
Anexo I

Código utilzado para las simulaciones 1D:

1 #include <stdlib.h>
2 #include <stdio.h>
3 #include <time.h>
4 #include <math.h>
5

6 #define rho 2.0
7

8 #define Potencial
9 //#define Exponencial

10

11 int size_vect,N,M,NSim;
12

13

14

15 /* ********************STRUCT****************** */
16 struct almacenaje_vecinos{
17 int cum1, cum2, cum3, cum4;
18 }; typedef struct almacenaje_vecinos Almacenaje_vecinos;
19 /* ** */
20

21 /* ********************** FUNCIONES ****************** */
22 double random_01();
23 double probabilidades_ruptura(double cargas[N][M], double

probabilidades[N][M]);
24 void calcula_elemento_a_romper(double probabilidades[N][M],

int *fila, int *columna);
25 /********Reparto de cargas***********/
26 void reindexa_grietas(int matriz_indices[N][M], int *

rotos_grieta, int colum, int fila, int *indice_nuevo);
//Matriz_indices=grietas

27 void iguala_indices_2grietas(int matriz[N][M], int *
rotos_grieta, int indice_asignado, int cambia); //Matriz
=grietas

28 void iguala_indices_3grietas(int matriz[N][M], int *
rotos_grieta, int indice_asignado, int cambia1, int
cambia2);

1

29 void iguala_indices_4grietas(int matriz[N][M], int *
rotos_grieta, int indice_asignado, int cambia1, int
cambia2, int cambia3);

30 void encuentra_vecinos(int matriz_indices[N][M], int
numero_vecinos[size_vect], Almacenaje_vecinos vecinos[N
][M]);

31 void calcula_cargas_red(double cargas_red[N][M], int
matriz_etiquetas[N][M], Almacenaje_vecinos vecinos[N][M
],

32 int rotos_grieta[size_vect],
int numero_vecinos[
size_vect]);

33 /************************************/
34 void inicializa_vector(int *vector, int valor, int tamano);
35 void inicializa_cargas(double cargas[N][M]);
36 void inicializa_grietas(int grietas[N][M]);
37 void Histograma (double *,double *, int,int , double *,

double *, double *);
38 /* *** */
39

40

41

42

43 int main ()
44 {
45 //Voy a poner aqui las modificaciones para haver TvsN
46 /*********************************/
47 int TamanoFinal,TamanoInicial;
48

49 TamanoInicial=50;
50 TamanoFinal=500;
51

52 /********************************/
53

54 srand(time(NULL));
55

56 int i,j,Npasos,k,contador;
57

58 FILE*f;
59 char name3[128];

2

60 sprintf(name3, "TvsN1D(rho=5)V2.txt",NSim);
61 f=fopen(name3,"w");
62

63 for(TamanoInicial;TamanoInicial<=TamanoFinal;
TamanoInicial=TamanoInicial*10)

64 {
65 N=TamanoInicial;
66 M=1;
67 size_vect=(int)N*M/2+1;
68 Npasos=N*M;
69 printf("\nN=M=%d\n",N);
70

71 if(TamanoInicial<5001)
72 {
73 NSim=400;
74 }
75 else
76 {
77 if(TamanoInicial<10001)
78 {
79 NSim=150;
80 }
81 else
82 {
83 if(TamanoInicial<50001)
84 {
85 NSim=30;
86 }
87 else
88 {
89 NSim=10;
90 }
91

92 }
93

94 }
95

96

97

98

3

99

100 double cargas[N][M]; //Matriz de cargas
101 int grietas[N][M]; //Matriz que almazena las

grietas
102 int rotos_grieta[size_vect];//Almacena el tama o

de cada grieta
103 int perimetros[size_vect];//Almacena el numero de

vecinos de cada grieta
104 double probabilidades[N][M]; //Matriz para las

probabilidades de ruptura
105 int fila,columna; //Indices del elemento que se va

a romper
106 int indice_nuevo; //Indice de la proxima grieta a

indexarse
107 double delta,T; //Tiempo para cada paso y tiempo

total
108 double v[NSim]; //Vector donde guardamos el valor

de T para cada simulacion
109

110

111 Almacenaje_vecinos vecinos [N][M]; //Hoshen-
Kopelman: para cada elemento asocio un vector
con sus cuatro vecions

112

113

114 for(j=0;j<NSim;j++)
115 {
116 indice_nuevo=1;
117 inicializa_cargas(cargas);
118 inicializa_grietas(grietas);
119 for(i=0;i<size_vect;i++)
120 rotos_grieta[i]=0;
121

122

123 T=0;
124 delta=0;
125 delta=probabilidades_ruptura(cargas,

probabilidades);
126 T+=delta;
127 for(i=0;i<Npasos-1;i++)//Debemos contar hasta N

4

-1 porque sino estariamos asociando delta al
vector cuando se ha roto por completo

128 {
129

130 calcula_elemento_a_romper(probabilidades,&
fila,&columna);

131

132 //Rompo el elemento indicado
133 cargas[fila][columna]=0;
134 //Inicia el reparto de cargas
135 reindexa_grietas(grietas,rotos_grieta,

columna,fila,&indice_nuevo);
136 encuentra_vecinos(grietas,perimetros,

vecinos);
137 calcula_cargas_red(cargas,grietas,vecinos,

rotos_grieta,perimetros);
138

139 delta=0;
140 delta=probabilidades_ruptura(cargas,

probabilidades);
141 T+=delta;
142

143 }
144

145

146 /* Progreso por pantalla */
147 if(j*100%NSim==0)
148 printf("Progreso = %d%%\n",j*100/NSim);
149 /* ******************** */
150

151 v[j]=T;
152 }
153

154

155 //Calculo el valor medio de T a s como su error.
156

157 double media,var,err;
158 var=0;
159 media=0;
160

5

161

162 for(i=0;i<NSim;i++)
163 {
164 media+=v[i];
165 var+=v[i]*v[i];
166 }
167

168 media=media/(double)NSim;
169 var=var/(double)NSim;
170 var=var-media*media;
171 var=sqrt(var);
172 err=var/sqrt((double)NSim);
173

174 printf("\nN=M=%d\t<T>=%f\terr=%f\tNSim=%d\n",N,
media,err,NSim);

175 fprintf(f,"%d\t%f\t%f\n",N,media,err);
176

177 /*
178 if(TamanoInicial==100000)
179 {
180 TamanoInicial=500;
181 }
182 */
183 }
184 fclose(f);
185

186

187 /* ********************************* */
188

189

190 }
191 /* *****************REPARTO DE CARGAS**************** */
192 void inicializa_vector(int *vector, int valor, int tamano)
193 {
194 for(int i=0; i<tamano; i++){
195 vector[i]=valor;
196 }
197 }
198 void iguala_indices_2grietas(int matriz[N][M], int *

rotos_grieta, int indice_asignado, int cambia)

6

199 {
200 if(cambia!=indice_asignado){ //Si es igual, no hay

que hacer nada No se tendria que cumplir siempre
que es distinto?

201 int ncambiados=0;
202 for(int i=0; i<N; i++){
203 for(int j=0; j<M; j++){
204 if(matriz[i][j]==cambia){ // Cambiamos

los del ndice a cambiar por el ndice
a asignar

205 matriz[i][j]=indice_asignado;
206 ncambiados++;
207 }
208 }
209 }
210 rotos_grieta[indice_asignado]+=ncambiados;
211 rotos_grieta[cambia]=0;
212 }
213 }
214

215 void iguala_indices_3grietas(int matriz[N][M], int *
rotos_grieta, int indice_asignado, int cambia1, int
cambia2)

216 {
217 if(indice_asignado==cambia1){ // Si el

primero ya es igual, no hace falta reindexarlo
218 iguala_indices_2grietas(matriz, rotos_grieta,

indice_asignado, cambia2);
219 }else if(indice_asignado==cambia2){ // Si el

segundo ya es igual, no hace falta reindexarlo
220 iguala_indices_2grietas(matriz, rotos_grieta,

indice_asignado, cambia1);
221 }else{
222 int ncambiados=0;
223 for(int i=0; i<N; i++){
224 for(int j=0; j<M; j++){
225 if(matriz[i][j]==cambia1 || matriz[i][j]==

cambia2){
226 matriz[i][j]=indice_asignado;
227 ncambiados++;

7

228 }
229 }
230 }
231 rotos_grieta[indice_asignado]+=ncambiados;
232 rotos_grieta[cambia1]=0;
233 rotos_grieta[cambia2]=0;
234 }
235 }
236 void iguala_indices_4grietas(int matriz[N][M], int *

rotos_grieta, int indice_asignado, int cambia1, int
cambia2, int cambia3)

237 {
238 if(indice_asignado==cambia1){ // Si el

tercero ya es el asignado no hace falta cambiarlo
239 iguala_indices_3grietas(matriz, rotos_grieta,

indice_asignado, cambia2, cambia3);
240 }else if(indice_asignado==cambia2){ // Si el

segundo ya es el asignado no hace falta cambiarlo
241 iguala_indices_3grietas(matriz, rotos_grieta,

indice_asignado, cambia1, cambia3);
242 }else if(indice_asignado==cambia3){ // Si el

tercero ya es el asignado no hace falta cambiarlo
243 iguala_indices_3grietas(matriz, rotos_grieta,

indice_asignado, cambia1, cambia2);
244 }else{
245 int ncambiados=0;
246 for(int i=0; i<N; i++){
247 for(int j=0; j<M; j++){
248 if(matriz[i][j]==cambia1 || matriz[i][j]==

cambia2 || matriz[i][j]==cambia3){
249 matriz[i][j]=indice_asignado;
250 ncambiados++;
251 }
252 }
253 }
254 rotos_grieta[indice_asignado]+=ncambiados;
255 rotos_grieta[cambia1]=0;
256 rotos_grieta[cambia2]=0;
257 rotos_grieta[cambia3]=0;
258 }

8

259 }
260 //Nota: Matriz indices=grietas
261 void reindexa_grietas(int matriz_indices[N][M], int *

rotos_grieta, int colum, int fila, int *indice_nuevo)
262 {
263 /*---Calculamos las coordenadas de los elementos

adyacentes, respetando las condiciones peri dicas
---*/

264 int fila_up, fila_down, colum_left, colum_right;
265

266 colum_left=(colum+2*M-1)%M; // Si colum es 0,
colum_left=M-1; en caso contrario, colum_left=colum
-1

267 fila_up=(fila+2*N-1)%N; // Si fila es 0,
fila_up=M-1; en caso contrario, fila_up=fila-1

268 colum_right=(colum+M+1)%M; // Si colum es M-1,
colum_right=0; en caso contrario, colum_right=colum
+1

269 fila_down=(fila+N+1)%N; // Si fila es N-1,
fila_down=0; en caso contrario, fila_down=fila+1

270

271 /*---Calculamos los ndices de los elementos
adyacentes---*/

272 int up, down, left, right, indice_asignado; //
ndice_asignado : indice de la grieta que va a

perdurar, y el que se asocia al nuevo roto
273 int cambia; //

ndice a sustituir por ndice_asignado en la
reindexaci n

274 up=matriz_indices[fila_up][colum];
275 down=matriz_indices[fila_down][colum];
276 left=matriz_indices[fila][colum_left];
277 right=matriz_indices[fila][colum_right];
278

279 /*---Distinguimos casos seg n el n mero de vecinos
rotos---*/

280 switch (!!up + !!left + !!down + !!right) { // ’!!a
’ devuelve 1 si a!=0, 0 si a=0. Esto da el # de
vecinos que no son 0

281 case 0: // Nueva grieta

9

282 indice_asignado=*indice_nuevo;
283 (*indice_nuevo)++; // La siguiente grieta nueva

estar asociada al siguiente ndice nuevo
284 break;
285 case 1: // El elemento roto es vecino de una s la

grieta. Se le asocia el ndice no nulo.
286 if(up!=0){
287 indice_asignado=up;
288 }else if(left!=0){
289 indice_asignado=left;
290 }else if(right!=0){
291 indice_asignado=right;
292 }else{
293 indice_asignado=down;
294 }
295 break;
296 case 2: // El elemento roto es vecino de 2 grietas.

Se le asocia el ndice !=0, respetando prioridad
(up, left, right, down)

297 if(up!=0){
298 indice_asignado=up;
299 cambia=down+left+right; // Alguno de estos

3 es no nulo, el resto son nulos
300 }else if(left!=0){
301 indice_asignado=left;
302 cambia=down+right; // Uno es nulo y el

otro no
303 }else{
304 indice_asignado=right;
305 cambia=down;
306 }
307 iguala_indices_2grietas(matriz_indices,

rotos_grieta, indice_asignado, cambia); // Se
igualan los ndices de ambas grietas

308 break;
309 case 3: // El elemento roto es vecino de 3 grietas.

Se le asocia el ndice !=0, respetando prioridad
(up, left, right, down)

310 if(up==0){
311 indice_asignado=left;

10

312 iguala_indices_3grietas(matriz_indices,
rotos_grieta, indice_asignado, right, down);

// Se igualan los ndices de las 3
grietas

313 }else{
314 indice_asignado=up;
315 if(left==0){
316 iguala_indices_3grietas(matriz_indices,

rotos_grieta, indice_asignado, right,
down);

317 }else{
318 if(right==0){
319 iguala_indices_3grietas(matriz_indices,

rotos_grieta, indice_asignado, left
, down);

320 }else{
321 iguala_indices_3grietas(matriz_indices,

rotos_grieta, indice_asignado,
right, left);

322 }
323 }
324 }
325 break;
326 case 4: // El elemento roto es vecino de 4 c mulos

.Se le asocia el ndice !=0, respetando prioridad
(up, left, right, down)

327 indice_asignado=up;
328 iguala_indices_4grietas(matriz_indices,

rotos_grieta, indice_asignado, down, left, right
); // Se igualan los ndices de las 4 grietas

329 }
330 matriz_indices[fila][colum]=indice_asignado; // Se

asigna el ndice adecuado al nuevo elemento roto
331 rotos_grieta[indice_asignado]++; //

Nuevo elemento para la grieta con la que est en
contacto

332 }
333 void encuentra_vecinos(int matriz_indices[N][M], int

numero_vecinos[size_vect], Almacenaje_vecinos vecinos[N
][M])

11

334 {
335 int col_left, col_right, fila_up, fila_down;
336 int indice_up, indice_left, indice_right, indice_down;
337 inicializa_vector(numero_vecinos, 0, size_vect);

// El n mero de vecinos se calcula cada vez que se
ejecuta esta funci n

338

339 /*---Leemos la matriz:---*/
340 for(int i=0; i<N; i++){
341 fila_up=(i-1+2*N)%N;
342 fila_down=(i+1+N)%N;
343 for(int j=0; j<M; j++){
344 col_left=(j-1+2*M)%M;
345 col_right=(j+1+M)%M;
346 if(matriz_indices[i][j]!=0){ // Los

elementos ya rotos, como no tienen carga, no
los utilizaremos

347 vecinos[i][j].cum1=0;
348 vecinos[i][j].cum2=0;
349 vecinos[i][j].cum3=0;
350 vecinos[i][j].cum4=0;
351 }else{ // Si no es 0,

no es un vecino, sino un elemento roto
352 indice_up=matriz_indices[fila_up][j];
353 indice_left=matriz_indices[i][col_left];
354 indice_right=matriz_indices[i][col_right];
355 indice_down=matriz_indices[fila_down][j];
356

357 /* Guardamos los ndices de los c mulos
contiguos al elemento i, j.

358 * Si alguna es 0, se guarda un 0, que al
no corresponder a ning n c mulo ,
significa

359 * que en realidad no tiene vecino en esa
direcci n.

360 *
361 * Incrementamos el n mero de vecinos de

la(s) grieta(s) dada(s) por el(los)
ndice (s)

362 * del (de los) elemento(s) contiguo(s).

12

363 * Si alguno es 0, se incrementa el numero
de vecinos del "c mulo 0", que es el
c mulo

364 * de los elementos no rotos y no se
utiliza para calcular las cargas.

365 */
366

367 vecinos[i][j].cum1=indice_up;
368 numero_vecinos[indice_up]++;
369 if(indice_left!=indice_up)
370 {
371 vecinos[i][j].cum2=indice_left;
372 numero_vecinos[indice_left]++;
373 if(indice_right!=indice_up &&

indice_right!=indice_left)
374 {
375 vecinos[i][j].cum3=indice_right;
376 numero_vecinos[indice_right]++;
377 if(indice_down!=indice_up &&

indice_down!=indice_left &&
indice_down!=indice_right) //Los
4 son distintos

378 {
379 vecinos[i][j].cum4=indice_down;
380 numero_vecinos[indice_down]++;
381 }else //3 son distintos
382 {
383 vecinos[i][j].cum4=0; //

Si es doblemente vecino de
alguno, solo lo guardamos 1
vez

384 }
385 }else
386 {
387 if(indice_down!=indice_up &&

indice_down!= indice_left) //3
son distintos

388 {
389 vecinos[i][j].cum3=indice_down;
390 numero_vecinos[indice_down]++;

13

391 }else //2 son distintos
392 {
393 vecinos[i][j].cum3=0;
394 }
395 vecinos[i][j].cum4=0;
396 }
397 }else
398 {
399 if(indice_right!=indice_up){
400 vecinos[i][j].cum2=indice_right;
401 numero_vecinos[indice_right]++;
402 if(indice_down!=indice_up &&

indice_down!=indice_right){
403 vecinos[i][j].cum3=indice_down;
404 numero_vecinos[indice_down]++;
405 }else
406 {
407 vecinos[i][j].cum3=0;
408 }
409 }else
410 {
411 if(indice_down!=indice_up)
412 {
413 vecinos[i][j].cum2=indice_down;
414 numero_vecinos[indice_down]++;
415 }else
416 {
417 vecinos[i][j].cum2=0;
418 }
419 vecinos[i][j].cum3=0;
420 }
421 vecinos[i][j].cum4=0;
422 }
423 }
424 }
425 }
426 }
427 void calcula_cargas_red(double cargas_red[N][M], int

matriz_etiquetas[N][M], Almacenaje_vecinos vecinos[N][M
],

14

428 int rotos_grieta[size_vect], int
numero_vecinos[size_vect])

429 {
430 int etiqueta;
431 for(int i=0; i<N; i++){
432 for(int j=0; j<M; j++){
433 etiqueta=matriz_etiquetas[i][j];
434 if(etiqueta!=0){ // Elemento ya roto, no

soporta carga
435 cargas_red[i][j]=0;
436 }else{ // Elemento sin romper
437 /* Incrementamos las cargas, como la suma (

restringida a los vecinos no nulos),
mediante: r_k/s_k

438 * siendo r el n mero de elementos rotos
de la grieta y s el n mero de vecinos
de la grieta.

439 */
440 cargas_red[i][j]=1;
441 if((vecinos[i][j].cum1)!=0){
442 cargas_red[i][j]+=((double)rotos_grieta

[vecinos[i][j].cum1]/(numero_vecinos
[vecinos[i][j].cum1]));

443 }
444 if((vecinos[i][j].cum2)!=0){
445 cargas_red[i][j]+=((double)rotos_grieta

[vecinos[i][j].cum2]/(numero_vecinos
[vecinos[i][j].cum2]));

446 }
447 if((vecinos[i][j].cum3)!=0){
448 cargas_red[i][j]+=((double)rotos_grieta

[vecinos[i][j].cum3]/(numero_vecinos
[vecinos[i][j].cum3]));

449 }
450 if((vecinos[i][j].cum4)!=0){
451 cargas_red[i][j]+=((double)rotos_grieta

[vecinos[i][j].cum4]/(numero_vecinos
[vecinos[i][j].cum4]));

452 }
453 }

15

454 }
455 }
456 }
457 /*

**
*/

458

459 void inicializa_cargas(double cargas[N][M])
460 {
461 int i,j;
462 for (i=0;i<N;i++)
463 {
464 for(j=0;j<M;j++)
465 {
466 cargas[i][j]=1;
467 }
468 }
469 }
470 void inicializa_grietas(int grietas[N][M])
471 {
472 int i,j;
473 for (i=0;i<N;i++)
474 {
475 for(j=0;j<M;j++)
476 {
477 grietas[i][j]=0;
478 }
479 }
480 }
481 #ifdef Potencial
482

483 double probabilidades_ruptura(double cargas[N][M], double
probabilidades[N][M])

484 {
485 double gamma_total=0; // Tiempo de vida de la

configuracion actual
486 double gamma[N][M]; // Matriz para el calculo de

las probabilidades
487

488 for(int i=0; i<N; i++){ // Calculo de las gammas

16

489 for(int j=0; j<M; j++){
490 gamma[i][j]=pow((cargas[i][j]),rho);
491 gamma_total+=gamma[i][j];
492 }
493 }
494 for(int i=0; i<N; i++){ // Calculo de las

probabilidades
495 for(int j=0; j<M; j++){
496 probabilidades[i][j]=(gamma[i][j])/(gamma_total

);
497 }
498 }
499

500 return 1/gamma_total; // Se devuelve el valor de
delta

501 }
502

503 #endif // Potencial
504

505

506 #ifdef Exponencial
507 double probabilidades_ruptura(double cargas[N][M], double

probabilidades[N][M])
508 {
509 double gamma_total=0; // Tiempo de vida de la

configuracion actual
510 double gamma[N][M]; // Matriz para el calculo de

las probabilidades
511

512 //Inicializo gamma
513 for(int i=0; i<N; i++){
514 for(int j=0; j<M; j++){
515 gamma[i][j]=0;
516 }
517 }
518

519

520 for(int i=0; i<N; i++)//Calculo las gammas
521 {
522 for(int j=0; j<M; j++)

17

523 {
524 if(cargas[i][j]!=0)
525 {
526 gamma[i][j]=exp(cargas[i][j]);
527 gamma_total+=gamma[i][j];
528 }
529 }
530 }
531

532 for(int i=0; i<N; i++){ // Calculo de las
probabilidades

533 for(int j=0; j<M; j++){
534 probabilidades[i][j]=(gamma[i][j])/(gamma_total

);
535 }
536 }
537

538 return 1/gamma_total; // Se devuelve el valor de
delta

539 }
540

541 #endif // Exponencial
542

543 void calcula_elemento_a_romper(double probabilidades[N][M],
int *fila, int *columna)

544 {
545 double numero=random_01();
546 double acum_prob=0;
547 int j, i;
548

549 /* El intervalo [0,1) se divide en segmentos, cada uno
de una longitud

550 * igual a la probabilidad de ruptura del elemento. El
numero entre 0 y 1

551 * determina el segmento en el que cae, al cual se le
asocian las coordenadas,

552 * que son los parametros de salida
553 */
554 for(i=0; i<N; i++){
555 for(j=0; j<M; j++){

18

556 acum_prob+=probabilidades[i][j];
557 if(acum_prob>numero){ // El indice se

devuelve cuando el numero esta entre dos
separaciones de segmentos

558 *fila=i;
559 *columna=j;
560 return; // Para salir del bucle
561 }
562 }
563 }
564 }
565

566 void Histograma (double *data,double *Hist, int N_data,int
N_intervalos, double *d, double *m, double *Max)

567 {
568 /*
569 *data -> input, Datos sobre los que se genera el

histograma
570 *Hist -> output Histograma calculado
571 N_data -> input Numero de datos
572 N_intervalos -> input, Numero de intervalos del

histograma
573 *d -> output Medida de cada intervalo del histograma
574 *m -> output Valor minimo de los datos
575 *M -> output Valor maximo de los datos
576 */
577 int i,Indice;// Importante que el indice sea int ya que

va a redondear al entero
578 double Norm,delta,minimo,maximo;
579 for (i=0;i<N_intervalos;i++)
580 {
581 Hist[i]=0;
582 }
583 minimo=10000000;
584 maximo=-10000000;
585 for (i=0;i<N_data;i++) //Calculo el minimo y maximo

valor
586 {
587 if(data[i]>maximo)maximo=data[i];
588 if(data[i]<minimo)minimo=data[i];

19

589 }
590 delta=(maximo-minimo)/N_intervalos;
591 if(delta==0)
592 {
593 printf("No se pueden calcular los intervalos");
594 exit(1);
595 }
596 //Nucleo del programa
597 for(i=0;i<N_data;i++)
598 {
599 Indice=(data[i]-minimo)/delta;
600 Hist[Indice]=Hist[Indice]+1;
601 }
602 *d=delta;
603 *m=minimo;
604 *Max=maximo;
605 //Ahora normalizo
606

607 Norm=1.0/(N_data*delta);
608 for(i=0;i<N_intervalos;i++)
609 {
610 Hist[i]=Hist[i]*Norm;
611 }
612 }
613

614

615

616

617 /***************************** PARISI RAPUANO

****************/
618 #define NormParisi (2.3283063671E-10F) //Para normalizar

el valor generado en la rueda de Parisi-Rapuano
619

620 double random_01()
621 {
622

623 int i;
624 unsigned int rueda[256], aleatorio;
625 unsigned char indice_ran, indice1, indice2, indice3;
626 //Inicializar rueda

20

627 for(i = 0; i < 256; i++)
628 rueda[i] = (rand()<<16) + rand();
629 //Inicializar indices
630 indice_ran = 0; indice1 = 0; indice2 = 0; indice3 = 0;
631 //Modificamos los indices
632 indice1 = indice_ran - 24;
633 indice2 = indice_ran - 55;
634 indice3 = indice_ran - 61;
635 //Modificamos la rueda
636 rueda[indice_ran] = rueda[indice1] + rueda[indice2];
637 //Generamos un numero aleatorio entre 0 y 2ˆ32-1
638 aleatorio = (rueda[indice_ran]ˆrueda[indice3]);
639 //Cambiamos la posicion base para el siguiente numero

aleatorio
640 indice_ran++;
641 //Devolvemos el numero aleatorio normalizado, entre 0 y

1
642 return aleatorio * NormParisi;
643 }
644 /********************************* FIN PARISI RAPUANO

***********/

Código utilizado para las simulaciones 2D (entorno de Von Neumann):

1

2 #include <stdlib.h>
3 #include <stdio.h>
4 #include <time.h>
5 #include <math.h>
6

7 int size_vect,N,M,NSim;
8

9 /* ********************STRUCT****************** */
10 struct almacenaje_vecinos{
11 int cum1, cum2, cum3, cum4;
12 }; typedef struct almacenaje_vecinos Almacenaje_vecinos;
13 /* ** */
14

15 /* ********************** FUNCIONES ****************** */
16 double random_01();

21

17 double probabilidades_ruptura(double cargas[N][M], double
probabilidades[N][M]);

18 void calcula_elemento_a_romper(double probabilidades[N][M],
int *fila, int *columna);

19 /********Reparto de cargas***********/
20 void reindexa_grietas(int matriz_indices[N][M], int *

rotos_grieta, int colum, int fila, int *indice_nuevo);
21 void iguala_indices_2grietas(int matriz[N][M], int *

rotos_grieta, int indice_asignado, int cambia);
22 void iguala_indices_3grietas(int matriz[N][M], int *

rotos_grieta, int indice_asignado, int cambia1, int
cambia2);

23 void iguala_indices_4grietas(int matriz[N][M], int *
rotos_grieta, int indice_asignado, int cambia1, int
cambia2, int cambia3);

24 void encuentra_vecinos(int matriz_indices[N][M], int
numero_vecinos[size_vect], Almacenaje_vecinos vecinos[N
][M]);

25 void calcula_cargas_red(double cargas_red[N][M], int
matriz_etiquetas[N][M], Almacenaje_vecinos vecinos[N][M
],

26 int rotos_grieta[size_vect], int numero_vecinos
[size_vect]);

27 /************************************/
28 void inicializa_vector(int *vector, int valor, int tamano);
29 void inicializa_cargas(double cargas[N][M]);
30 void inicializa_grietas(int grietas[N][M]);
31 void Histograma (double *,double *, int,int , double *,

double *, double *);
32 /* *** */
33

34 int main ()
35 {
36 /*********************************/
37 int TamanoFinal,TamanoInicial;
38

39 TamanoInicial=20;
40 TamanoFinal=200;
41

42 /********************************/

22

43

44 srand(time(NULL));
45

46 int i,j,Npasos,k;
47

48 FILE*f;
49 char name3[128];
50 sprintf(name3, "TvsN2D(Neumann).txt",NSim);
51 f=fopen(name3,"w");
52

53 for(TamanoInicial;TamanoInicial<=TamanoFinal;
TamanoInicial+=10)

54 {
55 NSim=2000;
56 N=TamanoInicial;
57 M=TamanoInicial;
58 size_vect=(int)N*M/2+1;
59 Npasos=N*M;
60 printf("\nN=M=%d\n",N);
61

62 if(TamanoInicial>=50)
63 {
64 if(TamanoInicial>=100)
65 {
66 NSim=(int)NSim/100;
67 }else
68 {
69 NSim=(int)NSim/10;
70 }
71 }
72

73 double cargas[N][M]; //Matriz de cargas
74 int grietas[N][M]; //Matriz que almazena las

grietas
75 int rotos_grieta[size_vect];//Almacena el tama o

de cada grieta
76 int perimetros[size_vect];//Almacena el numero de

vecinos de cada grieta
77 double probabilidades[N][M]; //Matriz para las

probabilidades de ruptura

23

78 int fila,columna; //Indices del elemento que se va
a romper

79 int indice_nuevo; //Indice de la proxima grieta a
indexarse

80 double delta,T; //Tiempo para cada paso y tiempo
total

81 double v[NSim]; //Vector donde guardamos el valor
de T para cada simulacion

82

83

84 Almacenaje_vecinos vecinos [N][M]; //Hoshen-
Kopelman: para cada elemento asocio un vector
con sus cuatro vecions

85

86

87 for(j=0;j<NSim;j++)
88 {
89 indice_nuevo=1;
90 inicializa_cargas(cargas);
91 inicializa_grietas(grietas);
92 for(i=0;i<size_vect;i++)
93 rotos_grieta[i]=0;
94

95

96 T=0;
97 delta=0;
98 delta=probabilidades_ruptura(cargas,

probabilidades);
99 T+=delta;

100 for(i=0;i<Npasos-1;i++)//Debemos contar hasta N
-1 porque sino estariamos asociando delta al
vector cuando se ha roto por completo

101 {
102

103 calcula_elemento_a_romper(probabilidades,&
fila,&columna);

104

105 //Rompo el elemento indicado
106 cargas[fila][columna]=0;
107 //Inicia el reparto de cargas

24

108 reindexa_grietas(grietas,rotos_grieta,
columna,fila,&indice_nuevo);

109 encuentra_vecinos(grietas,perimetros,
vecinos);

110 calcula_cargas_red(cargas,grietas,vecinos,
rotos_grieta,perimetros);

111

112 delta=0;
113 delta=probabilidades_ruptura(cargas,

probabilidades);
114 T+=delta;
115

116 }
117

118

119 /* Progreso por pantalla */
120 if(j*100%NSim==0)
121 printf("Progreso = %d%%\n",j*100/NSim);
122 /* ******************** */
123

124 v[j]=T;
125 }
126

127

128 //Calculo el valor medio de T a s como su error.
129

130 double media,var,err;
131 var=0;
132 media=0;
133

134

135 for(i=0;i<NSim;i++)
136 {
137 media+=v[i];
138 var+=v[i]*v[i];
139 }
140

141 media=media/(double)NSim;
142 var=var/(double)NSim;
143 var=var-media*media;

25

144 var=sqrt(var);
145 err=var/sqrt((double)NSim);
146

147 printf("\nN=M=%d\t<T>=%f\terr=%f\tNSim=%d\n",N,
media,err,NSim);

148 fprintf(f,"%d\t%d\t%f\t%f\n",N,(int)N*N,media,err);
149

150

151 }
152 fclose(f);
153

154

155 /* ********************************* */
156

157

158 }
159 /* *****************REPARTO DE CARGAS**************** */
160 void inicializa_vector(int *vector, int valor, int tamano)
161 {
162 for(int i=0; i<tamano; i++){
163 vector[i]=valor;
164 }
165 }
166 void iguala_indices_2grietas(int matriz[N][M], int *

rotos_grieta, int indice_asignado, int cambia)
167 {
168 if(cambia!=indice_asignado){ //Si es igual, no hay

que hacer nada No se tendria que cumplir siempre
que es distinto?

169 int ncambiados=0;
170 for(int i=0; i<N; i++){
171 for(int j=0; j<M; j++){
172 if(matriz[i][j]==cambia){ // Cambiamos

los del ndice a cambiar por el ndice
a asignar

173 matriz[i][j]=indice_asignado;
174 ncambiados++;
175 }
176 }
177 }

26

178 rotos_grieta[indice_asignado]+=ncambiados;
179 rotos_grieta[cambia]=0;
180 }
181 }
182

183 void iguala_indices_3grietas(int matriz[N][M], int *
rotos_grieta, int indice_asignado, int cambia1, int
cambia2)

184 {
185 if(indice_asignado==cambia1){ // Si el

primero ya es igual, no hace falta reindexarlo
186 iguala_indices_2grietas(matriz, rotos_grieta,

indice_asignado, cambia2);
187 }else if(indice_asignado==cambia2){ // Si el

segundo ya es igual, no hace falta reindexarlo
188 iguala_indices_2grietas(matriz, rotos_grieta,

indice_asignado, cambia1);
189 }else{
190 int ncambiados=0;
191 for(int i=0; i<N; i++){
192 for(int j=0; j<M; j++){
193 if(matriz[i][j]==cambia1 || matriz[i][j]==

cambia2){
194 matriz[i][j]=indice_asignado;
195 ncambiados++;
196 }
197 }
198 }
199 rotos_grieta[indice_asignado]+=ncambiados;
200 rotos_grieta[cambia1]=0;
201 rotos_grieta[cambia2]=0;
202 }
203 }
204 void iguala_indices_4grietas(int matriz[N][M], int *

rotos_grieta, int indice_asignado, int cambia1, int
cambia2, int cambia3)

205 {
206 if(indice_asignado==cambia1){ // Si el

tercero ya es el asignado no hace falta cambiarlo
207 iguala_indices_3grietas(matriz, rotos_grieta,

27

indice_asignado, cambia2, cambia3);
208 }else if(indice_asignado==cambia2){ // Si el

segundo ya es el asignado no hace falta cambiarlo
209 iguala_indices_3grietas(matriz, rotos_grieta,

indice_asignado, cambia1, cambia3);
210 }else if(indice_asignado==cambia3){ // Si el

tercero ya es el asignado no hace falta cambiarlo
211 iguala_indices_3grietas(matriz, rotos_grieta,

indice_asignado, cambia1, cambia2);
212 }else{
213 int ncambiados=0;
214 for(int i=0; i<N; i++){
215 for(int j=0; j<M; j++){
216 if(matriz[i][j]==cambia1 || matriz[i][j]==

cambia2 || matriz[i][j]==cambia3){
217 matriz[i][j]=indice_asignado;
218 ncambiados++;
219 }
220 }
221 }
222 rotos_grieta[indice_asignado]+=ncambiados;
223 rotos_grieta[cambia1]=0;
224 rotos_grieta[cambia2]=0;
225 rotos_grieta[cambia3]=0;
226 }
227 }
228 //Nota: Matriz indices=grietas
229 void reindexa_grietas(int matriz_indices[N][M], int *

rotos_grieta, int colum, int fila, int *indice_nuevo)
230 {
231 /*---Calculamos las coordenadas de los elementos

adyacentes, respetando las condiciones peri dicas
---*/

232 int fila_up, fila_down, colum_left, colum_right;
233

234 colum_left=(colum+2*M-1)%M; // Si colum es 0,
colum_left=M-1; en caso contrario, colum_left=colum
-1

235 fila_up=(fila+2*N-1)%N; // Si fila es 0,
fila_up=M-1; en caso contrario, fila_up=fila-1

28

236 colum_right=(colum+M+1)%M; // Si colum es M-1,
colum_right=0; en caso contrario, colum_right=colum
+1

237 fila_down=(fila+N+1)%N; // Si fila es N-1,
fila_down=0; en caso contrario, fila_down=fila+1

238

239 /*---Calculamos los ndices de los elementos
adyacentes---*/

240 int up, down, left, right, indice_asignado; //
ndice_asignado : indice de la grieta que va a

perdurar, y el que se asocia al nuevo roto
241 int cambia; //

ndice a sustituir por ndice_asignado en la
reindexaci n

242 up=matriz_indices[fila_up][colum];
243 down=matriz_indices[fila_down][colum];
244 left=matriz_indices[fila][colum_left];
245 right=matriz_indices[fila][colum_right];
246

247 /*---Distinguimos casos seg n el n mero de vecinos
rotos---*/

248 switch (!!up + !!left + !!down + !!right) { // ’!!a
’ devuelve 1 si a!=0, 0 si a=0. Esto da el # de
vecinos que no son 0

249 case 0: // Nueva grieta
250 indice_asignado=*indice_nuevo;
251 (*indice_nuevo)++; // La siguiente grieta nueva

estar asociada al siguiente ndice nuevo
252 break;
253 case 1: // El elemento roto es vecino de una s la

grieta. Se le asocia el ndice no nulo.
254 if(up!=0){
255 indice_asignado=up;
256 }else if(left!=0){
257 indice_asignado=left;
258 }else if(right!=0){
259 indice_asignado=right;
260 }else{
261 indice_asignado=down;
262 }

29

263 break;
264 case 2: // El elemento roto es vecino de 2 grietas.

Se le asocia el ndice !=0, respetando prioridad
(up, left, right, down)

265 if(up!=0){
266 indice_asignado=up;
267 cambia=down+left+right; // Alguno de estos

3 es no nulo, el resto son nulos
268 }else if(left!=0){
269 indice_asignado=left;
270 cambia=down+right; // Uno es nulo y el

otro no
271 }else{
272 indice_asignado=right;
273 cambia=down;
274 }
275 iguala_indices_2grietas(matriz_indices,

rotos_grieta, indice_asignado, cambia); // Se
igualan los ndices de ambas grietas

276 break;
277 case 3: // El elemento roto es vecino de 3 grietas.

Se le asocia el ndice !=0, respetando prioridad
(up, left, right, down)

278 if(up==0){
279 indice_asignado=left;
280 iguala_indices_3grietas(matriz_indices,

rotos_grieta, indice_asignado, right, down);
// Se igualan los ndices de las 3

grietas
281 }else{
282 indice_asignado=up;
283 if(left==0){
284 iguala_indices_3grietas(matriz_indices,

rotos_grieta, indice_asignado, right,
down);

285 }else{
286 if(right==0){
287 iguala_indices_3grietas(matriz_indices,

rotos_grieta, indice_asignado, left
, down);

30

288 }else{
289 iguala_indices_3grietas(matriz_indices,

rotos_grieta, indice_asignado,
right, left);

290 }
291 }
292 }
293 break;
294 case 4: // El elemento roto es vecino de 4 c mulos

.Se le asocia el ndice !=0, respetando prioridad
(up, left, right, down)

295 indice_asignado=up;
296 iguala_indices_4grietas(matriz_indices,

rotos_grieta, indice_asignado, down, left, right
); // Se igualan los ndices de las 4 grietas

297 }
298 matriz_indices[fila][colum]=indice_asignado; // Se

asigna el ndice adecuado al nuevo elemento roto
299 rotos_grieta[indice_asignado]++; //

Nuevo elemento para la grieta con la que est en
contacto

300 }
301 void encuentra_vecinos(int matriz_indices[N][M], int

numero_vecinos[size_vect], Almacenaje_vecinos vecinos[N
][M])

302 {
303 int col_left, col_right, fila_up, fila_down;
304 int indice_up, indice_left, indice_right, indice_down;
305 inicializa_vector(numero_vecinos, 0, size_vect);

// El n mero de vecinos se calcula cada vez que se
ejecuta esta funci n

306

307 /*---Leemos la matriz:---*/
308 for(int i=0; i<N; i++){
309 fila_up=(i-1+2*N)%N;
310 fila_down=(i+1+N)%N;
311 for(int j=0; j<M; j++){
312 col_left=(j-1+2*M)%M;
313 col_right=(j+1+M)%M;
314 if(matriz_indices[i][j]!=0){ // Los

31

elementos ya rotos, como no tienen carga, no
los utilizaremos

315 vecinos[i][j].cum1=0;
316 vecinos[i][j].cum2=0;
317 vecinos[i][j].cum3=0;
318 vecinos[i][j].cum4=0;
319 }else{ // Si no es 0,

no es un vecino, sino un elemento roto
320 indice_up=matriz_indices[fila_up][j];
321 indice_left=matriz_indices[i][col_left];
322 indice_right=matriz_indices[i][col_right];
323 indice_down=matriz_indices[fila_down][j];
324

325 /* Guardamos los ndices de los c mulos
contiguos al elemento i, j.

326 * Si alguna es 0, se guarda un 0, que al
no corresponder a ning n c mulo ,
significa

327 * que en realidad no tiene vecino en esa
direcci n.

328 *
329 * Incrementamos el n mero de vecinos de

la(s) grieta(s) dada(s) por el(los)
ndice (s)

330 * del (de los) elemento(s) contiguo(s).
331 * Si alguno es 0, se incrementa el numero

de vecinos del "c mulo 0", que es el
c mulo

332 * de los elementos no rotos y no se
utiliza para calcular las cargas.

333 */
334

335 vecinos[i][j].cum1=indice_up;
336 numero_vecinos[indice_up]++;
337 if(indice_left!=indice_up)
338 {
339 vecinos[i][j].cum2=indice_left;
340 numero_vecinos[indice_left]++;
341 if(indice_right!=indice_up &&

indice_right!=indice_left)

32

342 {
343 vecinos[i][j].cum3=indice_right;
344 numero_vecinos[indice_right]++;
345 if(indice_down!=indice_up &&

indice_down!=indice_left &&
indice_down!=indice_right) //Los
4 son distintos

346 {
347 vecinos[i][j].cum4=indice_down;
348 numero_vecinos[indice_down]++;
349 }else //3 son distintos
350 {
351 vecinos[i][j].cum4=0; //

Si es doblemente vecino de
alguno, solo lo guardamos 1
vez

352 }
353 }else
354 {
355 if(indice_down!=indice_up &&

indice_down!= indice_left) //3
son distintos

356 {
357 vecinos[i][j].cum3=indice_down;
358 numero_vecinos[indice_down]++;
359 }else //2 son distintos
360 {
361 vecinos[i][j].cum3=0;
362 }
363 vecinos[i][j].cum4=0;
364 }
365 }else
366 {
367 if(indice_right!=indice_up){
368 vecinos[i][j].cum2=indice_right;
369 numero_vecinos[indice_right]++;
370 if(indice_down!=indice_up &&

indice_down!=indice_right){
371 vecinos[i][j].cum3=indice_down;
372 numero_vecinos[indice_down]++;

33

373 }else
374 {
375 vecinos[i][j].cum3=0;
376 }
377 }else
378 {
379 if(indice_down!=indice_up)
380 {
381 vecinos[i][j].cum2=indice_down;
382 numero_vecinos[indice_down]++;
383 }else
384 {
385 vecinos[i][j].cum2=0;
386 }
387 vecinos[i][j].cum3=0;
388 }
389 vecinos[i][j].cum4=0;
390 }
391 }
392 }
393 }
394 }
395 void calcula_cargas_red(double cargas_red[N][M], int

matriz_etiquetas[N][M], Almacenaje_vecinos vecinos[N][M
],

396 int rotos_grieta[size_vect], int
numero_vecinos[size_vect])

397 {
398 int etiqueta;
399 for(int i=0; i<N; i++){
400 for(int j=0; j<M; j++){
401 etiqueta=matriz_etiquetas[i][j];
402 if(etiqueta!=0){ // Elemento ya roto, no

soporta carga
403 cargas_red[i][j]=0;
404 }else{ // Elemento sin romper
405 /* Incrementamos las cargas, como la suma (

restringida a los vecinos no nulos),
mediante: r_k/s_k

406 * siendo r el n mero de elementos rotos

34

de la grieta y s el n mero de vecinos
de la grieta.

407 */
408 cargas_red[i][j]=1;
409 if((vecinos[i][j].cum1)!=0){
410 cargas_red[i][j]+=((double)rotos_grieta

[vecinos[i][j].cum1]/(numero_vecinos
[vecinos[i][j].cum1]));

411 }
412 if((vecinos[i][j].cum2)!=0){
413 cargas_red[i][j]+=((double)rotos_grieta

[vecinos[i][j].cum2]/(numero_vecinos
[vecinos[i][j].cum2]));

414 }
415 if((vecinos[i][j].cum3)!=0){
416 cargas_red[i][j]+=((double)rotos_grieta

[vecinos[i][j].cum3]/(numero_vecinos
[vecinos[i][j].cum3]));

417 }
418 if((vecinos[i][j].cum4)!=0){
419 cargas_red[i][j]+=((double)rotos_grieta

[vecinos[i][j].cum4]/(numero_vecinos
[vecinos[i][j].cum4]));

420 }
421 }
422 }
423 }
424 }
425 /*

**
*/

426

427 void inicializa_cargas(double cargas[N][M])
428 {
429 int i,j;
430 for (i=0;i<N;i++)
431 {
432 for(j=0;j<M;j++)
433 {
434 cargas[i][j]=1;

35

435 }
436 }
437 }
438 void inicializa_grietas(int grietas[N][M])
439 {
440 int i,j;
441 for (i=0;i<N;i++)
442 {
443 for(j=0;j<M;j++)
444 {
445 grietas[i][j]=0;
446 }
447 }
448 }
449 double probabilidades_ruptura(double cargas[N][M], double

probabilidades[N][M])
450 {
451 double gamma_total=0; // Tiempo de vida de la

configuracion actual
452 double gamma[N][M]; // Matriz para el calculo de

las probabilidades
453

454 //Inicializo gamma
455 for(int i=0; i<N; i++){
456 for(int j=0; j<M; j++){
457 gamma[i][j]=0;
458 }
459 }
460

461

462 for(int i=0; i<N; i++)//Calculo las gammas
463 {
464 for(int j=0; j<M; j++)
465 {
466 if(cargas[i][j]!=0)
467 {
468 gamma[i][j]=exp(cargas[i][j]);
469 gamma_total+=gamma[i][j];
470 }
471 }

36

472 }
473

474 for(int i=0; i<N; i++){ // Calculo de las
probabilidades

475 for(int j=0; j<M; j++){
476 probabilidades[i][j]=(gamma[i][j])/(gamma_total

);
477 }
478 }
479

480 return 1/gamma_total; // Se devuelve el valor de
delta

481 }
482 void calcula_elemento_a_romper(double probabilidades[N][M],

int *fila, int *columna)
483 {
484 double numero=random_01();
485 double acum_prob=0;
486 int j, i;
487

488 for(i=0; i<N; i++){
489 for(j=0; j<M; j++){
490 acum_prob+=probabilidades[i][j];
491 if(acum_prob>numero){ // El indice se

devuelve cuando el numero esta entre dos
separaciones de segmentos

492 *fila=i;
493 *columna=j;
494 return; // Para salir del bucle
495 }
496 }
497 }
498 }
499 void Histograma (double *data,double *Hist, int N_data,int

N_intervalos, double *d, double *m, double *Max)
500 {
501 /*
502 *data -> input, Datos sobre los que se genera el

histograma
503 *Hist -> output Histograma calculado

37

504 N_data -> input Numero de datos
505 N_intervalos -> input, Numero de intervalos del

histograma
506 *d -> output Medida de cada intervalo del histograma
507 *m -> output Valor minimo de los datos
508 *M -> output Valor maximo de los datos
509 */
510 int i,Indice;// Importante que el indice sea int ya que

va a redondear al entero
511 double Norm,delta,minimo,maximo;
512 for (i=0;i<N_intervalos;i++)
513 {
514 Hist[i]=0;
515 }
516 minimo=10000000;
517 maximo=-10000000;
518 for (i=0;i<N_data;i++) //Calculo el minimo y maximo

valor
519 {
520 if(data[i]>maximo)maximo=data[i];
521 if(data[i]<minimo)minimo=data[i];
522 }
523 delta=(maximo-minimo)/N_intervalos;
524 if(delta==0)
525 {
526 printf("No se pueden calcular los intervalos");
527 exit(1);
528 }
529 //Nucleo del programa
530 for(i=0;i<N_data;i++)
531 {
532 Indice=(data[i]-minimo)/delta;
533 Hist[Indice]=Hist[Indice]+1;
534 }
535 *d=delta;
536 *m=minimo;
537 *Max=maximo;
538 //Ahora normalizo
539

540 Norm=1.0/(N_data*delta);

38

541 for(i=0;i<N_intervalos;i++)
542 {
543 Hist[i]=Hist[i]*Norm;
544 }
545 }
546

547

548

549

550 /***************************** PARISI RAPUANO

****************/
551 #define NormParisi (2.3283063671E-10F) //Para normalizar

el valor generado en la rueda de Parisi-Rapuano
552

553 double random_01()
554 {
555

556 int i;
557 unsigned int rueda[256], aleatorio;
558 unsigned char indice_ran, indice1, indice2, indice3;
559 //Inicializar rueda
560 for(i = 0; i < 256; i++)
561 rueda[i] = (rand()<<16) + rand();
562 //Inicializar indices
563 indice_ran = 0; indice1 = 0; indice2 = 0; indice3 = 0;
564 //Modificamos los indices
565 indice1 = indice_ran - 24;
566 indice2 = indice_ran - 55;
567 indice3 = indice_ran - 61;
568 //Modificamos la rueda
569 rueda[indice_ran] = rueda[indice1] + rueda[indice2];
570 //Generamos un numero aleatorio entre 0 y 2ˆ32-1
571 aleatorio = (rueda[indice_ran]ˆrueda[indice3]);
572 //Cambiamos la posicion base para el siguiente numero

aleatorio
573 indice_ran++;
574 //Devolvemos el numero aleatorio normalizado, entre 0 y

1
575 return aleatorio * NormParisi;
576 }

39

577 /********************************* FIN PARISI RAPUANO

***********/

Código utilizado para las simulaciones 2D (entorno de Moore):

1

2 #include <stdlib.h>
3 #include <stdio.h>
4 #include <time.h>
5 #include <math.h>
6

7

8 int size_vect,N,M,NSim;
9

10

11 /* ********************STRUCT****************** */
12 struct almacenaje_vecinos{
13 int cum1, cum2, cum3, cum4;
14 }; typedef struct almacenaje_vecinos Almacenaje_vecinos;
15 /* ** */
16

17 /* ********************** FUNCIONES ****************** */
18 double random_01();
19 double probabilidades_ruptura(double cargas[N][M], double

probabilidades[N][M]);
20 void calcula_elemento_a_romper(double probabilidades[N][M],

int *fila, int *columna);
21 /********Reparto de cargas***********/
22 void reindexa_grietas(int matriz_indices[N][M], int *

rotos_grieta, int colum, int fila, int *indice_nuevo);
//Matriz_indices=grietas

23 void iguala_indices_2grietas(int matriz[N][M], int *
rotos_grieta, int indice_asignado, int cambia); //Matriz
=grietas

24 void iguala_indices_3grietas(int matriz[N][M], int *
rotos_grieta, int indice_asignado, int cambia1, int
cambia2);

25 void iguala_indices_4grietas(int matriz[N][M], int *
rotos_grieta, int indice_asignado, int cambia1, int
cambia2, int cambia3);

40

26 void encuentra_vecinos(int matriz_indices[N][M], int
numero_vecinos[size_vect], Almacenaje_vecinos vecinos[N
][M]);

27 void calcula_cargas_red(double cargas_red[N][M], int
matriz_etiquetas[N][M], Almacenaje_vecinos vecinos[N][M
],

28 int rotos_grieta[size_vect], int numero_vecinos[size_vect])
;

29 /************************************/
30 void inicializa_vector(int *vector, int valor, int tamano);
31 void inicializa_cargas(double cargas[N][M]);
32 void inicializa_grietas(int grietas[N][M]);
33 void Histograma (double *,double *, int,int , double *,

double *, double *);
34 /* *** */
35

36

37

38 int main ()
39 {
40 //Voy a poner aqui las modificaciones para haver TvsN
41 /*********************************/
42 int TamanoFinal,TamanoInicial;
43

44 TamanoInicial=200;
45 TamanoFinal=200;
46

47 /********************************/
48

49 srand(time(NULL));
50

51 int i,j,Npasos;
52

53 FILE*f;
54 char name3[128];
55 sprintf(name3, "TvsNMoore(nev1).txt");
56 f=fopen(name3,"w");
57

58 for(TamanoInicial;TamanoInicial<=TamanoFinal;
TamanoInicial+=10)

41

59 {
60

61 NSim=2000;
62 N=TamanoInicial;
63 M=TamanoInicial;
64 size_vect=(int)N*M/2+1;
65 Npasos=N*M;
66 printf("\nN=M=%d\n",N);
67

68 if(TamanoInicial>=50)
69 {
70 if(TamanoInicial>=100)
71 {
72 NSim=(int)NSim/100;
73 }else
74 {
75 NSim=(int)NSim/10;
76 }
77 }
78

79 double cargas[N][M]; //Matriz de cargas
80 int grietas[N][M]; //Matriz que almazena las

grietas
81 int rotos_grieta[size_vect];//Almacena el tama o

de cada grieta
82 int perimetros[size_vect];//Almacena el numero de

vecinos de cada grieta
83 double probabilidades[N][M]; //Matriz para las

probabilidades de ruptura
84 int fila,columna; //Indices del elemento que se va

a romper
85 int indice_nuevo; //Indice de la proxima grieta a

indexarse
86 double delta,T; //Tiempo para cada paso y tiempo

total
87 double v[NSim]; //Vector donde guardamos el valor

de T para cada simulacion
88

89

90 Almacenaje_vecinos vecinos [N][M]; //Hoshen-

42

Kopelman: para cada elemento asocio un vector
con sus cuatro vecions

91

92 for(j=0;j<NSim;j++)
93 {
94 indice_nuevo=1;
95 inicializa_cargas(cargas);
96 inicializa_grietas(grietas);
97 for(i=0;i<size_vect;i++)
98 rotos_grieta[i]=0;
99

100 //f=fopen("grietas.txt","w");
101 T=0;
102 delta=0;
103 delta=probabilidades_ruptura(cargas,

probabilidades);
104 T+=delta;
105 for(i=0;i<Npasos-1;i++)//Debemos contar hasta N

-1 porque sino estariamos asociando delta al
vector cuando se ha roto por completo

106 {
107

108

109 calcula_elemento_a_romper(probabilidades,&
fila,&columna);

110

111 //Rompo el elemento indicado
112 cargas[fila][columna]=0;
113 //Inicia el reparto de cargas
114 reindexa_grietas(grietas,rotos_grieta,

columna,fila,&indice_nuevo);
115 encuentra_vecinos(grietas,perimetros,

vecinos);
116 calcula_cargas_red(cargas,grietas,vecinos,

rotos_grieta,perimetros);
117

118 delta=0;
119 delta=probabilidades_ruptura(cargas,

probabilidades);
120 T+=delta;

43

121 }
122 //fclose(f);
123

124 /* Progreso por pantalla */
125 if(j*100%NSim==0)
126 printf("Progreso = %d%%\n",j*100/NSim);
127 /* ******************** */
128

129 v[j]=T;
130

131 }
132

133 //Calculo el valor medio de T a s como su error.
134

135 double media,var,err;
136 var=0;
137 media=0;
138

139

140 for(i=0;i<NSim;i++)
141 {
142 media+=v[i];
143 var+=v[i]*v[i];
144 }
145

146 media=media/(double)NSim;
147 var=var/(double)NSim;
148 var=var-media*media;
149 var=sqrt(var);
150 err=var/sqrt((double)NSim);
151

152 printf("\nN=M=%d\t<T>=%f\terr=%f\tNSim=%d\n",N,
media,err,NSim);

153 fprintf(f,"%d\t%d\t%f\t%f\n",N,(int)N*N,media,err);
154

155 }
156 fclose(f);
157

158 }
159 /* *****************REPARTO DE CARGAS**************** */

44

160 void inicializa_vector(int *vector, int valor, int tamano)
161 {
162 for(int i=0; i<tamano; i++){
163 vector[i]=valor;
164 }
165 }
166 void iguala_indices_2grietas(int matriz[N][M], int *

rotos_grieta, int indice_asignado, int cambia)
167 {
168 if(cambia!=indice_asignado){ //Si es igual, no hay

que hacer nada No se tendria que cumplir siempre
que es distinto?

169 int ncambiados=0;
170 for(int i=0; i<N; i++){
171 for(int j=0; j<M; j++){
172 if(matriz[i][j]==cambia){ // Cambiamos

los del ndice a cambiar por el ndice
a asignar

173 matriz[i][j]=indice_asignado;
174 ncambiados++;
175 }
176 }
177 }
178 rotos_grieta[indice_asignado]+=ncambiados;
179 rotos_grieta[cambia]=0;
180 }
181 }
182

183 void iguala_indices_3grietas(int matriz[N][M], int *
rotos_grieta, int indice_asignado, int cambia1, int
cambia2)

184 {
185 if(indice_asignado==cambia1){ // Si el

primero ya es igual, no hace falta reindexarlo
186 iguala_indices_2grietas(matriz, rotos_grieta,

indice_asignado, cambia2);
187 }else if(indice_asignado==cambia2){ // Si el

segundo ya es igual, no hace falta reindexarlo
188 iguala_indices_2grietas(matriz, rotos_grieta,

indice_asignado, cambia1);

45

189 }else{
190 int ncambiados=0;
191 for(int i=0; i<N; i++){
192 for(int j=0; j<M; j++){
193 if(matriz[i][j]==cambia1 || matriz[i][j]==

cambia2){
194 matriz[i][j]=indice_asignado;
195 ncambiados++;
196 }
197 }
198 }
199 rotos_grieta[indice_asignado]+=ncambiados;
200 rotos_grieta[cambia1]=0;
201 rotos_grieta[cambia2]=0;
202 }
203 }
204 void iguala_indices_4grietas(int matriz[N][M], int *

rotos_grieta, int indice_asignado, int cambia1, int
cambia2, int cambia3)

205 {
206 if(indice_asignado==cambia1){ // Si el

tercero ya es el asignado no hace falta cambiarlo
207 iguala_indices_3grietas(matriz, rotos_grieta,

indice_asignado, cambia2, cambia3);
208 }else if(indice_asignado==cambia2){ // Si el

segundo ya es el asignado no hace falta cambiarlo
209 iguala_indices_3grietas(matriz, rotos_grieta,

indice_asignado, cambia1, cambia3);
210 }else if(indice_asignado==cambia3){ // Si el

tercero ya es el asignado no hace falta cambiarlo
211 iguala_indices_3grietas(matriz, rotos_grieta,

indice_asignado, cambia1, cambia2);
212 }else{
213 int ncambiados=0;
214 for(int i=0; i<N; i++){
215 for(int j=0; j<M; j++){
216 if(matriz[i][j]==cambia1 || matriz[i][j]==

cambia2 || matriz[i][j]==cambia3){
217 matriz[i][j]=indice_asignado;
218 ncambiados++;

46

219 }
220 }
221 }
222 rotos_grieta[indice_asignado]+=ncambiados;
223 rotos_grieta[cambia1]=0;
224 rotos_grieta[cambia2]=0;
225 rotos_grieta[cambia3]=0;
226 }
227 }
228 //Nota: Matriz indices=grietas
229 void reindexa_grietas(int matriz_indices[N][M], int *

rotos_grieta, int colum, int fila, int *indice_nuevo)
230 {
231 /*---Calculamos las coordenadas de los elementos

adyacentes, respetando las condiciones peri dicas
---*/

232 int fila_up, fila_down, colum_left, colum_right;
233

234 colum_left=(colum+2*M-1)%M; // Si colum es 0,
colum_left=M-1; en caso contrario, colum_left=colum
-1

235 fila_up=(fila+2*N-1)%N; // Si fila es 0,
fila_up=M-1; en caso contrario, fila_up=fila-1

236 colum_right=(colum+M+1)%M; // Si colum es M-1,
colum_right=0; en caso contrario, colum_right=colum
+1

237 fila_down=(fila+N+1)%N; // Si fila es N-1,
fila_down=0; en caso contrario, fila_down=fila+1

238

239 /*---Calculamos los ndices de los elementos
adyacentes---*/

240 int indice[8]; //vector en el que voy a guardar los
indices de los vecinonos (N,S,E,O,NE,NO,SE,SO)

241 int indice_asignado; //Indice que va a perdurar
242 int a,b,c; //indices auxiliares
243 int i; //contador
244

245

246 indice[0]=matriz_indices[fila_up][colum];
247 indice[1]=matriz_indices[fila_down][colum];

47

248 indice[2]=matriz_indices[fila][colum_left];
249 indice[3]=matriz_indices[fila][colum_right];
250 indice[4]=matriz_indices[fila_up][colum_right];
251 indice[5]=matriz_indices[fila_down][colum_right];
252 indice[6]=matriz_indices[fila_up][colum_left];
253 indice[7]=matriz_indices[fila_down][colum_left];
254

255 i=0;
256 /*---Distinguimos casos seg n el n mero de vecinos

rotos---*/
257 switch (!!indice[0] + !!indice[1] + !!indice[2] + !!

indice[3] + !!indice[4] + !!indice[5] + !!indice[6]
+ !!indice[7]) { // ’!!a’ devuelve 1 si a!=0, 0
si a=0. Esto da el # de vecinos que no son 0

258 case 0: // Nueva grieta
259 indice_asignado=*indice_nuevo;
260 (*indice_nuevo)++; // La siguiente grieta nueva

estar asociada al siguiente ndice nuevo
261 break;
262 case 1: // El elemento roto es vecino de una s la

grieta. Se le asocia el ndice no nulo.
263

264 while(indice[i]==0)i++;
265 indice_asignado=indice[i];
266

267 break;
268 case 2: // El elemento roto es vecino de 2 grietas.

Se le asocia el ndice !=0, respetando prioridad
(N,S,E,O,NE,NO,SE,SO)

269

270 while(indice[i]==0)i++;
271 indice_asignado=indice[i];
272 i++;
273 while(indice[i]==0)i++;
274 a=indice[i];
275

276 iguala_indices_2grietas(matriz_indices,
rotos_grieta, indice_asignado, a); // Se igualan
los ndices de ambas grietas

277 break;

48

278 case 3: // El elemento roto es vecino de 3 grietas.
Se le asocia el ndice !=0, respetando prioridad
(up, left, right, down)

279

280 while(indice[i]==0)i++;
281 indice_asignado=indice[i];
282 i++;
283 while(indice[i]==0)i++;
284 a=indice[i];
285 i++;
286 while(indice[i]==0)i++;
287 b=indice[i];
288

289 iguala_indices_3grietas(matriz_indices,
rotos_grieta, indice_asignado, a, b);

290

291 break;
292 case 4: // El elemento roto es vecino de 4 c mulos

.Se le asocia el ndice !=0, respetando prioridad
(up, left, right, down)

293

294 while(indice[i]==0)i++;
295 indice_asignado=indice[i];
296 i++;
297 while(indice[i]==0)i++;
298 a=indice[i];
299 i++;
300 while(indice[i]==0)i++;
301 b=indice[i];
302 i++;
303 while(indice[i]==0)i++;
304 c=indice[i];
305

306 iguala_indices_4grietas(matriz_indices,
rotos_grieta, indice_asignado, a, b, c); // Se
igualan los ndices de las 4 grietas

307

308 break;
309 case 5: //Solo pueden existir 3 grietas distintas
310

49

311

312 while(indice[i]==0)i++;
313 indice_asignado=indice[i];
314

315 //Veo si todos son la misma grieta, dos o 3
distintas

316 a=0;
317 b=0;
318 for(i=0;i<8;i++)
319 {
320 if(indice[i]!=indice_asignado){a=indice[i];}
321 }
322 for(i=0;i<8;i++)
323 {
324 if(indice[i]!=indice_asignado && indice[i]!=a){

b=indice[i];}
325 }
326

327 switch(!!a+!!b){ // !!a devuelve 1 si a
!=0

328 case 0:
329 //No hacemos nada, el elemento nuevo es

vecino de una sola grieta, le asociamos
el indice asignado(Hecho arriba)

330 break;
331 case 1:
332 if(a!=0)
333 {
334 iguala_indices_2grietas(matriz_indices,

rotos_grieta, indice_asignado, a);
335 }else
336 {
337 iguala_indices_2grietas(matriz_indices,

rotos_grieta, indice_asignado, b);
338 }
339 break;
340 case 2:
341 iguala_indices_3grietas(matriz_indices,

rotos_grieta, indice_asignado, a, b);
342 }

50

343

344 break;
345 case 6: //Solo pueden existir 2 grietas distintas
346

347 while(indice[i]==0)i++;
348 indice_asignado=indice[i];
349

350 a=0;
351 for(i=0;i<8;i++)
352 {
353 if(indice[i]!=indice_asignado){a=indice[i];}
354 }
355

356 /* Si a=0, todo es la misma grieta, no hago nada (
ya hemos dado valor a "indice_asignado" */

357 if(a!=0)
358 {
359 iguala_indices_2grietas(matriz_indices,

rotos_grieta, indice_asignado, a);
360 }
361

362 break;
363 case 7: //Todo es la misma grieta
364

365 while(indice[i]==0)i++;
366 indice_asignado=indice[i];
367

368 break;
369 case 8: //la grieta rodea nuestro punto, todos los

indices seran !=0 y tendran el mismo valor
370

371 indice_asignado=indice[0];
372

373 }
374 matriz_indices[fila][colum]=indice_asignado; // Se

asigna el ndice adecuado al nuevo elemento roto
375 rotos_grieta[indice_asignado]++; //

Nuevo elemento para la grieta con la que est en
contacto

376 }

51

377 void encuentra_vecinos(int matriz_indices[N][M], int
numero_vecinos[size_vect], Almacenaje_vecinos vecinos[N
][M])

378 {
379 int col_left, col_right, fila_up, fila_down;
380 int indice_up, indice_left, indice_right, indice_down;
381 inicializa_vector(numero_vecinos, 0, size_vect);

// El n mero de vecinos se calcula cada vez que se
ejecuta esta funci n

382 int indice[8]; //Vector en el que guardo el valor de
los indices de las grietas (N,S,E,O,NE,NO,SE,SO)

383 int k;//Contador
384

385 /*---Leemos la matriz:---*/
386 for(int i=0; i<N; i++){
387 fila_up=(i-1+2*N)%N;
388 fila_down=(i+1+N)%N;
389 for(int j=0; j<M; j++){
390 col_left=(j-1+2*M)%M;
391 col_right=(j+1+M)%M;
392 if(matriz_indices[i][j]!=0){ // Los

elementos ya rotos, como no tienen carga, no
los utilizaremos

393 vecinos[i][j].cum1=0;
394 vecinos[i][j].cum2=0;
395 vecinos[i][j].cum3=0;
396 vecinos[i][j].cum4=0;
397 }else{ // Si no es 0,

no es un vecino, sino un elemento roto
398 indice[0]=matriz_indices[fila_up][j]; //N
399 indice[1]=matriz_indices[fila_down][j]; //S
400 indice[2]=matriz_indices[i][col_left]; //O
401 indice[3]=matriz_indices[i][col_right]; //E
402 indice[4]=matriz_indices[fila_up][col_right

]; //NE
403 indice[5]=matriz_indices[fila_down][

col_right]; //SE
404 indice[6]=matriz_indices[fila_up][col_left

]; //NO
405 indice[7]=matriz_indices[fila_down][

52

col_left]; //SO
406

407 k=0;
408 //Como maximo puede haber 4 grietas,

utilizaremos la misma notaci n que el
codigo anterior descartando los indices
repetidos.

409 switch (!!indice[0] + !!indice[1] + !!
indice[2] + !!indice[3] + !!indice[4] +
!!indice[5] + !!indice[6] + !!indice[7])
{

410 case 0: //Todos son 0
411 indice_up=0;
412 indice_left=0;
413 indice_right=0;
414 indice_down=0;
415 break;
416 case 1:
417 while(indice[k]==0)k++;
418 indice_up=indice[k];
419 indice_left=0;
420 indice_right=0;
421 indice_down=0;
422 break;
423 case 2: //No hace falta mirar si son

iguales ya que lo tiene en cuenta el
algoritmo

424 while(indice[k]==0)k++;
425 indice_up=indice[k];
426 k++;
427 while(indice[k]==0)k++;
428 indice_down=indice[k];
429 indice_right=0;
430 indice_left=0;
431 break;
432 case 3:
433 while(indice[k]==0)k++;
434 indice_up=indice[k];
435 k++;
436 while(indice[k]==0)k++;

53

437 indice_down=indice[k];
438 k++;
439 while(indice[k]==0)k++;
440 indice_right=indice[k];
441 indice_left=0;
442 break;
443 case 4:
444 while(indice[k]==0)k++;
445 indice_up=indice[k];
446 k++;
447 while(indice[k]==0)k++;
448 indice_down=indice[k];
449 k++;
450 while(indice[k]==0)k++;
451 indice_right=indice[k];
452 k++;
453 while(indice[k]==0)k++;
454 indice_left=indice[k];
455 break;
456 case 5: //Puede haber como m ximo 3

grietas, descarto los indices que son
iguales, para no coger los 3 primeros
distintos de cero y que sean los mismos

457 while(indice[k]==0)k++;
458 indice_up=indice[k];
459

460 //Veo si todos son la misma grieta, 2 o
3 distintas

461 indice_down=0;
462 indice_right=0;
463 indice_left=0;
464 for(k=0;k<8;k++)
465 {
466 if(indice[k]!=indice_up){

indice_down=indice[k];}
467 }
468 for(k=0;k<8;k++)
469 {
470 if(indice[k]!=indice_up && indice[k

]!=indice_down){indice_right=

54

indice[k];}
471 }
472 break;
473 case 6: //Como m ximo hay 2 grietas
474 while(indice[k]==0)k++;
475 indice_up=indice[k];
476

477 indice_down=0;
478 indice_right=0;
479 indice_left=0;
480 for(k=0;k<8;k++)
481 {
482 if(indice[k]!=indice_up){

indice_down=indice[k];}
483 }
484 break;
485 case 7: //Hay una sola grieta con todos los

indices iguales y uno distinto de 0
486 while(indice[k]==0)k++;
487 indice_up=indice[k];
488 indice_down=indice[k];
489 indice_left=indice[k];
490 indice_right=0;
491 break;
492 case 8:
493 indice_up=indice[0];
494 indice_down=indice[0];
495 indice_left=indice[0];
496 indice_right=indice[0];
497 }
498

499 /* Guardamos los ndices de los c mulos
contiguos al elemento i, j.

500 * Si alguna es 0, se guarda un 0, que al
no corresponder a ning n c mulo ,
significa

501 * que en realidad no tiene vecino en esa
direcci n.

502 *
503 * Incrementamos el n mero de vecinos de

55

la(s) grieta(s) dada(s) por el(los)
ndice (s)

504 * del (de los) elemento(s) contiguo(s).
505 * Si alguno es 0, se incrementa el numero

de vecinos del "c mulo 0", que es el
c mulo

506 * de los elementos no rotos y no se
utiliza para calcular las cargas.

507 */
508

509 vecinos[i][j].cum1=indice_up;
510 numero_vecinos[indice_up]++;
511 if(indice_left!=indice_up)
512 {
513 vecinos[i][j].cum2=indice_left;
514 numero_vecinos[indice_left]++;
515 if(indice_right!=indice_up &&

indice_right!=indice_left)
516 {
517 vecinos[i][j].cum3=indice_right;
518 numero_vecinos[indice_right]++;
519 if(indice_down!=indice_up &&

indice_down!=indice_left &&
indice_down!=indice_right) //Los
4 son distintos

520 {
521 vecinos[i][j].cum4=indice_down;
522 numero_vecinos[indice_down]++;
523 }else //3 son distintos
524 {
525 vecinos[i][j].cum4=0; //

Si es doblemente vecino de
alguno, solo lo guardamos 1
vez

526 }
527 }else
528 {
529 if(indice_down!=indice_up &&

indice_down!= indice_left) //3
son distintos

56

530 {
531 vecinos[i][j].cum3=indice_down;
532 numero_vecinos[indice_down]++;
533 }else //2 son distintos
534 {
535 vecinos[i][j].cum3=0;
536 }
537 vecinos[i][j].cum4=0;
538 }
539 }else
540 {
541 if(indice_right!=indice_up){
542 vecinos[i][j].cum2=indice_right;
543 numero_vecinos[indice_right]++;
544 if(indice_down!=indice_up &&

indice_down!=indice_right){
545 vecinos[i][j].cum3=indice_down;
546 numero_vecinos[indice_down]++;
547 }else
548 {
549 vecinos[i][j].cum3=0;
550 }
551 }else
552 {
553 if(indice_down!=indice_up)
554 {
555 vecinos[i][j].cum2=indice_down;
556 numero_vecinos[indice_down]++;
557 }else
558 {
559 vecinos[i][j].cum2=0;
560 }
561 vecinos[i][j].cum3=0;
562 }
563 vecinos[i][j].cum4=0;
564 }
565 }
566 }
567 }
568 }

57

569 void calcula_cargas_red(double cargas_red[N][M], int
matriz_etiquetas[N][M], Almacenaje_vecinos vecinos[N][M
],

570 int rotos_grieta[size_vect], int
numero_vecinos[size_vect])

571 {
572 int etiqueta;
573 for(int i=0; i<N; i++){
574 for(int j=0; j<M; j++){
575 etiqueta=matriz_etiquetas[i][j];
576 if(etiqueta!=0){ // Elemento ya roto, no

soporta carga
577 cargas_red[i][j]=0;
578 }else{ // Elemento sin romper
579 /* Incrementamos las cargas, como la suma (

restringida a los vecinos no nulos),
mediante: r_k/s_k

580 * siendo r el n mero de elementos rotos
de la grieta y s el n mero de vecinos
de la grieta.

581 */
582 cargas_red[i][j]=1;
583 if((vecinos[i][j].cum1)!=0){
584 cargas_red[i][j]+=((double)rotos_grieta

[vecinos[i][j].cum1]/(numero_vecinos
[vecinos[i][j].cum1]));

585 }
586 if((vecinos[i][j].cum2)!=0){
587 cargas_red[i][j]+=((double)rotos_grieta

[vecinos[i][j].cum2]/(numero_vecinos
[vecinos[i][j].cum2]));

588 }
589 if((vecinos[i][j].cum3)!=0){
590 cargas_red[i][j]+=((double)rotos_grieta

[vecinos[i][j].cum3]/(numero_vecinos
[vecinos[i][j].cum3]));

591 }
592 if((vecinos[i][j].cum4)!=0){
593 cargas_red[i][j]+=((double)rotos_grieta

[vecinos[i][j].cum4]/(numero_vecinos

58

[vecinos[i][j].cum4]));
594 }
595 }
596 }
597 }
598 }
599 /*

**
*/

600

601 void inicializa_cargas(double cargas[N][M])
602 {
603 int i,j;
604 for (i=0;i<N;i++)
605 {
606 for(j=0;j<M;j++)
607 {
608 cargas[i][j]=1;
609 }
610 }
611 }
612 void inicializa_grietas(int grietas[N][M])
613 {
614 int i,j;
615 for (i=0;i<N;i++)
616 {
617 for(j=0;j<M;j++)
618 {
619 grietas[i][j]=0;
620 }
621 }
622 }
623 double probabilidades_ruptura(double cargas[N][M], double

probabilidades[N][M])
624 {
625 double gamma_total=0; // Tiempo de vida de la

configuracion actual
626 double gamma[N][M]; // Matriz para el calculo de

las probabilidades
627

59

628 //Inicializo gamma
629 for(int i=0; i<N; i++){
630 for(int j=0; j<M; j++){
631 gamma[i][j]=0;
632 }
633 }
634

635

636 for(int i=0; i<N; i++)//Calculo las gammas
637 {
638 for(int j=0; j<M; j++)
639 {
640 if(cargas[i][j]!=0)
641 {
642 gamma[i][j]=exp(cargas[i][j]);
643 gamma_total+=gamma[i][j];
644 }
645 }
646 }
647

648 for(int i=0; i<N; i++){ // Calculo de las
probabilidades

649 for(int j=0; j<M; j++){
650 probabilidades[i][j]=(gamma[i][j])/(gamma_total

);
651 }
652 }
653

654 return 1/gamma_total; // Se devuelve el valor de
delta

655 }
656 void calcula_elemento_a_romper(double probabilidades[N][M],

int *fila, int *columna)
657 {
658 double numero=random_01();
659 double acum_prob=0;
660 int j, i;
661

662 for(i=0; i<N; i++){
663 for(j=0; j<M; j++){

60

664 acum_prob+=probabilidades[i][j];
665 if(acum_prob>numero){ // El indice se

devuelve cuando el numero esta entre dos
separaciones de segmentos

666 *fila=i;
667 *columna=j;
668 return; // Para salir del bucle
669 }
670 }
671 }
672 }
673 void Histograma (double *data,double *Hist, int N_data,int

N_intervalos, double *d, double *m, double *Max)
674 {
675 /*
676 *data -> input, Datos sobre los que se genera el

histograma
677 *Hist -> output Histograma calculado
678 N_data -> input Numero de datos
679 N_intervalos -> input, Numero de intervalos del

histograma
680 *d -> output Medida de cada intervalo del histograma
681 *m -> output Valor minimo de los datos
682 *M -> output Valor maximo de los datos
683 */
684 int i,Indice;// Importante que el indice sea int ya que

va a redondear al entero
685 double Norm,delta,minimo,maximo;
686 for (i=0;i<N_intervalos;i++)
687 {
688 Hist[i]=0;
689 }
690 minimo=10000000;
691 maximo=-10000000;
692 for (i=0;i<N_data;i++) //Calculo el minimo y maximo

valor
693 {
694 if(data[i]>maximo)maximo=data[i];
695 if(data[i]<minimo)minimo=data[i];
696 }

61

697 delta=(maximo-minimo)/N_intervalos;
698 if(delta==0)
699 {
700 printf("No se pueden calcular los intervalos");
701 exit(1);
702 }
703 //Nucleo del programa
704 for(i=0;i<N_data;i++)
705 {
706 Indice=(data[i]-minimo)/delta;
707 Hist[Indice]=Hist[Indice]+1;
708 }
709 *d=delta;
710 *m=minimo;
711 *Max=maximo;
712 //Ahora normalizo
713

714 Norm=1.0/(N_data*delta);
715 for(i=0;i<N_intervalos;i++)
716 {
717 Hist[i]=Hist[i]*Norm;
718 }
719 }
720

721

722

723

724 /***************************** PARISI RAPUANO

****************/
725 #define NormParisi (2.3283063671E-10F) //Para normalizar

el valor generado en la rueda de Parisi-Rapuano
726

727 double random_01()
728 {
729

730 int i;
731 unsigned int rueda[256], aleatorio;
732 unsigned char indice_ran, indice1, indice2, indice3;
733 //Inicializar rueda
734 for(i = 0; i < 256; i++)

62

735 rueda[i] = (rand()<<16) + rand();
736 //Inicializar indices
737 indice_ran = 0; indice1 = 0; indice2 = 0; indice3 = 0;
738 //Modificamos los indices
739 indice1 = indice_ran - 24;
740 indice2 = indice_ran - 55;
741 indice3 = indice_ran - 61;
742 //Modificamos la rueda
743 rueda[indice_ran] = rueda[indice1] + rueda[indice2];
744 //Generamos un numero aleatorio entre 0 y 2ˆ32-1
745 aleatorio = (rueda[indice_ran]ˆrueda[indice3]);
746 //Cambiamos la posicion base para el siguiente numero

aleatorio
747 indice_ran++;
748 //Devolvemos el numero aleatorio normalizado, entre 0 y

1
749 return aleatorio * NormParisi;
750 }
751 /********************************* FIN PARISI RAPUANO

***********/

63

Anexo II

Se adjuntan los datos que aparecen representados en la Figura 5.

64

Anexo III

Se adjuntan los datos que aparecen representados en la Figura 7.

65

