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

rotos_grieta[indice_asignado]+=ncambiados;
rotos_grietal[cambial=0;

void iguala_indices_3grietas (int matriz[N] [M], int =«
rotos_grieta, int indice_asignado, int cambial, int
cambia?2)

if (indice_asignado==cambial) { // Si el
primero ya es igual, no hace falta reindexarlo
iguala_indices_2grietas (matriz, rotos_grieta,
indice_asignado, cambiaZ2);
}else if (indice_asignado==cambia?2) { // Si el
segundo ya es igual, no hace falta reindexarlo
iguala_indices_2grietas (matriz, rotos_grieta,
indice_asignado, cambial);
lelse{
int ncambiados=0;
for (int i=0; i<N; i++) {
for (int j=0; j<M; J++) {
if (matriz[i] [j]l==cambial || matriz[i][]j]l==
cambia?2) {
matriz[i] [j]=indice_asignado;
ncambiados++;

}
rotos_grieta[indice_asignado]+=ncambiados;
rotos_grieta[cambial]=0;
rotos_grieta[cambiaz2]=0;

}

void iguala_indices_4grietas (int matriz[N] [M], int =«
rotos_grieta, int indice_asignado, int cambial, int
cambia?, int cambial)

if (indice_asignado==cambial) { // Si el

tercero ya es el asignado no hace falta cambiarlo
iguala_indices_3grietas(matriz, rotos_grieta,

27

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

indice_asignado, cambia2, cambia3);
}else if (indice_asignado==cambiaZ2) { // Si el
segundo ya es el asignado no hace falta cambiarlo
iguala_indices_3grietas(matriz, rotos_grieta,
indice_asignado, cambial, cambia3);
}else if (indice_asignado==cambia3) { // Si el
tercero ya es el asignado no hace falta cambiarlo
iguala_indices_3grietas (matriz, rotos_grieta,
indice_asignado, cambial, cambia?2);
lelse{
int ncambiados=0;
for (int i=0; i<N; 1i++) {
for (int j=0; j<M; Jj++) {
if (matriz[i] [j]l==cambial || matriz[i][]j]l==
cambia? || matriz[i] [j]==cambia3) {
matriz([i] [j]=indice_asignado;
ncambiados++;

}
rotos_grietal[indice_asignado]+=ncambiados;
rotos_grieta[cambial]=0;
rotos_grieta[cambia2]=0;
rotos_grieta[cambia3]=0;

}

//Nota: Matriz indices=grietas

void reindexa_grietas (int matriz_indices[N] [M], int =«
rotos_grieta, int colum, int fila, int xindice_nuevo)

/+*———Calculamos las coordenadas de los elementos
adyacentes, respetando las condiciones peri dicas
——x/

int fila_up, fila_down, colum_left, colum_right;

colum_left=(colum+2+M-1) %M; // Si colum es O,
colum_left=M-1; en caso contrario, colum_left=colum
=1

fila_up=(fila+2+N-1) %N; // Si fila es 0,

fila _up=M-1; en caso contrario, fila_ up=fila-1

28

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

colum_right=(colum+M+1) ; // Si colum es M-1,
colum_right=0; en caso contrario, colum_ right=colum
+1

fila down=(fila+N+1) %N; // Si fila es N-1,
fila_down=0; en caso contrario, fila_down=fila+l

/+———Calculamos los ndices de los elementos
adyacentes———x/

int up, down, left, right, indice_asignado; //
ndice_asignado : indice de la grieta que va a

perdurar, y el gque se asocia al nuevo roto
int cambia; //
ndice a sustituir por ndice_asignado en la
reindexacin
up=matriz_indices[fila_up] [colum];
down=matriz_indices([fila_down] [colum];
left=matriz_indices[fila] [colum_left];
right=matriz_indices[fila] [colum_right];

/+*——-Distinguimos casos seg n el n mero de vecinos
rotos———x/
switch (!!up + !!left + !!down + !!right) { // "!1la

4

devuelve 1 si a!=0, 0 si a=0. Esto da el # de
vecinos que no son 0
case 0: // Nueva grieta
indice_asignado=xindice_nuevo;
(#indice_nuevo)++; // La siguiente grieta nueva
estar asociada al siguiente ndice nuevo
break;
case 1: // El elemento roto es vecino de una s la
grieta. Se le asocia el ndice no nulo.
if (up!=0) {
indice_asignado=up;
}else if (left!=0) {
indice_asignado=left;
}else if (right!=0) {
indice_asignado=right;
}else({
indice_asignado=down;

29

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

break;

case 2: // El1 elemento roto es vecino de 2 grietas.
Se le asocia el ndice !=0, respetando prioridad
(up, left, right, down)
if (up!=0) {
indice_asignado=up;
cambia=down+left+right; // Alguno de estos

3 es no nulo, el resto son nulos
lelse if (left!=0) {
indice_asignado=left;
cambia=down+right; // Uno es nulo y el
otro no
lelse{
indice_asignado=right;
cambia=down;
}
iguala_indices_2grietas (matriz_indices,
rotos_grieta, indice_asignado, cambia); // Se
igualan los ndices de ambas grietas

break;
case 3: // El elemento roto es vecino de 3 grietas.
Se le asocia el ndice !=0, respetando prioridad

(up, left, right, down)
if (up==0) {
indice_asignado=left;
iguala_indices_3grietas (matriz_indices,
rotos_grieta, indice_asignado, right, down);
// Se igualan los ndices de las 3
grietas
lelse{
indice_asignado=up;
if (left==0) {
iguala_indices_3grietas (matriz_indices,
rotos_grieta, indice_asignado, right,
down) ;
}else(
if (right==0) {
iguala_indices_3grietas (matriz_indices,
rotos_grieta, indice_asignado, left
, down) ;

30

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

}else(
iguala_indices_3grietas (matriz_indices,
rotos_grieta, indice_asignado,
right, left);

}

break;
case 4: // El elemento roto es vecino de 4 c mulos
.Se le asocia el ndice !=0, respetando prioridad

(up, left, right, down)
indice_asignado=up;
iguala_indices_4grietas (matriz_indices,
rotos_grieta, indice_asignado, down, left, right
) 5 // Se igualan los ndices de las 4 grietas
}
matriz_indices[fila] [colum]=indice_asignado; // Se
asigna el ndice adecuado al nuevo elemento roto
rotos_grietalindice_asignado]++; //
Nuevo elemento para la grieta con la que est en
contacto
}
void encuentra_vecinos (int matriz_indices|[N] [M], int
numero_vecinos[size_vect], Almacenaje_vecinos vecinos[N

1 IM])

int col_left, col_right, fila_up, fila_down;
int indice_up, indice_left, indice_right, indice_down;
inicializa_vector (numero_vecinos, 0, size_vect);
// E1l n mero de vecinos se calcula cada vez que se
ejecuta esta funci n

/*———Leemos la matriz:———x/
for (int i=0; i<N; i++) {
fila_up=(i-1+2%N) %N;
fila down=(i+1+N) &N;
for (int j=0; j<M; j++) {
col_left=(j-1+2xM) W;
col_right=(j+1+M) ;
if (matriz_indices[i][3]!=0) { // Los

31

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

elementos ya rotos, como no tienen carga,
los utilizaremos
vecinos[i] [Jj].cuml=0;
vecinos[i] []] .cum2=0;
vecinos[i] [J] .cum3=0;
vecinos[1i] []] .cum4=0;
}else(// Si no es 0

no es un vecino, sino un elemento roto

indice_up=matriz_indices([fila_up]l[]j];

indice_left=matriz_indices[i] [col_left];
indice_right=matriz_indices[i] [col_right]
indice_down=matriz_indices[fila_down] [J];

/* Guardamos los ndices de los c mulos
contiguos al elemento i, j.

* Si alguna es 0, se guarda un 0, que al
no corresponder a ningn c mulo,
significa

* que en realidad no tiene vecino en esa
direccin.

* Incrementamos el n mero de vecinos de
la(s) grieta(s) dada(s) por el (los)
ndice (s)
* del (de los) elemento(s) contiguo(s).

no

14

.
r

* Si alguno es 0, se incrementa el numero

de vecinos del "c mulo 0", que es el
c mulo

* de los elementos no rotos y no se
utiliza para calcular las cargas.

*/

vecinos[i] [Jj].cuml=indice_up;

numero_vecinos[indice_up]++;

if (indice_left!=indice_up)

{
vecinos[i] [J] .cum2=indice_left;
numero_vecinos[indice_left]++;
if (indice_right!=indice_up &&

indice_right!=indice_left)

32

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

vecinos[i] [J] .cum3=indice_right;
numero_vecinos[indice_right]++;
if (indice_down!=indice_up &&
indice_down!=indice_left &&
indice_down!=indice_right) //Los
4 son distintos

vecinos[i] [Jj] .cumd4=indice_down;
numero_vecinos[indice_down]++;
Jelse //3 son distintos
{
vecinos[1] [J] .cum4=0; //
Si es doblemente vecino de
alguno, solo lo guardamos 1
vez
}
lelse
{
if (indice_down!=indice_up &&
indice_down!= indice_left) //3
son distintos

vecinos[i] [J] .cum3=indice_down;
numero_vecinos[indice_down]++;
}else //2 son distintos
{
vecinos[i] []] .cum3=0;
}
vecinos[i] []] .cumé4=0;
}
lelse
{
if (indice_right!=indice_up) {
vecinos[i] [Jj] .cum2=indice_right;
numero_vecinos[indice_right]++;
if (indice_down!=indice_up &&
indice_down!=indice_right) {
vecinos[i] [J] .cum3=indice_down;
numero_vecinos[indice_down]++;

33

373

374

375

376

377

378

379

380

381

382

383

384

385

386

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

406

}

}else
{
vecinos[i] [j] .cum3=0;
}
}else
{
if (indice_down!=indice_up)

{

vecinos[i] [J] .cum2=indice_down;

numero_vecinos[indice_down]++;
lelse
{
vecinos[i] []] .cum2=0;
}
vecinos[i] []] .cum3=0;
}

vecinos[1i] []] .cumé4=0;

void calcula_cargas_red (double cargas_red[N] [M], int
matriz_etiquetas[N] [M], Almacenaje_vecinos vecinos[N][M

I

int etiqueta;

int rotos_grietal[size_vect], int
numero_vecinos[size_vect])

for (int i=0; i<N; i++) {
for (int j=0; j<M; J++) {
etiqueta=matriz_etiquetas[i] []];
if (etiqueta!=0) { // Elemento ya roto, no
soporta carga
cargas_red[i1]1[]]1=0;

}else(
/ *

// Elemento sin romper
Incrementamos las cargas, como la suma
restringida a los vecinos no nulos),
mediante: r_k/s_k
siendo r el n mero de elementos rotos

34

(

407

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

}
/ *

LR A R I A b A b b b b b S b b i b b b b R b S b b A b b R A b b S b b b g b b b 2 b b S b b S b 4

*/

de la grieta y s el n mero de vecinos
de la grieta.

*/
cargas_red[i][]j]=1;
if ((vecinos[i][J].cuml) !'=0) {
cargas_red[i] [j]+=((double) rotos_grieta
[vecinos[i][Jj].cuml]/ (numero_vecinos
[vecinos[i][Jj].cuml]));

}
if ((vecinos[i] [

j1 .cum2) !'=0) {
cargas_red[i

[

[

] o

][J]1+=((double) rotos_grieta
1] [J].cum2]/ (numero_vecinos
i

[vecinos
[vecinos[i][]j].cum2]));
}
if ((vecinos[i][]].cum3) !=0) {
cargas_red[i] [j]+=((double) rotos_grieta
[vecinos[i] [J] .cum3]/ (numero_vecinos
[vecinos[i][]j].cum3]));
}
if ((vecinos[1i] [cum4) '=0) {
[J]+=((double) rotos_grieta

J
cargas_red[1i
[vecinos [

[d

1o
]
i1 [j].cumd4]/ (numero_vecinos
i

[vecinos[i] [J].cumd]));

void inicializa_cargas (double cargas[N] [M])

{

int
for
{

i,3;
(1=0; 1<N; 1++)

for (7=0; J<M; j++)

{
cargas[i][]j]=1;

35

435

436

437

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

458

459

460

461

462

463

464

465

466

467

469

470

471

1
void inicializa_grietas (int grietas[N] [M])
{
int i, j;
for (i=0;i<N;i++)
{
for (j=0; j<M; j++)
{
grietas[i][]J1=0;

}
double probabilidades_ruptura (double cargas[N] [M], double
probabilidades [N] [M])

double gamma_total=0; // Tiempo de vida de la
configuracion actual
double gamma [N] [M]; // Matriz para el calculo de

las probabilidades

//Inicializo gamma
for (int i=0; i<N; i++) {
for (int j=0; j<M; J++){
gamma [1] [3]1=0;

for (int i=0; i<N; i++)//Calculo las gammas
{
for (int j=0; j<M; J++)
{
if (cargas([i][]]!=0)
{
gamma [1] [J]=exp (cargas[i] []]);
gamma_total+=gamma[i] [J];

36

472

473

474

475

476

471

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

for (int 1i=0; i<N; i++) { // Calculo de las

probabilidades
for (int 3=0; Jj<M; J++) {
probabilidades[i] [j]l=(gamma[i] [J])/ (gamma_total
)i
}
}
return 1/gamma_total; // Se devuelve el valor de
delta

}
void calcula_elemento_a_romper (double probabilidades[N] [M],
int *xfila, int *columna)

double numero=random_01 () ;
double acum_prob=0;
int j, 1i;

for (i=0; i<N; i++) {
for (j=0; J<M; J++){
acum_prob+=probabilidades[i] []];
if (acum_prob>numero) { // El indice se
devuelve cuando el numero esta entre dos
separaciones de segmentos

+fila=i;
*columna=7j;
return; // Para salir del bucle

}
void Histograma (double xdata,double xHist, int N_data, int
N_intervalos, double *d, double x*m, double x*Max)

/ *

*data —-> input, Datos sobre los que se genera el
histograma

*Hist —-> output Histograma calculado

37

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

N_data —-> input Numero de datos

N_intervalos —-> input, Numero de intervalos del
histograma

*d —> output Medida de cada intervalo del histograma

*m —> output Valor minimo de los datos

*M —> output Valor maximo de los datos

x/

int i,Indice;// Importante que el indice sea int ya que
va a redondear al entero

double Norm,delta,minimo,maximo;

for (i=0;i1<N_intervalos;i++)

{
Hist[1]1=0;

}

minimo=10000000;

maximo=-10000000;

for (i=0;i<N_data;i++) //Calculo el minimo y maximo
valor

if (data[i]>maximo)maximo=datali];
if (datal[i]<minimo)minimo=datali];
}
delta= (maximo-minimo) /N_intervalos;
if (delta==0)
{
printf ("No se pueden calcular los intervalos");
exit (1) ;
}
//Nucleo del programa
for (1i=0; i<N_data; i++)
{
Indice=(data[i]-minimo) /delta;
Hist[Indice]=Hist[Indicel+1;
}
*d=delta;
*m=minimo;
*Max=maximo;
//Ahora normalizo

Norm=1.0/ (N_dataxdelta);

38

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

for (1i=0; i<N_intervalos; i++)
{

Hist[i]=Hist[1]*Norm;

[k kkkhkkkhhkhkkrkhkhkkkxkkkkxkkktxxkx PARIST RAPUANO
****************/

#idefine NormParisi (2.3283063671E-10F) //Para normalizar
el valor generado en la rueda de Parisi-Rapuano

double random_01 ()
{

int 1i;

unsigned int rueda[256], aleatorio;

unsigned char indice_ran, indicel, indice2, indice3;
//Inicializar rueda

for(i = 0; 1 < 256; i++)

rueda[i] = (rand()<<16) + rand();
//Inicializar indices
indice_ran = 0; indicel = 0; indice2 = 0; indice3 = 0;
//Modificamos los indices
indicel = indice_ran - 24;
indice2 = indice_ran - 55;
indice3 = indice_ran - 61;
//Modificamos la rueda
ruedal[indice_ran] = rueda[indicel] + ruedal[indice2];
//Generamos un numero aleatorio entre 0 y 2732-1
aleatorio = (rueda[indice_ran] "rueda[indice3]);

//Cambiamos la posicion base para el siguiente numero
aleatorio
indice_ran++;
//Devolvemos el numero aleatorio normalizado, entre 0 y
1
return aleatorio » NormParisij;

39

577

20

21

22

23

24

25

[k xkkkkkrkhhkkkxhhkkkhkhkkkkkkkkrkkktxxkx FIN PARISI RAPUANO

K ok ok ko ok ok ok ok ok ok

Cadigo utilizado para las simulaciones 2D (entorno de Moore):

#include <stdlib.h>
#include <stdio.h>
#include <time.h>
#include <math.h>

int size_vect,N,M,NSim;

/* Ak hkkhkhkhkhrkhkrxkhkxkdkxk kX STRUCT % %, % %, % % % % %k % % % % % % % */
struct almacenaje_vecinos{

int cuml, cum2, cum3, cumi;
}; typedef struct almacenaje_vecinos Almacenaje_vecinos;

/* R b 2 SR SR Sb Sb b b b b b 2 S Sh Sb b b b b b b i S S db Ib b b b b b b S 2h db db Sb b 4 */

/* Ahkhkhkhkhkhkhkrkhkrxkhkrxkhkrkrkkhkrkktk*x FUNCIONES **xk,khkkkhkhkkhhhkkhtkktkk */

double random_01 () ;

double probabilidades_ruptura (double cargas|[N] [M], double
probabilidades [N] [M]) ;

void calcula_elemento_a_romper (double probabilidades[N] [M],

int *xfila, int *columna);

/*xxxxxxxReparto de cargassxxxxxxxxxx/

void reindexa_grietas (int matriz_indices[N] [M], int =
rotos_grieta, int colum, int fila, int =xindice_nuevo);
//Matriz_indices=grietas

void iguala_indices_2grietas (int matriz[N] [M], int =
rotos_grieta, int indice_asignado, int cambia); //Matriz
=grietas

void iguala_indices_3grietas (int matriz [N] [M], int =*
rotos_grieta, int indice_asignado, int cambial, int
cambial2);

void iguala_indices_4grietas (int matriz [N] [M], int =*
rotos_grieta, int indice_asignado, int cambial, int
cambia?2, int cambia3l);

40

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

void encuentra_vecinos (int matriz_indices[N] [M], int
numero_vecinos[size_vect], Almacenaje_vecinos vecinos [N
1[M1) 5

void calcula_cargas_red(double cargas_red[N] [M], int
matriz_etiquetas[N] [M], Almacenaje_vecinos vecinos[N][M
1y

int rotos_grietal[size_vect], int numero_vecinos|[size_vect])
’

/************************************/

void inicializa_vector (int svector, int wvalor, int tamano);

void inicializa_cargas (double cargas[N] [M]);

void inicializa_grietas (int grietas[N] [M]) ;

void Histograma (double x,double %, int,int , double =x,
double =, double «*);

/* ER I I S SR SR dh b b b b b S 2 S dh S SR b b b b b b S 2h S dh b b b b b b S 2R S dh SR b b b b S 2 4 */

int main ()

{
//Voy a poner aqui las modificaciones para haver TvsN

/*********************************/

int TamanoFinal, TamanoInicial;

TamanoInicial=200;
TamanoFinal=200;

/********************************/
srand (time (NULL)) ;

int i, j,Npasos;

FILE+f;

char name3[128];

sprintf (name3, "TvsNMoore (nevl) .txt");

f=fopen (name3, "w");

for (TamanoInicial; TamanoInicial<=TamanoFinal;
TamanoInicial+=10)

41

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

NSim=2000;
N=TamanoInicial;
M=TamanoInicial;
size_vect=(int)NxM/2+1;
Npasos=NxM;

printf ("\nN=M=%d\n",N) ;

if (TamanoInicial>=50)
{
if (TamanoInicial>=100)
{
NSim= (int)NSim/100;
lelse
{
NSim=(int)NSim/10;

double cargas[N
int grietas|[N] [
grietas

] [M]; //Matriz de cargas
M]; //Matriz que almazena las

int rotos_grietal[size_vect];//Almacena el tama o
de cada grieta

int perimetros[size_vect];//Almacena el numero de
vecinos de cada grieta

double probabilidades|[N] [M]; //Matriz para las
probabilidades de ruptura

int fila,columna; //Indices del elemento que se va
a romper

int indice_nuevo; //Indice de la proxima grieta a
indexarse

double delta,T; //Tiempo para cada paso y tiempo
total

double v [NSim]; //Vector donde guardamos el valor
de T para cada simulacion

Almacenaje_vecinos vecinos [N] [M]; //Hoshen-

42

91

92

93

94

95

96

97

98

99

100

101

102

103

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

Kopelman: para cada elemento asocio un vector
con sus cuatro vecions

for (j=0; J<NSim; j++)

{

indice_nuevo=1;
inicializa_cargas (cargas);
inicializa_grietas(grietas);
for (i=0; i<size_vect;i++)
rotos_grieta[i]=0;

//f=fopen ("grietas.txt","w");

T=0;

delta=0;

delta=probabilidades_ruptura (cargas,
probabilidades) ;

T+=delta;

for (i=0; i<Npasos—1;1i++)//Debemos contar hasta N
-1 porque sino estariamos asociando delta al

vector cuando se ha roto por completo

calcula_elemento_a_romper (probabilidades, &
fila, &columna) ;

//Rompo el elemento indicado

cargas([fila] [columna]=0;

//Inicia el reparto de cargas

reindexa_grietas (grietas, rotos_grieta,
columna, fila, &indice_nuevo) ;

encuentra_vecinos (grietas,perimetros,
vecinos) ;

calcula_cargas_red(cargas,grietas,vecinos,
rotos_grieta,perimetros);

delta=0;

delta=probabilidades_ruptura (cargas,
probabilidades) ;

T+=delta;

43

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

}

}
//fclose (f);

/+ Progreso por pantalla x/
if (j*x100 $NSim==0)

printf ("Progreso = %1% 3%\n"

/K kkkkkhkhkkk A Ak kA r Kk kxx K/

//Calculo el valor medio de T as

double media,var,err;
var=0;
media=0;

for (1=0; i<NSim; i++)
{
media+=v[i];
var+=v[i]*v[i];

media=media/ (double)NSim;
var=var/ (double)NSim;
var=var-media*media;
var=sqgrt (var) ;
err=var/sqrt ((double)NSim) ;

, 3*100/NSim) ;

como Su error.

printf ("\nN=M=%d\t<T>=%f\terr=%f\tNSim=%d\n", N,

media, err,NSim) ;

fprintf (£, " %d\t &d\t &£\t $f\n", N, (int)NxN, media, err);

fclose (f);

/* *khkkkhkrkkhkrxkkx*k*xkx*** REPARTO DE CARGAS* %% %% % % %k % % % % % % % */

44

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

void inicializa_vector (int =xvector, int valor, int tamano)
{
for (int i=0; i<tamano; i++) {
vector[i]=valor;

}
void iguala_indices_2grietas (int matriz[N] [M], int =*
rotos_grieta, int indice_asignado, int cambia)

if (cambia!=indice_asignado) { //S1 es igual, no hay

gque hacer nada No se tendria que cumplir siempre

que es distinto?

int ncambiados=0;

for (int i=0; i<N; i++) {
for (int j=0; j<M; Jj++){
if (matriz[i] [j]==cambia) { // Cambiamos

los del ndice a cambiar por el ndice
a asignar
matriz[i] [j]=indice_asignado;
ncambiados++;

}
rotos_grieta[indice_asignado]+=ncambiados;
rotos_grietal[cambial=0;

void iguala_indices_3grietas (int matriz[N] [M], int =*
rotos_grieta, int indice_asignado, int cambial, int
cambia?)

if (indice_asignado==cambial) { // Si el

primero ya es igual, no hace falta reindexarlo

iguala_indices_2grietas(matriz, rotos_grieta,
indice_asignado, cambiaZ2);

}else if (indice_asignado==cambia?2) { // Si el

segundo ya es igual, no hace falta reindexarlo

iguala_indices_2grietas(matriz, rotos_grieta,
indice_asignado, cambial);

45

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

telse{
int ncambiados=0;
for (int i=0; i<N; i++) {
for (int j=0; j<M; Jj++){
if (matriz[i] [j]l==cambial || matriz[i][]jl==

cambia?) {
matriz[i] [j]=indice_asignado;
ncambiados++;

}
rotos_grieta[indice_asignado]+=ncambiados;
rotos_grieta[cambial]=0;
rotos_grieta[cambia2]=0;

}

void iguala_indices_4grietas (int matriz [N] [M], int =*
rotos_grieta, int indice_asignado, int cambial, int
cambia?2, int cambia3)

if (indice_asignado==cambial) { // Si el
tercero ya es el asignado no hace falta cambiarlo
iguala_indices_3grietas (matriz, rotos_grieta,
indice_asignado, cambia2, cambia3);
}else if (indice_asignado==cambia?2) { // Si el
segundo ya es el asignado no hace falta cambiarlo
iguala_indices_3grietas (matriz, rotos_grieta,
indice_asignado, cambial, cambia3);
}else if (indice_asignado==cambia3) { // Si el
tercero ya es el asignado no hace falta cambiarlo
iguala_indices_3grietas(matriz, rotos_grieta,
indice_asignado, cambial, cambial2);
telse{
int ncambiados=0;
for (int i=0; 1i<N; i++) {
for (int 3=0; J<M; Jj++) {
if (matriz[i] [j]l==cambial || matriz[i][]j]l==
cambia2 || matriz[i] [j]==cambia3) {
matriz[i] [j]=indice_asignado;
ncambiados++;

46

219

220

221

222

223

224

225

226

227

22,

®

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

}

rotos_grieta
rotos_grieta
rotos_grieta
rotos_grieta

indice_asignado]+=ncambiados;
cambial]l=0;
cambia2]=0;
cambia3]=0;

— — — —

}

//Nota: Matriz indices=grietas

void reindexa_grietas (int matriz_indices[N] [M], int =
rotos_grieta, int colum, int fila, int xindice_nuevo)

/+x——-Calculamos las coordenadas de los elementos
adyacentes, respetando las condiciones peri dicas
SR

int fila_up, fila_down, colum_left, colum_right;

colum_left=(colum+2xM-1) 2M; // Si colum es O,
colum_left=M-1; en caso contrario, colum_left=colum
=1

fila_up=(fila+2%N-1) 2N; // Si fila es O,
fila_up=M-1; en caso contrario, fila_ up=fila-1

colum_right=(colum+M+1) %M; // Si colum es M-1,
colum_right=0; en caso contrario, colum_right=colum
+1

fila down=(fila+N+1) %N; // Si fila es N-1,
fila_down=0; en caso contrario, fila_down=fila-+1l

/+*———Calculamos los ndices de los elementos
adyacentes———x/
int indice[8]; //vector en el que voy a guardar los

indices de los vecinonos (N, S,E,O,NE,NO, SE, SO)
int indice_asignado; //Indice que va a perdurar
int a,b,c; //indices auxiliares
int i; //contador

indice[0]=matriz_indices[fila_up] [colum];
indice[l]=matriz_indices[fila_down] [colum];

47

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

268

269

270

271

272

273

274

275

276

277

indice[2]=matriz_indices[fila] [colum_left];
indice[3]=matriz_indices[fila] [colum right];
indice[4]=matriz_indices[fila_up] [colum_right];
indice[5]=matriz_indices[fila_down] [colum_right];
indice[6]=matriz_indices[fila_up] [colum left];
indice[7]=matriz_indices[fila_down] [colum_left];
1=0;
/+x——-Distinguimos casos seg n el n mero de vecinos
rotos———x/
switch (!!indice[0] + !!indice[l] + !!'indice[2] + !!
indice[3] + !!indice[4] + !!indice[5] + !!indice[6]
+ !lindice[7]) { // '!''a’ devuelve 1 si a!=0, 0
si a=0. Esto da el # de vecinos que no son 0
case O0: // Nueva grieta

indice_asignado=xindice_nuevo;
(#indice_nuevo)++; // La siguiente grieta nueva
estar asociada al siguiente ndice nuevo
break;
case 1: // El elemento roto es vecino de una s la
grieta. Se le asocia el ndice no nulo.

while (indice[1]==0)i++;
indice_asignado=indicel[i];

break;
case 2: // El elemento roto es vecino de 2 grietas.
Se le asocia el ndice !=0, respetando prioridad

(N,S,E,O0,NE,NO, SE, SO)

while (indice[1]==0)i++;
indice_asignado=indice[i];
i++;

while (indice[i1]==0)i++;

a=indice[i];

iguala_indices_2grietas (matriz_indices,
rotos_grieta, indice_asignado, a); // Se igualan
los ndices de ambas grietas
break;

48

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

304

305

306

308

309

310

case 3: // El elemento roto es vecino de 3 grietas.
Se le asocia el ndice !=0, respetando prioridad
(up, left, right, down)

while (indice[1]==0) 1i++;
indice_asignado=indice[i];
i++;

while (indice[i]==0)i++;

a=indice[i];

i++;

while (indice[1]==0) i++;
b=indice[i];

iguala_indices_3grietas (matriz_indices,
rotos_grieta, indice_asignado, a, b);

break;
case 4: // El elemento roto es vecino de 4 c mulos
.Se le asocia el ndice !=0, respetando prioridad

(up, left, right, down)

while (indice[1]==0) i++;
indice_asignado=indice[i];
i++;

while (indice[1]==0)i++;
a=indice[i];

i++;

while (indice[1]==0)i++;
b=indice[i];

i++;

while (indice[1]==0)i++;

c=indicel[i];
iguala_indices_4grietas (matriz_indices,
rotos_grieta, indice_asignado, a, b, c); // Se

igualan los ndices de las 4 grietas

break;
case 5: //Solo pueden existir 3 grietas distintas

49

311

312

313

314

315

316

317

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

336

337

338

339

340

341

342

while (indice[1]==0) i++;

indice_asignado=indicel[i];

//Veo si todos son la misma grieta, dos o 3

distintas

b=0;
for (i=0;1i<8;i++)

{

}

if (indice[i] !'=indice_asignado) {a=indice[i];}

for (i=0;i<8;1i++)

{

if(indice[i] !'=indice_asignado && indice[i] !=a) {
b=indice[i];}

switch(!'!a+!!Db) { // ''a devuelve 1 si a
=0
case O0:

//No hacemos nada, el elemento nuevo es
vecino de una sola grieta, le asociamos
el indice asignado (Hecho arriba)

break;
case 1:
if (a!=0)
{
iguala_indices_2grietas (matriz_indices,
rotos_grieta, indice_asignado, a);
}else
{
iguala_indices_2grietas (matriz_indices,
rotos_grieta, indice_asignado, b);
}
break;
case 2:

iguala_indices_3grietas (matriz_indices,
rotos_grieta, indice_asignado, a, b);

50

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

361

362

363

364

365

366

367

368

369

371

372

373

374

376

break;

case 6: //Solo pueden existir 2 grietas distintas

while (indice[i]==
indice_asignado=indice[1i]

a=0;

for (i=0;1i<8;i++)

{

) 1++;

4

if (indice[i] !'=indice_asignado) {a=indice[i];}

/+x Si a=0,

if(a!=0)
{

todo es la misma grieta,
ya hemos dado valor a "indice_asignado" =/

no hago nada

iguala_indices_2grietas (matriz_indices,

rotos_grieta,

break;

case 7: //Todo es la misma grieta

while (indice[i]==
indice_asignado=indice[1i]

break;

case 8: //la grieta rodea nuestro
indices seran

) 1++;

4

indice_asignado=indice[0];

}

punto,

indice_asignado, a);

todos los

!=0 y tendran el mismo valor

Se

matriz_indices[fila] [colum]=indice_asignado; //
asigna el ndice adecuado al nuevo elemento roto

rotos_grietal[indice_asignado] ++; //
Nuevo elemento para la grieta con la que est en

contacto

51

377

378

379

380

381

382

383

384

385

386

387

388

389

390

392

393

394

396

397

398

400

401

402

403

404

405

void encuentra_vecinos (int matriz_indices[N] [M], int
numero_vecinos[size_vect], Almacenaje_vecinos vecinos [N

1 IM])

int col_left, col_right, fila_up, fila_down;
int indice_up, indice_left, indice_right, indice_down;
inicializa_vector (numero_vecinos, 0, size_vect);
// El1 n mero de vecinos se calcula cada vez que se
ejecuta esta funci n
int indice[8]; //Vector en el gque guardo el valor de
los indices de las grietas (N, S,E,O,NE,NO, SE, SO)
int k;//Contador

/*———-Leemos la matriz:———x/
for (int i=0; i<N; i++) {
fila_up=(i-1+2%N) 2N;
fila_down=(i+1+N) N;
for (int 3=0; J<M; Jj++) {
col_left=(j-1+2«M) W;
col_right=(3j+1+M) 2M;
if (matriz_indices[1][3]!=0) { // Los
elementos ya rotos, como no tienen carga, no
los utilizaremos
vecinos[i][]] .cuml=0;

vecinos[i] [J] .cum2=0;
vecinos[1i] []] .cum3=0;
vecinos[i] [J] .cum4=0;

}else({ // Si no es O,

no es un vecino, sino un elemento roto
indice[0]=matriz_indices[fila_up]l[]jl; //N
indice[l]=matriz_indices[fila_down] []J]; //S

[[
indice[2]=matriz_indices[i] [col_left]; //O
indice[3]=matriz_indices[i] [col_right]; //E
indice[4]=matriz_indices[fila_up] [col_right

1; //NE
indice[5]=matriz_indices[fila_down] [

col_right]; //SE
indice[6]=matriz_indices[fila_up] [col_left
1; //NO

indice[7]=matriz_indices[fila_down] |

52

406

407

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

col_left]; //SO

k=0;

//Como maximo puede haber 4 grietas,
utilizaremos la misma notaci n que el
codigo anterior descartando los indices
repetidos.

switch (!!indice[0] + !!indice[1l] + !!
indice[2] + !!indice[3] + !!indice[4] +
''indice[5] + !!indice[6] + !!indice[7]

{

case 0: //Todos son O

indice_up=0;

indice_left=0;

indice_right=0;

indice_down=0;
break;

)

case 1:
while (indice[k]==0) k++;
indice_up=indicel[k];
indice_left=0;
indice_right=0;
indice_down=0;

break;

case 2: //No hace falta mirar si son
iguales ya que lo tiene en cuenta el
algoritmo

while (indice[k]==0) k++;
indice_up=indicel[k];
k++;
while (indice[k]1==0) k++;
indice_down=indice[k];
indice_right=0;
indice_left=0;

break;

case 3:
while (indice[k]==0) k++;
indice_up=indicel[k];
k++;
while (indice[k]==0) k++;

33

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

460

461

462

463

464

465

466

467

469

470

indice_down=indice[k];
k++;

while (indice[k]==0)k++;
indice_right=indicel[k];
indice_left=0;

break;

case 4:
while (indice[k]==0) k++;
indice_up=indicel[k];
k++;

while (indice[k]==0)k++;
indice_down=indice[k];

k++;
while (indice[k]==0)k++;
indice_right=indicel[k];
k++;

while (indice[k]==0) k++;
indice_left=indice[k];
break;
case 5: //Puede haber como m ximo 3
grietas, descarto los indices que son
iguales, para no coger los 3 primeros
distintos de cero y que sean los mismos
while (indice[k]1==0) k++;
indice_up=indicel[k];

//Veo si todos son la misma grieta, 2 o
3 distintas
indice_down=0;
indice_right=0;
indice_left=0;
for (k=0;k<8; k++)
{
if(indice[k] !=indice_up) {
indice_down=indice[k];}
}
for (k=0;k<8; k++)
{
if(indice[k]!=indice_up && indicelk
] '=indice_down) {indice_right=

54

471

472

473

474

475

476

471

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

indice[k]; }
}
break;
case 6: //Como m ximo
while (indicelk]==

hay 2 grietas
) k++;

indice_up=indice[k];

indice_down=0;
indice_right=0;
indice_left=0;
for (k=0;k<8; k++)
{

if (indice[k]!=

indice_up) {

indice_down=indice[k]; }

}

break;

case 7: //Hay una sola
indices iguales y
while (indicel[k]==
indice_up=indicelk
indice_down=indice
indice_left=indice
indice_right=0;

break;

case 8:
indice_up=indice[0
indice_down=indice
indice_left=indice
indice_right=indic

/* Guardamos los ndic

grieta con todos los

uno distinto de O
) k++;

17
[k1;
[k];

1;
[0];
[01;

el0];

]
]
0

es de los cmulos

contiguos al elemento i, 7j.

* Si alguna es 0, se
no corresponder a
significa

* que en realidad no
direccin.

* Incrementamos el n

55

guarda un 0, que al
ningn cmulo,

tiene vecino en esa

mero de vecinos de

504

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

la(s) grieta(s) dada(s) por el (los)
ndice (s)

* del (de los) elemento(s) contiguo(s).

* Si alguno es 0, se incrementa el numero
de vecinos del "c mulo 0", que es el
c mulo

* de los elementos no rotos y no se
utiliza para calcular las cargas.

*/

vecinos[i] [J].cuml=indice_up;

numero_vecinos[indice_up]++;

if (indice_left!=indice_up)

{
vecinos[i] [J] .cum2=indice_left;
numero_vecinos[indice_left]++;
if(indice_right!=indice_up &&

indice_right!=indice_left)

vecinos[i] [Jj] .cum3=indice_right;

numero_vecinos[indice_right]++;

if (indice_down!=indice_up &&
indice_down!=indice_left &&
indice_down!=indice_right) //Los
4 son distintos

vecinos[i1] [Jj] .cumd4=indice_down;
numero_vecinos[indice_down]++;
lelse //3 son distintos
{
vecinos[i] [J] .cum4=0; //
Si es doblemente vecino de
alguno, solo lo guardamos 1
vez
}
lelse
{
if (indice_down'!=indice_up &&
indice_down!= indice_left) //3
son distintos

56

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

566

567

568

vecinos[i] [J] .cum3=indice_down;
numero_vecinos[indice_down]++;
}else //2 son distintos
{
vecinos[i] []] .cum3=0;
}
vecinos[i] []] .cumé4=0;
}
}else
{
if(indice_right!=indice_up) {
vecinos[i] [J] .cum2=indice_right;
numero_vecinos[indice_right]++;
if(indice_down!=indice_up &&
indice_down!=indice_right) {
vecinos[i] [J] .cum3=indice_down;
numero_vecinos[indice_down]++;
lelse
{
vecinos[i] []] .cum3=0;
}
lelse
{
if (indice_down!=indice_up)
{
vecinos[i1] [J] .cum2=indice_down;
numero_vecinos[indice_down] ++;
lelse
{
vecinos[i] []] .cum2=0;
}
vecinos[i] [j] .cum3=0;
}

vecinos[i] []] .cum4=0;

57

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

void calcula_cargas_red(double cargas_red[N] [M], int
matriz_etiquetas[N] [M], Almacenaje_vecinos vecinos[N][M
1,
int rotos_grietalsize_vect], int
numero_vecinos|[size_vect])

int etiqueta;
for (int i=0; i<N; i++) {
for (int 3=0; J<M; Jj++) {
etiqueta=matriz_etiquetas[i] []];
if (etiqueta!=0) { // Elemento ya roto, no
soporta carga
cargas_red[i1][]]1=0;
}else{ // Elemento sin romper
/+ Incrementamos las cargas, como la suma (
restringida a los vecinos no nulos),
mediante: r_k/s_k
* siendo r el n mero de elementos rotos
de la grieta y s el n mero de vecinos
de la grieta.
*/
cargas_red[i]l []]=
f((vecinos[i] []
cargas_red[i
[
[

ml) !'=0) {
[((double) rotos_grieta

]

] j]+

1] [J].cuml]/ (numero_vecinos
il 03].

]

[vecinos
[vecinos cumll]));

}

if ((vecinos[i][j].cum2) !'=0) {
cargas_red[i] [j]+=((double)rotos_grieta
[vecinos[i1i] [J] .cum2]/ (numero_vecinos
[vecinos[i][]j].cum2]));
}
if ((vecinos[i]l[j].cum3) !'=0) {
cargas_red[i] [j]+=((double)rotos_grieta
[vecinos[i] [J] .cum3]/ (numero_vecinos
[vecinos[i][Jj].cum3]));
f((vecinos[i1] [J].cumd) !=0) {
cargas_red[i] [j]+=((double)rotos_grieta
[vecinos[i][]j] .cum4]/ (numero_vecinos

58

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

[vecinos[i] [J].cumd]));

}
/ *

R I i e S g A dh b b b b S i S 2 G AR S b b b b b i S e d A SR b b b b b i i i d dh SR b b b b i b i i d dh b S b b b b i S 4

*/

void inicializa_cargas (double cargas[N] [M])
{
ipe a, 38
for (i=0;1i<N;i++)
{
for (3=0; 3<M; j++)
{

cargas[i][]j]=1;

}
void inicializa_grietas (int grietas[N] [M])
{
ipe a, 38
for (1=0;1i<N; i++)
{
for (3=0; J<M; j++)
{
grietas[i] []J1=0;

}
double probabilidades_ruptura (double cargas[N] [M], double

probabilidades [N] [M])

double gamma_total=0; // Tiempo de vida de la
configuracion actual
double gamma [N] [M]; // Matriz para el calculo de

las probabilidades

59

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

//Inicializo gamma

for (int i=0;

1i<N;

for (int j=0;
gamma [1][j1=0;

for (int i=0;

{

1<N;

for (int 3j=0;

{

if (cargas[i][]j]!

{

i++) {

J<M; J++) {

i++)//Calculo las gammas

J<M; J++)

=0)

gamma [i] [J]=exp (cargas[i] [J]);
gamma_total+=gammal[i] [J];

for (int 1i=0;

probabilidades

i<N;

for (int 3=0;

)i

i++) {

// Calculo de las

J<M; J++) {
probabilidades[i] [j]l=(gamma[i] [J])/ (gamma_total

return 1/gamma_total;

delta
}

// Se devuelve el valor de

void calcula_elemento_a_romper (double probabilidades[N] [M],

int *xfila, int =xcolumna)

double numero=random_01 () ;
double acum_prob=0;

int 3, 1i;

for (i=0; i<N;
for (3=0;

i++) {

J<M;

J++) {

60

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

}

void Hi

acum_prob+=probabilidades[i] []];

if (acum_prob>numero) { // El indice se

devuelve cuando el numero esta entre dos

separaciones de segmentos
+fila=i;
*columna=7j;

return; // Para salir del bucle

stograma (double xdata,double xHist,

int N_data, int

N_intervalos, double *d, double *m, double =xMax)

/ *

*da

*Hi

ta —-> input, Datos sobre los que se genera el
histograma
st —> output Histograma calculado

N_data —-> input Numero de datos
ntervalos —-> input, Numero de intervalos del

N_i

*d
*1M
*M
*/

histograma

—-> output Medida de cada intervalo del histograma

—-> output Valor minimo de los datos
—-> output Valor maximo de los datos

int i,Indice;// Importante que el indice sea int ya que

dou
for

{

}
min
max
for

va a redondear al entero
ble Norm,delta,minimo,maximo;
(1=0; i<N_intervalos; i++)

Hist[1]=0;

imo=10000000;
imo=-10000000;

(i=0; i<N_data;i++) //Calculo el minimo y maximo

valor

if (data[i]>maximo)maximo=datal[i]
if (data[i]<minimo)minimo=datali]

61

4

4

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

delta= (maximo-minimo) /N_intervalos;
if (delta==0)
{

printf ("No se pueden calcular los intervalos");

exit (1);
}
//Nucleo del programa
for (i=0; i<N_data; i++)
{
Indice=(data[i]-minimo) /delta;
Hist[Indice]l=Hist[Indicel+1;
}
*d=delta;
*m=minimo;
*Max=maximo;
//BAhora normalizo

Norm=1.0/ (N_dataxdelta) ;
for (i=0; i<N_intervalos; i++)
{

Hist[i]=Hist [i] *Norm;

[xkkkkxhkhkhkkhkkxkkkkxkkxkxkkxkx PARISTI RAPUANO

****************/

#define NormParisi (2.3283063671E-10F) //Para normalizar

el valor generado en la rueda de Parisi-Rapuano

double random_ 01 ()
{

int 1i;
unsigned int rueda[256], aleatorio;

unsigned char indice_ran, indicel, indice2, indice3;

//Inicializar rueda
for(i = 0; 1 < 256; 1i++)

62

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

rueda[i] = (rand()<<16) + rand();
//Inicializar indices

indice_ran = 0; indicel = 0; indice2 = 0; indice3 = 0;

//Modificamos los indices

indicel = indice_ran - 24;

indice2 = indice_ran - 55;

indice3 = indice_ran - 61;

//Modificamos la rueda

ruedal[indice_ran] = rueda[indicel] + ruedal[indice2];

//Generamos un numero aleatorio entre 0 y 2732-1

aleatorio = (rueda[indice_ran] "rueda[indice3]);

//Cambiamos la posicion base para el siguiente numero
aleatorio

indice_ran++;
//Devolvemos el numero aleatorio normalizado, entre 0 y
1
return aleatorio * NormParisi;
}
[xkkkkxhkkhkkhkxhkkkkxhkkxkkkkxkkxkxx FIN PARISI RAPUANO

Kk A KKKk kE xR KK/

63

Anexo 11

Se adjuntan los datos que aparecen representados en la Figura 5.

Potencial (p=53) Potencial (p=2)
N T, AT, N T, AT,
10 0.,174262 0.000499 10 0,504001 0.000785
50 0.073546 0.000643 50 0,382273 0.00150%
100 0.,055192 0.000592 100 0.346003 0001414
500 0.031679 0.000415 500 0,294727 0.001297
1000 0,025958 0.000327 1000 0274726 0.001225
5000 0.017337 0.00019% 5000 0250227 0.000893
10000 0.014097 0.,000277 10000 0.239536 0.001241
50000 0.009626 0.000412 50000 0,220487 0.002461
100000 0.009368 0.000516 100000 0,207261 0.004790
Exponencial
N T, AT,
10 0,202656 0.000652
50 0,125851 0.001027
100 0.104240 0.000873
500 0.075453 0.000675
1000 0.065941 0.000376
5000 0.051740 0.000408
10000 0.046834 0.000427
50000 0037576 0.000636
100000 0033374 0.001443

64

Anexo 111

Se adjuntan los datos que aparecen representados en la Figura 7.

Entorno de Moore

Yy T, AT,

20 0.217594 | 0,000010
30 0.217204 | 0,000007
40 0.217075 | 0.000005
50 0.217010 | 0000013
60 0.216%970 [0000011
70 0.216%951 | 0,000010
80 0.216936 | 0.00000%
S0 0.216928 | 0,000008
100 0.216934 | 0000018
110 0.216924 | 0000018
120 0.216%30 | 0,00001%
130 0.216915 | 0.,00001%
140 0.216926 | 0,000016
150 0.216%910 | 0000021
160 0.216%906 | 0,000016
170 0.216921 | 0000013
180 0.216%908 | 0,000010
190 0.216%918 | 0000011
200 0.216913 | 0,000012
25 0.217358 | 0.000008

65

Entorno de Von Neumann

N T, AT,

20 0.207426 | 0.000040
30 0.206722 | 0,00002%
40 0.206465 | 0.000023
50 0.206290 | 0.000058
60 0.206252 | 0.000046
70 0.206194 | 0.000044
80 0.206134 | 0.00003%
S0 0.206156 | 0,000032
100 0.206038 | 0.000096
110 0.206052 | 0.00007%
120 0.206098 | 0.000054
130 0.206136 | 0.00008%
140 0.206031 | 0.000085
150 0.206052 | 0.000068
160 0.206101 | 0.000052
170 0.206037 | 0,000061
130 0.206056 | 0.000034
190 0.206112 | 0.000065
200 0.206061 | 0.000046

