Anexo

En este anexo se pueden encontrar diversos resultados enunciados en la seccion 1.2., desa-
rrollados con mayor profundidad.

Teorema 1. (Algoritmo de la division en K|x))
Sean K un cuerpo y 0 # g € K|[x|, entonces, todo polinomio f € K|x| puede escribirse como

f=qg+r,

donde q,r € K[x|, y o bienr =0, 0 gr(r) < gr(g). Ademds, dichos q y r son inicos, y existe
un algoritmo para calcularlos.

Demostracion. El pseudocodigo del algoritmo para dicho calculo es el siguiente:

Datos: g, f

Resultado: ¢, r

Inicializacion: ¢ :=0,r := f

mientras r # 0y in(g) divida a in(r) hacer
q:=q+in(r)/in(g)
ri=r—(in(r)/in(g))g

fin

Algoritmo 4: Algoritmo de la division en K x|

Apoyémonos en dicho algoritmo para demostrar el teorema anterior. Para empezar, note-
mos que f = gg -+ es cierto para los valores iniciales del algoritmo. Es mds, en todo momento
dicha igualdad se mantiene, puesto que

f=qg+r=(q+in(r)/in(g))g+ (r—(in(r)/in(g))g).

Por otro lado, la condicién mientras ... hacer finaliza cuando la condicion “r # 0y in(g) di-
vida a in(r)” es falsa. Esto equivale a decir que el algoritmo acaba cuando r =00 gr(r) < gr(g),
dado que gr(r) < gr(g) <= in(r) divide a in(g).

Debemos demostrar que llega un momento en el que la condicién dentro del mientras ...

hacer se convierte en falsa, dado que si no daria lugar a un bucle sin fin. Supongamos que

r=apx" + ...+ ay, con in(r) = apx™,

g = box* + ...+ by, con in(g) = box*,
y supongamos que m > k. Entonces se tiene que
r—(in(r) /in(g))g = (apx™ + ...+ ap) — (ao/bo)x"*(box* + ... + by),
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de modo que el grado de r va decreciendo cada iteraciéon. Como el grado de los polinomios
involucrados es finito, se concluye que el algoritmo finaliza en un ndmero finito de pasos.

Por dltimo, falta demostrar la unicidad de g y r. Supongamos que f =qgg+r=q'g+7,
donde el grado de r y ’ es inferior al de g. Si tenemos que r # r/, entonces, gr(r—r') < gr(g).
Por otro lado, se tiene que (¢ — ¢')g = r' — r, de modo que ¢ # ¢'. Entonces

gr(r —r)=gr((g—q')g) =gr(g—dq') +gr(g) = gr(g).
Por consecuente, r = r/, y mediante (¢ —¢’)g = ' — r, concluimos que g = ¢'. O

Durante el primer capitulo se menciona que K[X] es un DIP, resultado que resulta crucial
para solventar los problemas de descripcion y pertenencia al ideal. A continuacién, la demos-
tracion de dicho resultado.

Corolario. Sea K un cuerpo, entonces, K[x| es un dominio de ideales principales (DIP), es
decir, todo ideal I C K[x] se puede escribir como I = (f), para algiin f € K|x|. Ademds, dicho
f es tinico salvo miiltiplos constantes no nulos.

Demostracion. Seal C K[x|. Sil= {0}, trivialmente, I = (0). Supongamos que / # {0}, y sea
g € I un polinomio de grado minimo en /. Entonces, empleando el algoritmo de la division,
es claro que para todo f € g, existen ¢,r € K[x] con r =0, o bien gr(r) < gr(g). De este
modo, r = f —qg € I, luego forzosamente r = 0, ya que el grado de g lo habiamos supuesto
minimo. Por tanto, (g) C I. Trivialmente, (g) = I, dado que cualquier multiplo polinémico de
g pertenece a I. [

Asimismo, en el primer capitulo se utiliza otro ingrediente algebraico: el maximo comun
divisor de polinomios en K|x|.

Definicion. Denominamos mdximo comiin divisor de fi,..., f; € K|x| a un polinomio h tal
que:

(i) h divide a f1,..., f;.

(ii) si p es otro polinomio que divide a f1, ..., fs, entonces p divide a h.

En tal caso, escribimos que h = MCD(f1, ..., fy).

La siguiente proposicion se apoya en el uso del maximo comin divisor de polinomios para
solucionar el primer problema (I), el problema de descripcién de un ideal en K|x].

Proposicién. Sean fi,..., fs € K[x], con s > 2, entonces:
(i) MCD(f1, ..., f5) es un generador del ideal (fj, ..., f5).
(i) Si s > 3, MCD(f1,..., fs) = MCD(f1,MCD(f2, ..., f)).
(iii) Existe un algoritmo para calcular MCD(fy, ..., fs).

Demostracion. (i) Seah=MCD(fy, ..., fs). Procedamos por doble contenido. Si p € (f1, ..., f5),
entonces p = Y':_, pif; para ciertos p; € K[x]. Se tiene que A divide a todo f;, luego podemos
escribir f; = g;h Vf;, para ciertos g;. De este modo, p = Y'_, pigid, luego h divide a p, er-
go p € (h). Falta ver el otro contenido: sea p € (h). Como h es el mdximo comtin divisor de
S, fs, se tiene que h =Y, ¢ fi para ciertos ¢;. Ademds, p = hq para cierto g, por lo tanto,

hg=p=Y'_,qqifi.luego p € (fi,.... fs).

(ii) Sea h = MCD(f>, ..., fs), queremos demostrar primero que (fi,h) = (fi,..., fs). Por
doble contenido: sea p € (fi,..., fs). Entonces, p = Y_, ¢if; para ciertos ¢;. Como h divide
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a f; Vi # 1, se tiene que p = q1f1 + Y, qiqth para ciertos ¢, luego p € (f1,h). Para de-
mostrar el otro contenido, notar que como /4 es el maximo comun divisor, existen g, ...,¢s
tales que 7 =Y ,qif;, luego p = q1f1 + Y »qifi = Yi_, qif;- Por dltimo, mediante (i) se
tiene que (GCD(fi,h)) = (MCD(f1,...,fs)) ¥y, como el mdximo comtin divisor es tnico sal-
vo multiplicacién por constante por ser un generador principal del ideal, concluimos que
MCD(f1,..., fs) = MCD(f1,MCD(f3,..., f;)). O

La tercera parte de la proposicion anterior quedard demostrada tras el siguiente resultado.

Proposicion. (Algoritmo de Euclides)

Sean f,g € K|x], para calcular el MCD(f,g) basta aplicar el siguiente algoritmo, presen-
tado como pseoudocddigo, donde resto(h,s) representa el resto de efectuar la division de h
entre s:

Datos: f,g
Resultado: £
Inicializacion: h:= f,s:=g
mientras s # 0 hacer

res :=resto(h,s)

h:=s

§:=res

fin

Demostracion. Si efectuamos la division de f entre g, obtendremos que f = gg+ r para ciertos
q y r satisfaciendo las propiedades del Teorema 1. Necesitamos demostrar que

MCD(f,g) = MCD(f —qg,8) = MCD(f)

Empleando el apartado (i) de la proposicién anterior, basta demostrar que (f,g) y (f —
24, g) son iguales. Demostrémoslo por doble contenido: sea p € (f,g), entonces p = g1 f +qag
para ciertos g1 y g2. Pero f = gq+r, ergo p =qi(gq+7r)+q8 = qir + (919 + q2)g =
q1(f —89) + (919 + 92)8 € (f — g4q.8)- Andlogamente, sea p € (f — gq,g). Entonces, p =
f<11 (f>— 849) +q2g paraciertos g1 y g2. Demodo que p = ¢q1(f —8q) + @28 = q1.f + (92— q19)8 €

f:8)-

Una vez demostrado esto, notemos que entonces MCD(f,g) = MCD(g,r). Ademés, gr(g) >
gr(r) or=0. Si r =0, hemos terminado el proceso de cdlculo. Si no, podemos continuar con
el proceso dividiendo g entre r. Si g = ¢'r+ 7/, y asi, MCD(g,r) = MCD(r,r’). De nuevo,
gr(r) > gr(r') o ¥ =0. Si ¥ # 0, proseguimos sucesivamente. Dado que el grado de los po-
linomios iniciales es finito y que el grado del resto va disminuyendo conforme transcurre el
algoritmo, concluimos que el tltimo resto no nulo es nuestro maximo comun divisor. [

De este modo, el apartado (iii) de la penultima proposicién queda demostrado: para calcular
MCD(fy,..., fs) basta emplear conjuntamente el algoritmo de Euclides y el apartado (ii) de
dicha proposicion.



	Anexo

