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Resumen

Hemos estudiado, computacionalmente, el diseno de puertas légicas en circuitos de
informacién cuédntica, en concreto, puertas para sistemas de uno y dos gbits. En este
documento comenzamos con una breve introduccién a la computaciéon cudntica, que nos
permitird entender el funcionamiento de las puertas 1égicas cuanticas. Esencialmente, un
sistema de N gbits se modela mediante un sistema cudntico de 2V niveles; una puerta
cuantica es una operacion unitaria sobre este sistema. Esta operacién se corresponde con
la accién de una perturbacion disenada adecuadamente para que el operador evolucién
resultante coincida con la operacion buscada. Tras definir la perturbacién mediante una
forma funcional dependiente de unos parametros, hemos utilizado la teoria de control
optimo para buscar los parametros que optimizan la forma del operador evolucién. Fi-
nalmente, hemos estudiado como las formas funcionales elegidas, o el uso de unos u otros
algoritmos de optimizacion afecta a la calidad de la puerta légica obtenida, o al coste

computacional.
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1. Introduccién a la computacion cuantica

Comenzamos con una breve introduccién a los conceptos de la teoria de informacién cuantica
que nos han sido necesarios para la elaboracion de este trabajo — una introduccion completa al tema
puede consultarse en la Ref. [1]. La computacién cldsica se basa en la manipulacién de la unidad
minima de informacion, el bit, que solo puede tomar dos valores, por ejemplo, 0 o 1. La computacion
cuantica utiliza el principio de la superposicién de estados para ir més alla, apareciendo el concepto
de g-bit (quantum bit). Un g-bit puede entenderse como un sistema cudntico de dos estados, que
denotaremos como |0) y |1). De esta forma, el estado més general posible para un g-bit ser4:

W) =al0)+B|1) Va,Be C tg |of+]87=1 (1.1)

Esta mayor libertad permite que, algoritmos cuyo tiempo de célculo crece potencialmente con el
numero de bits de entrada, pasen a tener tiempos de calculo que crecen linealmente. Un ejemplo es
el algoritmo de Deutch-Jotzsal?.

La manipulacién de la informacién en computacion clasica se realiza mediante las llamadas
puertas logicas, que toman un nimero de bits de entrada, y producen unos bits de salida de acuerdo
con reglas predefinidas. Andlogamente, existen puertas légicas cuanticas que toman el estado de
uno o varios g-bits y los alteran de cierta forma. Las puertas més sencillas tienen un solo g-bit
de entrada. Un primer ejemplo es la puerta Pauli-X (o bit-flip): Esta toma el estado del g-bit e
intercambia el |0) por el |1) y viceversa. Podemos compilar el comportamiento de cualquier puerta
légica de un 1 g-bit como una matriz 2x2 unitaria definida sobre la base ortonormal {|0),|1)} tal

0) — 1) _ (01
1) — [0) X % Upa“h'x_<1 0>

Hemos incluido también el simbolo que suele utilizarse en la representacion de circuitos légicos.

que:

Viendo la representacion matricial de esta puerta cobra sentido su nombre pues, mas formalmente,
aplica la matriz de Pauli o, al estado inicial. De la misma forma existe la puerta Pauli-Y y Pauli-Z.

A diferencia de las puertas légicas clésicas, las cudnticas no solamente actiian sobre los estados
base |0) o |1), sino que puede actuar sobre cualquier estado superposicién. Asi, por ejemplo, si
introducimos como estado de entrada |p1) = |0) — i|1) tendremos que se obtendrd como estado
final Upguii—x |p1) = |1) — i|0). Otra puerta muy utilizada es la puerta Hadamard, que devuelve
superposicién de estados:

1
\ﬁ(l0> +11)

1 (1 1
] _ UHadamard = —=
00 - 1) H BT <1 ‘1>

Si queremos trabajar con mas g-bits y sus representaciones matriciales necesitamos definir clara-

0) —

1) —




mente una generalizacién de la base para un sistema de IV niveles. En el caso de sistemas formados
por un unico g-bit la base es trivial, sin embargo, para un sistema de N g-bits primero definimos
una base para cada uno de los g-bits y luego tomamos la base del sistema como el producto ten-
sorial de todas estas basesl!]. La base resultante se denomina base computacional e incluye todas
las posibles combinaciones de estados de cada g-bit. Para simplificar la notacion denominaremos
al ket que representa cada estado de la base con el ntimero que representa en base decimal. Asi,
denotaremos cada uno de estos estados como:

lan) v @ lan—1)y_1 ® -+ ® |a1); = lanvan—1---a1) = |c) , (1.2)

donde ¢ = an2V "' +ay_ 12V "2+ 4ay. Asi, la base (ortonormal) se expresara como {|0),[1),---,
12V — 1)} y cualquier estado se podrd formar mediante una combinacién lineal de los kets que la

forman.

Como ejemplo de puertas de 2 gbits, una de las primeras con las que hemos trabajado es la
CNOT (“Controlled” NOT): si el primer g-bit estd en estado |0) no realiza ningin cambio en
ningin g-bit, pero si estd en |1), aplica o, al segundo g-bit. Asi:

) = [00) ) = 0) 100 0
[1) = [01) — [01) = [1) Uenon = 0100
12) = [10) — [11) = |3) 0001
13) = |11) — [10) = [2) 00 10

El resto de puertas de dos gbits se construye utilizando reglas semejantes. Existen asimismo
puertas para sistemas de tres o mas gbits, teniendo en cuenta que el tamano de la matriz crece
exponencialmente con el nimero de g-bits: la dimensién es 2V,

Formalmente, una puerta cudntica no es més que un operador unitario U. En las realizaciones
fisicas de los sistemas de computacion cuantica, una puerta logica cudntica no es mas que un ope-
rador evolucién temporal, U(T,0), que actiia durante un tiempo caracteristico T produciendo la
transformacion deseada. Los sistemas cudnticos, sin embargo, estan sujetos a perturbaciones exter-
nas incontrolables, ya que en la practica no podemos aislarlos totalmente de su entorno. Ello implica
que el comportamiento tipicamente cuantico, coherente, se deteriora con el tiempo. Es necesario que
los tiempos de decoherencia tipicos del sistema sean lo méas largos posibles, o alternativamente, que
los tiempos de operacién T sean cortos. Este trabajo estd motivado precisamente en el intento de
reducir estos tiempos, buscando maneras dptimas de disenar las puertas cuanticas.

Este trabajo estd motivado, igualmente, por el proyecto SUMO (Scaling Up quantum compu-
tation with MOlecular spins), brevemente descrito en el Anexo 2. En este proyecto se realiza un
montaje experimental que trata de crear puertas cudnticas con moléculas magnéticas. Se enfrenta
precisamente al problema de los cortos tiempos de decoherencia, y es por ello que una solucion
puede ser la aplicacién de la QOCT para acelerar las puertas cuanticas.



2. Objetivos

Ahora que sabemos qué es una puerta légica cudntica nos preguntamos cudl es la forma de mo-
delar un sistema fisico que implemente esta idea. La forma de inducir este comportamiento se basa
en introducir una perturbacién dependiente del tiempo en un Hamiltoniano de un sistema de 2V
niveles. Esta perturbacién debe estar disenada para que el correspondiente operador evolucién (a
un tiempo 7" lo més breve posible) sea igual (o equivalente) a la puerta légica deseada. Matemética-
mente, el problema consiste por lo tanto en: dado un Hamiltoniano dependiente de unos parametros
(que, en nuestro caso, definen la forma funcional de la perturbacién), deben encontrarse aquellos
pardametros que inducen en el sistema un comportamiento predefinido (en nuestro caso, la evolucién
de acuerdo con la puerta légica buscada). Este planteamiento matematico encaja con el problema
estudiado por la teorfa de control 6ptimo cuéntico (QOCT), que introduciremos més adelante. Por

lo tanto, nuestros objetivos en este trabajo han sido:
1. Aprender los fundamentos tedricos de la teoria de informacion cudntica, y de la QOCT.
2. Aprender a ejecutar un cédigo que implementa la QOCT para sistemas genéricos.

3. Ejecutar calculos de optimizacién para disenar puertas logicas para sistemas de 2 g-bits mo-

delo.

4. Estudiar la eficiencia de estos cdlculos con respecto a los pardmetros libres que han de decidirse
a la hora de buscar la forma de la perturbacién 6ptima (amplitud maxima, tiempo de aplicacién

de la perturbacién, etc).

5. Estudiar la eficiencia de algunos de los algoritmos de optimizacion posibles.

3. Construccion de puertas logicas mediante QOCT

Partimos del Hamiltoniano Hy de un sistema de N niveles que, sin pérdida de generalidad,
consideraremos que es diagonal (de no serlo, se realiza un cambio de base a la base de autoestados).
Introducimos entonces una perturbaciéon dependiente del tiempo, y nos preguntamos cual debe ser
la forma de ésta tal que el operador evoluciéon temporal coincida con el operador asociado a una
puerta légica para un tiempo T fijo. Asi, sea la ecuacién de Schrodinger:

Z'% c(t)) = (Ho + f({ui}, )V) [e(t)) (3.1)

donde {u;} son una serie de parametros que controlan la forma de la perturbacién, que denomi-
naremos parametros de control, y V un operador que conecta distintos niveles del sistema. Para

simplificar la notacién escribiremos u = {u;}. Podemos tomar, por ejemplo:

Flu,t) = usin(wit + wipm) - (3.2)
=1



Siendo asi m el nimero de frecuencias de las que se compone la perturbaciéon. Normalmente, estas
se corresponden con las frecuencias naturales del sistema o sus armoénicos. El operador evolucion

temporal se define entonces como:
lc()) =U(t,t)[c(t)) - (3.3)

Por simplicidad tomaremos el tiempo inicial de propagacién en t = 0 tal que U(¢,0) = U(t) y
U(0) =I. Asi, como |c(t)) = U(t) |¢(0)) podemos escribir la ecuacion (3.1) para U(t) y su condicién
inicial como:

d
iU (t) = (Ho + f(u, )V)U(1) (3.4)

U0) =1.

Ahora bien, normalmente, en vez de usar la representacion de Schrodinger utilizaremos la repre-
sentacion de interaccién, que simplifica bastante la forma de esta ecuacién. En esta representacion
atribuimos dependencia temporal tanto a los operadores como a los vectores de estado, de forma
que:

O(t) = ettt Qe ~itHo (3.5)

@) = e e(1)) - (3.6)
@) = U(t) 16(0)) -

o)

Asi, la expresién (3.4) puede escribirse en la representacién de interaccién de la forma:

i—U(t) = fu, ) V()U(t). (3.8)

Como los pardmetros de control son los que dictan la evolucién del sistema podemos escribir
U(t) como una funcién de esos pardmetros: U(t) = Ulu](t). De esta forma, nuestro objetivo sera
buscar aquellos parametros que hagan que este operador evolucién sea lo mas parecido posible a la
puerta légica objetivo. La perturbaciéon se aplica un tiempo 7', que interesara que sea pequeno.

La busqueda de el valor 6ptimo de estos pardmetros se llevara a cabo mediante la teoria de
control ptimol®l. Esta es la aplicacién al mundo cuédntico de la més general teorfa de control
6ptimo, aplicable en principio a cualquier tipo de sistema y procesol’l. Su aplicacién al problema
que nos ocupa es como sigue: Comenzamos por definir una funcién objetivo (de ahora en adelante,
por simplicidad, dejamos de utilizar la tilde ~ para denotar los objetos en la representacién de
interaccién):

G(u) = J(U)(T)) + Ja(u). (3.9)

La definicion de las funciones J; y Jo se hacen teniendo en cuenta el objetivo de la optimizacién:
buscamos que la funcién G tome valores méximos cuando los parametros implican la consecucién
del objetivo. Asi, J; es una funcién que depende de la forma del operador evolucién temporal en
el tiempo caracteristico T, y que deberd tomar valores maximos cuando este operador sea igual
(o equivalente) a la puerta cudntica buscada. En ocasiones se utiliza una funcién opcional Jy que



penaliza determinadas regiones del espacio de parametros que, por la razén que sea (dificultad para

su utilizacién experimental, etc.), es poco apropiada.

Dado que G(u) tiene que tener un maximo para los pardmetros que hagan que U[u](T") equivalga
a un operador asociado a una puerta légica, tomamos J; como el médulo al cuadrado del producto
de Frobenius entre Ulu](T) y el operador objetivo. El producto de Frobenius entre dos operadores
Ay B se define como:

A-B= %TT[ATB] : (3.10)

siendo d la dimensién de las matrices. Por lo tanto:
J1 = |U[U](T) ) Utarget’2 . (311)

Para operadores unitarios, este producto no puede tomar valores mayores que uno, y valdrd uno
cuando los operadores sean equivalentes, es decir, que se diferencien tnicamente en un factor de
fase global, e. g.: U(T) = eonnget:

p 02
Jl = ’U(T) . Utarget‘2 = |€ ZeUtTarget . Uta’/‘get’2 = | d2 ‘ TT[I]2 =1 (312)

El problema se reduce por lo tanto a la maximizacién de la funcién G(u). Necesitamos un
algoritmo de optimizacién, que en general necesitard de un procedimiento para calcular G(u) vy,
en algunos casos, de un procedimiento para calcular el gradiente de G(u). Para calcular G(u) el
programa, dado un valor fijo T', resuelve la ecuacién (3.8) para los valores iniciales de u, obteniendo
U(T). Hecho esto, calcula J. Si el algoritmo necesita del cdlculo de la derivada de G(u) con respecto
a distintos pardmetros de control, la QOCT nos proporciona la siguiente expresién/®h!:

0G() _ oy [/ ' dta{a(wB*[u](t) VU] + 228 (3.13)
0

Oupm, U, Oup,

donde aparece un nuevo objeto, el llamado coestado Blul(t), definido por las siguientes ecuaciones

de movimiento:

d
i Blul(t) = f(u, )V () Blu(t) (3.14)

Blul(T) = (Utarget(T) - Uul(T'))Utarget (T) -

Estas ecuaciones tienen una gran similitud con las ecuaciones del movimiento para el sistema [ex-
presién (3.4)]: se trata de una ecuacién de Schrodinger en la representacién de interaccién con una
condicion inicial. Ahora bien, esta condicién inicial, en lugar de estar referenciada a tiempo 0 lo
estd a tiempo T, es decir, el tiempo final, lo cual implica que tiene que integrarse numéricamente
hacia atras. Asimismo, es claro que el cédlculo del gradiente implica un coste mayor que el cdlculo
del valor de la funcién.

El cémo se explora el espacio de pardmetros depende del algoritmo de optimizacion. Se ha usado
la libreria NLopt[G]. Los algoritmos pueden dividirse en general de dos maneras: primero, pueden



ser globales o locales. Segundo, pueden requerir el gradiente, o no hacerlo (derivative free).

Los algoritmos de optimizacién globales permiten encontrar el minimo o maximo absoluto de
una funcién dentro de un determinado dominio acotado de parametros. La dificultad de este tipo de
problemas crece exponencialmente con el niimero n de parametros, y por lo general no son sencillos
de resolver. Por otra parte, los algoritmos locales tienen como objetivo encontrar un tinico minimo
local. Pueden existir una gran cantidad de minimos locales: cudl de todos encuentre dependera
tanto del funcionamiento del propio algoritmo como de los pardametros iniciales que se usen para
comenzar la busqueda. Este tipo de algoritmos no suele tener dificultades en ubicar un minimo local,
incluso para problemas de dimensién alta. Los algoritmos de optimizacién locales que garantizan
el encontrar un minimo local desde cualquier punto de partida del espacio de parametros se suelen
denominar globalmente convergentes, lo cual suele dar lugar a confusion.

La otra clasificacién mencionada se basa en si el algoritmo requiere o no el uso de la derivada de
la funcién a optimizar: los algoritmos locales, por ejemplo, suelen requerir el calculo del gradiente
(ademés del propio valor de la funcién), pues es un factor importante para acelerar la eficiencia de
la optimizacién. Esto suele suponer problemas pues la funcién a optimizar no tiene por qué tener
definido el gradiente en todo su dominio (no es nuestro caso) o su célculo no tiene por qué ser
obvio. En este tultimo caso se recurre a técnicas de diferenciaciéon automatica, lo cual supone un
aumento no despreciable en el coste computacional. Sin embargo, si la funcién no es derivable (o
peor, discontinua) se usan los algoritmos derivative-free que solo requieren los valores de la funcién.
Estos algoritmos suelen evaluar la funciéon una gran cantidad de veces y, por ello, suelen ser usados
para la optimizacién (global o local) de funciones con un nimero n de pardmetros no muy grande.

En nuestro caso los algoritmos en los que nos hemos centrado han sido:

» MLSL-LDS(Multi-Level Single Linkage):[7] MLSL es un algoritmo de comienzo multiple. Fun-
ciona lanzando una secuencia de optimizaciones locales en una serie de puntos iniciales es-
cogidos mediante secuencias de baja discrepancia para evitar caer varias veces en el mismo
minimo local. Existen garantias tedricas de encontrar todos los minimos locales en un ntimero
finito de minimizaciones locales. Como algoritmo local puede usarse cualquiera de los incluidos
en la libreria, con o sin el uso de derivadas, siendo el usado por defecto el algoritmo BFGS
(Broyden—Fletcher—Goldfarb—Shanno)[8], que si que requiere el calculo del gradiente.

= CRS-LM (Controlled Random Search with Local Mutation):”) El algoritmo CRS es un algo-
ritmo de optimizacién global que no requiere el uso de la derivada de la funcién a optimizar. Se
basa en métodos puramente heuristicos y comienza generando una serie de puntos distribuidos
de forma uniforme sobre el espacio de busqueda. Este conjunto se va “contrayendo” median-
te la sustitucién de los puntos que dan peor resultado con otros mejores mediante simplex,
similar al algoritmo de Nelder y Mead!['".

» ISRES (Improved Stochastic Ranking Evolution Strategy):'!l Al igual que el anterior, es un
algoritmo de optimizacién global (o al menos semi-global, pues se basa en métodos heuristicos
para escapar de minimos locales) que no requiere el uso de la derivada. Se basa en una
combinacién de una regla de mutacion y una regla de actualizacién similar a la del algoritmo
de Neldel-Mead.['"!



» ESCH (Evolutionary Algorithm): Se trata de una modificacién del algoritmo evolutivo para

optimizacién global desarrollado por C.H de Silva Santos, véase [12].

4. QOCT vs. oscilaciones de Rabi

Antes de comenzar los cédlculos de optimizacion previstos, hemos comprobado la funcionalidad
del c6digo utilizando un sistema de solucién analitica exacta conocida: el sistema de dos niveles. En
este sistema se demuestran las oscilaciones de Rabi y los llamados pulsos-m, que son el mecanismo
habitual utilizado en sistemas de computaciéon cuantica para inducir las transiciones de niveles. En
sistemas con mas de dos niveles, las transiciones mediante pulsos 7, sin embargo, necesitan de un
tiempo largo, ya que solo seran exactas cuando puedan despreciarse las transiciones a niveles no
deseados, gracias a sus diferentes frecuencias de resonancia. Por ello, demostraremos también en
esta seccion como la QOCT permite acortar los tiempos de transicién.

El programa que se ha utilizado se denomina quote y se puede acceder a él a través del siguiente
link: https://gitlab.com/acbarrigon/quote. Los ficheros de entrada necesarios para reproducir los
calculos de este trabajo pueden obtenerse del autor.

4.1. Oscilaciones de Rabi en un sistema de dos estados

La aplicacién de QOCT requiere de sucesivas integraciones de la ecuaciéon de Scrhodinger para
el sistema en cuestién y de sucesivas integraciones de la ecuacién para el co-estado [Eq. (3.14)]. Por
ello, antes de comenzar los calculos de control éptimo, se va a comprobar si los calculos de evolucion
de estados son correctos. Para ello se usara un caso conocido y con solucién analitica de un sistema
muy estudiado y de gran importancia en el campo de la computaciéon cuantica: Las oscilaciones de
Rabi en el sistema cuantico de dos niveles.

Consideremos el Hamiltoniano, Hy de un sistema de dos niveles (|1) y |2)) con energias —< y

20 respectivamente. En base {|1),(2)} la representacién matricial de Hy viene dada como

—wo/2 1
Hy = wo/ 0 = —@0'3 con o, = 0 i (4.1)
0 wp/2 2 0 -1

Introducimos una perturbacién cos(wt + @)V, donde V' se define como

Lo 0

01 0 —
U$:<1 0) O'y:<i 0). (4.3)

Ahora bien, para simplificar los calculos, vamos a tomar 1o € R, de forma que el nuevo Hamiltoniano

0 .
V= ( i MO) = | pol| cos(arg po)oz — |po| sin(arg po)oy (4.2)

siendo


https://gitlab.com/acbarrigon/quote

pueda expresarse Ccomo:

H(t) = Hy + cos(wt + ¢)V = —%02 + po cos(wt + ¢)oy . (4.4)

Como el objetivo es poder comparar si la propagaciéon de estados calculada numéricamente es
correcta, tenemos que encontrar el operador evolucién temporal de forma analitica. Ahora bien, el
Hamiltoniano depende explicitamente del tiempo por lo que no va a ser sencillo. Partimos de un
estado cualquiera C'(t) que evoluciona de acuerdo con la ecuacién de Schrodinger:

Cl (t) d wo
C(t) = 1—C(t) = ——0,C(t) + cos(wt + §)VC(t) . 4.5
<>(@® SO0 = =20.C(1) + cos(wt + HVC() (1.5
Dado que el Hamiltoniano sin perturbar, Hy, es independiente del tiempo, y la perturbacién incluida

no, resulta mas sencillo trabajar en la representacién de interaccién, ya definida en la expresion (3.7).
Asi, definiremos el estado C(t) en la representacién de interaccién como:

c(t) = et o(t) (4.6)

por lo que la expresién (4.5) puede expresarse como:
.d

i—

dt

. d . ,
— Hyc(t)e *Hot 4 ie_ZHOtac(t) = Hyc(t)e 0t 1 cos(wt + ¢)Ve(t)e ot ;. (4.7)

o d .
— ie*’HOt&c(t) = cos(wt + ¢)Ve(t)e Hot

[C(t)e—iHot] = Hoc(t)e—iHot +cos(wt+ ¢)Vc(t)€_iH0t .

Dado que [Hy, e¢o!] = 0 pero [V, e¢H0!] £ 0, el resultado anterior se puede simplificar de la siguiente

forma: d
y — iHot —iHot
e c(t) = cos(wt + @) e ‘Y//(e) c(t), (4.8)
t

donde V(t) no es otra cosa que la forma de V en la representacién de interaccién. Asi, hemos
obtenido una nueva ecuaciéon de Schrédinger, pero librandonos de la componente independiente del
tiempo. Esto coincide con la expresion (3.8) comentada anteriormente.

Necesitamos la expresion matricial de V(t) Para ello debemos obtener primero la representacion
matricial de e?*H0: como Hy es diagonal, e?H0 es trivialmente la matriz diagonal formada por las

exponenciales de los elementos diagonales de Hy, por lo que V tomard el siguiente valor:

0 o _ (<0 Y (0w (@0
= - 0 e’iwot/? 140 0 0 e—iOJ()t/2 =

B 0 Noe_iWOt
- Lo eint 0 ’



La nueva forma de la ecuacién (4.8) es por lo tanto la siguiente:

. d 0 Moe—iwot
zaC(t) = cos(wt + ¢) (,U«Oeiwot 0 ) c(t) . (4.10)
Si escribimos cos(wt + ¢) = 1 (eWH?) 4 eilwi+9));
d 1 0 o [e(@=w0)t+9) | g=il(wtwo)t+e)]
zQC(t) =3 (Mo [6i((w+wo)t+¢) + e—i((w—wo)t—l-d))] 0 c(t). (4.11)

En este punto debemos aplicamos la Rotating Wave Approzimation?] (RWA), que nos permite
eliminar las oscilaciones de alta frecuencia: eliminamos los términos con w 4wy y nos quedamos con

los de w — wy. De esta forma, la expresion anterior se reduce a:

d B 1 0 Moei(6t+¢>)
zac(t) =3 (uoei(6t+¢) 0 c(t), (4.12)

con 6 = w — wy. Esta aproximacion es vélida cuando estamos cerca de la resonancia (w = wp), y
el tiempo total de acciéon de la perturbacion es lo suficientemente largo como para descartar los
términos de alta frecuencia.

Para eliminar la dependencia temporal realizamos un dltimo cambio de representacion:

di(t)\  [e2te(t)
(dz(t)) B (eigtcl(t) ) (4.13)

Asi, la forma de la expresién (4.12) es

d 1 d Ho pidp
z&d(t) =3 <Mo§—i¢ 2_§ ) da(t) . (4.14)
2 2
Si definimos 77 como . ) )
- [ = _ - - 4.1
7 <2uocos¢, 2#0€OS¢,25> (4.15)

podemos reescribir esta expresién de la siguiente forma:

d
i—d(t) =71-dd(t). (4.16)
dt
Al ser 7 - ¢ independiente del tiempo, podemos escribir directamente la solucién como: d(t) =
exp[—in - 5t]d(0). Para desarrollar la exponencial, como esta vez la matriz no es diagonal, utilizamos

la siguiente identidad valida para las matrices de Pauli:

T — [ cos(at) + i(7 - &) sin(at) con ¢ = (0g,0y,02), (4.17)



y llegamos a:

t .5 . t . i . t
d(t) = (cos (%0) — iy sin (7) —z%e‘%m (%) (4.18)

. —id . t t .5 . t
—z%e @sin (&) cos (&) + iy sin (‘;))
donde p = 2|ii| = \/6% + uj. Podemos ahora deshacer el cambio de variables anteriores [Eq. (4.14)],
escribir la ecuacién para c(t), y obtener finalmente el correspondiente operador evolucién:

o foos () —ifn ()] et [ () (4.19)

e—i5t [—i%e_i‘z’ sin (715 ] ei5t [COS (%t) + Z% sin (%t)}

Para comparar los célculos realizados con los resultados numéricos, que expondremos mas ade-
lante, calculamos la probabilidad de encontrar el sistema en el estado |2), asumiendo que el sistema
parte del estado |1). Asi, si |¢(0)) = |1), tendremos que |p(t)) vendrd dado por:

por lo que la probabilidad de encontrar |p(t)) en el estado |2) es:

2
Py_s(t) = </LO> sin’ ('f) Con p =/ (w —wo)? + ui. (4.21)

Esta expresién se denomina férmula de Rabil'¥l y nos dice que la ocupacién del estado |2) oscila
con el tiempo, siendo la ocupacién maxima (uo/p)?. La situacién mas interesante se da cuando esta
ocupacién vale 1, lo cual solo puede ocurrir si § = 0, es decir, w = wy. Esto implica que la frecuencia
de oscilacién de la perturbacién coincide con la frecuencia caracteristica del sistema (diferencia de

energia entre los dos niveles). A esto se le llama condicién de resonancia.

De esta forma, peridédicamente, la ocupacién se invertird con respecto a la inicial. Si en es-
ta situacién detenemos la perturbacién habremos conseguido que el sistema pase del estado |1) al
|2}, lo cual se da cuando t = t, = % La perturbacién resultante en este caso se denomina 7 —pulse.

Si damos valores numéricos tal que wg = 1 y pg = 0.1 podemos lanzar distintas simulaciones
para distintos valores de w y ver si coincide con los resultados tedricos. Asi, si tomamos w ={0.75,
1.0, 1.1} deberfamos obtener oscilaciones de la ocupacién en |2) con frecuencia § ={0.1346, 0.050,
0.0707} y valor maximo de 0.138, 1 y 0.5 respectivamente, debiendo darse la inversién total en el
caso de la resonancia en 107. El resultado obtenido se muestra en la figura 4.1. Vemos que, efecti-

vamente, el cdlculo numérico se corresponde con la solucién analitica.
El fenémeno de resonancia junto con el concepto de m — pulse puede relacionarse con otro
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Oscilaciones de Rabi para distintas frecuencias de la perturbacion
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Figura 4.1: Solucién numérica a las oscilaciones de Rabi para distintos valores de w.

concepto visto anteriormente: la puerta bit— flip, pues la aplicacién de esta puerta a un g-bit invertia
el estado de este. Si calculamos el operador evolucién temporal de nuestro sistema perturbado en
tiempo t, obtendriamos que |U(ty) - Upit— fhp\z = 1. Vedmoslo: si aplicamos a la expresion 4.19 la

condicién de resonancia (6 =0 — u = pp) obtenemos que el operador evolucién temporal viene

U(t)=< cos (%) —iet?sin (5 )) (4.22)

—ie— qu)SlH(lg) cos (& )

dado como:

Como hemos visto antes, el pulso-7 se define para t, ul por lo que en este caso la anterior
ecuacion se reduce a:
—ie’
Ulty) = ( is ) (4.23)
—ie
Escogiendo ¢ = 0 obtenemos que U(tyx) = —iUpit— f1ip. Ambos operadores son equivalentes, pues

unicamente se diferencian en un factor de fase. Concluimos por lo tanto que el pulso-7 en un sistema

de dos niveles implementa la puerta bit-flip.

4.2. 7-pulse vs QOCT

En el apartado anterior hemos visto que los pulsos-m permiten manipular facilmente los estados
cudnticos de un sistema de dos estados. Vamos ahora a ver como generalizar esta idea a sistemas
més grandes, por ejemplo un sistema de cuatro estados (|0), |1), |2), |3)). Utilizando tnicamente
pulsos-7, trataremos por ejemplo de llevar el estado |p(0)) = |0) al estado |¢(t finar)) = %(\OH— 13)).
El Hamiltoniano que utilizaremos es:

-2 0 0 0
0 —-12 0 0

Hy = , 4.24
0 0 0 —05 0 (4.24)
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y estd escogido para que las frecuencias caracteristicas sean distintas entre si:

w1 = EQ — E1 =0.8 (4.25)
wy =F3—FEy=0.7 (4.26)
w3 = E4 - E3 =1.0 (427)

La forma de la perturbacién que hemos usado es:

(4.28)

O = O =

0
1
0
1

S O = O
S = O O

Es decir, asumimos que los estados solo se acoplan con sus niveles vecinos. Ademds, la magnitud
del acoplo es igual para todos.

En el apartado anterior se ha probado que es posible usar pulsos-7 para modificar de manera
controlada el estado cudntico del sistema. Como solo habia dos niveles de energia no existia el
riesgo de que el estado final se contaminase con otros estados del sistema. Sin embargo, en este caso
tenemos cuatro niveles de energia distintos y queremos que el estado final sea una superposicién de
unicamente dos de ellos. Para encontrar la perturbacién adecuada de forma analitica usaremos el
fenomeno de la resonancia: si la longitud de los pulsos-7 es lo suficientemente grande (esto equivale
a que la amplitud de la perturbacién sea pequena) solo se verdn afectados los dos niveles con la
separacion de energia adecuada (w;). Esta idea es la misma en la que se fundamenta la RWA.

De esta forma, podemos alterar la ocupaciéon de estados contiguos usando la aproximacién a
dos niveles sin miedo de que el estado final se vea contaminado por niveles de energia no deseados.
Asi, por ejemplo, para inducir la transicién deseada, podemos emplear el siguiente protocolo: Si
inicialmente el sistema esta en el estado |0), podemos disminuir la ocupacién de este estado mediante
la aplicacién de un pulso de frecuencia wy y debemos aplicarlo hasta que la ocupacién del estado
|0) sea la deseada, en nuestro caso 0.5. A partir de los resultados mostrados en el apartado anterior
sabemos que para una perturbacién sinusoidal de frecuencia w y amplitud A se produciré la inversion
total si w = w; y aplicamos el pulso un tiempo ¢ = % por lo que, si queremos que la ocupacién
sea del 50 % para cada estado, habrd que aplicarlo la mitad del tiempo. A esto suele denominarse
pulso-5 y denotaremos el tiempo de aplicacién como tr = -

Tras aplicar este pulso tendremos que |p(tz)) = %(\O) + |1)). El siguiente paso consiste en
intercambiar el estado |1) por el |2). Esto es sencillo de hacer aplicando un pulso-7 de frecuencia
wy un tiempo t,. Lo mismo para pasar del |2) al |3).

En resumen, la perturbacién que hay que aplicar a Hj serd, en base inicamente al concepto de
pulso-7:
Asin(wi?)V, sit <tz
W(t) = < Asin(wat)V, si tz <t <3tz (4.29)
Asin(wst)V, si 3tz <t <5tz
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Transicion basada en pulsos-pi con lambda = 104 Transicion basada en pulsos-pi con lambda = 0.025
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Figura 4.2: Ocupacién de cada nivel en una transicién del estado |¢(0)) = |0) al %(K)) + 13))
mediante pulsos-7 para (a) A = 107* y para (b) A = 0.025

En un primer célculo, hemos tomado la amplitud A = 10~*. Representamos la ocupacién en
funcién del tiempo en la figura 4.2a. Vemos que, efectivamente, el estado final es el deseado y, en
concreto, las ocupaciones de los estado |0) y |3) son, respectivamente, 0.50005 y 0.49995. Ahora bien,
como hemos comentado, interesa que las puertas 1égicas sean lo méas rapidas posibles pues los estados
cudntico no permanecen eternamente. Si queremos acelerar las puertas pero utilizando este tipo de
protocolos basados en pulsos-7, debemos aumentar el valor de A\, que es el que regula el tiempo de
aplicacién de la perturbacién. Si tomamos A = 0.025, por ejemplo, tal que t ;4 = 107, obtenemos la
grafica mostrada en la figura 4.2b. El resultado obtenido es claramente peor: se observan oscilaciones
en la ocupacién debido a la contaminacién del resto de estados!. La ocupacién final de los estados
|0) v |3) es 0.504 y 0.434 respectivamente.

Para poder obtener resultados comparables a los de la figura 4.2a pero con tiempos de transicién
similares a los mostrados en la figura 4.2b, debemos utilizar pulsos més complejos que los pulsos-7.
Para encontrar tales pulsos, hemos utilizado la teoria de control é6ptimo desarrollada anteriormente.
Utilizaremos el mismo tipo de perturbacién que en la expresién (4.29); sin embargo, en lugar de
aplicar cada pulso uno detras de otro y con la misma amplitud, se permitird que varie tanto la
amplitud (entre 0.0 y 0.1) como la fase (entre —7 y 7) y se aplicaran simultaneamente. Ademads, no
solo se usardn pulsos de frecuencia w; (siendo i = {1, 2, 3}), sino también frecuencias proporcionales
a estas, en concreto, 2w; y 0.5w;. La perturbacion resultante deja de ser, obviamente, un pulso-7.

Su forma genérica es:

3
FHui}, ) Z U SID(wint + Um49) +

m=1

(4.30)
+ U3 SIn( 2wt + Umt12) +

+ Um+6 sin(0.5wmt + um+15)] .
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Frecuencia H Amplitud -10~3 | Fase -10~2

w1 71.18 0.039
wo 83.66 -314.16
w3 50.34 313.95
2w1 100.00 314.16
2w2 100.00 312.62
2ws3 100.00 314.16
0.5wy 0.00 -117.97
0.5wa 2.87 91.13
0.5ws3 78.66 0.066

Tabla 4.1: coeficientes éptimos de la perturbacion aplicada
en la transicién de |¢(0)) a |¢(t))

La tarea del algoritmo de optimizacién basado en la QOCT es, por lo tanto, encontrar los parametros
{u;} 6ptimos que inducen la transicién deseada. Estos se incluyen en la tabla 4.1, ordenados para
cada uno de los pulsos y separando los parametros de amplitud y fase.

Como curiosidad, la frecuencia 0.5w; presenta amplitud nula: realmente, la perturbacién final
se compone de la suma de ocho funciones sinusoidales y no nueve. Si ahora hacemos lo mismo que
en los dos casos anteriores y representamos la evolucién de la ocupacién de cada uno de los estados
con el tiempo obtenemos la grafica mostrada en la figura 4.3. Si bien es cierto que la transicién
entre estados es més compleja (pues la propia perturbacién también lo es), debemos centrarnos en
el objetivo: el estado final objetivo, sin contaminaciéon de estados indeseados. Las ocupaciones de
los estados |0) y |3) son 0.496 y 0.503: aunque no son tan buenos como en el caso de la figura 4.2a,
son mejores que los de la figura 4.2b, pues la ocupacién de los otros dos estados es relativamente
baja (7.003 - 10~* para el estado |1) y 8.875- 1075 para el |2)).

Concluimos por lo tanto que esta metodologia basada en la QOCT permite encontrar pulsos
complejos capaces de acelerar los tiempos de transicién, con respecto a los tiempos necesarios
mediante los protocolos basados en pulsos-.

5. Eleccion de parametros y métodos de optimizacion

Ahora que se ha confirmado que la teoria de control éptimo es el camino més adecuado a seguir
debemos fijar una serie de parametros que pueden afectar a los resultados obtenidos y al tiempo de
computacion para llegar a ellos. Estos son: (1) el algoritmo de optimizacién a usar, (2) los rangos en
los que el programa puede modificar los pardmetros de control, y (3) el tiempo total de aplicacién
de la perturbacién. Los siguientes apartados se centran en cada uno de estos aspectos.

5.1. Algoritmos de optimizacién

NLopt es una biblioteca que incluye diversos algoritmos de optimizacién, tanto globales como
locales. Nos hemos centrado en los algoritmos de optimizacién globales. El objetivo de esta seccion
es determinar cual de todos ellos es el mas eficiente, pues este serd el que usaremos para el resto de
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Transicion basada en calculos de QOCT
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Figura 4.3: Ocupacién de cada nivel en una transicién del estado |0) al %QO) + |3)) mediante
mediante una perturbaciéon obtenida con QOCT.

las simulaciones.

Tras realizar distintas pruebas para un mismo problema, pero utilizando distintos algoritmos, se
ha obtenido que los més eficientes son los que se mencionaron en el apartado introductorio: MLSL-
LDS, CRS-LM, ISRES y ESCH. Para poder comparar cada uno de estos algoritmos de forma cémoda
NLopt incluye una funcién que permite detener la bisqueda de parametros cuando el valor de la
funcién a optimizar llega a un determinado valor. Asi, en base al cédlculo de J [Eq. (3.9)], hacemos
que el algoritmo se detenga para tres valores distintos de éste (recordando que el éptimo es cuando
J = 1). En este caso, el problema a resolver es la generaciéon de una puerta Control-phase, con
m=6y 7T = 100m.

= Si detenemos el algoritmo de optimizacién cuando J > 0.995 obtenemos los resultados que
se muestran en la tabla 5.1. En este caso solo dos algoritmos han llegado al limite impuesto:
ESCH y MLSL, siendo el primero el que menos tiempo (e iteraciones) ha requerido. Mientras
tanto ISRES no ha conseguido alcanzar un valor de J superior a 0.995 y por ello se ha detenido
a las 10000 iteraciones, otra de las condiciones de parada. Por iltimo CRS tampoco ha llegado
al valor de 0.995 y se ha detenido antes incluso de llegar al limite de iteraciones. Esto se debe
a que otro criterio de parada se basa en el estudio de la variacion de J entre iteraciones de
forma que, si esta es menor que un determinado valor, el proceso de optimizacién se detiene

pues detecta que se ha quedado atrapado en un minimo (local o no).

= Si detenemos la optimizaciéon cuando J > 0.9995 el resultado, por lo que respecta a criterios
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| Algoritmo || Iteraciones | Tiempo [s] | J

CRS-LM 8027 390 0,974891
MLSL-LDS 3416 759 0,995946
ISRES 10000 475 0,964021
ESCH 2922 138 0,995453

Tabla 5.1: Resultados del proceso de optimizacién
deteniendo el programa para J > 0.995

’ Algoritmo H Iteraciones | Tiempo [s] ‘ J
CRS-LM 4540 220 0,928494
MLSL-LDS 4769 1044 0,999601
ISRES 10000 484 0,953946
ESCH 1995 96 0,999505

Tabla 5.2: Resultados del proceso de optimizacién
deteniendo el programa para J > 0.9995

de parada y orden de tiempo de cédlculo es similar al caso anterior. ESCH y MLSL son los
Unicos en alcanzar la condicién de J siendo los otros dos algoritmos incapaces de lograrlo.
Para estos iltimos los resultados son incluso peores que en el caso anterior: CRS ha finalizado
la optimizacién, de nuevo, en un minimo local (los valores numéricos se muestran en la tabla
5.2).

= Por ltimo, si el programa se detiene para J > 0.99999 ninguno de los algoritmos llega al
objetivo (posiblemente porque el nimero de frecuencias sea demasiado pequeno y ni siquiera
sea posible). Ahora bien, el que mejor resultado ha obtenido es MLSL siendo también el que
mas tiempo ha requerido. Por tercera vez, el unico algoritmo que ha terminado de forma

prematura es CRS.

Tras analizar estos resultados vemos que, dependiendo de cémo de buena queremos que sea
nuestra puerta légica, nos interesa usar un algoritmo u otro: para valores de J bajos, el que mejor
resultado ha dado es ESCH; en cambio, para valores altos de J, el mejor resultado ha sido obtenido
por el algoritmo MLSL. Cabe destacar, ademds, que tras lanzar distintas simulaciones se ha obser-
vado que, para valores de J muy cercanos a 1 (los que nos interesa obtener) el tinico algoritmo que
ha mostrado una reproducibilidad de los resultados obtenidos en distintas simulaciones es MLSL.

] Algoritmo H Iteraciones \ Tiempo [s] \ J ‘
CRS-LM 5724 275 0,979969
MLSL-LDS 10000 2248 0,999962
ISRES 10000 483 0,963453
ESCH 10000 496 0,999769

Tabla 5.3: Resultados del proceso de optimizacién
deteniendo el programa para J > 0.99999
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Variacion de J para e algoritmo MLSL-LDS
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Figura 5.1: Variacién de J con el nimero de iteraciones para los cuatro algoritmos estudiados. En
este caso el programa se detiene cuando se llega a un valor de J > 0.9. (a) muestra como varia J
para el algoritmo MLSL, (b) para CRS, (c) para ISRES y (d) para ESCH.

Otros algoritmos, como ESCH o CRS, presentan distintos resultados, a pesar de reiniciarse con
los mismo parametros iniciales. Ello implica que tienen mayor tendencia a quedarse atrapados en
minimos locales. Concluimos por lo tanto que conviene escoger MLSL para realizar las simulaciones
finales pues, incluso para parametros iniciales aleatorios suele llegar a resultados similares.

En la figura 5.1 mostramos la variaciéon de J con el niimero de iteraciones. Uno de los fenémenos
méas destacables que se observan son las distintas optimizaciones locales que realiza el algoritmo
MLSL antes de llegar al valor de J requerido.

Antes de finalizar el estudio de estos algoritmos cabe comentar el hecho de por qué MLSL es el
que mas tiempo de calculo requiere. Tal como se dijo en el apartado introductorio éste es el tinico
algoritmo que se basa en el uso del gradiente por lo que en cada iteracion se calcula el resultado de
la expresién (3.13), lo que requiere una propagacién del coestado desde tiempo 7" hasta tiempo 0.
Esto supone doblar el niimero de propagaciones que normalmente se requieren en otros algoritmos
para calcular la forma del pulso, lo cual se refleja en un aumento del tiempo de célculo.
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5.2. Amplitudes y tiempo de propagacién

Existen determinados parametros que vamos a fijar en las optimizaciones: El ntimero de fre-
cuencias incluidas (m), el tiempo de aplicacién de la perturbacién (T') y el rango de variacién de
las amplitudes (que ird desde 0 hasta A). También tenemos el rango para las fases pero este va
siempre de m a —7 y no tendria sentido restringirlo. En este apartado vamos a determinar unos
valores razonables para el valor de T'y de A, pues la buisqueda del mejor valor de m se realizara de
forma independiente para cada una de las puertas légicas que modelizaremos.

Para ello se han lanzado distintas simulaciones que tienen como objetivo encontrar la perturba-
cién mas adecuada para generar la puerta CNOT, recordando siempre que la perturbacion ideal es
aquella que requiere del menor nimero de frecuencias distintas, de la menor amplitud posible (ya
que experimentalmente es més sencillo trabajar con pulsos simples y amplitudes bajas), y del mini-
mo tiempo de propagacion (esto es asi porque los estados cudnticos no se mantienen eternamente vy,
si el pulso es demasiado largo, puede que el estado en si desaparezca antes incluso de que el pulso
termine de aplicarse). Para asegurarnos de que la bondad de cada combinacién de A y T' no depen-
de de m se han realizado 12 simulaciones distintas para cada combinaciéon de A y T'. Los posibles
valores de m y las frecuencias incluidas se dividen en tres tipos: los que solo incluyen una tnica
frecuencia natural del sistema (obviamente existen 3 posibilidades para este tipo de perturbacién),
los que incluyen las tres frecuencias naturales y proporcionales a estas (de las que se han probado
4 posibilidades) y las que incluyen las mismas tres frecuencias naturales y proporcionales solo a ws,
pues es la que mejor resultado ha dado en el caso de una sola frecuencia para la puerta CNOT. De
este ultimo tipo se han probado 5 posibilidades.

Asi, primero se ha fijado el valor de T" a 1007 y se han lanzado varias simulaciones disminuyendo
cada vez mas el valor maximo de A (0.5,0.1 y 0.01). Analizando los resultados de la tabla 5.4 se
deduce que, si incluimos una unica frecuencia, es mejor el caso de A = 0.5. Sin embargo, si anadimos
més (para acercarnos a 1), los resultados son bastante similares con el caso de A = 0.1. Dado que
para A = 0.01 el resultado es claramente peor, el mejor valor de A en este caso es 0.1 que, de
momento, presenta el menor valor de A con el mayor valor de J.

Para determinar si el valor de T es también el mas adecuado se lanza un nuevo conjunto de
simulaciones fijando A en 0.1 y variando el tiempo de aplicacién del pulso. En concreto, los valores
que se han probado para 1" son 107, 207 y 10007. La tinica combinacion que se acerca a los resultados
del caso anterior (A = 0.1, T'= 1007) es la ultima, y solo es asi porque el tiempo de aplicacién de
la perturbacion es absurdamente mayor, lo cual supone un tiempo de cédlculo bastante mas largo.
Podriamos aumentar la amplitud para mejorar los resultados, pero como tampoco queremos que sea
muy grande nos quedamos con la combinacion inicial. Destacar que los resultados en los que J > 1
son producto del error numérico, que es del orden de 10~° pues, por la definicién del producto de
Frobenius, J nunca puede ser mayor que uno.

6. Resultados

Una vez establecido el procedimiento (algoritmo de optimizacién, limites para las amplitudes,

fases, frecuencias, etc.) fijamos el rango en la optimizacién de la amplitud en A = 0.1 y tomamos un
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frecuencias T = 1007 A=0,1

A=0,5 ] A=0,1 [A=0,01 | T=10x | T =20x | T = 10007

w1 0,352788 | 0,335134 | 0,250000 || 0,250000 | 0,518830 | 0,483822

ws 0,701796 | 0,315768 | 0,250000 || 0,250000 | 0,356150 | 0, 406484

w3 0,846953 | 0,633009 | 0,510536 || 0,578666 | 0,551055 | 0,904985

wj 0,997450 | 0,989045 | 0,510620 || 0,587258 | 0,728764 | 0,995046

Wi, 2w 0,999380 | 0,998755 | 0,518394 || 0,654451 | 0,874045 | 0,996637

wi, 2w;, 0.5w; 0,999974 | 1,000003 | 0,550214 || 0,980311 | 0,988027 | 1,000019

wi, 2wi, 0.5w;, 3w; 0,999945 | 0,999827 | 0,550183 || 0,980241 | 0,992616 | 0,999245

o, 2w 0,908456 | 0,998868 | 0,512167 || 0,604162 | 0,776458 | 0,997579

Wi, 2ws, 0.5w3 0,999997 | 0,999874 | 0,512208 || 0,705163 | 0,836853 | 0,997319

wi, 2ws, 0.5ws3, 3ws 1,000009 | 0,998794 | 0,512800 | 0,722267 | 0,836897 | 0,997441

wi, 2ws, 0.5ws, 3ws, 0, 25w3 0,999599 | 0,999878 | 0,526544 || 0,870850 | 0,962048 | 0,997645

wi, 2w, 0.5ws, 3ws, 0,25ws, dws || 0,999982 | 0,999883 | 0,526436 || 0,872760 | 0,964550 | 0,998112

Tabla 5.4: Valor obtenido de J para para distintas combinaciones de A y T'. w; hace referencia a las
tres frecuencias naturales del sistema pues ¢ = {1, 2,3}

tiempo total de propagacién de T' = 1007. Usando el algoritmo MLSL, lanzamos varios procesos de
optimizacion con distintas combinaciones de frecuencias (las usadas en la tabla 5.4) para buscar los
parametros 6ptimos que modelizan cada una de las puertas. Igual que en el caso anterior, la forma
matricial del hamiltoniano no perturbado estd dada por la Eq. (4.24), mientras que la perturbacién
V estd dada por la Eq. (4.28). Se incluyen a continuacién los resultados obtenidos para cada una
de las puertas analizadas.

6.1. Puerta Controlled-NOT

En el apartado de introduccién a la computacion cudntica ya se ha explicado el funcionamiento de
la puerta CNOT, por lo que pasamos directamente a la exposicion de los resultados. La perturbacién
optima se da para m = 7, apareciendo en la tabla 6.1 la combinacién de frecuencias resultante, que
da lugar a un valor de J esencialmente igual a uno. El hecho de que J sea levemente mayor que uno
se debe, como hemos dicho antes, a error numérico. Destacar que, de las tres frecuencias naturales
del sistema, es w3 la de mayor amplitud, pues esta se asocia con la diferencia de energia entre los
estados |2) y |3), que son los tnicos que se ven afectados al aplicar la puerta CNOT. La figura 6.1
incluye la representacion del pulso en su tiempo de aplicacién.

- - 3 Pulso dptimo para una puerta CNOT
’ Frecuencia H Amplitud -10™ ‘ Fase ‘

w1 20.94 0.54 L Ll W
wy 20.07 -1.81 o1k
w3 92.37 0.54 3 o
2w, 100.00 2.08 E 01
2w2 60.63 -1.97 02 I
0.5w; 53.84 2.82 :gj I |
0.5ws 91.32 -0.84 o % 10 10 om0 20 30
Tiempo
Tabla 6.1: Parametros del pulso para generar una Figura 6.1: Perturbacién aplicada para ge-
puerta CNOT nerar la puerta CNOT
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6.2. Puerta Controlled-Z

La puerta Control-Z esta definida por:

|0) = 100) — |00) = [0) —Ht— 100 0

1) = 101) — [01) = [1) — 010 0
UControl—Z =

12) = [10) — [10) = [2) I 001 0

13) =]11) — —[11) = —|3) 4 = 000 —1

Asi, si el primer g-bit estd en el estado |0), el estado en el que se encuentra el segundo g-bit no
se ve alterado. Sin embargo, si el primer g-bit estd en el estado |1) se aplica o, al segundo g-bit, por
ello a esta puerta se le denomina Control-Z. Vemos que la representacion matricial es diagonal y
que, por tanto, la ocupacién de cada nivel tras la aplicaciéon de esta puerta no cambiara, pues esta
es el modulo al cuadrado del coeficiente asociado a cada nivel en el estado cudntico.

Los valores {u;} obtenidos se incluyen en la tabla 6.2, que dan lugar a la puerta deseada con J =
1.000007. Como vemos, en este caso m = 5, menor que para la puerta CNOT, debido, posiblemente,
a que al no tener que modificar la ocupacién como tal sea mds sencillo generarla. Ademas, las
amplitudes de cada una de las frecuencias también son menores que en el caso de la CNOT. La
grafica que muestra el pulso resultante se incluye en la figura 6.2.

Pulso 6ptimo para una puerta CONTROL-Z

Frecuencia | Amplitud -1073 ‘ Fase ‘ g::: | :
w1 14.46 0.59 0.2 H
ws 60.69 2.07 2 o1
w3 0.127 2.57 £ 0
2ws 31.59 -2.92 01
3w 78.33 -1.25 ool
0 50 100 150 200 250 300

Tiempo
Tabla 6.2: Parametros del pulso para generar una Figura 6.2: Perturbacion aplicada para generar

puerta CONTROL-Z la puerta CONTROL-Z

6.3. Puerta Controlled-Y

La puerta Control-Y se caracteriza de la siguiente forma:

) = [00) — [00) = |0) 4T; 10 0 O
1) =01) — [01) = |1) Uoominy = 01 0 0
12) = [10) — ¢ |11) = |3) 00 0 i
13) = [11) — —i |10) = —i |2) Y 00 — 0
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Basicamente se basa en el mismo principio que la puerta Control-Z siendo la principal diferencia
el hecho de que si el primer g-bit se encuentra en el estado |1) se aplica la matriz de Pauli o, en lugar
de o.. Esto hace que la representacion matricial deje de ser diagonal y se requiera una perturbacion
con m mayor, en concreto m = 7. Los pardmetros obtenidos aparecen en la tabla 6.3 y el valor de J
resultante de estos es J = 1.000002. Al igual que ocurria con la puerta CNOT ES ws la frecuencia
natural de mayor amplitud, pues estd asociada a los estados cuya ocupacién se ve modificada. El

pulso resultante se muestra en la figura 6.3.

Pulso 6ptimo para una puerta CONTROL-Y

Frecuencia H Amplitud -1073 ‘ Fase ‘ 0.3 | | | I I -
w1 21.98 -0.36 02
wa 19.89 -2.67 g ™
w3 93.77 -1.93 j;;‘ 0
201 100.00 1.43 01 I
0.5w1 86.79 3.14 02r 1
0.5ws3 68.89 -1.16 R E i . . . ]
0 50 100 150 200 250 300

Tiempo

Tabla 6.3: Parametros del pulso para generar una Figura 6.3: Perturbacion aplicada para generar
puerta CONTROL-Y la puerta CONTROL-Y

6.4. Puerta SWAP

La puerta SWAP se caracteriza de la siguiente forma:

Uswap =

oS O O
o = O O
S O = O
— o O O

La utilidad de esta puerta se basa en el hecho de que permuta los estados cuanticos de los
dos g-bits de entrada. En estados puros de dos g-bits esto se traduce en que los estados |0) y
|3) quedan inalterados mientras que el |1) y el |2) se cambian entre si. La perturbacién necesaria
en este caso es de m = 9 (la mayor hasta ahora) y, a diferencia de las puertas anteriores, las tres
amplitud de las componentes asociadas a las frecuencias naturales del sistema son bastante grandes,
es decir, no existe una que claramente predomine sobre las otras dos. Estos parametros, asi como
la representacién del pulso obtenido, se incluyen en la tabla 6.4 y gréifica 6.4 respectivamente. El

valor obtenido para J es en este caso 1.00003.
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Frecuencia H Amplitud -1073 ‘ Fase

w1 69.13 0.43
wa 78.10 0.89
w3 99.96 1.47
2w1 100.00 -0.83
2w9 0.76 -1.41
2ws3 100.00 -2.58
0.5wy 74.41 2.27
0.5wa 0.02 2.08
0.5ws3 63.24 2.29

Pulso 6ptimo para una puerta SWAP

0.3
0.2

0.1 f

Amplitud
o

-0.1 |r
-0.2 fir

-0.3 -

0 50

100

150

200

Tiempo

250

300

Tabla 6.4: Parametros del pulso para generar una Figura 6.4: Perturbacion aplicada para generar

puerta SWAP

6.5. Puerta

la puerta SWAP

Una variante de la puerta SWAP es la puerta vSWAP. Su nombre se debe a que la aplica-
cién sucesiva de dos puertas de este tipo equivalen a la aplicacién de una puerta SWAP, es decir:

VSWAP+/SWAP = SWAP. La expresién matricial serd, por tanto, la siguiente:

0) — 0)

1) — S10+0) 1) + (1) 2]

2) — {1 =) 1)+ (1 +1) [2)]

3) — 13)

U VSWAP —

o O O =

N[ = N |—=
—~~

—_ =

_ o O O

Teniendo en cuenta que el pulso de la puerta SWAP es, hasta ahora, el que mas frecuencias ha

necesitado que incluyamos, es esperable que la puerta

SWAP no sea una excepcion y efectivamente

no lo es, pues se ha requerido un pulso de m = 14 (cuyos pardmetros se incluyen en la tabla 6.5)

para que J = 1.00009. Igual que ocurria antes no existe ninguna frecuencia natural que predomine

sobre las demés. La representacion grafica del pulso con el tiempo se incluye en la tabla 6.5.
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Tabla 6.5: Parametros del pulso para generar una Figura 6.5: Perturbacion aplicada para generar

puerta

Frecuencia H Amplitud -1073 ‘ Fase

w1 77.28 -0.79
w2 67.60 247
w3 66.03 -1.70
2wy 100.00 -1.70
2ws3 100.00 -2.46
0.5w1 0.007 1.40
0.5wy 99.83 2.18
0.5w3 78.60 -0.94
3wy 100.00 -1.23
3w 87.54 0.40
3ws 100.00 -1.23
0.25w1 75.42 1.92
0.25wo 81.96 -0.16
0.25ws 72.17 3.14

SWAP

Pulso 6ptimo para una puerta raiz SWAP

Amplitud

la puerta

50 100 150 200
Tiempo

SWAP

250 300

6.6. Controlled-phase

La ultima puerta que se va a modelar es la Control-Phase, su funcionamiento se muestra a

continuacion:
|0) = 100) — [00) = |0) 10 0 0
1) =|01) — |01) = [1) 0100
Control-¢ =
12) =]10) — |10) = |2) S 0010
13) = |11) — i [11) =i |3) 000 ¢

Al igual que todas las puertas de Control solo aplica un operador determinado al segundo g-bit
si el primero esta en el estado |1). En este caso aplica el operador Ry con ¢ = § definido como

10
Ry = A

Si ¢ = 7 se denomina puerta 7 mientras que si ¢ = 7 se corresponde con la puerta Control-Z.

(6.1)

Al igual que ocurria con la puerta Control-Z la probabilidad de medir cada estado no cambia al
aplicarla. En su lugar equivale a “rotar” el segundo g-bit. Los pardmetros resultantes de la optimi-
zacion se incluyen en la tabla 6.5 mientras que la representacién del pulso aparece en la gréfica 6.5.
El valor de J obtenido con este pulso es 1.00001.
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Pulso éptimo para una puerta CONTROL-phase

0.3 T T T T T T
Frecuencia H Amplitud -1073 ‘ Fase ‘ 02 |
Wi 16.37 0.96 o1 ; }
wo 86.21 -1.49 ;?1 .
2w1 74.31 -2.98 g o |
Qw9 78.26 -0.85 '
203 100.00 0.13 0.2 1
-0.3 1 1 1 1 1 1
0 50 100 150 200 250 300

Tiempo

Tabla 6.6: Parametros del pulso para generar una Figura 6.6: Perturbaciéon aplicada para generar

puerta CONTROL-Phase la puerta CONTROL-Phase

7. Conclusiones

A lo largo de este documento se ha conseguido mostrar que la teoria de control éptimo permite,
efectivamente, calcular la forma de las perturbaciones que debemos introducir en un sistema de 4
niveles para que este se comporte como una puerta logica. Hemos establecido unas formas funcionales
determinadas para los pulsos. En este trabajo se han establecido de forma arbitraria, pero cabe la
posibilidad de hacerlo de manera que sean compatibles con las posibilidades experimentales: en
determinados casos los pulsos resultantes pueden ser bastante complejos y no realizables en la
practica. Si es posible aumentar el tiempo de aplicacién de la perturbacién o la amplitud maxima
de ésta, puede merecer la pena a cambio de simplificar el pulso.

Asimismo, hemos analizado la eficiencia de varios algoritmos de optimizacién global, que forman
parte del procedimiento de la teoria de control éptimo cuantico. Hemos concluido que, para el tipo
de problemas estudiados, el algoritmo MLSL [7] ha resultado ser el mas adecuado.

Hemos visto también que, aumentando el tiempo de aplicacién de la perturbacién, es mas facil
obtener pulsos que realizen la puerta cuantica requerida con un niimero menor de frecuencias. Si
aumentamos el valor maximo de la amplitud a la hora de buscar los parametros 6ptimos sucede
lo mismo pero, de nuevo, la posibilidad de aumentar la amplitud debe ajustarse a la capacidad
experimental.

En este caso solo se han buscado los pulsos necesarios para generar puertas de 2 g-bits. Sin
embargo, el mismo proceso se puede seguir para las de 1 ¢-bit (como se ha mostrado en el caso de
las oscilaciones de Rabi en un sistema de dos niveles) y para las de 3 o mas. El tinico factor a tener
en cuenta es que aumentar el niimero de g-bits supondria aumentar o la complejidad del pulso o,
de nuevo, el tiempo de aplicacién de este. Asi, independientemente del niimero de g-bits con los
que trabajemos, siempre tenemos que cuidar el equilibrio entre la complejidad del pulso, el coste
computacional que tiene calcularlo, el tiempo méaximo de propagacion y el tiempo de coherencia del

estado cudntico.
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Anexo 1: Centro de supercomputacién de Aragon

Un ordenador doméstico requiere demasiado tiempo de computacién para realizar los calculos de
optimizacion. Por ello se ha utilizado el cluster cierzo, alojado en Caesaragusta, un superordenador
situado en el BIFI (Instituto de Blocomputacién y Flsica de sistemas complejos).

Ceasaraugusta cuenta con 3072 nucleos y 25 TFLOPs y, ademas, es el nodo en Aragén de la
Red Espanola de Supercomputacién (RES), consistente en una interconexién de 12 superordenado-
res que tiene como objetivo ofrecer recursos de computacién de alto rendimiento a la comunidad
cientifica. Se coordina a través del centro de supercomputacion de Barcelona.

A su vez, también forma parte, junto con otras dos maquinas (JANUS I y JANUS II) y varios
ntcleos de computacién voluntaria, del centro de supercomputaciéon de Aragén (CESAR).

Generalmente, los calculos de optimizacién han tardado entre 1h y 12h. Cada céalculo individual

se ha ejecutado de manera serial, aunque dado que necesitidbamos multiples resultados para pulsos

iniciales aleatorios, debiamos ejecutar series de cdlculos concurrentes en las colas paralelas.
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Anexo 2: Justificaciéon experimental

La motivacién para la realizacién de este TFG se basa en el proyecto SUMO (Scaling Up quan-
tum computation with MOlecular spins), liderado por Fernando Luis, del Instituto de Ciencias de
Materiales de Aragdén. Este proyecto tiene como objetivo el desarrollo de un procesador magneto-
cuantico de forma que sea facilmente escalable. Como sistema cuantico se utilizan los estados de
espin del Gd™3, que, al tener una configuracién 4f7, tiene un momento angular orbital L nulo pero
el mayor espin posible (S = 7/2). Esto implica 8 posibles estados distintos, es decir, un qudit con
d = 8 o, de forma equivalente, un sistema de tres g-bits. La ventaja de utilizar los niveles de energia
de moléculas individuales se basa en que se minimizan los efectos de interaccién magnética dipolo-

dipolo, lo cual suele ser una fuente de decoherencia.

La arquitectura del “chip” se basa en una molécula magnética (que incluye el gadolinio) acoplada
a un circuito superconductor. En la superficie del procesador existen tres lineas superconductoras co-
planares paralelas, donde la central acttia como un resonador superconductor. Sobre esta se sitiian,
en lugares especificos, las moléculas mencionadas anteriormente. Adema4s, existe un conjunto de
lineas auxiliares superconductoras perpendiculares a las iniciales. Este chip se fabrica mediante de-
posito de peliculas delgadas (150-300 nm) de material superconductor, generalmente Nb o Al, sobre

un sustrato y finalmente, mediante litografia éptica, se genera el circuito.

El gap de energia entre los estados légicos puede ser modificado mediante un campo magnético
B , generado por la linea superconductora superior (la inferior actia como tierra), y por los campos
locales l_); generados por las lineas auxiliares perpendiculares. Para que el sistema se acople a las
componentes l_); del campo, las moléculas se sitiian en el centro del resonador pues, en el modo
fundamental, es donde se sitia el maximo (siendo que los nodos se encuentran en los bordes del
resonador). Estas componentes también pueden inducir las transiciones entre los estados pues los
campos, ademas de tener una componente DC, pueden tener una componente oscilante, con fre-
cuencias tipicas entre 1 y 10 GHz. Dado que la frecuencia caracteristica del resonador es de unos
pocos GHz es facil ajustar el diseno al rango de las transiciones en los niveles moleculares.

Todo el sistema debe estar a baja temperatura, no solo para que aparezcan las propiedades

superconductoras, sino también para inicializar el sistema a su estado fundamental.

Para més informacién véase [15] y [16].
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