
Anexo

En este anexo se pueden encontrar diversos resultados enunciados en la sección 1.2., desa-
rrollados con mayor profundidad.

Teorema 1. (Algoritmo de la división en K[x])
Sean K un cuerpo y 0 6= g∈K[x], entonces, todo polinomio f ∈K[x] puede escribirse como

f = qg+ r,

donde q,r ∈ K[x], y o bien r = 0, o gr(r)< gr(g). Además, dichos q y r son únicos, y existe
un algoritmo para calcularlos.

Demostración. El pseudocódigo del algoritmo para dicho cálculo es el siguiente:

Datos: g, f
Resultado: q,r
Inicialización: q := 0,r := f
mientras r 6= 0 y in(g) divida a in(r) hacer

q := q+ in(r)/in(g)
r := r− (in(r)/in(g))g

fin
Algoritmo 4: Algoritmo de la división en K[x]

Apoyémonos en dicho algoritmo para demostrar el teorema anterior. Para empezar, note-
mos que f = qg+r es cierto para los valores iniciales del algoritmo. Es más, en todo momento
dicha igualdad se mantiene, puesto que

f = qg+ r = (q+ in(r)/in(g))g+(r− (in(r)/in(g))g).

Por otro lado, la condición mientras ... hacer finaliza cuando la condición “r 6= 0 y in(g) di-
vida a in(r)” es falsa. Esto equivale a decir que el algoritmo acaba cuando r = 0 o gr(r)< gr(g),
dado que gr(r)≤ gr(g) ⇐⇒ in(r) divide a in(g).

Debemos demostrar que llega un momento en el que la condición dentro del mientras ...
hacer se convierte en falsa, dado que si no daría lugar a un bucle sin fin. Supongamos que

r = a0xm + ...+am, con in(r) = a0xm,

g = b0xk + ...+bk, con in(g) = b0xk,

y supongamos que m≥ k. Entonces se tiene que

r− (in(r)/in(g))g = (a0xm + ...+am)− (a0/b0)xm−k(b0xk + ...+bk),
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de modo que el grado de r va decreciendo cada iteración. Como el grado de los polinomios
involucrados es finito, se concluye que el algoritmo finaliza en un número finito de pasos.

Por último, falta demostrar la unicidad de q y r. Supongamos que f = qg+ r = q′g+ r′,
donde el grado de r y r′ es inferior al de g. Si tenemos que r 6= r′, entonces, gr(r− r′)< gr(g).
Por otro lado, se tiene que (q−q′)g = r′− r, de modo que q 6= q′. Entonces

gr(r′− r) = gr((q−q′)g) = gr(q−q′)+gr(g)≥ gr(g).

Por consecuente, r = r′, y mediante (q−q′)g = r′− r, concluimos que q = q′.

Durante el primer capítulo se menciona que K[X ] es un DIP, resultado que resulta crucial
para solventar los problemas de descripción y pertenencia al ideal. A continuación, la demos-
tración de dicho resultado.

Corolario. Sea K un cuerpo, entonces, K[x] es un dominio de ideales principales (DIP), es
decir, todo ideal I ⊂ K[x] se puede escribir como I = 〈 f 〉, para algún f ∈ K[x]. Además, dicho
f es único salvo múltiplos constantes no nulos.

Demostración. Sea I ⊂K[x]. Si I = {0}, trivialmente, I = 〈0〉. Supongamos que I 6= {0}, y sea
g ∈ I un polinomio de grado mínimo en I. Entonces, empleando el algoritmo de la división,
es claro que para todo f ∈ g, existen q,r ∈ K[x] con r = 0, o bien gr(r) < gr(g). De este
modo, r = f − qg ∈ I, luego forzosamente r = 0, ya que el grado de g lo habíamos supuesto
mínimo. Por tanto, 〈g〉 ⊂ I. Trivialmente, 〈g〉= I, dado que cualquier múltiplo polinómico de
g pertenece a I.

Asimismo, en el primer capítulo se utiliza otro ingrediente algebraico: el máximo común
divisor de polinomios en K[x].

Definición. Denominamos máximo común divisor de f1, ..., fs ∈ K[x] a un polinomio h tal
que:
(i) h divide a f1, ..., fs.
(ii) si p es otro polinomio que divide a f1, ..., fs, entonces p divide a h.
En tal caso, escribimos que h = MCD( f1, ..., fs).

La siguiente proposición se apoya en el uso del máximo común divisor de polinomios para
solucionar el primer problema (I), el problema de descripción de un ideal en K[x].

Proposición. Sean f1, ..., fs ∈ K[x], con s≥ 2, entonces:
(i) MCD( f1, ..., fs) es un generador del ideal 〈 f1, ..., fs〉.
(ii) Si s≥ 3, MCD( f1, ..., fs) = MCD( f1,MCD( f2, ..., fs)).
(iii) Existe un algoritmo para calcular MCD( f1, ..., fs).

Demostración. (i) Sea h=MCD( f1, ..., fs). Procedamos por doble contenido. Si p∈ 〈 f1, ..., fs〉,
entonces p = ∑

t
i=1 pi fi para ciertos pi ∈ K[x]. Se tiene que h divide a todo fi, luego podemos

escribir fi = gih ∀ fi, para ciertos gi. De este modo, p = ∑
t
i=1 pigid, luego h divide a p, er-

go p ∈ 〈h〉. Falta ver el otro contenido: sea p ∈ 〈h〉. Como h es el máximo común divisor de
f1, ..., fs, se tiene que h = ∑

t
i=1 qi fi para ciertos qi. Además, p = hq para cierto q, por lo tanto,

hq = p = ∑
t
i=1 qqi fi, luego p ∈ 〈 f1, ..., fs〉.

(ii) Sea h = MCD( f2, ..., fs), queremos demostrar primero que 〈 f1,h〉 = 〈 f1, ..., fs〉. Por
doble contenido: sea p ∈ 〈 f1, ..., fs〉. Entonces, p = ∑

t
i=1 qi fi para ciertos qi. Como h divide
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a fi ∀i 6= 1, se tiene que p = q1 f1 + ∑
t
i=2 qiq′ih para ciertos q′i, luego p ∈ 〈 f1,h〉. Para de-

mostrar el otro contenido, notar que como h es el máximo común divisor, existen q2, ...,qs
tales que h = ∑

t
i=2 qi fi, luego p = q1 f1 +∑

t
i=2 qi fi = ∑

t
i=1 qi fi. Por último, mediante (i) se

tiene que 〈GCD( f1,h)〉 = 〈MCD( f1, ..., fs)〉 y, como el máximo común divisor es único sal-
vo multiplicación por constante por ser un generador principal del ideal, concluimos que
MCD( f1, ..., fs) = MCD( f1,MCD( f2, ..., fs)).

La tercera parte de la proposición anterior quedará demostrada tras el siguiente resultado.

Proposición. (Algoritmo de Euclides)
Sean f ,g ∈ K[x], para calcular el MCD( f ,g) basta aplicar el siguiente algoritmo, presen-

tado como pseoudocódigo, donde resto(h,s) representa el resto de efectuar la división de h
entre s:

Datos: f ,g
Resultado: h
Inicialización: h := f ,s := g
mientras s 6= 0 hacer

res := resto(h,s)
h := s
s := res

fin

Demostración. Si efectuamos la división de f entre g, obtendremos que f = gq+r para ciertos
q y r satisfaciendo las propiedades del Teorema 1. Necesitamos demostrar que

MCD( f ,g) = MCD( f −qg,g) = MCD( f )

Empleando el apartado (i) de la proposición anterior, basta demostrar que 〈 f ,g〉 y 〈 f −
gq,g〉 son iguales. Demostrémoslo por doble contenido: sea p∈ 〈 f ,g〉, entonces p = q1 f +q2g
para ciertos q1 y q2. Pero f = gq + r, ergo p = q1(gq + r) + q2g = q1r + (q1q + q2)g =
q1( f − gq) + (q1q + q2)g ∈ 〈 f − gq,g〉. Análogamente, sea p ∈ 〈 f − gq,g〉. Entonces, p =
q1( f −gq)+q2g para ciertos q1 y q2. De modo que p= q1( f −gq)+q2g= q1 f +(q2−q1q)g∈
〈 f ,g〉.

Una vez demostrado esto, notemos que entonces MCD( f ,g)=MCD(g,r). Además, gr(g)>
gr(r) o r = 0. Si r = 0, hemos terminado el proceso de cálculo. Si no, podemos continuar con
el proceso dividiendo g entre r. Si g = q′r + r′, y así, MCD(g,r) = MCD(r,r′). De nuevo,
gr(r) > gr(r′) o r′ = 0. Si r′ 6= 0, proseguimos sucesivamente. Dado que el grado de los po-
linomios iniciales es finito y que el grado del resto va disminuyendo conforme transcurre el
algoritmo, concluimos que el último resto no nulo es nuestro máximo común divisor.

De este modo, el apartado (iii) de la penúltima proposición queda demostrado: para calcular
MCD( f1, ..., fs) basta emplear conjuntamente el algoritmo de Euclides y el apartado (ii) de
dicha proposición.
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