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Resumen

Hemos estudiado, computacionalmente, el diseño de puertas lógicas en circuitos de

información cuántica, en concreto, puertas para sistemas de uno y dos qbits. En este

documento comenzamos con una breve introducción a la computación cuántica, que nos

permitirá entender el funcionamiento de las puertas lógicas cuánticas. Esencialmente, un

sistema de N qbits se modela mediante un sistema cuántico de 2N niveles; una puerta

cuántica es una operación unitaria sobre este sistema. Esta operación se corresponde con

la acción de una perturbación diseñada adecuadamente para que el operador evolución

resultante coincida con la operación buscada. Tras definir la perturbación mediante una

forma funcional dependiente de unos parámetros, hemos utilizado la teoŕıa de control

óptimo para buscar los parámetros que optimizan la forma del operador evolución. Fi-

nalmente, hemos estudiado cómo las formas funcionales elegidas, o el uso de unos u otros

algoritmos de optimización afecta a la calidad de la puerta lógica obtenida, o al coste

computacional.
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Índice de tablas
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1. Introducción a la computación cuántica

Comenzamos con una breve introducción a los conceptos de la teoŕıa de información cuántica

que nos han sido necesarios para la elaboración de este trabajo – una introducción completa al tema

puede consultarse en la Ref. [1]. La computación clásica se basa en la manipulación de la unidad

mı́nima de información, el bit, que solo puede tomar dos valores, por ejemplo, 0 o 1. La computación

cuántica utiliza el principio de la superposición de estados para ir más allá, apareciendo el concepto

de q-bit (quantum bit). Un q-bit puede entenderse como un sistema cuántico de dos estados, que

denotaremos como |0〉 y |1〉. De esta forma, el estado más general posible para un q-bit será:

|ψ〉 = α |0〉+ β |1〉 ∀ α, β ∈ C t.q. |α|2 + |β|2 = 1 (1.1)

Esta mayor libertad permite que, algoritmos cuyo tiempo de cálculo crece potencialmente con el

número de bits de entrada, pasen a tener tiempos de cálculo que crecen linealmente. Un ejemplo es

el algoritmo de Deutch-Jotzsa[2].

La manipulación de la información en computación clásica se realiza mediante las llamadas

puertas lógicas, que toman un número de bits de entrada, y producen unos bits de salida de acuerdo

con reglas predefinidas. Análogamente, existen puertas lógicas cuánticas que toman el estado de

uno o varios q-bits y los alteran de cierta forma. Las puertas más sencillas tienen un solo q-bit

de entrada. Un primer ejemplo es la puerta Pauli-X (o bit-flip): Esta toma el estado del q-bit e

intercambia el |0〉 por el |1〉 y viceversa. Podemos compilar el comportamiento de cualquier puerta

lógica de un 1 q-bit como una matriz 2x2 unitaria definida sobre la base ortonormal {|0〉 , |1〉} tal

que:

|0〉 −→ |1〉
|1〉 −→ |0〉

UPauli-X =

(
0 1

1 0

)

Hemos incluido también el śımbolo que suele utilizarse en la representación de circuitos lógicos.

Viendo la representación matricial de esta puerta cobra sentido su nombre pues, más formalmente,

aplica la matriz de Pauli σx al estado inicial. De la misma forma existe la puerta Pauli-Y y Pauli-Z.

A diferencia de las puertas lógicas clásicas, las cuánticas no solamente actúan sobre los estados

base |0〉 o |1〉, sino que puede actuar sobre cualquier estado superposición. Aśı, por ejemplo, si

introducimos como estado de entrada |ϕ1〉 = |0〉 − i |1〉 tendremos que se obtendrá como estado

final UPauli−X |ϕ1〉 = |1〉 − i |0〉. Otra puerta muy utilizada es la puerta Hadamard, que devuelve

superposición de estados:

|0〉 −→ 1√
2

(|0〉+ |1〉)

|1〉 −→ 1√
2

(|0〉 − |1〉)
UHadamard =

1√
2

(
1 1

1 −1

)

Si queremos trabajar con más q-bits y sus representaciones matriciales necesitamos definir clara-
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mente una generalización de la base para un sistema de N niveles. En el caso de sistemas formados

por un único q-bit la base es trivial, sin embargo, para un sistema de N q-bits primero definimos

una base para cada uno de los q-bits y luego tomamos la base del sistema como el producto ten-

sorial de todas estas bases[1]. La base resultante se denomina base computacional e incluye todas

las posibles combinaciones de estados de cada q-bit. Para simplificar la notación denominaremos

al ket que representa cada estado de la base con el número que representa en base decimal. Aśı,

denotaremos cada uno de estos estados como:

|aN 〉N ⊗ |aN−1〉N−1 ⊗ · · · ⊗ |a1〉1 = |aNaN−1 · · · a1〉 = |c〉 , (1.2)

donde c = aN2N−1+aN−12
N−2+ · · ·+a1. Aśı, la base (ortonormal) se expresará como {|0〉 , |1〉 , · · · ,

|2N − 1〉} y cualquier estado se podrá formar mediante una combinación lineal de los kets que la

forman.

Como ejemplo de puertas de 2 qbits, una de las primeras con las que hemos trabajado es la

CNOT (“Controlled” NOT): si el primer q-bit está en estado |0〉 no realiza ningún cambio en

ningún q-bit, pero si está en |1〉, aplica σx al segundo q-bit. Aśı:

|0〉 = |00〉 −→ |00〉 = |0〉
|1〉 = |01〉 −→ |01〉 = |1〉
|2〉 = |10〉 −→ |11〉 = |3〉
|3〉 = |11〉 −→ |10〉 = |2〉

UCNOT =


1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0


El resto de puertas de dos qbits se construye utilizando reglas semejantes. Existen asimismo

puertas para sistemas de tres o más qbits, teniendo en cuenta que el tamaño de la matriz crece

exponencialmente con el número de q-bits: la dimensión es 2N .

Formalmente, una puerta cuántica no es más que un operador unitario U . En las realizaciones

f́ısicas de los sistemas de computación cuántica, una puerta lógica cuántica no es más que un ope-

rador evolución temporal, U(T, 0), que actúa durante un tiempo caracteŕıstico T produciendo la

transformación deseada. Los sistemas cuánticos, sin embargo, están sujetos a perturbaciones exter-

nas incontrolables, ya que en la práctica no podemos aislarlos totalmente de su entorno. Ello implica

que el comportamiento t́ıpicamente cuántico, coherente, se deteriora con el tiempo. Es necesario que

los tiempos de decoherencia t́ıpicos del sistema sean lo más largos posibles, o alternativamente, que

los tiempos de operación T sean cortos. Este trabajo está motivado precisamente en el intento de

reducir estos tiempos, buscando maneras óptimas de diseñar las puertas cuánticas.

Este trabajo está motivado, igualmente, por el proyecto SUMO (Scaling Up quantum compu-

tation with MOlecular spins), brevemente descrito en el Anexo 2. En este proyecto se realiza un

montaje experimental que trata de crear puertas cuánticas con moléculas magnéticas. Se enfrenta

precisamente al problema de los cortos tiempos de decoherencia, y es por ello que una solución

puede ser la aplicación de la QOCT para acelerar las puertas cuánticas.
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2. Objetivos

Ahora que sabemos qué es una puerta lógica cuántica nos preguntamos cuál es la forma de mo-

delar un sistema f́ısico que implemente esta idea. La forma de inducir este comportamiento se basa

en introducir una perturbación dependiente del tiempo en un Hamiltoniano de un sistema de 2N

niveles. Esta perturbación debe estar diseñada para que el correspondiente operador evolución (a

un tiempo T lo más breve posible) sea igual (o equivalente) a la puerta lógica deseada. Matemática-

mente, el problema consiste por lo tanto en: dado un Hamiltoniano dependiente de unos parámetros

(que, en nuestro caso, definen la forma funcional de la perturbación), deben encontrarse aquellos

parámetros que inducen en el sistema un comportamiento predefinido (en nuestro caso, la evolución

de acuerdo con la puerta lógica buscada). Este planteamiento matemático encaja con el problema

estudiado por la teoŕıa de control óptimo cuántico (QOCT), que introduciremos más adelante. Por

lo tanto, nuestros objetivos en este trabajo han sido:

1. Aprender los fundamentos teóricos de la teoŕıa de información cuántica, y de la QOCT.

2. Aprender a ejecutar un código que implementa la QOCT para sistemas genéricos.

3. Ejecutar cálculos de optimización para diseñar puertas lógicas para sistemas de 2 q-bits mo-

delo.

4. Estudiar la eficiencia de estos cálculos con respecto a los parámetros libres que han de decidirse

a la hora de buscar la forma de la perturbación óptima (amplitud máxima, tiempo de aplicación

de la perturbación, etc).

5. Estudiar la eficiencia de algunos de los algoritmos de optimización posibles.

3. Construcción de puertas lógicas mediante QOCT

Partimos del Hamiltoniano H0 de un sistema de N niveles que, sin pérdida de generalidad,

consideraremos que es diagonal (de no serlo, se realiza un cambio de base a la base de autoestados).

Introducimos entonces una perturbación dependiente del tiempo, y nos preguntamos cuál debe ser

la forma de ésta tal que el operador evolución temporal coincida con el operador asociado a una

puerta lógica para un tiempo T fijo. Aśı, sea la ecuación de Schrödinger:

i
d

dt
|c(t)〉 = (H0 + f({ui}, t)V ) |c(t)〉 , (3.1)

donde {ui} son una serie de parámetros que controlan la forma de la perturbación, que denomi-

naremos parámetros de control, y V un operador que conecta distintos niveles del sistema. Para

simplificar la notación escribiremos u = {ui}. Podemos tomar, por ejemplo:

f(u, t) =

m∑
i=1

ui sin(wit+ ui+m) . (3.2)
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Siendo aśı m el número de frecuencias de las que se compone la perturbación. Normalmente, estas

se corresponden con las frecuencias naturales del sistema o sus armónicos. El operador evolución

temporal se define entonces como:

|c(t)〉 = U(t, t′) |c(t′)〉 . (3.3)

Por simplicidad tomaremos el tiempo inicial de propagación en t = 0 tal que U(t, 0) = U(t) y

U(0) = I. Aśı, como |c(t)〉 = U(t) |c(0)〉 podemos escribir la ecuación (3.1) para U(t) y su condición

inicial como:

i
d

dt
U(t) = (H0 + f(u, t)V )U(t)

U(0) = I .
(3.4)

Ahora bien, normalmente, en vez de usar la representación de Schrödinger utilizaremos la repre-

sentación de interacción, que simplifica bastante la forma de esta ecuación. En esta representación

atribuimos dependencia temporal tanto a los operadores como a los vectores de estado, de forma

que:

Õ(t) = eitH0Oe−itH0 , (3.5)

|c̃(t)〉 = eitH0 |c(t)〉 . (3.6)

|c̃(t)〉 = Ũ(t) |c̃(0)〉 . (3.7)

Aśı, la expresión (3.4) puede escribirse en la representación de interacción de la forma:

i
d

dt
Ũ(t) = f(u, t)Ṽ (t)Ũ(t) . (3.8)

Como los parámetros de control son los que dictan la evolución del sistema podemos escribir

Ũ(t) como una función de esos parámetros: Ũ(t) = Ũ [u](t). De esta forma, nuestro objetivo será

buscar aquellos parámetros que hagan que este operador evolución sea lo más parecido posible a la

puerta lógica objetivo. La perturbación se aplica un tiempo T , que interesará que sea pequeño.

La búsqueda de el valor óptimo de estos parámetros se llevará a cabo mediante la teoŕıa de

control óptimo[3]. Esta es la aplicación al mundo cuántico de la más general teoŕıa de control

óptimo, aplicable en principio a cualquier tipo de sistema y proceso[4]. Su aplicación al problema

que nos ocupa es como sigue: Comenzamos por definir una función objetivo (de ahora en adelante,

por simplicidad, dejamos de utilizar la tilde ˜ para denotar los objetos en la representación de

interacción):

G(u) = J1(U [u](T )) + J2(u) . (3.9)

La definición de las funciones J1 y J2 se hacen teniendo en cuenta el objetivo de la optimización:

buscamos que la función G tome valores máximos cuando los parámetros implican la consecución

del objetivo. Aśı, J1 es una función que depende de la forma del operador evolución temporal en

el tiempo caracteŕıstico T , y que deberá tomar valores máximos cuando este operador sea igual

(o equivalente) a la puerta cuántica buscada. En ocasiones se utiliza una función opcional J2 que

4



penaliza determinadas regiones del espacio de parámetros que, por la razón que sea (dificultad para

su utilización experimental, etc.), es poco apropiada.

Dado que G(u) tiene que tener un máximo para los parámetros que hagan que U [u](T ) equivalga

a un operador asociado a una puerta lógica, tomamos J1 como el módulo al cuadrado del producto

de Fröbenius entre U [u](T ) y el operador objetivo. El producto de Fröbenius entre dos operadores

A y B se define como:

A ·B =
1

d
Tr[A†B] , (3.10)

siendo d la dimensión de las matrices. Por lo tanto:

J1 = |U [u](T ) · Utarget|2 . (3.11)

Para operadores unitarios, este producto no puede tomar valores mayores que uno, y valdrá uno

cuando los operadores sean equivalentes, es decir, que se diferencien únicamente en un factor de

fase global, e. g.: U(T ) = eiθUtarget:

J1 = |U(T ) · Utarget|2 = |e−iθU †target · Utarget|2 =
|e−iθ|2

d2
Tr[I]2 = 1 (3.12)

El problema se reduce por lo tanto a la maximización de la función G(u). Necesitamos un

algoritmo de optimización, que en general necesitará de un procedimiento para calcular G(u) y,

en algunos casos, de un procedimiento para calcular el gradiente de G(u). Para calcular G(u) el

programa, dado un valor fijo T , resuelve la ecuación (3.8) para los valores iniciales de u, obteniendo

U(T ). Hecho esto, calcula J . Si el algoritmo necesita del cálculo de la derivada de G(u) con respecto

a distintos parámetros de control, la QOCT nos proporciona la siguiente expresión[3],[5]:

∂G(u)

∂um
= 2Im

[∫ T

0
dt
∂f(u, t)

∂um
B†[u](t) · V (t)U [u](t)

]
+
∂J2(u)

∂um
, (3.13)

donde aparece un nuevo objeto, el llamado coestado B[u](t), definido por las siguientes ecuaciones

de movimiento:

i
d

dt
B[u](t) = f(u, t)V †(t)B[u](t)

B[u](T ) = (Utarget(T ) · U [u](T ))Utarget(T ) .
(3.14)

Estas ecuaciones tienen una gran similitud con las ecuaciones del movimiento para el sistema [ex-

presión (3.4)]: se trata de una ecuación de Schrödinger en la representación de interacción con una

condición inicial. Ahora bien, esta condición inicial, en lugar de estar referenciada a tiempo 0 lo

está a tiempo T , es decir, el tiempo final, lo cual implica que tiene que integrarse numéricamente

hacia atrás. Asimismo, es claro que el cálculo del gradiente implica un coste mayor que el cálculo

del valor de la función.

El cómo se explora el espacio de parámetros depende del algoritmo de optimización. Se ha usado

la libreŕıa NLopt [6]. Los algoritmos pueden dividirse en general de dos maneras: primero, pueden
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ser globales o locales. Segundo, pueden requerir el gradiente, o no hacerlo (derivative free).

Los algoritmos de optimización globales permiten encontrar el mı́nimo o máximo absoluto de

una función dentro de un determinado dominio acotado de parámetros. La dificultad de este tipo de

problemas crece exponencialmente con el número n de parámetros, y por lo general no son sencillos

de resolver. Por otra parte, los algoritmos locales tienen como objetivo encontrar un único mı́nimo

local. Pueden existir una gran cantidad de mı́nimos locales: cuál de todos encuentre dependerá

tanto del funcionamiento del propio algoritmo como de los parámetros iniciales que se usen para

comenzar la búsqueda. Este tipo de algoritmos no suele tener dificultades en ubicar un mı́nimo local,

incluso para problemas de dimensión alta. Los algoritmos de optimización locales que garantizan

el encontrar un mı́nimo local desde cualquier punto de partida del espacio de parámetros se suelen

denominar globalmente convergentes, lo cual suele dar lugar a confusión.

La otra clasificación mencionada se basa en si el algoritmo requiere o no el uso de la derivada de

la función a optimizar: los algoritmos locales, por ejemplo, suelen requerir el cálculo del gradiente

(además del propio valor de la función), pues es un factor importante para acelerar la eficiencia de

la optimización. Esto suele suponer problemas pues la función a optimizar no tiene por qué tener

definido el gradiente en todo su dominio (no es nuestro caso) o su cálculo no tiene por qué ser

obvio. En este último caso se recurre a técnicas de diferenciación automática, lo cual supone un

aumento no despreciable en el coste computacional. Sin embargo, si la función no es derivable (o

peor, discontinua) se usan los algoritmos derivative-free que solo requieren los valores de la función.

Estos algoritmos suelen evaluar la función una gran cantidad de veces y, por ello, suelen ser usados

para la optimización (global o local) de funciones con un número n de parámetros no muy grande.

En nuestro caso los algoritmos en los que nos hemos centrado han sido:

MLSL-LDS(Multi-Level Single Linkage):[7] MLSL es un algoritmo de comienzo múltiple. Fun-

ciona lanzando una secuencia de optimizaciones locales en una serie de puntos iniciales es-

cogidos mediante secuencias de baja discrepancia para evitar caer varias veces en el mismo

mı́nimo local. Existen garant́ıas teóricas de encontrar todos los mı́nimos locales en un número

finito de minimizaciones locales. Como algoritmo local puede usarse cualquiera de los incluidos

en la libreŕıa, con o sin el uso de derivadas, siendo el usado por defecto el algoritmo BFGS

(Broyden–Fletcher–Goldfarb–Shanno)[8], que si que requiere el cálculo del gradiente.

CRS-LM (Controlled Random Search with Local Mutation):[9] El algoritmo CRS es un algo-

ritmo de optimización global que no requiere el uso de la derivada de la función a optimizar. Se

basa en métodos puramente heuŕısticos y comienza generando una serie de puntos distribuidos

de forma uniforme sobre el espacio de búsqueda. Este conjunto se va “contrayendo” median-

te la sustitución de los puntos que dan peor resultado con otros mejores mediante simplex,

similar al algoritmo de Nelder y Mead[10].

ISRES (Improved Stochastic Ranking Evolution Strategy):[11] Al igual que el anterior, es un

algoritmo de optimización global (o al menos semi-global, pues se basa en métodos heuŕısticos

para escapar de mı́nimos locales) que no requiere el uso de la derivada. Se basa en una

combinación de una regla de mutación y una regla de actualización similar a la del algoritmo

de Neldel-Mead.[10]
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ESCH (Evolutionary Algorithm): Se trata de una modificación del algoritmo evolutivo para

optimización global desarrollado por C.H de Silva Santos, véase [12].

4. QOCT vs. oscilaciones de Rabi

Antes de comenzar los cálculos de optimización previstos, hemos comprobado la funcionalidad

del código utilizando un sistema de solución anaĺıtica exacta conocida: el sistema de dos niveles. En

este sistema se demuestran las oscilaciones de Rabi y los llamados pulsos-π, que son el mecanismo

habitual utilizado en sistemas de computación cuántica para inducir las transiciones de niveles. En

sistemas con más de dos niveles, las transiciones mediante pulsos π, sin embargo, necesitan de un

tiempo largo, ya que solo serán exactas cuando puedan despreciarse las transiciones a niveles no

deseados, gracias a sus diferentes frecuencias de resonancia. Por ello, demostraremos también en

esta sección cómo la QOCT permite acortar los tiempos de transición.

El programa que se ha utilizado se denomina quote y se puede acceder a él a través del siguiente

link: https://gitlab.com/acbarrigon/quote. Los ficheros de entrada necesarios para reproducir los

cálculos de este trabajo pueden obtenerse del autor.

4.1. Oscilaciones de Rabi en un sistema de dos estados

La aplicación de QOCT requiere de sucesivas integraciones de la ecuación de Scrhödinger para

el sistema en cuestión y de sucesivas integraciones de la ecuación para el co-estado [Eq. (3.14)]. Por

ello, antes de comenzar los cálculos de control óptimo, se va a comprobar si los cálculos de evolución

de estados son correctos. Para ello se usará un caso conocido y con solución anaĺıtica de un sistema

muy estudiado y de gran importancia en el campo de la computación cuántica: Las oscilaciones de

Rabi en el sistema cuántico de dos niveles.

Consideremos el Hamiltoniano, H0 de un sistema de dos niveles (|1〉 y |2〉) con enerǵıas −ω0
2 y

ω0
2 respectivamente. En base {|1〉 , |2〉} la representación matricial de H0 viene dada como

H0 =

(
−ω0/2 0

0 ω0/2

)
= −ω0

2
σz con σz =

(
1 0

0 −1

)
. (4.1)

Introducimos una perturbación cos(ωt+ φ)V , donde V se define como

V =

(
0 µ0

µ ∗0 0

)
= |µ0| cos(argµ0)σx − |µ0| sin(argµ0)σy (4.2)

siendo

σx =

(
0 1

1 0

)
σy =

(
0 −i
i 0

)
. (4.3)

Ahora bien, para simplificar los cálculos, vamos a tomar µ0 ∈ R, de forma que el nuevo Hamiltoniano

7
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pueda expresarse como:

H(t) = H0 + cos(ωt+ φ)V = −ω0

2
σz + µ0 cos(ωt+ φ)σx . (4.4)

Como el objetivo es poder comparar si la propagación de estados calculada numéricamente es

correcta, tenemos que encontrar el operador evolución temporal de forma anaĺıtica. Ahora bien, el

Hamiltoniano depende expĺıcitamente del tiempo por lo que no va a ser sencillo. Partimos de un

estado cualquiera C(t) que evoluciona de acuerdo con la ecuación de Schrödinger:

C(t) =

(
C1(t)

C2(t)

)
i

d

dt
C(t) = −ω0

2
σzC(t) + cos(ωt+ φ)V C(t) . (4.5)

Dado que el Hamiltoniano sin perturbar, H0, es independiente del tiempo, y la perturbación incluida

no, resulta más sencillo trabajar en la representación de interacción, ya definida en la expresión (3.7).

Aśı, definiremos el estado C(t) en la representación de interacción como:

c(t) = eiH0tC(t) , (4.6)

por lo que la expresión (4.5) puede expresarse como:

i
d

dt

[
c(t)e−iH0t

]
= H0c(t)e

−iH0t + cos(ωt+ φ)V c(t)e−iH0t −→

−→ H0c(t)e
−iH0t + ie−iH0t d

dt
c(t) = H0c(t)e

−iH0t + cos(ωt+ φ)V c(t)e−iH0t −→

−→ ie−iH0t d

dt
c(t) = cos(ωt+ φ)V c(t)e−iH0t

. (4.7)

Dado que [H0, e
eH0t] = 0 pero [V, eeH0t] 6= 0, el resultado anterior se puede simplificar de la siguiente

forma:

i
d

dt
c(t) = cos(ωt+ φ) eiH0tV e−iH0t︸ ︷︷ ︸

V (t)

c(t) , (4.8)

donde V (t) no es otra cosa que la forma de V en la representación de interacción. Aśı, hemos

obtenido una nueva ecuación de Schrödinger, pero librándonos de la componente independiente del

tiempo. Esto coincide con la expresión (3.8) comentada anteriormente.

Necesitamos la expresión matricial de V̂ (t). Para ello debemos obtener primero la representación

matricial de eitH0 : como H0 es diagonal, eitH0 es trivialmente la matriz diagonal formada por las

exponenciales de los elementos diagonales de H0, por lo que V̂ tomará el siguiente valor:

V̂ = eiH0tV e−iH0t =

(
e−iω0t/2 0

0 eiω0t/2

)(
0 µ0

µ0 0

)(
eiω0t/2 0

0 e−iω0t/2

)
=

=

(
0 µ0e

−iω0t

µ0e
iω0t 0

)
,

(4.9)
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La nueva forma de la ecuación (4.8) es por lo tanto la siguiente:

i
d

dt
c(t) = cos(ωt+ φ)

(
0 µ0e

−iω0t

µ0e
iω0t 0

)
c(t) . (4.10)

Si escribimos cos(ωt+ φ) = 1
2

(
ei(ωt+φ) + e−i(ωt+φ)

)
:

i
d

dt
c(t) =

1

2

(
0 µ0

[
ei((ω−ω0)t+φ) + e−i((ω+ω0)t+φ)

]
µ0
[
ei((ω+ω0)t+φ) + e−i((ω−ω0)t+φ)

]
0

)
c(t) . (4.11)

En este punto debemos aplicamos la Rotating Wave Approximation [13] (RWA), que nos permite

eliminar las oscilaciones de alta frecuencia: eliminamos los términos con ω+ω0 y nos quedamos con

los de ω − ω0. De esta forma, la expresión anterior se reduce a:

i
d

dt
c(t) =

1

2

(
0 µ0e

i(δt+φ)

µ0e
−i(δt+φ) 0

)
c(t) , (4.12)

con δ = ω − ω0. Esta aproximación es válida cuando estamos cerca de la resonancia (ω = ω0), y

el tiempo total de acción de la perturbación es lo suficientemente largo como para descartar los

términos de alta frecuencia.

Para eliminar la dependencia temporal realizamos un último cambio de representación:(
d1(t)

d2(t)

)
=

(
e−i

δ
2
tc1(t)

ei
δ
2
tc1(t)

)
(4.13)

Aśı, la forma de la expresión (4.12) es

i
d

dt
d(t) =

1

2

(
δ
2

µ0
2 e

iφ

µ0
2 e
−iφ − δ

2

)
d(t) . (4.14)

Si definimos ~n como

~n =

(
1

2
µ0 cosφ,−1

2
µ0 cosφ,

1

2
δ

)
(4.15)

podemos reescribir esta expresión de la siguiente forma:

i
d

dt
d(t) = ~n · ~σd(t) . (4.16)

Al ser ~n · ~σ independiente del tiempo, podemos escribir directamente la solución como: d(t) =

exp[−i~n ·~σt]d(0). Para desarrollar la exponencial, como esta vez la matriz no es diagonal, utilizamos

la siguiente identidad válida para las matrices de Pauli:

eia(~n·~σ)t = I cos(at) + i(~n · ~σ) sin(at) con ~σ = (σx, σy, σz) , (4.17)
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y llegamos a:

d(t) =

(
cos
(µt

2

)
− i δµ sin

(µt
2

)
−iµ0µ e

iφ sin
(µt

2

)
−iµ0µ e

−iφ sin
(µt

2

)
cos
(µt

2

)
+ i δµ sin

(µt
2

)) (4.18)

donde µ = 2|~n| =
√
δ2 + µ20. Podemos ahora deshacer el cambio de variables anteriores [Eq. (4.14)],

escribir la ecuación para c(t), y obtener finalmente el correspondiente operador evolución:

U(t) =

ei δ2 t [cos
(µt

2

)
− i δµ sin

(µt
2

)]
ei

δ
2
t
[
−iµ0µ e

iφ sin
(µt

2

)]
e−i

δ
2
t
[
−iµ0µ e

−iφ sin
(µt

2

)]
e−i

δ
2
t
[
cos
(µt

2

)
+ i δµ sin

(µt
2

)]
 . (4.19)

Para comparar los cálculos realizados con los resultados numéricos, que expondremos más ade-

lante, calculamos la probabilidad de encontrar el sistema en el estado |2〉, asumiendo que el sistema

parte del estado |1〉. Aśı, si |ϕ(0)〉 = |1〉, tendremos que |ϕ(t)〉 vendrá dado por:

|ϕ(t)〉 = U(t) |ϕ(0)〉 =

=

ei δ2 t [cos
(µt

2

)
− i δµ sin

(µt
2

)]
ei

δ
2
t
[
−iµ0µ e

iφ sin
(µt

2

)]
e−i

δ
2
t
[
−iµ0µ e

−iφ sin
(µt

2

)]
e−i

δ
2
t
[
cos
(µt

2

)
+ i δµ sin

(µt
2

)]
(1

0

)
=

= ei
δ
2
t

[
cos

(
µt

2

)
− i δ

µ
sin

(
µt

2

)]
|1〉+ e−i

δ
2
t

[
−iµ0

µ
e−iφ sin

(
µt

2

)]
|2〉 ,

(4.20)

por lo que la probabilidad de encontrar |ϕ(t)〉 en el estado |2〉 es:

P1→2(t) =

(
µ0
µ

)2

sin2

(
µt

2

)
Con µ =

√
(ω − ω0)2 + µ20 . (4.21)

Esta expresión se denomina fórmula de Rabi[13] y nos dice que la ocupación del estado |2〉 oscila

con el tiempo, siendo la ocupación máxima (µ0/µ)2. La situación más interesante se da cuando esta

ocupación vale 1, lo cual solo puede ocurrir si δ = 0, es decir, ω = ω0. Esto implica que la frecuencia

de oscilación de la perturbación coincide con la frecuencia caracteŕıstica del sistema (diferencia de

enerǵıa entre los dos niveles). A esto se le llama condición de resonancia.

De esta forma, periódicamente, la ocupación se invertirá con respecto a la inicial. Si en es-

ta situación detenemos la perturbación habremos conseguido que el sistema pase del estado |1〉 al

|2〉, lo cual se da cuando t = tπ = π
µ0

. La perturbación resultante en este caso se denomina π−pulse.

Si damos valores numéricos tal que ω0 = 1 y µ0 = 0.1 podemos lanzar distintas simulaciones

para distintos valores de ω y ver si coincide con los resultados teóricos. Aśı, si tomamos ω ={0.75,

1.0, 1.1} debeŕıamos obtener oscilaciones de la ocupación en |2〉 con frecuencia µ
2 ={0.1346, 0.050,

0.0707} y valor máximo de 0.138, 1 y 0.5 respectivamente, debiendo darse la inversión total en el

caso de la resonancia en 10π. El resultado obtenido se muestra en la figura 4.1. Vemos que, efecti-

vamente, el cálculo numérico se corresponde con la solución anaĺıtica.

El fenómeno de resonancia junto con el concepto de π − pulse puede relacionarse con otro
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Figura 4.1: Solución numérica a las oscilaciones de Rabi para distintos valores de w.

concepto visto anteriormente: la puerta bit−flip, pues la aplicación de esta puerta a un q-bit invert́ıa

el estado de este. Si calculamos el operador evolución temporal de nuestro sistema perturbado en

tiempo tπ obtendŕıamos que |U(tπ) · Ubit−flip|2 = 1. Veámoslo: si aplicamos a la expresión 4.19 la

condición de resonancia (δ = 0 −→ µ = µ0) obtenemos que el operador evolución temporal viene

dado como:

U(t) =

(
cos
(µt

2

)
−ieiφ sin

(µt
2

)
−ie−iφ sin

(µt
2

)
cos
(µt

2

) )
(4.22)

Como hemos visto antes, el pulso-π se define para tπ = π
µ0

por lo que en este caso la anterior

ecuación se reduce a:

U(tπ) =

(
0 −ieiφ

−ie−iφ 0

)
(4.23)

Escogiendo φ = 0 obtenemos que U(tπ) = −iUbit−flip. Ambos operadores son equivalentes, pues

únicamente se diferencian en un factor de fase. Concluimos por lo tanto que el pulso-π en un sistema

de dos niveles implementa la puerta bit-flip.

4.2. π-pulse vs QOCT

En el apartado anterior hemos visto que los pulsos-π permiten manipular fácilmente los estados

cuánticos de un sistema de dos estados. Vamos ahora a ver cómo generalizar esta idea a sistemas

más grandes, por ejemplo un sistema de cuatro estados (|0〉, |1〉, |2〉, |3〉). Utilizando únicamente

pulsos-π, trataremos por ejemplo de llevar el estado |ϕ(0)〉 = |0〉 al estado |ϕ(tfinal)〉 = 1√
2
(|0〉+|3〉).

El Hamiltoniano que utilizaremos es:

H0 =


−2 0 0 0

0 −1.2 0 0

0 0 −0.5 0

0 0 0 0.5

 , (4.24)
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y está escogido para que las frecuencias caracteŕısticas sean distintas entre śı:

ω1 = E2 − E1 = 0.8 (4.25)

ω2 = E3 − E2 = 0.7 (4.26)

ω3 = E4 − E3 = 1.0 (4.27)

La forma de la perturbación que hemos usado es:

V =


0 1 0 0

1 0 1 0

0 1 0 1

0 0 1 0

 (4.28)

Es decir, asumimos que los estados solo se acoplan con sus niveles vecinos. Además, la magnitud

del acoplo es igual para todos.

En el apartado anterior se ha probado que es posible usar pulsos-π para modificar de manera

controlada el estado cuántico del sistema. Como solo hab́ıa dos niveles de enerǵıa no exist́ıa el

riesgo de que el estado final se contaminase con otros estados del sistema. Sin embargo, en este caso

tenemos cuatro niveles de enerǵıa distintos y queremos que el estado final sea una superposición de

únicamente dos de ellos. Para encontrar la perturbación adecuada de forma anaĺıtica usaremos el

fenómeno de la resonancia: si la longitud de los pulsos-π es lo suficientemente grande (esto equivale

a que la amplitud de la perturbación sea pequeña) solo se verán afectados los dos niveles con la

separación de enerǵıa adecuada (ωi). Esta idea es la misma en la que se fundamenta la RWA.

De esta forma, podemos alterar la ocupación de estados contiguos usando la aproximación a

dos niveles sin miedo de que el estado final se vea contaminado por niveles de enerǵıa no deseados.

Aśı, por ejemplo, para inducir la transición deseada, podemos emplear el siguiente protocolo: Si

inicialmente el sistema está en el estado |0〉, podemos disminuir la ocupación de este estado mediante

la aplicación de un pulso de frecuencia ω1 y debemos aplicarlo hasta que la ocupación del estado

|0〉 sea la deseada, en nuestro caso 0.5. A partir de los resultados mostrados en el apartado anterior

sabemos que para una perturbación sinusoidal de frecuencia ω y amplitud λ se producirá la inversión

total si ω = ω1 y aplicamos el pulso un tiempo tπ = π
λ por lo que, si queremos que la ocupación

sea del 50 % para cada estado, habrá que aplicarlo la mitad del tiempo. A esto suele denominarse

pulso-π2 y denotaremos el tiempo de aplicación como tπ
2

= π
2λ .

Tras aplicar este pulso tendremos que |ϕ(tπ
2
)〉 = 1√

2
(|0〉 + |1〉). El siguiente paso consiste en

intercambiar el estado |1〉 por el |2〉. Esto es sencillo de hacer aplicando un pulso-π de frecuencia

ω2 un tiempo tπ. Lo mismo para pasar del |2〉 al |3〉.

En resumen, la perturbación que hay que aplicar a H0 será, en base únicamente al concepto de

pulso-π:

W (t) =


λ sin(ω1t)V, si t < tπ

2

λ sin(ω2t)V, si tπ
2
< t < 3tπ

2

λ sin(ω3t)V, si 3tπ
2
< t < 5tπ

2

(4.29)
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Figura 4.2: Ocupación de cada nivel en una transición del estado |ϕ(0)〉 = |0〉 al 1√
2
(|0〉 + |3〉)

mediante pulsos-π para (a) λ = 10−4 y para (b) λ = 0.025

En un primer cálculo, hemos tomado la amplitud λ = 10−4. Representamos la ocupación en

función del tiempo en la figura 4.2a. Vemos que, efectivamente, el estado final es el deseado y, en

concreto, las ocupaciones de los estado |0〉 y |3〉 son, respectivamente, 0.50005 y 0.49995. Ahora bien,

como hemos comentado, interesa que las puertas lógicas sean lo más rápidas posibles pues los estados

cuántico no permanecen eternamente. Si queremos acelerar las puertas pero utilizando este tipo de

protocolos basados en pulsos-π, debemos aumentar el valor de λ, que es el que regula el tiempo de

aplicación de la perturbación. Si tomamos λ = 0.025, por ejemplo, tal que tfinal = 10π, obtenemos la

gráfica mostrada en la figura 4.2b. El resultado obtenido es claramente peor: se observan oscilaciones

en la ocupación debido a la contaminación del resto de estados[14]. La ocupación final de los estados

|0〉 y |3〉 es 0.504 y 0.434 respectivamente.

Para poder obtener resultados comparables a los de la figura 4.2a pero con tiempos de transición

similares a los mostrados en la figura 4.2b, debemos utilizar pulsos más complejos que los pulsos-π.

Para encontrar tales pulsos, hemos utilizado la teoŕıa de control óptimo desarrollada anteriormente.

Utilizaremos el mismo tipo de perturbación que en la expresión (4.29); sin embargo, en lugar de

aplicar cada pulso uno detrás de otro y con la misma amplitud, se permitirá que vaŕıe tanto la

amplitud (entre 0.0 y 0.1) como la fase (entre −π y π) y se aplicarán simultáneamente. Además, no

solo se usarán pulsos de frecuencia ωi (siendo i = {1, 2, 3}), sino también frecuencias proporcionales

a estas, en concreto, 2ωi y 0.5ωi. La perturbación resultante deja de ser, obviamente, un pulso-π.

Su forma genérica es:

f({ui}, t) =
3∑

m=1

[um sin(ωmt+ um+9) +

+ um+3 sin(2ωmt+ um+12) +

+ um+6 sin(0.5ωmt+ um+15)] .

(4.30)
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Frecuencia Amplitud ·10−3 Fase ·10−2

ω1 71.18 0.039
ω2 83.66 -314.16
ω3 50.34 313.95

2ω1 100.00 314.16
2ω2 100.00 312.62
2ω3 100.00 314.16

0.5ω1 0.00 -117.97
0.5ω2 2.87 91.13
0.5ω3 78.66 0.066

Tabla 4.1: coeficientes óptimos de la perturbación aplicada
en la transición de |ϕ(0)〉 a |ϕ(t)〉

La tarea del algoritmo de optimización basado en la QOCT es, por lo tanto, encontrar los parámetros

{ui} óptimos que inducen la transición deseada. Estos se incluyen en la tabla 4.1, ordenados para

cada uno de los pulsos y separando los parámetros de amplitud y fase.

Como curiosidad, la frecuencia 0.5ω1 presenta amplitud nula: realmente, la perturbación final

se compone de la suma de ocho funciones sinusoidales y no nueve. Si ahora hacemos lo mismo que

en los dos casos anteriores y representamos la evolución de la ocupación de cada uno de los estados

con el tiempo obtenemos la gráfica mostrada en la figura 4.3. Si bien es cierto que la transición

entre estados es más compleja (pues la propia perturbación también lo es), debemos centrarnos en

el objetivo: el estado final objetivo, sin contaminación de estados indeseados. Las ocupaciones de

los estados |0〉 y |3〉 son 0.496 y 0.503: aunque no son tan buenos como en el caso de la figura 4.2a,

son mejores que los de la figura 4.2b, pues la ocupación de los otros dos estados es relativamente

baja (7.003 · 10−4 para el estado |1〉 y 8.875 · 10−5 para el |2〉).
Concluimos por lo tanto que esta metodoloǵıa basada en la QOCT permite encontrar pulsos

complejos capaces de acelerar los tiempos de transición, con respecto a los tiempos necesarios

mediante los protocolos basados en pulsos-π.

5. Elección de parámetros y métodos de optimización

Ahora que se ha confirmado que la teoŕıa de control óptimo es el camino más adecuado a seguir

debemos fijar una serie de parámetros que pueden afectar a los resultados obtenidos y al tiempo de

computación para llegar a ellos. Estos son: (1) el algoritmo de optimización a usar, (2) los rangos en

los que el programa puede modificar los parámetros de control, y (3) el tiempo total de aplicación

de la perturbación. Los siguientes apartados se centran en cada uno de estos aspectos.

5.1. Algoritmos de optimización

NLopt es una biblioteca que incluye diversos algoritmos de optimización, tanto globales como

locales. Nos hemos centrado en los algoritmos de optimización globales. El objetivo de esta sección

es determinar cuál de todos ellos es el más eficiente, pues este será el que usaremos para el resto de
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las simulaciones.

Tras realizar distintas pruebas para un mismo problema, pero utilizando distintos algoritmos, se

ha obtenido que los más eficientes son los que se mencionaron en el apartado introductorio: MLSL-

LDS, CRS-LM, ISRES y ESCH. Para poder comparar cada uno de estos algoritmos de forma cómoda

NLopt incluye una función que permite detener la búsqueda de parámetros cuando el valor de la

función a optimizar llega a un determinado valor. Aśı, en base al cálculo de J [Eq. (3.9)], hacemos

que el algoritmo se detenga para tres valores distintos de éste (recordando que el óptimo es cuando

J = 1). En este caso, el problema a resolver es la generación de una puerta Control-phase, con

m = 6 y T = 100π.

Si detenemos el algoritmo de optimización cuando J > 0.995 obtenemos los resultados que

se muestran en la tabla 5.1. En este caso solo dos algoritmos han llegado al ĺımite impuesto:

ESCH y MLSL, siendo el primero el que menos tiempo (e iteraciones) ha requerido. Mientras

tanto ISRES no ha conseguido alcanzar un valor de J superior a 0.995 y por ello se ha detenido

a las 10000 iteraciones, otra de las condiciones de parada. Por último CRS tampoco ha llegado

al valor de 0.995 y se ha detenido antes incluso de llegar al ĺımite de iteraciones. Esto se debe

a que otro criterio de parada se basa en el estudio de la variación de J entre iteraciones de

forma que, si esta es menor que un determinado valor, el proceso de optimización se detiene

pues detecta que se ha quedado atrapado en un mı́nimo (local o no).

Si detenemos la optimización cuando J > 0.9995 el resultado, por lo que respecta a criterios
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Algoritmo Iteraciones Tiempo [s] J

CRS-LM 8027 390 0,974891

MLSL-LDS 3416 759 0,995946

ISRES 10000 475 0,964021

ESCH 2922 138 0,995453

Tabla 5.1: Resultados del proceso de optimización
deteniendo el programa para J > 0.995

Algoritmo Iteraciones Tiempo [s] J

CRS-LM 4540 220 0,928494

MLSL-LDS 4769 1044 0,999601

ISRES 10000 484 0,953946

ESCH 1995 96 0,999505

Tabla 5.2: Resultados del proceso de optimización
deteniendo el programa para J > 0.9995

de parada y orden de tiempo de cálculo es similar al caso anterior. ESCH y MLSL son los

únicos en alcanzar la condición de J siendo los otros dos algoritmos incapaces de lograrlo.

Para estos últimos los resultados son incluso peores que en el caso anterior: CRS ha finalizado

la optimización, de nuevo, en un mı́nimo local (los valores numéricos se muestran en la tabla

5.2).

Por último, si el programa se detiene para J > 0.99999 ninguno de los algoritmos llega al

objetivo (posiblemente porque el número de frecuencias sea demasiado pequeño y ni siquiera

sea posible). Ahora bien, el que mejor resultado ha obtenido es MLSL siendo también el que

más tiempo ha requerido. Por tercera vez, el único algoritmo que ha terminado de forma

prematura es CRS.

Tras analizar estos resultados vemos que, dependiendo de cómo de buena queremos que sea

nuestra puerta lógica, nos interesa usar un algoritmo u otro: para valores de J bajos, el que mejor

resultado ha dado es ESCH; en cambio, para valores altos de J , el mejor resultado ha sido obtenido

por el algoritmo MLSL. Cabe destacar, además, que tras lanzar distintas simulaciones se ha obser-

vado que, para valores de J muy cercanos a 1 (los que nos interesa obtener) el único algoritmo que

ha mostrado una reproducibilidad de los resultados obtenidos en distintas simulaciones es MLSL.

Algoritmo Iteraciones Tiempo [s] J

CRS-LM 5724 275 0,979969

MLSL-LDS 10000 2248 0,999962

ISRES 10000 483 0,963453

ESCH 10000 496 0,999769

Tabla 5.3: Resultados del proceso de optimización
deteniendo el programa para J > 0.99999
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Figura 5.1: Variación de J con el número de iteraciones para los cuatro algoritmos estudiados. En
este caso el programa se detiene cuando se llega a un valor de J > 0.9. (a) muestra como vaŕıa J
para el algoritmo MLSL, (b) para CRS, (c) para ISRES y (d) para ESCH.

Otros algoritmos, como ESCH o CRS, presentan distintos resultados, a pesar de reiniciarse con

los mismo parámetros iniciales. Ello implica que tienen mayor tendencia a quedarse atrapados en

mı́nimos locales. Concluimos por lo tanto que conviene escoger MLSL para realizar las simulaciones

finales pues, incluso para parámetros iniciales aleatorios suele llegar a resultados similares.

En la figura 5.1 mostramos la variación de J con el número de iteraciones. Uno de los fenómenos

más destacables que se observan son las distintas optimizaciones locales que realiza el algoritmo

MLSL antes de llegar al valor de J requerido.

Antes de finalizar el estudio de estos algoritmos cabe comentar el hecho de por qué MLSL es el

que más tiempo de cálculo requiere. Tal como se dijo en el apartado introductorio éste es el único

algoritmo que se basa en el uso del gradiente por lo que en cada iteración se calcula el resultado de

la expresión (3.13), lo que requiere una propagación del coestado desde tiempo T hasta tiempo 0.

Esto supone doblar el número de propagaciones que normalmente se requieren en otros algoritmos

para calcular la forma del pulso, lo cual se refleja en un aumento del tiempo de cálculo.
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5.2. Amplitudes y tiempo de propagación

Existen determinados parámetros que vamos a fijar en las optimizaciones: El número de fre-

cuencias incluidas (m), el tiempo de aplicación de la perturbación (T ) y el rango de variación de

las amplitudes (que irá desde 0 hasta A). También tenemos el rango para las fases pero este va

siempre de π a −π y no tendŕıa sentido restringirlo. En este apartado vamos a determinar unos

valores razonables para el valor de T y de A, pues la búsqueda del mejor valor de m se realizará de

forma independiente para cada una de las puertas lógicas que modelizaremos.

Para ello se han lanzado distintas simulaciones que tienen como objetivo encontrar la perturba-

ción más adecuada para generar la puerta CNOT, recordando siempre que la perturbación ideal es

aquella que requiere del menor número de frecuencias distintas, de la menor amplitud posible (ya

que experimentalmente es más sencillo trabajar con pulsos simples y amplitudes bajas), y del mı́ni-

mo tiempo de propagación (esto es aśı porque los estados cuánticos no se mantienen eternamente y,

si el pulso es demasiado largo, puede que el estado en si desaparezca antes incluso de que el pulso

termine de aplicarse). Para asegurarnos de que la bondad de cada combinación de A y T no depen-

de de m se han realizado 12 simulaciones distintas para cada combinación de A y T . Los posibles

valores de m y las frecuencias incluidas se dividen en tres tipos: los que solo incluyen una única

frecuencia natural del sistema (obviamente existen 3 posibilidades para este tipo de perturbación),

los que incluyen las tres frecuencias naturales y proporcionales a estas (de las que se han probado

4 posibilidades) y las que incluyen las mismas tres frecuencias naturales y proporcionales solo a ω3,

pues es la que mejor resultado ha dado en el caso de una sola frecuencia para la puerta CNOT. De

este último tipo se han probado 5 posibilidades.

Aśı, primero se ha fijado el valor de T a 100π y se han lanzado varias simulaciones disminuyendo

cada vez más el valor máximo de A (0.5,0.1 y 0.01). Analizando los resultados de la tabla 5.4 se

deduce que, si incluimos una única frecuencia, es mejor el caso de A = 0.5. Sin embargo, si añadimos

más (para acercarnos a 1), los resultados son bastante similares con el caso de A = 0.1. Dado que

para A = 0.01 el resultado es claramente peor, el mejor valor de A en este caso es 0.1 que, de

momento, presenta el menor valor de A con el mayor valor de J .

Para determinar si el valor de T es también el más adecuado se lanza un nuevo conjunto de

simulaciones fijando A en 0.1 y variando el tiempo de aplicación del pulso. En concreto, los valores

que se han probado para T son 10π, 20π y 1000π. La única combinación que se acerca a los resultados

del caso anterior (A = 0.1, T = 100π) es la última, y solo es aśı porque el tiempo de aplicación de

la perturbación es absurdamente mayor, lo cual supone un tiempo de cálculo bastante más largo.

Podŕıamos aumentar la amplitud para mejorar los resultados, pero como tampoco queremos que sea

muy grande nos quedamos con la combinación inicial. Destacar que los resultados en los que J > 1

son producto del error numérico, que es del orden de 10−5 pues, por la definición del producto de

Fröbenius, J nunca puede ser mayor que uno.

6. Resultados

Una vez establecido el procedimiento (algoritmo de optimización, ĺımites para las amplitudes,

fases, frecuencias, etc.) fijamos el rango en la optimización de la amplitud en A = 0.1 y tomamos un
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frecuencias
T = 100π A = 0, 1

A = 0, 5 A = 0, 1 A = 0, 01 T = 10π T = 20π T = 1000π

ω1 0, 352788 0, 335134 0, 250000 0, 250000 0, 518830 0, 483822
ω2 0, 701796 0, 315768 0, 250000 0, 250000 0, 356150 0, 406484
ω3 0, 846953 0, 633009 0, 510536 0, 578666 0, 551055 0, 904985

ωi 0, 997450 0, 989045 0, 510620 0, 587258 0, 728764 0, 995046
ωi, 2ωi 0, 999380 0, 998755 0, 518394 0, 654451 0, 874045 0, 996637

ωi, 2ωi, 0.5ωi 0, 999974 1, 000003 0, 550214 0, 980311 0, 988027 1, 000019
ωi, 2ωi, 0.5ωi, 3ωi 0, 999945 0, 999827 0, 550183 0, 980241 0, 992616 0, 999245

ωi, 2ω3 0, 998456 0, 998868 0, 512167 0, 604162 0, 776458 0, 997579
ωi, 2ω3, 0.5ω3 0, 999997 0, 999874 0, 512208 0, 705163 0, 836853 0, 997319

ωi, 2ω3, 0.5ω3, 3ω3 1, 000009 0, 998794 0, 512800 0, 722267 0, 836897 0, 997441
ωi, 2ω3, 0.5ω3, 3ω3, 0, 25ω3 0, 999599 0, 999878 0, 526544 0, 870850 0, 962048 0, 997645

ωi, 2ω3, 0.5ω3, 3ω3, 0, 25ω3, 4ω3 0, 999982 0, 999883 0, 526436 0, 872760 0, 964550 0, 998112

Tabla 5.4: Valor obtenido de J para para distintas combinaciones de A y T . ωi hace referencia a las
tres frecuencias naturales del sistema pues i = {1, 2, 3}

tiempo total de propagación de T = 100π. Usando el algoritmo MLSL, lanzamos varios procesos de

optimización con distintas combinaciones de frecuencias (las usadas en la tabla 5.4) para buscar los

parámetros óptimos que modelizan cada una de las puertas. Igual que en el caso anterior, la forma

matricial del hamiltoniano no perturbado está dada por la Eq. (4.24), mientras que la perturbación

V está dada por la Eq. (4.28). Se incluyen a continuación los resultados obtenidos para cada una

de las puertas analizadas.

6.1. Puerta Controlled-NOT

En el apartado de introducción a la computación cuántica ya se ha explicado el funcionamiento de

la puerta CNOT, por lo que pasamos directamente a la exposición de los resultados. La perturbación

óptima se da para m = 7, apareciendo en la tabla 6.1 la combinación de frecuencias resultante, que

da lugar a un valor de J esencialmente igual a uno. El hecho de que J sea levemente mayor que uno

se debe, como hemos dicho antes, a error numérico. Destacar que, de las tres frecuencias naturales

del sistema, es ω3 la de mayor amplitud, pues esta se asocia con la diferencia de enerǵıa entre los

estados |2〉 y |3〉, que son los únicos que se ven afectados al aplicar la puerta CNOT. La figura 6.1

incluye la representación del pulso en su tiempo de aplicación.

Frecuencia Amplitud ·10−3 Fase

ω1 20.94 0.54

ω2 20.07 -1.81

ω3 92.37 0.54

2ω1 100.00 2.08

2ω2 60.63 -1.97

0.5ω1 53.84 2.82

0.5ω3 91.32 -0.84

Tabla 6.1: Parámetros del pulso para generar una
puerta CNOT
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Figura 6.1: Perturbación aplicada para ge-
nerar la puerta CNOT
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6.2. Puerta Controlled-Z

La puerta Control-Z está definida por:

|0〉 = |00〉 −→ |00〉 = |0〉
|1〉 = |01〉 −→ |01〉 = |1〉
|2〉 = |10〉 −→ |10〉 = |2〉
|3〉 = |11〉 −→ − |11〉 = − |3〉

UControl-Z =


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 −1


Aśı, si el primer q-bit está en el estado |0〉, el estado en el que se encuentra el segundo q-bit no

se ve alterado. Sin embargo, si el primer q-bit está en el estado |1〉 se aplica σz al segundo q-bit, por

ello a esta puerta se le denomina Control-Z. Vemos que la representación matricial es diagonal y

que, por tanto, la ocupación de cada nivel tras la aplicación de esta puerta no cambiará, pues esta

es el módulo al cuadrado del coeficiente asociado a cada nivel en el estado cuántico.

Los valores {ui} obtenidos se incluyen en la tabla 6.2, que dan lugar a la puerta deseada con J =

1.000007. Como vemos, en este caso m = 5, menor que para la puerta CNOT, debido, posiblemente,

a que al no tener que modificar la ocupación como tal sea más sencillo generarla. Además, las

amplitudes de cada una de las frecuencias también son menores que en el caso de la CNOT. La

gráfica que muestra el pulso resultante se incluye en la figura 6.2.

Frecuencia Amplitud ·10−3 Fase

ω1 14.46 0.59

ω2 60.69 -2.07

ω3 0.127 2.57

2ω2 31.59 -2.92

3ω2 78.33 -1.25

Tabla 6.2: Parámetros del pulso para generar una
puerta CONTROL-Z
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Figura 6.2: Perturbación aplicada para generar
la puerta CONTROL-Z

6.3. Puerta Controlled-Y

La puerta Control-Y se caracteriza de la siguiente forma:

|0〉 = |00〉 −→ |00〉 = |0〉
|1〉 = |01〉 −→ |01〉 = |1〉
|2〉 = |10〉 −→ i |11〉 = i |3〉
|3〉 = |11〉 −→ −i |10〉 = −i |2〉

UControl-Y =


1 0 0 0

0 1 0 0

0 0 0 i

0 0 −i 0


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Básicamente se basa en el mismo principio que la puerta Control-Z siendo la principal diferencia

el hecho de que si el primer q-bit se encuentra en el estado |1〉 se aplica la matriz de Pauli σy en lugar

de σz. Esto hace que la representación matricial deje de ser diagonal y se requiera una perturbación

con m mayor, en concreto m = 7. Los parámetros obtenidos aparecen en la tabla 6.3 y el valor de J

resultante de estos es J = 1.000002. Al igual que ocurŕıa con la puerta CNOT ES ω3 la frecuencia

natural de mayor amplitud, pues está asociada a los estados cuya ocupación se ve modificada. El

pulso resultante se muestra en la figura 6.3.

Frecuencia Amplitud ·10−3 Fase

ω1 21.98 -0.36

ω2 19.89 -2.67

ω3 93.77 -1.93

2ω1 100.00 1.43

0.5ω1 86.79 3.14

0.5ω3 68.89 -1.16

Tabla 6.3: Parámetros del pulso para generar una
puerta CONTROL-Y
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Figura 6.3: Perturbación aplicada para generar
la puerta CONTROL-Y

6.4. Puerta SWAP

La puerta SWAP se caracteriza de la siguiente forma:

|0〉 = |00〉 −→ |00〉 = |0〉
|1〉 = |01〉 −→ |10〉 = |2〉
|2〉 = |10〉 −→ |01〉 = |1〉
|3〉 = |11〉 −→ |11〉 = |3〉

USWAP =


1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1



La utilidad de esta puerta se basa en el hecho de que permuta los estados cuánticos de los

dos q-bits de entrada. En estados puros de dos q-bits esto se traduce en que los estados |0〉 y

|3〉 quedan inalterados mientras que el |1〉 y el |2〉 se cambian entre si. La perturbación necesaria

en este caso es de m = 9 (la mayor hasta ahora) y, a diferencia de las puertas anteriores, las tres

amplitud de las componentes asociadas a las frecuencias naturales del sistema son bastante grandes,

es decir, no existe una que claramente predomine sobre las otras dos. Estos parámetros, aśı como

la representación del pulso obtenido, se incluyen en la tabla 6.4 y gráfica 6.4 respectivamente. El

valor obtenido para J es en este caso 1.00003.
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Frecuencia Amplitud ·10−3 Fase

ω1 69.13 0.43

ω2 78.10 0.89

ω3 99.96 1.47

2ω1 100.00 -0.83

2ω2 0.76 -1.41

2ω3 100.00 -2.58

0.5ω1 74.41 2.27

0.5ω2 0.02 2.08

0.5ω3 63.24 2.29

Tabla 6.4: Parámetros del pulso para generar una
puerta SWAP
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Figura 6.4: Perturbación aplicada para generar
la puerta SWAP

6.5. Puerta
√

SWAP

Una variante de la puerta SWAP es la puerta
√

SWAP. Su nombre se debe a que la aplica-

ción sucesiva de dos puertas de este tipo equivalen a la aplicación de una puerta SWAP, es decir:√
SWAP

√
SWAP = SWAP. La expresión matricial será, por tanto, la siguiente:

|0〉 −→ |0〉

|1〉 −→ 1

2
[(1 + i) |1〉+ (1− i) |2〉]

|2〉 −→ 1

2
[(1− i) |1〉+ (1 + i) |2〉]

|3〉 −→ |3〉

U√SWAP =


1 0 0 0

0 1
2(1 + i) 1

2(1− i) 0

0 1
2(1− i) 1

2(1 + i) 0

0 0 0 1



Teniendo en cuenta que el pulso de la puerta SWAP es, hasta ahora, el que más frecuencias ha

necesitado que incluyamos, es esperable que la puerta
√

SWAP no sea una excepción y efectivamente

no lo es, pues se ha requerido un pulso de m = 14 (cuyos parámetros se incluyen en la tabla 6.5)

para que J = 1.00009. Igual que ocurŕıa antes no existe ninguna frecuencia natural que predomine

sobre las demás. La representación gráfica del pulso con el tiempo se incluye en la tabla 6.5.
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Frecuencia Amplitud ·10−3 Fase

ω1 77.28 -0.79

ω2 67.60 2.47

ω3 66.03 -1.70

2ω2 100.00 -1.70

2ω3 100.00 -2.46

0.5ω1 0.007 1.40

0.5ω2 99.83 2.18

0.5ω3 78.60 -0.94

3ω1 100.00 -1.23

3ω2 87.54 0.40

3ω3 100.00 -1.23

0.25ω1 75.42 1.92

0.25ω2 81.96 -0.16

0.25ω3 72.17 3.14

Tabla 6.5: Parámetros del pulso para generar una
puerta

√
SWAP
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Figura 6.5: Perturbación aplicada para generar
la puerta
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6.6. Controlled-phase

La última puerta que se va a modelar es la Control-Phase, su funcionamiento se muestra a

continuación:

|0〉 = |00〉 −→ |00〉 = |0〉
|1〉 = |01〉 −→ |01〉 = |1〉
|2〉 = |10〉 −→ |10〉 = |2〉
|3〉 = |11〉 −→ i |11〉 = i |3〉

Control-ϕ =


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 i



Al igual que todas las puertas de Control solo aplica un operador determinado al segundo q-bit

si el primero esta en el estado |1〉. En este caso aplica el operador Rφ con φ = π
2 definido como

Rφ =

(
1 0

0 eiφ

)
. (6.1)

Si φ = π
4 se denomina puerta π

4 mientras que si φ = π se corresponde con la puerta Control-Z.

Al igual que ocurŕıa con la puerta Control-Z la probabilidad de medir cada estado no cambia al

aplicarla. En su lugar equivale a “rotar” el segundo q-bit. Los parámetros resultantes de la optimi-

zación se incluyen en la tabla 6.5 mientras que la representación del pulso aparece en la gráfica 6.5.

El valor de J obtenido con este pulso es 1.00001.
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Frecuencia Amplitud ·10−3 Fase

ω1 16.37 0.96

ω2 86.21 -1.49

2ω1 74.31 -2.98

2ω2 78.26 -0.85

2ω3 100.00 0.13

Tabla 6.6: Parámetros del pulso para generar una
puerta CONTROL-Phase
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Figura 6.6: Perturbación aplicada para generar
la puerta CONTROL-Phase

7. Conclusiones

A lo largo de este documento se ha conseguido mostrar que la teoŕıa de control óptimo permite,

efectivamente, calcular la forma de las perturbaciones que debemos introducir en un sistema de 4

niveles para que este se comporte como una puerta lógica. Hemos establecido unas formas funcionales

determinadas para los pulsos. En este trabajo se han establecido de forma arbitraria, pero cabe la

posibilidad de hacerlo de manera que sean compatibles con las posibilidades experimentales: en

determinados casos los pulsos resultantes pueden ser bastante complejos y no realizables en la

práctica. Si es posible aumentar el tiempo de aplicación de la perturbación o la amplitud máxima

de ésta, puede merecer la pena a cambio de simplificar el pulso.

Asimismo, hemos analizado la eficiencia de varios algoritmos de optimización global, que forman

parte del procedimiento de la teoŕıa de control óptimo cuántico. Hemos concluido que, para el tipo

de problemas estudiados, el algoritmo MLSL [7] ha resultado ser el más adecuado.

Hemos visto también que, aumentando el tiempo de aplicación de la perturbación, es más fácil

obtener pulsos que realizen la puerta cuántica requerida con un número menor de frecuencias. Si

aumentamos el valor máximo de la amplitud a la hora de buscar los parámetros óptimos sucede

lo mismo pero, de nuevo, la posibilidad de aumentar la amplitud debe ajustarse a la capacidad

experimental.

En este caso solo se han buscado los pulsos necesarios para generar puertas de 2 q-bits. Sin

embargo, el mismo proceso se puede seguir para las de 1 q-bit (como se ha mostrado en el caso de

las oscilaciones de Rabi en un sistema de dos niveles) y para las de 3 o más. El único factor a tener

en cuenta es que aumentar el número de q-bits supondŕıa aumentar o la complejidad del pulso o,

de nuevo, el tiempo de aplicación de este. Aśı, independientemente del número de q-bits con los

que trabajemos, siempre tenemos que cuidar el equilibrio entre la complejidad del pulso, el coste

computacional que tiene calcularlo, el tiempo máximo de propagación y el tiempo de coherencia del

estado cuántico.
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Anexo 1: Centro de supercomputación de Aragón

Un ordenador doméstico requiere demasiado tiempo de computación para realizar los cálculos de

optimización. Por ello se ha utilizado el cluster cierzo, alojado en Caesaragusta, un superordenador

situado en el BIFI (Instituto de BIocomputación y FÍsica de sistemas complejos).

Ceasaraugusta cuenta con 3072 núcleos y 25 TFLOPs y, además, es el nodo en Aragón de la

Red Española de Supercomputación (RES), consistente en una interconexión de 12 superordenado-

res que tiene como objetivo ofrecer recursos de computación de alto rendimiento a la comunidad

cient́ıfica. Se coordina a través del centro de supercomputación de Barcelona.

A su vez, también forma parte, junto con otras dos máquinas (JANUS I y JANUS II) y varios

núcleos de computación voluntaria, del centro de supercomputación de Aragón (CESAR).

Generalmente, los cálculos de optimización han tardado entre 1h y 12h. Cada cálculo individual

se ha ejecutado de manera serial, aunque dado que necesitábamos múltiples resultados para pulsos

iniciales aleatorios, deb́ıamos ejecutar series de cálculos concurrentes en las colas paralelas.

26





Anexo 2: Justificación experimental

La motivación para la realización de este TFG se basa en el proyecto SUMO (Scaling Up quan-

tum computation with MOlecular spins), liderado por Fernando Luis, del Instituto de Ciencias de

Materiales de Aragón. Este proyecto tiene como objetivo el desarrollo de un procesador magneto-

cuántico de forma que sea fácilmente escalable. Como sistema cuántico se utilizan los estados de

esṕın del Gd+3, que, al tener una configuración 4f7, tiene un momento angular orbital L nulo pero

el mayor esṕın posible (S = 7/2). Esto implica 8 posibles estados distintos, es decir, un qudit con

d = 8 o, de forma equivalente, un sistema de tres q-bits. La ventaja de utilizar los niveles de enerǵıa

de moléculas individuales se basa en que se minimizan los efectos de interacción magnética dipolo-

dipolo, lo cual suele ser una fuente de decoherencia.

La arquitectura del “chip” se basa en una molécula magnética (que incluye el gadolinio) acoplada

a un circuito superconductor. En la superficie del procesador existen tres lineas superconductoras co-

planares paralelas, donde la central actúa como un resonador superconductor. Sobre esta se sitúan,

en lugares espećıficos, las moléculas mencionadas anteriormente. Además, existe un conjunto de

lineas auxiliares superconductoras perpendiculares a las iniciales. Este chip se fabrica mediante de-

posito de peĺıculas delgadas (150-300 nm) de material superconductor, generalmente Nb o Al, sobre

un sustrato y finalmente, mediante litograf́ıa óptica, se genera el circuito.

El gap de enerǵıa entre los estados lógicos puede ser modificado mediante un campo magnético
~B, generado por la linea superconductora superior (la inferior actúa como tierra), y por los campos

locales ~bi generados por las lineas auxiliares perpendiculares. Para que el sistema se acople a las

componentes ~bi del campo, las moléculas se sitúan en el centro del resonador pues, en el modo

fundamental, es donde se sitúa el máximo (siendo que los nodos se encuentran en los bordes del

resonador). Estas componentes también pueden inducir las transiciones entre los estados pues los

campos, además de tener una componente DC, pueden tener una componente oscilante, con fre-

cuencias t́ıpicas entre 1 y 10 GHz. Dado que la frecuencia caracteŕıstica del resonador es de unos

pocos GHz es fácil ajustar el diseño al rango de las transiciones en los niveles moleculares.

Todo el sistema debe estar a baja temperatura, no solo para que aparezcan las propiedades

superconductoras, sino también para inicializar el sistema a su estado fundamental.

Para más información véase [15] y [16].
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