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Resumen

La proteccion y conservacion de los suelos es vital para el logro de las metas
formuladas en la Agenda para el desarrollo Sostenible de Naciones Unidas 2030
(Nations, 2015). Los objetivos mas importantes incluyen el de procurar lograr un
mundo con efecto neutro en la degradacion del suelo y conseguir la seguridad

alimentaria.

La evaluacion del estado actual del suelo y apreciacion de los efectos de las
actividades de gestion son  imposibles de realizar sin un regular monitoreo,
especialmente en areas con perturbaciones naturales y antropogénicas, tales como la

regiones del Mediterraneo en Europa y Amazonia en América del Sur.

En este contexto, el objetivo principal de la presente investigacion consiste en
establecer una metodologia operativa en base de las opciones existentes mas iddneas
para la estimacion del contenido de materia organica (CMO) y textura de suelos y
aplicarla en diferentes areas que experimentan cambios en la cobertura y el uso de suelo
que incluyen (i) areas afectados por los incendios forestales, (ii) areas de agricultura

bajo sistema de cultivo de roza-y-quema, y (iii) campos agricolas abandonados.

En la primera fase de investigacion se compararon montajes experimentales de
laboratorio de deteccion proxima utilizados en la espectroscopia de suelos que incluyen
diferentes accesorios: la esfera integradora, lampa de iluminacion halégena ASD vy la
sonda de contacto Optica. Aungue se obtuvieron resultados similares con los tres disefios
experimentales utilizados, los modelos estadisticos basados en los espectros medidos
por la configuracion experimental que incluia una lampara halégena como fuente de
iluminacién, han demostrado la mejor capacidad de prediccién con el coeficiente de
determinacion ~10% mas alto que modelos basados en los datos generados por las otras
dos configuraciones. La utilidad de esta configuracién y el procedimiento de mediciones
espectrales establecido para obtencién de los espectros estables de suelos fueron
posteriormente comprobada en las mediciones espectrales de las muestras de suelos en
areas de cultivos bajo sistema de roza-y-quema en la region costera del Ecuador, donde

los residuos de biomasa son quemados al final de cada ciclo de produccion.

La siguiente fase de investigacion consistié en utilizar los espectros de suelos de las

diferentes areas de estudio (areas de incendios forestales en Espafa y Brasil, areas de



quemas agricolas en Ecuador, y area con campos de cultivo abandonados en el noroeste
de Espafa) para calibracion de modelos predictivos de materia organica y textura
utilizando varios métodos estadisticos multivariantes: (i) regresion parcial por minimos
cuadrados usando todas las bandas de reflectancia disponibles como predictores (PLSR-
full), (i) regresion parcial por minimos cuadrados usando como predictores las bandas
seleccionadas con la prueba de incertidumbre de Martens (PLSR-MUT) y (iii) regresion
de las componentes correlacionadas y el algoritmo iterativo para la seleccion de los
predictores (CCR-SD).

El método CCR-SD por primera vez aplicado en la espectroscopia de suelos en esta
investigacion mostrd los mejores resultados generando los modelos de mejor ajuste
utilizando limitado nimero de predictores; en la estimacién simultanea de CMO,
arcilla, limo y arena estos modelos obtuvieron coeficientes de determinacién R? en el
rango de 0.80-0.86 y 0.70-0.87 en las etapas de -calibracion y validacion,

respectivamente.

Finalmente, los espectros de alta resolucion generados durante las mediciones
espectrales de suelos en el laboratorio fueron re-muestreados para explorar la
posibilidad de estimacion del CMO vy textura de suelos a partir de las imagenes de los
tres satélites de Ultima generacion (Landsat-8, Sentinel-2, and EnNMAP). Los resultados
son altamente prometedores para todos los satélites, mostrando los modelos para CMO

basados en las bandas de EnMap la precisién mas alta (R*~0.90).



Abstract

Soil protection and conservation is vital for achievement sustainability goals
formulated in the United Nations 2030 Agenda for Sustainable Development (United
Nations, 2015). Among the most important targets are those related to achievement of

food security and a land degradation-neutral world.

It is impossible to evaluate the present status of soils and assess/measure the effect
of the management activities without regular soil monitoring, particularly in areas of
natural and anthropogenic disturbances, such as Mediterranean in Europe and Amazon

in South America.

In this context, the main objective of the present research is to establish the viable
methodology for estimation of organic matter and texture of fire-affected soils from
spectral data and test it on data from different areas of land use/land cover change: (i)
soils from the areas affected by wildfire burns and slash-and-burn agriculture; and (ii)

soils from areas of cropland abandonment.

The study began with comparison of laboratory setups which included different
spectroscopy accessories (the external integrating sphere, halogen lamp ASD and the
optical contact probe) used to obtain VIS-NIR-SWIR spectra of soils from wildfire
burns. Although similar results were obtained with all the setups, the best quality
predictions of soil organic matter (SOM) resulted from spectra generated with the setup
using halogen lamp as illumination source. Statistical models based on the spectra
measured by the experimental configuration that included a halogen lamp as the light
source have demonstrated the best prediction capability with the determination
coefficient ~10% higher than models based on the data generated by the other two
configurations.The viability of modeling methodology was then successfully confirmed
in modeling of SOM of soils affected by anthropogenic fire in slash-and-burn crop

cultivation system on the Ecuadorian coast.

In the next stage of the research, different modeling algorithms were applied for
estimation of SOM and soil texture using soil spectra from the different study areas
(forest fire areas in Spain and Brazil, agricultural burn areas in Ecuador, and area with
abandoned fields in northwestern Spain), which include the partial least square

regression using all available reflectance bands as predictors PLSR-full, partial least



square regression using the bands selected with the Martens uncertainty test as
predictors PLSR-MUT and correlated component regression CCR. Spectral
measurements were performed using previously determined laboratory setup. The
correlated components regression (CCR) with step-down variable selection algorithm
applied in soil spectroscopy outperformed other tested methods and allowed generation

of well-fit models with a limited number of predictors.

The CCR-SD method for the first time applied in soil spectroscopy in this
investigation showed the best results generating the best fit models using limited
number of predictors; in the simultaneous estimation of SOM, clay, silt and sand these
models obtained R? determination coefficients in the range of 0.80-0.86 and 0.70-0.87
in the calibration and validation stages, respectively.

Finally, high-resolution laboratory reflectance spectra of fire-affected soils from the
forest burns in northeastern Spain and savanna enclave in central Brazil were up-scaled
to explore the possibility of modelling SOM and soil texture from data generated by the
three last generation satellites (Landsat-8, Sentinel-2, and EnMAP). The highly
promising results were obtained for all the satellites; being the SOM models based on
simulated EnMAP bands the most accurate (R?~0.90).
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CHAPTER 1. Background, objectives and structure

1. Background, objectives and structure

Soil is a loose surface layer of the earth surface consisting of mixture of weathered
rocks and organic material necessary for plants growth (Nortcliff et al., 2006; Troeh &
Thompson, 2005). Soil regulates the environment and ensures food security. Changes in
land cover and land use, such as wildfires, deforestation, desertification and
urbanization, negatively affect soil properties and can trigger erosion processes leading

to environmental degradation.

Wildfires have long been a natural disturbance factor relevant for evolution of some
ecosystems. However, at present, due to human activities and climate change, the
number and intensity of fires are experiencing continuous increase (Pausas et al., 2004).
Fire effects on soils are multiple, the degree of changes in soil properties depending on
fire severity and frequency (Lentile et al., 2006; Mataix-Solera, Cerda, Arcenegui,
Jordan, & Zavala, 2011). The first and most obvious effect is the loss of soil organic
matter and, as a consequence, decrease in soil fertility (Certini, 2005). Consumption of
vegetation and above surface biomass alters energy and water cycles, and modifies
surface runoff and infiltration. In clayey soils fire-related loss of organic matter is often
related to the increase of soil hydrophobicity, i.e. water repellence, which is the cause of

greatly accelerated soil erosion and loss (Ubeda & Outeiro, 2009).

On the other hand, fire-related changes in soil properties may also result from
controlled anthropogenic fires regularly applied for burning of residual biomass as part
of traditional slash-and-burn (swiddening/shifting) agriculture still widely used in small-
scale farming of developing countries of Asia, Africa and South America (Hauser and
Norgrove, 2013). Positive effects of low intensity fires include soil fertilization with
organic ash, elimination of weeds, reduced risk of plant parasites and diseases (Jordan,
1989; Kato, Kato, Denich, & Vlek, 1999). During centuries, long time between rotation
cycles in subsistence agriculture of indigenous peoples together with low population
density ensured sustainability of the system (Sponsel, 2013). However, at present
demographic pressure and market orientation of the economy lead to decrease of time
periods between burns (Lawrence, Radel, Tully, Schmook, & Schneider, 2010), and as a
consequence, lowering of soil fertility due to nutrients volatilization (Mackensen et al.,
1996), soil erosion and reduction of agricultural yields in areas of shifting agriculture
(Sommer et al., 2004; Comte et al., 2012).
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While fire, provoked by natural or human-related factor has long been affecting
ecosystems in the studied areas, the spread of cropland abandonment in the
Mediterranean is a more recent driver of land cover changes related to the soil
conditions in the region (Nadal-Romero, Cammeraat, Pérez-Cardiel, & Lasanta, 2016).
Massive migration of population to urban areas and abandonment of the cultivated
fields in the last decades are the processes taking place throughout extensive
mountainous areas in Mediterranean. Ecosystem evolution of the abandoned areas
follows different paths and various management strategies aimed to soil restoration and
improvement are often applied (Lasanta, Nadal-Romero, & Arnéez, 2015). There is no
doubt, that cropland abandonment can affect soil properties, although no clear pattern
has been observed (Nadal-Romero et al., 2016).

Maintaining of soil conditions is a key condition for sustainability (Lal & Stewart,
2010; Pimentel, 2006). The United Nations 2030 Agenda for Sustainable Development
(United Nations, 2015) in one of the Sustainable development goals (SDGs) calls for

action to achieve a land degradation-neutral world.

Regular soil monitoring is necessary to get better understanding of soil/ecosystem
evolution and assess the effectiveness of the mitigation strategies (T6th, Hermann, da
Silva, & Montanarella, 2018), especially in areas of natural and anthropogenic
disturbances, such as Mediterranean (Merino, Moreno, Navarro, & Gallardo, 2016).
Soil status can be evaluated through a set of soil attributes/indicators, which usually

include soil organic matter (SOM) and texture.

Traditionally estimation of soil properties has been based on data generated by soil
surveys involving extensive fieldwork and a series of laboratory analysis often referred
to as “wet chemistry”. These conventional methods demand great investment of time

and effort, which motivated the search for alternatives.

Extensive research during last decades has shown that SOM and texture are
spectrally active properties and can be estimated with spectral sensing methods, such as
visible (VIS)-near infrared (NIR)-shortwave infrared (SWIR) spectroscopy, combined

with multivariate statistical modelling. The technique allowing quick and undestructive
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testing requires minimum sample preparation and could offer time and cost-effective
alternative (Dematté et al., 2016).

Spectral measurements can be performed in laboratory and in-situ. Laboratory
conditions ensure stable observation geometry, and environment, which should be
accounted for when working in the field (Schaepman & Dangel, 2000; Viscarra-Rossel,
Walvoort, McBratney, Janik, & Skjemstad, 2006). Yet, some issues as, for example, the
impact of laboratory instrumentation and procedures, the feasibility of models up- and
downscaling (Viscarra-Rossel et al., 2016), as well as conditions determining model
transferability from one study area to the other (Ben-Dor, Ong, & Lau, 2015; Guerrero,
Viscarra-Rossel, & Mouazen, 2010; Stevens et al., 2008), still need to be clarified.

Because high variability in proportion of soil constituents has a great impact on their
spectra (Ben-Dor & Dematté, 2016), soil properties cannot be estimated directly from
the spectral curves. Thus, the variables of interest are quantified using methods of
multivariate statistics. The most often used models are those resulting from linear
regression, especially very popular partial least squares regression (PLSR) (Mouazen,
Kuang, De-Baerdemaeker, & Ramon, 2010; Vasques, Dematté, Viscarra-Rossel,
Ramirez-Lépez, & Terra, 2014; Viscarra-Rossel, McGlynn, & McBratney, 2006).
However, lately reports present examples when PLSR models are outperformed by data
mining techniques and tools, which include neural networks (Mouazen, et al., 2010),
support vector machines (Viscarra-Rossel & Behrens, 2010), and artificial intelligence
algorithms (Gholizadeh, Bortivka, Saberioon, & Vasat, 2016).

Continuous evaluation of new modelling approaches is being performed, as well as
the scope of VIS-NIR-SWIR soil spectroscopy use in scenarios of particular interest
(e.g., Gholizadeh, Saberioon, Carmon, Boruvka, & Ben-Dor, 2018; Ogen, Neumann,
Chabrillat, Goldshleger, & Ben-Dor, 2018; Ostovari et al., 2018; Terra, Dematté, &
Viscarra-Rossel, 2018; Viscarra-Rossel & Brus, 2018).

In this context, the main objective of this study is to estimate organic matter and
texture of fire-affected and cropland abandoned soils from spectral data at different
scales, i.e. determine and test the viable/operational methodology for this purpose. The
main objective was approached through the work on several specific objectives:
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1. Compare laboratory setups including different commercially available
spectroscopy accessories used to obtain VIS-NIR-SWIR spectra soils from areas
of landcover change (affected by fire and cropland abandonment) (article in

Biosystems Engineering, 152);

2. Apply VIS-NIR-SWIR laboratory spectroscopy to estimate SOM and texture of
soils from in erosion-prone areas of wildfire burns, slash-and-burn agriculture
and cropland abandonment in three different study areas (articles in Land
Degradation & Development, 30(5), and Scientific Report of the Il
International Congress of Engineering, Environmental, Forestry and
Ecotourism (pp. 16-28) );

3. Assess the performance of different algorithms applied in modelling of SOM
and texture fractions of burned soils (article Land Degradation & Development,
30(5)).

4. Explore the potential of the three last generation satellites (Landsat-8, Sentinel-
2, and EnMAP) to estimate SOM content and texture of soils affected by fire
and cropland abandonment (articles Journal of Applied Remote Sensing, 12(4),
042803, and Remote Sensing for Agriculture, Ecosystems, and Hydrology
XIX (Vol. 10421, p. 104210V) ).

The structure of thesis contains ten chapters. Chapter 1 describes the scientific
context of research and formulates its objectives. It is followed by the theoretic rationale
for the VIS-NIR-SWIR soil spectroscopy and review of the up-to-date advances
(Chapter 2); description of the study area (Chapter 3), data and tools used in the study
(Chapter 4). General view of research methodology is presented in Chapter 4, while
details of research performed when working on each of the objectives are presented in
Chapters 5-8, each of the chapters being the original version of the published articles.
The main findings and further research opportunities arising from this work are
summarized in the final chapters in English (Chapter 9) and Spanish (Chapter 10). They
are followed by sections containing References for Chapters 1-4 and Appendices,
specifying contribution of the PhD student to the published papers and documents
certifying that the five presented articles are authorized for the exclusive use in this

thesis.
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2. Soil organic matter and texture estimation from VIS-NIR-SWIR
spectra

2.1. Soils and soil monitoring

Soil is the loose mixture of organic and inorganic components on the earth surface
allowing vegetation development. It is a main support for food production. Soils are
also relevant in climate change issues (Lal, 2004). Land use change processes, which
include deforestation, biomass burning, and urbanization are important contributors to
carbon (C) emission into the atmosphere. On the other hand, soils can act as carbon
sinks retaining stable soil organic and inorganic carbon components. This capacity

varies depending on soil type (Ingram & Fernandes, 2001).

While our food security depends on soils, human activities together with natural
processes promote soil and land degradation. Among these processes are natural and
anthropogenic fires. Consumption of organic matter alters the structure of burned soils
reducing their permeability; increased surface runoff accelerates soil erosion leading to
its deterioration and loss (Cerda & Robichaud, 2009; DeBano & Neary, 2005; Pérez-
Cabello, Echeverria, Ibarra, & De la Riva, 2009).

Different management strategies have been developed and applied worldwide to
maintain/improve soil quality, prevent soil degradation and mitigate the effects of soil
disturbances. To evaluate their success, it is necessary to establish, register, and
compare indicators of soil status (Montanarella & Panagos, 2018). There is a consensus
among the experts (Binemann et al., 2018) that a minimum set should consist of soil

chemical, physical and biological attributes/indicators.

The minimum set of properties for soil quality assessment usually includes SOM
and texture (Blnemann et al., 2018). SOM, which is one of the main sources of soil
carbon and plant nutrients, determines soil fertility and plays an important role in both
water cycle (infiltration and runoff) (To6th et al., 2018). On the other hand, land
productivity is directly impacted by soil erosion (Troeh & Thompson, 2005), with
texture being one of the basic indicators of soil erodibility (Goldman, Bursztynsky, &
Jackson, 1986) and other hydraulic properties (T6th et al., 2018).
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Assessment of soil properties is usually performed through application of methods
specific for corresponding scientific discipline. Thus, physical soil properties are
quantified using procedures common to physics; chemical properties uses methods
applied in chemistry and biological properties are estimated with methods developed in
biology (Dematté et al., 2016). Traditional methods are destructive and resource-
intensive; the test results are not readily available. Moreover, there is often
inconsistency between approaches applied in different soil surveys (Sanchez et al.,
2009) making difficult comparison and integration of the results (Louis et al., 2014).

2.2. Visible and Near-Infrared soil spectroscopy

Known limitations of conventional soil analysis motivated the search for
alternatives, arising spectral sensing methods as one of the time and cost-effective
solutions (Dematté et al., 2016) It has been demonstrated that information on soil
characteristics can be obtained from spectral regions which include the ultraviolet (UV:
200-380 nm), visible (VIS: 350-700), near-infrared (NIR:700-1000 nm), shortwave
infrared (SWIR: 1000-2500 nm),and mid-infrared (MIR: 2500-25000 nm) shown in
Fig. 1. Even though soil spectra present a greater number of spectral features in the MIR
range, VIS— NIR— SWIR spectroscopy is more often used due to the ease of application

and lower cost of the equipment.
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Figure 1. Electromagnetic spectrum with wavelength ranges indicating spectral
regions. Modified after original (https://www.infinitioptics.com/technology/multi-

Sensor).
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When electromagnetic waves come into contact with a material, they are
transmitted, reflected, and/or absorbed, as evident from the following expression based
on the law of conservation of energy:

prat+t=1 D,

where p - reflectance, o - absorptance, and t — transmittance.

Since soil is an opaque material, the energy is not transmitted, but either absorbed or
reflected. The absorption-reflection proportion is wavelength dependent and varies from
one type of material to another.

The reflectance factor (p) (Eg. 2) spectrum is the result of collecting values at every
spectral band (A) from the ratio of the radiant flux (B) actually reflected by a target
surface (e.g. soil) to that of a perfectly diffuse surface under the same geometry of
illumination and observation (Fig.2) (Schaepman-Strub, Schaepman, Painter, Dangel, &
Martonchik, 2006). "Perfectly diffuse” (Fig. 4) means a Lambertian surface with p(1)=1

(Spectralon® reference panel).
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Figure 2. Acquisition of reflectance factor spectrum: A= irradiance; B is target
radiance; C is radiance of the reference panel; p-reflectance factor and PRD is Perfectly
Reflecting Diffuser
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The amount of reflected energy can be registered by the sensors and obtained
spectra used for information extraction allowing materials differentiation and

characterization (Fig. 3).

Generalized reflectance spectra of some earth surface materials
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Figure 3. Typical spectra of materials usually found on Earth’s surface. (Source:

https://www.usna.edu/Users/oceano/pguth/md_help/html/ref_spectra.htm)

When radiomagnetic radiation strikes the matter, it triggers the processes of
electronic or vibrational transition. Electronic processes involve transition of the
electrons from one level to another in atoms/ions of soil constituents with the
consequent charge transfer; whereas vibrational processes result from the excitation and
vibration of anion groups and molecules (e.g. H,O, CO,) in the crystal structure of soil
minerals (Hunt & Salisbury, 1971). The effects of electronic transitions are evident
mainly in VIS-NIR-SWIR spectral regions (Fig. 5), while the vibrational processes
mostly impact the MIR spectral range.

Two types of reflectance are observed: specular reflectance and diffuse reflectance
(Fig. 4). For specular reflectance, the angle of reflection is equal to the angle of
incidence (Fig. 4a); at all other angles, only diffuse reflectance (Fig. 4b) is observed.
Because VIS-NIR-SWIR soil spectroscopy measures only diffuse reflectance, it is often
referred to as diffuse reflectance spectroscopy (DRS) (Torrent & Barrén, 2008). It is
also sometimes called “Proximal sensing” (Viscarra-Rossel, Adamchuk, Sudduth,
McKenzie, & Lobsey, 2011).
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lllumination angle ‘Lambertian
Reflection angle E Surface”

A\
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Figure 4. Types of reflectance: A- specular and B — diffuse (modified after
(Lillesand, Kiefer, & Chipman, 2014))

Proximal sensing is an integral part of remote sensing, which is defined as
“acquisition of information about an object by detecting its reflected or emitted energy
without being in direct physical contact with it” (Elachi & Van-Zyl, 2006; Jensen,
2009).While the term Remote Sensing can be applied to energy detection by sensors
located on any platform (ground, air-borne, satellite, etc.) and in any type of
environment (field, laboratory, etc.), “Proximal Sensing” is used only for sensors
registering the signal from a short distance (Viscarra-Rossel et al., 2011). Spectral
measurements are performed with spectroradiometers which register energy coming
from natural (sunlight) or built-in (spectral probe) sources of illumination. Soil
preparation for laboratory measurements consists of spreading sieved and air-dried
samples into plastic or glass containers (petri dishes). Laboratory conditions provide the
opportunity to control illumination conditions and observation geometry, which results
in high-resolution spectra characterized by high signal-to-noise ratio. VVarious properties

can be estimated simultaneously and results are immediately available.

Field measurements use illumination from the sun or a probe with a built-in light
source. In-situ acquisition of soil spectra is more complicated because additional
factors, such as atmosphere and moisture content, should be taken into account. Under
natural illumination contribution of specular and diffuse components of reflectance is
comparable, and the proportion of each one depends on atmospheric conditions,

topography and soil “surface state” properties (Escadafal, 1989), i.e. particle size,
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structure and surface roughness. When working in the field, it is possible to scan not

only the surface layer, but also under surface horizons of the undisturbed soils.

2.3. Spectral properties of soils

It has been demonstrated that some chemical and physical properties of soils are
related to soil spectral properties. The components of soil mixture that absorb incident
radiation in discrete energy levels and whose reflectance spectra reveal chemical (Fig.
5) and physical attributes (Fig. 6) are called chromophores (Ben-Dor et al., 1999;
Dematte et al., 2002). Spectral behavior of soils was first described by (Condit, 1970)
and (Baumgardner, Silva, Biehl, & Stoner, 1986) who identified several spectral shape
patterns typical for soils (three and five, respectively). More detailed methodology of
using spectral reflectance curves for differentiation of soils, based on curve shape,
reflectance intensity and absorption features, was developed by (Dematté, 2002).
Essential edaphic components, such as organic matter, clay minerals and iron oxides
present characteristic absorption features caused by electronic transitions in the VIS and
by overtones and combination modes of functional groups in the NIR and SWIR
spectral regions (Hill, Udelhoven, Vohland, & Stevens, 2010; Stenberg, Viscarra-
Rossel, Mouazen, & Wetterlind, 2010).
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Figure 5. The spectral active groups and mechanisms of the chemical soil
chromophores. The wavelength range and feature intensity are given for each possible
group (Ben-Dor et al. 1999, modified)

Because soils are mixtures of organic and inorganic particles with highly variable
proportions of each substance and particle size, their spectra present overlaps of spectral
features corresponding to specific soil constituents (Ben-Dor & Dematté, 2016),
Spectral response is also strongly influenced by water content, with the strongest
absorption bands near 1400 and 1900 nm, and with weaker bands in other parts of the
spectra (Liu et al., 2003). The mineral part of soils, which represents in general 50% of
its volume (Schulze, 2002), has strong distinct characteristics in the VIS-NIR-SWIR
region in reflectance intensity, curve shape and absorption features (Fig. 6) (Hunt,

1977). Particle size is also distinguishable in soil spectra (Curcio, Ciraolo, D’ Asaro, &
Minacapilli, 2013).

11
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Figure 6. Soil reflectance spectra with indication of typical spectral features and

characteristics.
2.3.1. Soil organic matter

Soil organic matter and the composition of the organic components have a strong
influence on the soil reflectance; previous works assessing SOM content found a wide
spectral range influenced by this property what suggests that OM is an important
chromophore across the entire spectral region (Baumgardner et al., 1986; Ben-Dor et al.,
1999). When organic matter content exceeds a concentration of 2 g 100g™, it causes
reflectance to decrease, particularly in the VIS, and can mask absorption bands of other
materials. These masking properties become less effective as the organic matter content
drops below 2 g 100g™ (Baumgardner et al., 1986; Ben-Dor et al., 1999). Different

organic constituents affect soil reflectance to a varying degree (Fig. 7).

(Ben-Dor, Inbar, & Chen, 1997) investigated the change of the reflectance spectra of
organic matter in the VIS-NIR to SWIR regions (400-2500 nm) during a biological
decomposition process and revealed that OH- and C-Hy groups of hygroscopic water,
starch, cellulose, and lignin correlate highest with composting time and may be used for

estimation of organic matter contents.

12
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Figure 7. Reflectance spectra of soils with high and low organic matter content and
the shape of the curves that change due to SOM.

2.3.2. Soil texture

Reflectance and scattering of light striking soil surface depends not only on soil
chemical composition, it is also affected by the size and form of soil particles, e.g. soil
texture, determining the angle of light incidence and index of refraction of the surface
material, factors governed by Fresnel’s law. Fig. 8 illustrates how these factors impact
the soil spectrum base height and modify the intensity of absorption features (Ben-Dor,

Goldlshleger, Benyamini, Agassi, & Blumberg, 2003).
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Figure 8. Reflectance spectra of soils with different texture (Baumgardner et al.
1986).
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Soil texture is closely related to the mineral composition of soils, mainly to the
presence of clay minerals and the quartz content. Thus, it directly influences the soil
spectra. The increased proportion of smaller particles often causes higher overall
reflectance and decrease in the depth of the absorption features of soil spectra
(Baumgardner et al., 1986; Van-der-Meer, 1995). This is especially true for spectral
features in SWIR region in the spectra of transparent materials, such as silicates (Hunt
& Salisbury, 1971). On the contrary, the spectra of opaque materials show reflectance
decrease with the increment of smaller size particles. Some materials, such as iron
oxides, show behavior typical for transparent materials in the wavelengths greater than
550nm and reflectances typical for opaque materials in the wavelengths shorter than
550nm (Hunt & Salisbury, 1971).

In soil spectra collected under natural illumination, the effect of size particle can be
masked by effect of soil aggregation, which explains why clayey soils with large size
aggregates produce spectra characteristic for ‘‘rougher’’ surfaces (Matthias et al., 2000;
Stoner & Baumgardner, 1981).

Clay content is one of the soil properties most successfully quantified with
spectroscopic methods mainly due to the presence of OH group spectrally active in the
VIS-NIR-SWIR region (Ben-Dor et al., 1999). The clay mineral main spectral response
(for smectite minerals in particular) is localized within three spectral regions: 1300-
1400 nm, 1800-1900 nm, and 2200-2500 nm (Chabrillat et al 2002). For calcium
montmorillonite (a common clay mineral in the soil environment) spectral activity is
found at 1414 nm and at 2205 nm. The OH absorption features of free water are located
at 1455 nm, 1915 nm, and 1980 nm (Fig. 4). These positions can change slightly from
one smectite sample to another, depending upon the chemical composition and surface

activity.

Sand content can also be predicted using spectroscopic techniques (Soriano-Disla et
al., 2014). Sand spectra usually present an absorption peak around 1400 nm related to
the -OH stretch vibration of water in crystal lattice of silicates (Bishop, Pieters, &
Edwards, 1994; Hunt & Salisbury, 1971; Sgrensen, Demler, & Lukin, 2005).

14
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2.4. Soil properties estimation from VIS-NIR-SWIR spectra

Because soil spectra consist of a large number of highly correlated bands and
represent overlaps of spectral features characteristic to the constituents, soil variables
are not directly calculated from the spectra, and empirical quantitative approaches have
been developed to obtain chemical-physical information. Multivariate statistical
methods are used to develop calibrations based on reference attribute values of a set of
samples representative of the soil variation in the study area. The quality of input data is
sometimes improved with spectral pretreatment; commonly used procedures available
in various software packages include Savitsky-Golay transform (Savitzky & Golay,
1964), multiplicative scatter correction (Geladi, MacDougall, & Martens, 1985) and the
use of first and second derivative spectra (Stenberg & Viscarra-Rossel, 2010). The
spectra of representative spectra generated following established protocols and
accompanied by reference information, conform spectral libraries, allowing reuse and

data sharing.

Modeling methods based on linear models have long proved their efficiency
(Mouazen, et al., 2010; Vasques et al., 2014; Viscarra-Rossel et al., 2006). The most
frequently used algorithms include multiple linear regression (MLR), principal
component analysis (PCA) and partial least squares regression (PLSR) achieving quite
good predictions of organic matter/organic carbon, iron oxides, clay minerals,
carbonates and water at local (Kuang & Mouazen, 2013; Udelhoven, Emmerling, &
Jarmer, 2003) and regional (Stevens, Nocita, T6th, Montanarella, & van Wesemael,
2013) levels.

The frequent choice of PLSR is explained by its capacity to produce well-fit models
from data sets containing a small number of observations characterized by a great
number of correlated predictors. Robustness of the models is mainly achieved through
reduction of data dimensionality using a set of orthogonal vectors (components) (Wold,
Sjostrom, & Eriksson, 2001). Still, PLSR models sometimes demonstrate unrealistically
high fit due to inclusion of noise variables relevant only for calibration dataset, which is
known as overfitting (Babyak, 2004; Esbensen, 2000). One of the recently introduced
alternatives is the correlated components regression (CCR) approaching overfitting

problem in a different way. It prevents model over fit through application of the
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regularisation process, which involves identification of suppressors and elimination of

less relevant predictors (Magidson, 2013).

In spite of general success, results of the studies using linear-based methods are
quite variable. One of the possible reasons is that complex interactions between soil
components affecting their spectra are often non-linear (Ben-Dor, Chabrillat, Dematté,
Lyon, & Huete, 2019). Hence, there is a need for more research addressing the issue.
Soil scientists analyzing soil spectra lately have been paying much attention to machine
learning algorithms, and data mining techniques and tools, such as, for example,
artificial neural networks (Mouazen et al., 2010), support vector machines (Viscarra-
Rossel & Behrens, 2010), memory-based learning (Hong et al., 2019) and fuzzy rule-
based models (Tsakiridis, Theocharis, Ben-Dor, & Zalidis, 2019). In these studies new

tested methods have outperformed most common algorithms.
2.5. Integration of soil spectroscopy with other data sources and methods

Multiple studies have demonstrated that inclusion of additional variables
characterizing landscape and/or environment; improve the quality of spectroscopic
predictions (Dematté et al., 2016; Viscarra-Rossel & Chen, 2011). On the other hand,
data generated by proximal soil sensing can serve as support for more precise land cover
mapping from images acquired by airborne and satellite sensors (Escribano, Schmid,
Chabrillat, Rodriguez-Caballero, & Garcia, 2017).

In this context several approaches can be implemented: laboratory soil spectra can
be used for simulation of satellite resolution spectra to assess the feasibility of soil
properties estimation in the satellite images (Melendez-Pastor, Navarro-Pedrefio,
Gomez, & Koch, 2008; Palacios-Orueta, Pinzon, Ustin, & Roberts, 1999; Palacios-
Orueta & Ustin, 1998), as well as the benefit of their use as one of the endmembers in
spectral mixture analysis (Chabrillat, Goetz, Krosley, & Olsen, 2002); together with
other landscape variables soil spectra (not only of a surface, but also subsurface layers)
can be one of the inputs for geostatistical modeling of soil spatial patterns in digital soil

mapping (Minasny & McBratney, 2016).

Finally, modeling soil properties can involve fusion of proximal and remote sensing

data (Grunwald, Vasques, & Rivero, 2015). The creation of meta-models, encompassing
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large databases of point soil observations, environmental data and data generated by
sensors of different types has also been suggested (Koricheva, Gurevitch, & Mengersen,
2013; Pigott, 2012). The greatest limitation to meta-analysis is the lack of homogeneity
in the primary data and the in case of soil spectral libraries, incomparability of data due
to the lack of standardization in protocols and instrumentation of spectral measurements
(Ge, Thomasson, & Sui, 2011).
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3. Study area and soil sampling

The present research used datasets coming from the three different study areas shown in
Fig. 9. One of them is located in Europe (Spain), and the other two are situated in
Ecuador and Brazil in South America.

Figure 9. Location of the study sites in Spain (1), Ecuador (2) and Brazil (3).

3.1. Aragon, Spain

Methodological part of research (the first two specific objectives) were developed
using soil samples from the wildfire burns and areas of cropland abandonment in
Autonomous region of Aragon in northeastern Spain (Fig. 10). The hilly area of
approximately ~300km? at elevations 450-1300 m above sea level is part of pre-Pirinean
range. The climate is semiarid with average annual temperature of 12.5 °C, and
precipitation around 560 mm unequally distributed throughout the year (peaks in spring
and autumn and minimum in summer) (Cuadrat & Vide, 2007). The forest vegetation
covering most of the area is dominated by Pinus halepensis (Vicente-Serrano, Pérez-
Cabello, & Lasanta, 2011) and dense understory with species, such as Buxus
sempervirens, Quercus coccifera, Juniperus oxycedrus, Rosmarinus officinalis and
Genista scorpius. The same species can be seen in places where forests are interspersed
with brushlands. This area is regularly affected by wildfires, which are mainly
responsible for structure and development of Mediterranean forests. Even though these
ecosystems have demonstrated high capacity of post-fire auto-regeneration, the increase

in frequency and intensity of fires observed in last decades make it necessary to plan
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and implement efficient management strategies stimulating natural forest recovery after

fires.

Typical soils are coarse and medium-textured Cambisols over calcareous bedrock
(Fig. 10), with important amounts of changeable minerals in silt and clay fraction. In
some areas Cambisols are interspersed with Regosols and Leptosols (Badia-Villas & del
Moral, 2016). Regosols are unconsolidated soils of recent formation whose properties
mainly depend on those of underlying parental material. On the other hand, Leptosols
are shallow soils of silt and loam texture present a physical (rock) or chemical (highly
carbonated substrate) barrier layer immediately below the surface material. These soils
thin and stony soils typical for areas of agricultural abandonment (FAO, 2015) are
characterized by low water-holding capacity. In semiarid and mountainous
Mediterranean environment the property increases surface runoff and exacerbates soil

vulnerability to water erosion (Badia, Valero, Gracia, Marti, & Molina, 2007).
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Figure 10. Soils in the Aragon study area. The map uses the color scheme adopted by
ISRIC World Soil Information for SoilGrids250m (FAO/WRB 2006). Sampled wildfire
burns are shown in red, sampling sites in green dots and cropland abandonment area in

light blue dot.

Soil samples from wildfire burns (82) and areas of cropland abandonment (31) were
collected in summer of 2013 and 2014 (Fig. 11). The selection of the burns is based on
the information from the database of wildfire burns maintained by the Aragén
Government (Service for Management of Wildfires and Coordination, Head Office for
Forest Management) complemented with cartography created in the frame of the

research project “Forest fires and predictive models of ecologic vulnerability to fire:
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restoration management activities and application of climate change scenarios” GA-LC-
042/2011 (Caixa-DGA). Only the samples obtained from the surface soil layer were
used in this research. Analysis of soil organic matter content and the percentage of
oxidisable SOM were performed in the Aragon Government Agroenvironmental
Laboratory (Food Safety Service of Department for Food and Agricultural

Development).

Figure 11. Photos of the 1995 wildfire burn area in Aragdn, Spain taken during the
2013 sampling campaign: general view (A) and sampling site (B, C and D).

Other group of surface soil samples was collected from different land covers in the
catchment of Araguas, abandoned for agricultural activities in the 1950s (Fig. 12). Parts
of the area were later afforestated with Pinus nigra and Pinus sylvestris, while other
areas experienced the process of natural succession with Genista scorpius and Buxus
sempervirens. Typical land covers determined based on the analysis of aerial
photography, topographic maps, and field survey information are bare soil, permanent
pasturelands, secondary succession, afforestation with Pinus sylvestris and Pinus nigra.
For these samples, the loss on ignition method was used to determine SOM; soil texture
fractions were determined using a particle analyser (Micromeritics, SediGraph 5100,
Nocross, USA).

Figure 12. Photos of the cropland abandonment in the catchment of Aragués in
Aragon, Spain taken during the 2014 sampling campaign: general view (A, B) and
sampling site (C). Source: photos taken by Dr. Nadal-Romero and researchers in 2014.
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CHAPTER 3. Study area and soil sampling

3.2. Campos Amazonicos National Park, Brazil

The research methodology developed in the main study area in Spain was applied in
analysis of soils from the Campos Amazonicos National Park (CANP) in Brazil, area
which regularly suffers from wildfire burns. Soil samples were collected in Campos
Amazonicos Savanna Enclave (CASE) within CANP (Fig. 13).
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Figure 13. Location of the study area in Campos Amazénicos National Park in

Brazil.

The climate of this relatively flat area is characterized by 24°C-28°C mean
temperature and more than 2000mm annual rainfall. There are two seasons, wet
(November-March) and dry (May-September); April and October usually correspond to
the transition between the two seasons (Marengo et al., 2008). The vegetation cover is
quite variable, while forested areas are common in the proximity of the streams (riparian
vegetation), grasslands, shrubby grasslands and shrubby savanna cover the rest of the
area (Oliveira-Filho & Ratter, 2002).

Although various soil types are present in the CANP, the Plinthosols characterized
by the presence of plinthite in the B horizon) (Blake et al., 2008) predominate (Fig. 13).
Plinthosols are rich in kaolinitic clay mixed with quartz and other components; this
mixture is easily hardens or transforms to irregular aggregates when it is repeatedly
wetted and dried.
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CHAPTER 3. Study area and soil sampling

Soil samples were obtained in September 2016 in areas CASE recovering from
wildfire burns (Fig. 14). They come from areas of shrubby grassland (15 samples) and
riparian (15 samples) vegetation. The standard method of wet combustion was used for

determination of SOM values.

Figure 14. Collection of soil samples in CANP Savanna Enclave, Brazil: general view
(A) and sampling site in area of riparian vegetation (B, C, D). Source: photos taken by
Dr. Borini and researchers of CANP in 2016.

3.3. Mocache, Ecuador

The work on the third specific objective of this research was developed on a farm
located in the district of Mocache, province of Los Rios, in Ecuadorian lowlands (Fig.
15). The hilly area at elevations ranging between 80m and 120m above sea level is
characterized by tropical climate with mean annual temperature around 25°C and 1800-
2000mm of annual precipitation. There are two clearly distinguishable seasons: dry
(June — December) and wet (January —May).
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Figure 15. Location of the study area in Mocache district in Ecuador.

The Bella Siria study site is the area of intensive production of maize (Zea mays)
under the slash-and-burn system (Fig. 16), which requires a minimum investment of
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funds and technology. The total of 18 surface-layer samples was collected during the
field campaign of September 2015. One of the areas has been experiencing regular
controlled burns during 6 years before sampling, while another is the area where the
cocoa trees were recently eliminated to use it for growing maize. Both areas were
sampled next day after the burning of residual biomass at the end of the crop growing

cycle.

Each sample was divided in two parts. One part was analyzed using conventional
methods of SOM and texture estimation in the Laboratory of National Institute for
Agricultural Research, Quevedo, Ecuador; and the other (approximately 160 g of air-
dried soil per sample) was used for spectral measurements in the University of

Zaragoza, Zaragoza, Spain.

Figure 16. Photos of fire-affected soils in areas of slash-and-burn agriculture in

Mocache district, Ecuador taken during the 2016 sampling campaign : general view (A,
B) and sampling sites (C, D, E).
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CHAPTER 4. Methodology

The research workflow discussed in this chapter is presented in Fig. 17. The

following sub-sections give more details on each step.
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Figure 17. Workflow diagram for the methodology of the thesis.
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4.1. Spectral measurements

VIS-NIR-SWIR spectra of soil samples were obtained in the laboratory conditions.
Sample preparation consisted in separation of particles smaller than 2mm. The sieved
soil was then placed in 90mm-diameter Petri dishes, smoothed to obtain a homogeneous
layer of ~15 mm thick weighing approximately 160g, and dried in the oven (24h at
105°C).

Reflectance spectra were obtained with high-resolution Analytical Spectral Device
(ASD) FieldSpec®4 spectroradiometer, which incorporates three spectrometers
(detectors) for three specific spectral ranges: VISNIR (350-1000 nm), SWIR1 (1001-
1800 nm) and SWIR2 (1801-2500 nm). The spectral sampling interval of the instrument
is 1.4 nm and 2 nm, and spectral resolution (Full Width at Half Maximum - FWHM) of
3 nm and 10 nm, for VIS-NIR and SWIR spectral regions, respectively (ASD, 2012a).
During measurements device software performs correction for baseline electrical signal
(dark current) and resampling of the spectra to a 1 nm interval over the whole sensed
wave range (Fyfe, 2004). The spectroradiometer uses a fiber optic cable to register the
source light reflected by the sample surface, and provides the choice of attachments to

be used for different targets and environments different (Fig. 18).

Figure 18. Different attachments to spectroradiometer FieldSpec®4 used in spectral

measurements: (a) integrating sphere; (b) pistol grip; and (c) contact probe.

Actually, the radiometer has been measuring reflectance factor, which is the ratio of
the radiant flux reflected by the target surface to that reflected by the ideal standard

surface (Schaepman-Strub et al., 2006). In fact, when both incoming and reflected
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radiances can be approximated as cones, non-imaging spectroradiometers register
Biconical Reflectance Factor (BCRF) (Schaepman-Strub et al., 2006), as in case of the

present research.

The calibrated Spectralon® polytetrafluoroethylene (PTFE) reference surface from
the radiometer manufacturer was used as reference, since it satisfies all the requirements

(perfect reflectance over the full wavelength range and environmental resistance).

To determine on the more adequate instrument configuration, the spectra were
obtained in dark laboratory with three laboratory setups including different ASD
accessories (Fig. 19): (i) the RTS-3ZC external integrating sphere (1S); (ii) lHluminator
lamp (L) and pistol grip; and (iii) contact probe (CP). The ASD RS3 software (ASD,
2012a) was configured to average 10 spectra per each sample scan, 25 white reference,

and 10 dark current to reduce noise and improve signal-to-noise ratio.

Figure 19. Experimental configurations tested in this study: (a) Setup IS with

integrating sphere, (b) Setup L with the ASD Illuminator Lamp and pistol grip; and (c)
Setup CP with the ASD contact probe.

4.1.1. Experimental setup IS (external integrating sphere)

The experimental setup with external integrating sphere RTS-3ZC coupled with the
ASDFieldSpec®4 spectroradiometer (IS) is shown in Fig. 18a. The word “external”
refers to the position of the sample, i.e. external to the sphere. The spherical cavity of
the attachment is coated with a white diffuse polymer (PTFE) allowing spatial
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integration of radiation reflected by the sample, which ensures the accuracy of the
measurements. The internal coating of the sphere is an almost perfect Lambertian
reflector over the whole operating spectral range of the spectroradiometer. During the
measurement, a sample placed in the holder acts as a part of the sphere wall allowing it
to “concentrate” the signal reflected from the sample and distribute it over the internal
surface of the sphere. The sensor registers the light reflected by the wall and makes an
estimate of the sample reflectance. The sphere provides six ports 13 mm (ports A, D and
H), 15 mm (ports C and B) and 19 mm (port E) in diameter, which serve as attachment
points for supplied sample holders, a light source assembly, fiber adaptor, light trap, and
port plugs. The following expression (Eg. 3) was applied to correct total reflection of
the sample Rr(4) for the stray light (ASD, 2008):

(Rsample (A)—-DR(A))

RT(A) - (Rreference(/l)_DR(/l)

) Rre f_cal (/1) (3)

where Rsample 1S the measured reflectance of the target; Ryeference 1S the measured
reflectance of the white reference; and DR is the dark current reading registered when
the light trap is located in the place of the target. Although the background radiation DR
is often negligible, in this research it was considered in reflectance calculations. The
reflectance of calibrated reference standard Ryer ca Was estimated from cross-calibration
of the two reference surfaces (Miura & Huete, 2009):

Lye f_cal(/l)

Rref_cal 1) = Lrp (D) Rpp(4) (4)

where: L cal IS the radiance of the calibrated reference standard provided with the
sphere (corrected for background current); Lgp is the radiance of calibrated reference
panel (corrected for background current); and Rgp is the reflectance factor of calibrated
reference panel provided with the ASD FieldSpec®4 spectroradiometer.

Although it is recognized that protocols can influence measurement results, no
standards exist at the moment. In case of this study, the Petri dish containing soil sample
was covered with unglazed black paper (optically flat surface) to prevent soil from
entering the integrating sphere and to avoid undesired particle orientations (Torrent &
Barron, 2002). A circle of a size similar to the sample port aperture (18 mm) was cut in
the center of the cover, to avoid the contact of soil particles with the external wall of the
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sphere. In order to obtain spectral measurements the calibrated reference and soil
samples were placed in the adjustable standard holders. A light trap was used to prevent
from setup illumination with ambient light. In this setup, light comes from the
collimated dual light source with high setting suitable for soils, instead of the low
setting more suitable for vegetation targets. The integrating sphere was fixed on a tripod
with a mounting rod attached to the port H on the underside of the sphere assembly
(Fig. 19a). During the measurements the Petri dish with the soil sample is always
maintained in a horizontal position, while the integrating sphere is rotated. Following
the manufacturer recommendation, the sample spectrum is the average of 200 measured
spectra (ASD, 2008).

Since three scans are necessary to obtain total reflectance of each sample with the
above described setup, considerable time is necessary to complete the measurements.
On the other hand, long sessions resulted in light intensity degradation due to the battery
charge exhaustion. Hence, several 90 minute sessions were necessary to complete the

measurements, each lasting about 1 h (16 processed samples per session).
4.1.2. Experimental setup L (illuminator lamp and pistol grip)

In another tested setup the optic fiber extreme is located inside the pistol grip (Fig.
18b). This setup uses an ASD illuminator lamp as a light source turned on 15 minutes
before measurements for better stability (ASD, 2012b). Observation geometry was
calculated considering various parameters: distance between the sample and the sensor,
distance between the sample and the lamp, and angle between the two. The resulting
setup configuration, ensuring that the sensor registers the signal from the spot within the

petri dish, can be observed in Fig. 20.
The measurement protocol involved regular calibration of the fiber optic through

cable direction at the reference panel using the same viewing geometry. The sample

spectrum is an average of 50 radiometric measurements.
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Figure 20. Observation geometry in the setup, which uses an ASD illuminating

lamp as a light source, referred to as setup L.

4.1.3. Experimental setup CP (contact probe)

The experimental setup CP shown in Figure 18c uses ASD contact probe with the
in-built light source. There are five circles cut in the paper covering the surface of the
soil sample in the petri dish. The size of the circles coincides with that of the contact
probe window (approximately 20 mm) to isolate the measured area and improve the

quality of the obtained data.

The reflectorized halogen lamp inside the probe ensures a fixed 12° angle to the
probe body during the measurements and avoids the influence of ambient light sources.
The angle between optical fiber of spectroradiometer and contact probe is also fixed at
35°. The sensor, which has the FOV of 1.33cm?, registers the signal coming from the
spot ~1.1cm in diameter. The resulting spectrum is the average of 5 measurements at
random points of soil sample, each being the average of 10 scans, totaling 50 processed
spectra. This procedure reduces the risk of shadows and stray light affecting the
measurements. Because of the laboratory environment and controlled illumination

conditions calibration was performed every 15 min.
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4.1.4. Statistics used for spectra comparison

Spectra generated with different setups were tested for differences using BIAS (Eqg.
5) and Root-Mean-Square Difference RMSD (Eq.6):

1
BIAS =~ 3L x; — v (5)

RMSD = %\/Zlivzl(xi —y;)? (6)

where: x; and y; are reflectance values of the compared spectra, and N is the number of

measured samples.

Analysis of variance (one-way ANOVA) was performed to determine whether the
differences among spectra from different setups were significant. The test, which relies
on F distribution, is applied when estimation of one dependent variable is based on one
or more continuous predictors. The test should be applied when: (i) errors are
independent and normally distributed; (ii) samples are independent and drawn from
populations with equal variances. The null hypothesis assuming that samples are taken
from the same population is accepted or rejected based on the F-statistic (the ratio of the

variance calculated among the means to the variance within the samples).
4.2. Simulation of satellite spectral bands

Laboratory soil spectra were used to simulate spectra of the three satellites to
evaluate feasibility of SOM and texture estimation and monitoring from multisprectral
(Landsat-8 and Sentinel-2) and hyperspectral (EnMAP) remotely-sensed images (Fig.
21).

The first two are currently operational and are part of the long-term United States
(Landsat-8) and European (Sentinel-2) Earth observation programs. Landsat-8
Operational Land Imager (OLI) produces images consisting of nine optical bands (VIS-
bands 1 to 4 and 8 (panchromatic); NIR-band 5 and SWIR-bands 6, 7, and 9) at medium
spatial resolution (30m pixel size). On the other hand, images taken with multispectral
instrument (MSI) sensor on board of Sentinel-2 contain 13 VIS-SWIR bands at spatial
resolution ranging between 10m and 60m. It also has better temporal resolution: a 5-day

revisit period versus 16 days in case of Landsat. Resampling of ASD spectra to the
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corresponding satellite bands was based on spectral response functions available from
NASA and ESA for Landsat-8 and Sentinel-2, respectively.
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Figure 21. Reflectance spectrum of one of the soil samples resampled to (a) EnMAP),
(b) Sentinel-2, and (c) Landsat-8 optical bands.

ASD spectra were also resampled to simulate hyperspectral images from EnMap
satellite developed in the frame of the German space program. EnMap toolbox was the
source of the spectral response functions for the 244 narrow bands located in the 420-
2450 nm spectral range. The sensor sampling interval is 6.5 nm in VIS-NIR and at 10

nm in SWIR at a spatial resolution of 30 m.

The resampling of ASD FieldSpec®4 bands to those of the satellite sensors was
accomplished using the ENVI 4.7 (The Environment for Visualizing Images) software.

4.3. Multivariate statistical modeling of SOM and soil texture fractions

Measured spectra were used to develop empirical statistical calibrations for
simultaneous predictions of SOM and texture fractions (sand, clay, silt) in collected soil

samples. Modeling included both routinely applied and novel approaches. The
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following algorithms were compared: (a) a standard partial least squares regression
PLSR (Dematté et al., 2016) implemented in The UnscramblerX software (2016;
CAMO Software AS, Norway, 2016), version 104
(https://www.camo.com/unscrambler), which uses the full range of available
reflectances (PLSR-full); (b) PLSR with predictors selected by Martens uncertainty test
(Martens & Martens, 2000) available in The Unscrambler X software (2016) version
10.4 (PLSR-MUT), (c) PLSR with Step-Down predictors selection Algorithm (Jay
Magidson, 2013) (SA-PLSR), and (d) a novel technique of CCR with a step-down
variable selection algorithm (CCR-SD) (Magidson, 2010; Magidson, 2013).

The Unscrambler X software (2016; CAMO Software AS, Norway, 2016), version
10.4 (https://www.camo.com/unscrambler) was used as modeling environment for
PLSR-full and PLSR-MUT procedures, while SA-PLSR and CCR-SD were
implemented in XLSTAT Pearson Edition (Addinsoft S.A., New York, NY, USA,
2014), version 2014.5.03 (http://www.xIstat.com) software, which is the complement
for the Microsoft Office Excel (2010). For each sample, all the soil properties of interest

in our study (SOM, clay, silt, and sand) were predicted simultaneously.

Although spectral data are usually pre-processed before modeling to increase signal-
to-noise ratio, due to the high stability of obtained spectra it was not considered

necessary in this research.

However, the correction of radiometric jumps, present at the wavelengths between
detectors (at 1000 and 1800 nm) was performed before further use of the spectra. The
following formulas suggested by (Danner, Locherer, Hank, & Richter, 2015) were

applied to compensate for the differences using the first detector as the reference value:
Corr_valygoo = Ri=1001 — (2" Ra=1000 — Ra=999) (7
Corr_valygoo = Ra=1g01 — (2 Ra=1800 — Ra=1799) 8)

where R; is the reflectance at A wavelength and Corr_valigg and Corr_valigy are

correction values at the spectral splitting points, which are added to the original values
and, depending on their algebraic sign, either increase or decrease reflectances in
corrected wave range. Besides, the noisy bands at the beginning and at the end of the

spectra (<400 nm and >2470 nm) were eliminated.
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4.3.1. Partial Least Square Regression (PLSR)

PLSR is routinely applied in soil VIS-NIR-SWIR spectroscopy (Dematté et al.,
2016). The method is based on underlying linear model. PLSR is often applied in
situations when the number of predictors is much bigger than the number of
observations (Wold et al., 2001), which is the case of soil VIS-NIR-SWIR
spectroscopy. The method gained great popularity in spectroscopic modeling because of
its capability of dealing with a great number of collinear predictors and modeling
several response variables (soil properties) simultaneously (Viscarra-Rossel et al.,
2006).

PLSR first establishes the relationship between the matrix of predictors’ scores (X),
referred to as factors, and the matrix of the dependent variables’ scores (Y). In the next
step the Y-scores are used to predict the values of responses (Tobias, 1995). The
algorithm calculates a few factors, i.e. latent variables, which account for most of the
variance in the response. It chooses X- and Y-scores that establish the strongest

relationship between successive pairs of scores.

Determination of the optimum number of factors/components and selection of the
final model is performed through the leave-one-out cross-validation: the model is
developed leaving out one of the samples, which is later substituted into the model to
evaluate the adjustment; the process is repeated for each sample, and the final model is
that showing the best fit (Duckworth, 1998).

4.3.2. Step-Down predictors selection Algorithm

It is recognized that PLSR is prone to overfitting, i.e., including in models predictors
relevant only to the calibration dataset (Babyak, 2004). One of the ways to control
overfitting is to reduce the number of predictors, leaving out less important, which
results in sparser models (Chun & Keles, 2010). Thus, PLSR was combined with the
step-down variable selection algorithm (PLSR-SD). The step-down variable selection
algorithm reduces the number of variables without the loss of information through
elimination of the less important variables, i.e., those with the lowest (absolute value)
coefficient, during cross validation. For each model, this iterative process was

configured to run 10 rounds of five-fold cross validation.
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The step-down variable selection algorithm reduces the number of variables without
the loss of information through elimination of the less important variables, i.e., those
with the lowest (absolute value) coefficient; during cross validation (Bennett, 2013). For
each model, this iterative process was configured to run 10 rounds of fivefold cross

validation.

Because exclusion of the less important (noisy) predictors may improve model
accuracy, in the second tested method, PLSR models used only most important
variables selected by the Martens uncertainty test (PLSR-MUT), which estimates
uncertainty of regression coefficients obtained in leave-one-out cross validation
(Martens & Martens, 2000).

4.3.3. Correlated Components Regression

Both CCR and PLSR are capable of dealing with a large number of highly
correlated predictors (in this study, the correlation coefficients R? are in the range of
0.639-0.999). Multicollinearity of spectral data is approached by means of
regularization (the enforcement of model sparsity), consisting in dimension reduction.
In CCR-SD, data dimension is reduced through (a) calculation of correlated components
and (b) elimination of less relevant predictors from the model with step-down variable

selection algorithm, resulting in sparser models (Magidson, 2013).

CCR utilizes K < P correlated components, with each Sx component being an exact
linear combination of g predictors (g= 1, 2, ... P). Predictions for Y in the first
(primary) component (¥) directly affect the outcome and are obtained from the simple
ordinary least squares (OLS) regression of Y on S;. Similarly, the second component S,
is calculated by the simple OLS regression of Y on S; and S,. The calculation of the
remaining components follows the same process. Once the models for all the
components are obtained, the final model (Eq. 9) is computed using the expression:

Y=a®+30_ B, X, 9)
where a and p are regression coefficients.
Thus, the components are not orthogonal; the second and subsequent components

are correlated to the first component and represent the influence of ‘suppressor’

variables (Magidson & Wassmann, 2010). The inclusion of suppressor variables

34



CHAPTER 4. Methodology

removes the noise of some irrelevant variables included in the first component,

improving the model quality.

At the same time, the method controls overfitting through a reduction in the number
of predictors, leaving out the less important predictors. Thus, CCR was combined with a
step-down variable selection algorithm, which excludes the least important predictors
(Bennett, 2013; Magidson, 2010). This is achieved through M-fold cross-validation.
Each round (10 rounds in this study) consists of a series of operations. First, the data are
randomly divided into M groups (folds) of equal size (5 groups of 80/5 = 16 samples
each in our study). Next, samples from four groups are used to build the model, while
the samples from the fifth group are used for model validation. The process is run for
each group (M times). In the next round, the process is repeated with newly randomized
M groups. Thus, the quality of the final model is assessed on the out-of-sample fit,
ensuring replication of the calibration results on real-life data, which has been a long-
time concern related to published models (Nuzzo, 2014). Model assessment based on
new out-of-sample cases means that modeling with CCR does not pose requirements to
satisfy sampling assumptions, which are the basis of traditional hypothesis testing (Curl,
Thompson, & Aspinall, 2015).

4.3.4. Assessment of model performance

Different aspects of model performance were evaluated with a series of statistical

indicators described below.

Model fit was assessed through coefficient of determination of calibration (R?cal),
coefficient of determination of cross-validation (R%cy), coefficient of determination of
validation (R?,), while model accuracy was assessed by means of the root mean square
error of prediction (RMSEP) (Bellon-Maurel & McBratney, 2011). These statistics were

calculated according to the following expressions:

n ~
Zigl(yi,c_yi,c)z
) p
Zi=cl (Yi,c_Yc)z

RZCV = 1 - (10)

Tlp Y —?i 2
RZV — 1 _ ZL1=111)( 24 _,P) (11)
Zi=1(yi,p_yp)2
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n A
Zizpl (Yi,p _Yi,p) 2
Np

RMSEP =

(12),

where: ¢ and p refer to the corresponding calibration and validation datasets; n is the
number of samples, Y; is the observed SOM value for ith sample, ¥; . is the predicted
SOM value for the ith sample, and Y is the mean value of Y; for all samples.Model
predictive capacity was assessed with either residual prediction deviation (RPD) or the
ratio of performance to interquartile range (RPIQ), computed according Eq. 13 and 14.
(Bellon-Maurel, Fernandez-Ahumada, Palagos, Roger, & McBratney, 2010; Minasny &
McBratney, 2013) explained that the use of RPD is justified only with normally
distributed datasets recommending application of RPIQ, instead. Hence, at different

stages of research we used one of these indicators or another.

n —
Dy, _ 2
Zi=1(Yl,p Yp)
np—l

RPD = (13)

RMSEP

It is generally considered (Gomez, Viscarra-Rossel, & McBratney, 2008; Gras,
Barthes, Mahaut, & Trupin, 2014) that model has good predictive capacity when its
RPD is above 2.0, satisfactory when its RPD between 1.4 and 2.0, and poor when RPD
below 1.4 (Gomez et al., 2008; Gras et al., 2014).

Q3—0Q4

RPIQ = o rsep

(14)

RPIQ is based on inter-quartile distances (IQ = Q3—Q1), where Q; represents the
lowest 25% of the samples and Qs is the value below which 75% of the samples can be
found. RPIQ is the ratio of 1Q to the RMSEP. Its use is preferable to that of RPD when
working with datasets characterized by skewed distributions and a large number of low
values. Finally, Akaike information criterion (AIC) computed according Eg. (15) was

used to assess the parsimony of the developed models (Akaike, 1973).

AIC = nInRMSEP + 2f (15)

here n is the number of samples and f is the number of predictors. Smaller AIC values

denote more efficient, i.e. sparser, models.
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1. Introduction

Fire is a major disturbance of Mediterranean forests. Although
wildfires do not affect mineral composition of soils, they cause
considerable changes in soil organic constituents and modify
soil physical properties (Mataix Solera, 1999; Neary, Ryan, &
DeBano, 2005). Consumption of organic matter alters the
structure of burned soils decreasing erosion resistance and
soil permeability. In high-intensity fires, in which the con-
sumption of organic matter is greater, aggregation levels
decrease, leading to soil loss (Badia & Marti, 2003; Cerda, 1999).
Together with the loss of organic matter and destruction of
aggregates, the loss of protection against rain provokes
changes in the quantity and size of pores (Giovannini &
Lucchesi, 1997). The splash effect mobilises the fine particles
of the soil, which clog the pores, reducing soil aeration and
infiltration ability (Cerda & Robichaud, 2009). Finally, fire is
often related to soil water repellency. Volatilisation of organic
compounds and their subsequent condensation around the
soil aggregates generates a coating that reduces infiltration
and increases surface runoff (Cerda & Robichaud, 2009;
DeBano, 2000).

Changes in soil caused by the fire are related to changes in
soil spectral properties, which can be detected by proximal
soil sensing in VIS-NIR-SWIR (Visible at 400—700 nm, Near-
Infrared at 700-1300 nm, and Short-Wave-Infrared at
1300—2500 nm, respectively) regions of electromagnetic
spectrum (Lugassi, Ben-Dor, & Eshel, 2014; Montorio et al.,
2006; Vergnoux et al., 2009).

This technique has been used to detect soil properties
relevant for engineering (Chabrillat, Goetz, Olsen, & Krosley,
2001; Kariuki, Van Der Meer, & Siderius, 2003; Waruru,
Shepherd, Ndegwa, Kamoni, & Sila, 2014), industry (Goetz,
Curtiss, & Shiley, 2009), agriculture (Dematte, Campos, Alves,
Fiorio, & Nanni, 2004; Genot et al., 2011; Stevens et al., 2008),
ecology (Foley et al., 1998), and environmental studies related
to soil erosion (Canasveras, Barrén, Del Campillo, Torrent, &
Gomez, 2010), soil salinity (Farifteh, Van der Meer, Van der
Meijde, & Atzberger, 2008), soil contamination (Cheng, Shi, &
Zhu, 2007; Gholizadeh et al.,, 2015; Kooistra, Wehrens,
Leuven, & Buydens, 2001), and composition, i.e. content of
organic matter (He, Huang, Garcia, Hernandez, & Song, 2007;
Kuang & Mouazen, 2013), and nutrients. Detailed reviews of
fundamentals and applications of soil spectroscopy have been
made by Ben-Dor, Irons, and Epema (1999), Viscarra-Rossel;
Walvoort, McBratney, Janik, Skjemstad (2006) and Stenberg,
Viscarra-Rossel, Mouazen, and Wetterlind (2010).

Spectral behaviour of soils was first described by Condit
(1970) and Baumgardner, Silva, Biehl, and Stoner (1985) who
identified several spectral shape patterns typical for soils
(three and five, respectively). More detailed methodology of
using spectral reflectance curves for differentiation of soils,
based on curve shape, reflectance intensity and absorption
features, was developed by Dematte (2002). Essential edaphic
components, such as organic matter, clay minerals and iron
oxides present characteristic absorption features caused by
electronic transitions in the VIS and by overtones and com-
bination modes of functional groups in the NIR and SWIR
spectral regions (Hill, Udelhoven, Vohland, & Stevens, 2010;

Stenberg et al., 2010). Spectral response is also strongly
influenced by water content, with the strongest absorption
bands near 1400 and 1900 nm, and with weaker bands in other
parts of the spectra (Liu et al., 2003). The mineral part of soils,
which represents in general 50% of its volume (Schulze, 2002),
has strong distinct characteristics in the VIS-NIR-SWIR region
in reflectance intensity, curve shape and absorption features
(Hunt, 1977). Particle size is also distinguishable in soil spectra
(Curcio, Ciraolo, D'Asaro, & Minacapilli, 2013).

According to the review by Viscarra-Rossel et al. (2006), soil
organic matter (SOM) and clay content, as well as some con-
stituents of soil minerals, e.g. Fe and Ca, can be successfully
predicted from VIS-NIR-SWIR spectra. These are the charac-
teristics usually altered by wildfires (Lugassi et al., 2014). Thus,
techniques involving generation and analysis of soil spectra
could contribute to characterisation and quantification of
wildfire effect on soil properties. Compared to traditional
methods of analysis VIS-NIR-SWIR spectroscopy is: (1) non-
destructive, (2) flexible: measurements can be performed
either in the field or in the laboratory; (3) several properties
can be estimated from one spectrum (Viscarra-Rossel et al.,
2006).

Soil reflectance is composed of regular (specular) and
diffuse (non-directional) reflectance (Torrent & Barrén, 2008).
In field measurements, which are usually performed on large
areas, the contribution of both of these components is com-
parable, and the proportion of each one depends on atmo-
spheric conditions, topography and soil “surface state”
properties (Escadafal, 1989), which include particle size,
structure and surface roughness. By contrast, in laboratory
conditions when a spectroradiometer measures soil reflec-
tance of a small spot of a sieved sample composed of small
size particles, diffuse reflectance dominates (Torrent &
Barron, 2008).

Even though spectral measurements in controlled condi-
tions overcome the problems related to unstable illumination
and other environmental conditions (Schaepman & Dangel,
2000; Viscarra-Rossel et al., 2006), there are still some issues
that have not been fully clarified including those related to the
applicability of the spectral library created for one area to
predicting properties of soils in a different area (Guerrero
et al., 2015; Stevens et al., 2008); limitations related to
models up- and downscaling (Viscarra-Rossel et al., 2016); and
the transferability of models obtained with different labora-
tory equipment and standards (Ben-Dor, Ong, & Lau, 2015).
Previous research shows that the quality of predictions of soil
properties from their spectra greatly depends on instrumen-
tation used for measurements (Castro-Esau, Sanchez-
Azofeifa, & Rivard, 2006; Ge, Morgan, Grunwald, Brown, &
Sarkhot, 2011), sample preparation (Brunet, Barthes, Chotte, &
Feller, 2007; Stenberg et al., 2010); and applied protocol (Ben-
Dor et al.,, 2015; Knadel, Stenberg, Deng, Thomsen, & Greve,
2013). While the impact of different spectroradiometers on
the quality of predictive models has been explored in several
studies (Ben-Dor et al., 2015; Castro-Esau et al., 2006; Knadel
et al.,, 2013), to the best of our knowledge there are no studies
quantifying the effect of the spectroscopy accessories pro-
vided by the equipment manufacturers. The use of acces-
sories is quite common in VIS-NIR-SWIR spectroscopy. Thus,
integrating sphere has been used for collecting spectra of
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minerals (Torrent & Barrén, 2003) and vegetation (Merzlyak,
Chivkunova, Melg, & Naqvi, 2002; Yanez-Rausell,
Schaepman, Clevers, & Malenovsky, 2014); contact probe has
been employed for obtaining spectra of soil (Brown, Shepherd,
Walsh, Mays, & Reinsch, 2006) and snow (Painter, Molotch,
Cassidy, Flanner, & Steffen, 2007); and halogen lamp has
been applied by Kooistra et al. (2003) in the study of sediment
properties and soil contamination by Gholizadeh et al. (2015).
Incorporation of spectroscopy accessories creates setups with
different illumination conditions and observation geometry,
which could affect measurement results (Ben-Dor, Pimstein, &
Notesco, 2010).

Unlike rocks and minerals, soil spectra lack spectral fea-
tures clearly attributable to its constituents, and it is often
necessary to take into account the overall shape and reflec-
tance levels of different spectral regions (Ben-Dor et al., 2015;
Viscarra-Rossel & Behrens, 2010). Thus, even slight variations
in sample preparation, instrument configuration and mea-
surement protocols can affect the quality of models relating
spectral and edaphic properties. However, up to now little
attention has been paid to estimating the effect different ac-
cessories can have on collected soil spectra and resulting
predictive models. It is worth mentioning that comparative
studies by Knadel et al. (2013) and Ben-Dor et al. (2015) tested
setups which included attachments, but the impact attribut-
able to the use of specific accessory was not estimated.
Moreover, Ben-Dor et al. (2015) noted that performance of the

Atlantic Ocean -

- -

1
Burnt (8] @\ iNot-burnt (NB)
plot: L. a

A

accessory used (contact probe) was more critical than that of
the spectroradiometer for the stability of reflectance
measurements.

In this context, the objectives of this study are: (1) to
compare VIS-NIR-SWIR spectra of forest soils from wildfire
burns obtained by three laboratory setups which include
different commercially available spectroscopy accessories;
and (2) to evaluate the impact of between-setups differences
in reflectances on predictive ability of statistical models, for
example, for SOM. Our working hypothesis is that incorpora-
tion of the attachment in the setup affects both spectral
measurements and the quality of modelling of soil properties
altered by wildfires.

2. Materials and methods
2.1.  Study area and soil sampling

Soil samples were collected in the region of Aragén (Northern
Spain; geographical coordinates 41°-42° N 0°10'-1°30'W) (Fig. 1
and Table 1) between March and April 2013. The hilly area at
elevations ranging from 450 to 1300 m above sea level is part of
the pre-Pyrenean range. Typical Mediterranean climate is
characterised by average annual temperature of 12.5 °C, and
precipitation of around 560 mm with maxima in spring and
autumn and minimum in summer (Cuadrat & Vide, 2007). This

105 0 10 km

UTM zone 30N

Fig. 1 — Location of the sampled burns (shown on the map as red points). Schematic drawing on the left shows location of
burnt (B) and not-burnt (NB) plots on one of the study sites. (For interpretation of the references to colour in this figure

legend, the reader is referred to the web version of this article.)
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Fig. 2 — A typical view of the study area and one of the sampling points.

Table 1 — Data on sampled burns.

Municipality Fire date Burntarea Number of
T samples
Las Penas de Riglos 31/07/1975 1279 2
05/08/1985 735 4
12/08/1990 200 2
Loarre 26/08/1981 147 2
01/08/2001 3278 4
Nueno 31/07/1986 1706 6
Bailo 21/08/1994 1814 6
Caldearenas 19/08/1986 420 8
Luna 25/07/1978 1809 4
12/05/1979 472 4
Zuera 08/07/1979 759 4
23/06/1995 2491 4
25/07/2006 39 2
05/08/2008 2514 4
Asin 30/07/1983 2536 4
Sos del Rey Catélico 16/07/1994 8078 6
Epila 28/07/1994 431 4
Villanueva de Huerva  01/08/2001 49 4
Encinacorba 29/07/2003 278 2
02/08/2005 82 2
Jaulin 29/07/2009 1706 4

is an area of repeated wildfires (Schmuck et al., 2012). The
compact forest mass is dominated by Pinus halepensis (Vicente-
Serrano, Pérez-Cabello, & Lasanta, 2011). Dense understory
includes typical Mediterranean species, such as Buxus sem-
pervirens, Quercus coccifera, Juniperus oxycedrus, Rosmarinus offi-
cinalis and Genista scorpius. In more degraded zones, forests are
interspersed with brushlands consisting of species common

to the forest understory. Typical soils are coarse and medium
textured Cambisols over calcareous bedrock. In some areas
Cambisols are interspersed with regosols and leptosols
(Badia-Villas & del Moral, 2016).

Several wildfire burns, which occurred between 1975 and
2009, were identified for sampling in an area of 308.23 km?
(Fig. 1 and Table 1). Samples were obtained from the upper
soil layer (0—10 cm) of burnt (B) and not-burnt (NB) plots
which were established on each test site (Fig. 1): the burnt
plot was located within the fire-affected area; the corre-
sponding not-burnt plot was situated in an area with similar
environmental conditions not affected by the fire and close
to the burnt plot on each site (Fig. 2). The total of 82 samples
(41 pairs of B-NB samples) was used for analysis. SOM con-
tent was assessed by conventional methods in the Aragon
Government Agroenvironmental Laboratory (Food Safety
Service of Department for Food and Agricultural Develop-
ment). The percentage of oxidisable SOM was estimated
using UV—visible spectrophotometry.

2.2.  Laboratory spectral measurements

Soil collected in the field was first sieved to separate the fine
fraction (particle size <2 mm). This was spread in optical-glass
Petri dishes 90 mm in diameter and pressed to form a layer
~15 mm thick. The samples obtained (~160g) with a smooth
and homogeneous surface (Fig. 3) were dried in the laboratory
oven for 24 h at 105 °C. Details about additional steps in
sample manipulation specific to protocols followed with
different setups are described in Sections 2.2.1-2.2.3.
Analytical Spectral Device (ASD) FieldSpec*4 spectroradi-
ometer with three spectrometers (detectors), each dedicated

Fig. 3 — Samples prepared for measurements using Illuminator Lamp (a), integrating sphere (b) and contact probe (c).
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to a specific spectral range, was used to obtain soil spectra.
The instrument is designed to register the signal in the VIS-
NIR (350—1000 nm) and two SWIR regions (1001-1800 nm
and 1801-2500 nm) with spectral sampling interval of 1.4 nm
and 2 nm, and spectral resolution (Full Width at Half
Maximum — FWHM) of 3 nm and 10 nm, respectively (ASDa,
2012). The signal received by the sensors is corrected for
baseline electrical signal (dark current) and resampled to a
1 nm interval over the whole sensed wave range by the device
software (Fyfe, 2004). The spectroradiometer collects light
passively by means of a fibre optic cable. Depending on the
nature of the target and measurement environment, different
accessories can be attached.

The measurements estimating reflectance factor are usu-
ally referred to as reflectance. It is defined as the ratio of
radiant flux actually reflected by the target surface to that re-
flected by the ideal standard surface in the same observation
geometry (Schaepman-Strub, Schaepman, Painter, Dangel, &
Martonchik, 2006). Actually, when measurements are realised
in controlled illumination conditions, the non-imaging spec-
troradiometer registers Biconical Reflectance Factor (BCRF),
since in this case both incoming and reflected radiances can be
approximated as cones (Schaepman-Strub et al., 2006).

The reference surface should have perfect reflectance over
the full wavelength range and be resistant to environmental
contamination. Calibrated Spectralon®” references from poly-
tetrafluoroethylene (PTFE) provided by the manufacturer
satisfy all the requirements and were used to convert
measured radiances into reflectance values. Measurements
were performed in a dark laboratory under controlled illumi-
nation conditions using three setups with different ASD ac-
cessories (Fig. 4): (i) the RTS-3ZC external integrating sphere
(IS); (ii) Muminator lamp (L) and pistol grip; and (iii) contact
probe (CP). Sample preparation and measurement protocols
were similar for three setups. Before scanning, the ASD RS?
software (ASDa, 2012) was configured to average 10 spectra
per each sample scan, 25 white reference, and 10 dark current
to reduce noise and improve signal-to-noise ratio.

2.2.1. Experimental setup IS (external integrating sphere)
Figures 4a and 5 show the experimental setup IS, which uses
external integrating sphere RTS-3ZC coupled with the ASD
FieldSpec*4 spectroradiometer. The word “external” in the
name of the accessory is due to the fact that the position of the
sample is external to the sphere. The main part of the acces-
sory is a spherical cavity 7.62 cm in diameter coated with a
white diffuse polymer (PTFE). This standard optical material
allows spatial integration of radiation reflected by the sample
ensuring the accuracy of the measurements. The internal
coating of the sphere is characterised by an almost perfect
Lambertian reflectance over the wavelengths in the
350—-2500 nm range coinciding with the operating spectral
range of the attached spectroradiometer. During the mea-
surement, a sample placed in the holder acts as a part of the
sphere wall allowing it to “concentrate” the signal reflected
from the sample and distribute it over the internal surface of
the sphere. The sensor registers the light reflected by the wall
and makes an estimate of the sample reflectance. It is evident
from Fig. 6 that the sample is outside of the detector Field Of
View (FOV).

Fig. 4 — Experimental configurations: (a) Setup IS with
integrating sphere, (b) Setup L with the ASD Illuminator
Lamp + pistol grip, and (c) Setup CP with the ASD contact
probe.

The sphere provides six ports 13 mm (ports A, D and H),
15 mm (ports C and B) and 19 mm (port E) in diameter, which
serve as attachment points for supplied sample holders, a
light source assembly, fibre adaptor, light trap, and port plugs.
To obtain the total surface reflection of a soil sample, the
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Fig. 5 — Setup IS (Integrating Sphere): diagram and observation geometry configuration.
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Fig. 6 — Side view of the sphere (modified from Manual of
ASD Integrating Sphere).

study applied port configuration recommended by manufac-
turer (Table 2).

Total reflectance of the sample Rr(4) (Eq. (1)) measured by
the sphere and corrected for the stray light was calculated
using the expression (ASD, 2008):

o (Rsample(l) . DR(;‘)) 5
b T &

where Rgmpie(4) is the measurement of the sample (configura-
tion specified in Fig. 7b); Ryeference (1) is the measurement of the
reference material (configuration specified in Fig. 7c); and DR(2)
is the dark reading or the stray light estimate resulting from the
measurement taken with the light trap placed instead of the

Table 2 — RTS-3ZC integrating sphere port configurations
for reflectance measurements (ASD, 2008).

Quantity  Reflectance measurement port configuration

Port A Port B Port C PortD PortE
DR LS WR T P P
Rsample LS WR SS + LT P P
Rreference LS SS + LT WR P P

holder with the sample (configuration specified in Fig. 7a). DR(4)
is the background radiation that the source may contribute to
the baseline signal; most of the time it is negligible and can be
ignored, but it was taken into account in our calculations.

Rief_cat(#) (EQ. (2)) is the reflectance of calibrated reference
standard obtained from cross-calibration of the two reference
surfaces according to Miura and Huete (2009):

oy Lref_car(4)
Rvef;cal(") = ﬁ

where: Lys_ca(4) is the radiance of the calibrated reference
standard provided with the sphere (with the dark current
subtracted); Lgp(2) is the radiance of calibrated reference panel
(with the dark current subtracted); and Rgp(2) is the reflectance
factor of calibrated reference panel provided with the ASD
FieldSpec*4 spectroradiometer.

No standard protocol exists for sample preparation when
working with an integrating sphere. In our experiment, a
previously prepared soil sample in the petri dish was covered
with unglazed black paper (optically flat surface) to prevent
soil from entering the integrating sphere and to avoid unde-
sired particle orientations (Torrent & Barron, 2002). A central
circle 18 mm in diameter (similar to that of the sample port
aperture) was cut in the black paper cover to prevent direct
contact of soil particles with the external wall of the sphere
(Fig. 7b). In order to obtain spectral measurements the cali-
brated reference and soil samples were placed in the adjust-
able standard holders. The configuration used a light trap to
prevent ambient light illuminating the back sides of ports “B”
or “C” (Fig. 7) (ASD, 2008). In this setup, illumination is pro-
vided by a collimated dual light source with high setting
suitable for soils rather than low setting recommended for
samples of vegetation. The integrating sphere was fixed on a
tripod with a mounting rod attached to the port H on the
underside of the sphere assembly (Fig. 5). During the mea-
surements the Petri dish with the soil sample is attached to
port B or C (Fig. 7c and b, respectively) always in a horizontal
position, while the integrating sphere is rotated so that the
port with the attached sample is directed downwards. Sample
spectrum obtained using this setup is the average of 20 scans;
taking into account spectrum average configuration, the

Rep (1) )

43



CHAPTER 5. Comparison of laboratory setups used to obtain laboratory VIS-NIR-

SWIR spectra of soils
YSTE\ ) 1€ —¢ 57
Light source Light source
(LS) (Ls) ’
Calibrated White plug
White plug Calibrated White plug Calibrated  reference P)
P) reference reference  Standard
Standard Standard (WR)

(WR)

White plug
(P)

Light trap Soil sample
wn ©8) i

a b

(WR) o R \White plug
(P)

Light source
(LS)

Unglazed
Unglazed black paper Gk
black paper |(§asr;1ple
Light trap Light trap
(Lm (LT)

Fig. 7 — Configurations for measurement of (a) dark reading (stray light) DR, (b) soil sample reflectance Rsample, and (c)

reference reflectance Ryeference-

spectrum represents the total of 200 collected spectra per
sample, as recommended by the manufacturer.

The above description of the measurement procedure
makes it clear that three scans are necessary to calculate total
reflectance of each sample. The time involved in multiple
measurements and degradation of light intensity caused by
the diminishing battery charge prevented working sessions
being longer than 90 min. Hence, 5 sessions were necessary to
complete the measurements, each lasting about 1 h with an
average of 16 processed samples per session.

2.2.2. Experimental setup L (illuminator lamp and pistol grip)
The experimental setup L shown in Fig. 4b employs ASD
Illuminator halogen lamp as a light source. The lamp was
warmed for about 15 min before taking measurements (ASDb,
2012). To ensure that the soil surface spot is not too small for
the sensor FOV and achieve optimal illumination of the

Optic fibre

cable

llluminator Lamp

sample, observation geometry was previously calculated
taking into account (i) distance between the target and the
sensor, (i) distance between the target and the source of
illumination, and (iii) the angle between the two.

Calculation of the area detected by the sensor was based on
the Iluminator lamp documentation. It resulted in the
following configuration (Fig. 8): (1) Illuminator Lamp (lamp
beam angle 6 = 12°) attached to the tripod vertically above the
soil sample (H = 42 cm) generating a lighted spot 8.82 cm in
diameter (D); (2) pistol grip attached to another tripod at a
height of h = 7.5 cm (FOVgareriver B = 25°, Diameter SPOT
d = 6.99 cm) and an angle o = 45° relative to vertical axe.

In this configuration, the sensor registers the signal from
the spot, which covers the area within the petri dish, and the
measurement procedure does not involve sample manipula-
tion. The sample spectrum is an average of 50 radiometric
measurements. During the working session, the fibre optic

1
Spectroradiometer /'/—_\\\

Pistol Grip
T~

Controller

Soil sample
(Petri dish)

White Reference
Panel

Fig. 8 — Setup 2 (Illuminator lamp and pistol grip): diagram and observation geometry configuration.
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cable was regularly directed at the Spectralon reference panel
with the same viewing geometry. Since the measurements
were realised in the laboratory under controlled illumination
conditions, it was not necessary to perform calibrations before
each scan.

2.2.3. Experimental setup CP (contact probe)

In the experimental setup CP (Fig. 4c), samples contained in
the petri dish are covered with unglazed black paper with 5
apertures (Fig. 3c) of the size equal to that of internal window
of the contact probe (dprope = 20 mm) so that during the
measurement the rubber edge of the contact probe window
touches the paper cover zone around the cut circle to isolate
the measured area from the surroundings.

In this configuration illumination is delivered to the sam-
ple by the contact probe internal light source composed of a
reflectorised halogen lamp aligned at 12° to the probe body,
ensuring illumination at a fixed angle without the influence of
ambient light. The optical cable of the spectroradiometer is
attached to the contact probe at a fixed measurement angle of
35° (Fig. 9). The sensed spot has a diameter (dprobe) of ~1.1 cm
with a FOV of 1.33 cm? The spectrum provided by the spec-
troradiometer results from 5 measurements recorded as the

Optical fibre cable

measurement

average of 10 readings, which totals 50 processed spectra.
Spectra are acquired at five random points of the soil sample
(Fig. 10) and then averaged. This procedure minimises the risk
of shadows and errors associated with stray light. Since
measurements were realised in the laboratory under
controlled illumination conditions, calibration was performed
once every 15 min.

2.3.  Statistical analysis

2.3.1. Statistical analysis of measured spectra

Analysis of measured reflectance spectra was based on
wavebands with the highest information on edaphic proper-
ties, as suggested by Dematte and Terra (2014). The importance
of these bands for detection of organic matter, clay minerals,
and iron and aluminium oxides has been reported in earlier
research (Ben-Dor, Heller, & Chudnovsky, 2008; Melendez-
Pastor, Navarro-Pedreno, Gémez, & Koch, 2008). The analysed
bands include 5 bands in VIS (440 nm, 530 nm, 550 nm, 650 nm,
700 nm), 7 bands in NIR (845 nm, 850 nm, 870 nm, 901 nm,
931 nm, 951 nm, 1051 nm) and 8 bands in SWIR (1302 nm,
1401 nm, 1903 nm, 2201 nm, 2263 nm, 2300 nm, 2352 nm and
2430 nm) spectral regions. No spectral pre-processing of raw

Light source angle

Fig. 9 — lllumination and measurement angles of contact probe (modified from ASD, 2008).

pectroradiomete)

e

Contact Probe ) -
Energy Power cord Soil sample
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14

Fig. 10 — Experimental setup CP (contact probe): diagram and observation geometry configuration.
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spectra, sometimes used to reduce uncertainty (Vasques,
Grunwald, & Sickman, 2008), was applied.

BIAS (Eq. (3)) and Root-Mean-Square Difference RMSD (Eq.
(4)) were applied to estimate differences between reflectance
values obtained using tested setups:

N
Z Xi — Vi
i=1

BIAS = ®3)

Z|»

1 [ 2
RMSD =& \[ .2—1: (xi —yi) )
where: x; and y; are values of the compared setups, and N is the
number of measured samples.

Analysis of variance (one-way ANOVA) was applied to test
significance of the observed differences. The technique uses F
distribution to test if means of three or more groups are
different. It is applied when continuous variables are used as
predictors of one dependent variable (that is why it is called
one-way ANOVA). The null hypothesis says that samples are
taken from the same population; it is accepted or rejected based
on the F-statistic (the ratio of the variance calculated among the
means to the variance within the samples). To be considered
reliable, some assumptions should be satisfied: (1) errors are
independent and normally distributed; (2) samples are inde-
pendent and drawn from populations with equal variances.

2.3.2. Multivariate models for SOM prediction
Partial-Least-Square Regression (PLSR) approach (Tenenhaus,
1998; Wold, Sjostrom, & Eriksson, 2001) with Step-Down pre-
dictors selection Algorithm (Magidson, 2013) (SA-PLSR) imple-
mented in XLSTAT software (Addinsoft S.A., 2014) was applied
for calibration and validation of a predictive model for SOM, one
of the most relevant properties for soil post-fire evolution.
PLSR is routinely applied in soil VIS-NIR-SWIR spectros-
copy (e.g. Kooistra et al., 2003; Viscarra-Rossel et al., 2006)
because of its capacity to deal with a great number of pre-
dictors successfully solving the problem of multicollinearity

0.6

Reflectance factor

(Vasques et al., 2008; Wold et al., 2001). The method combines
the characteristics of principal component analysis and mul-
tiple linear regression; based on predictors, it computes a set
of orthogonal vectors, which explain most of the variance in
the dependent variable(s), referred to as latent variables
(Martens & Naes, 1989). The number of latent variables
(components) and the final model are defined by cross-
validation (leave-one-out approach) (Duckworth, 1998). A se-
ries of regression models are computed, each time leaving out
one of the samples; the model is then used to predict the value
for the omitted sample. PLSR models tend sometimes to
overfit the data (Beebe, Pell, & Seasholtz, 1998; Christy &
Kvalheim, 2007; Wold et al., 2001), i.e. they may include
explanatory variables relevant only to the training set (noise)
showing considerably lower predictive capacity when ana-
lysing independently acquired data. In order to overcome this
problem, the study applies the step-down algorithm
(Magidson, 2013) to exclude the least important predictors.
Ten-fold cross-validation was used to determine the number
of components and predictors, in each run excluding the
predictor with the smallest (absolute value) standardised co-
efficient. The modelling was performed on 81 samples; one
outlier was removed based on the PLSR results.

To ensure the robustness of multivariate models, calibra-
tion was repeated ten times on a random 61 samples (~75% of
the dataset), each time leaving out 20 samples for validation.

2.3.3. Statistics estimating performance of calibration and
validation models

The performance of calibration and validation models was
evaluated using the following indicators: the determination
coefficient of cross-validation (chv), the determination coef-
ficient of validation set (R%), the root-mean-square error of
cross-validation (RMSECV), the root-mean-square error of
prediction (RMSEP), the standard error of prediction corrected
by bias (SEP.) (Bellon-Maurel, Fernandez-Ahumada, Palagos,
Roger, & McBratney, 2010) and the residual prediction devia-
tion (RPD) (Chang, Laird, Mausbach, & Hurburgh, 2001;

: !
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L
1350

1 1 1 J
1750 1950 2150 2350 2500

1550
Wavelength (nm)

Fig. 11 — Mean spectral curves obtained by Setup IS (solid line), Setup L (dotted line), and Setup CP (dashed line).
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Fig. 12 — Spectral curves of selected soil samples obtained by Setup IS (solid line), Setup L (dotted line), and Setup CP (dashed
line).

Williams, Williams, & Norris, 1987). Coefficient of variation improved and calibration models having R? lower than 0.50

(CV), calculated as the ratio of the standard deviation to the are considered unreliable. Rey? and Ry? were calculated ac-
mean, was used to assess the stability of the measurements. cording to the following equations:

Rev? (Eq. (5) and Ry? (Eq. (6)) were used to assess goodness- 5
of-fit of obtained models. According to Terra, Dematte, and oA (Yi,c - ?Lt)

Ry=1-——o (5)

Viscarra-Rossel (2015), a value for R? > 0.75 indicates accu- o \2
( ) Z,"i‘l (Yi‘c T Yo:)

rate models for quantitative soil prediction, whereas a value
for R? between 0.50 and 0.75 reveals fair models that can be
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Table 3 — Descriptive statistics of soil reflectance values 12 4 . :
obtained using different experimental setups (for 82 o
samples). ” : . o i
Selected bands (nm) Setup Mean SD® Min Max $ r .
440 IS 0112 0034 0060 0.266 T 84 i
L 0.115 0.034 0.059 0.267 § : .
CP 0122 0032 0071 0241 @ o = o i ) 7
530 IS 0.168 0.052 0.088 0.357 g = ! : L] =
1 0.173 0.052 0.091 0.358 @ :
CP 0.179 0.047 0.098 0.325 L 1
550 1S 0.186 0.057 0.094 0.376 :
L 0.193 0.057 0.103 0.379 S :
CP 0.198 0.051 0.111 0.346 :
650 IS 0.254 0.066 0.120 0.452 0 !
L 0.263  0.065 0.142 0441 SetuplS SetuplL SetupCP SetuplS SetuplL SetupCP
CP 0.268 0.058 0.154 0421 CALIBRATION VALIDATION
700 IS 0.283 0.069 0.137 0481
L 0291 0.067 0.162 0470 Fig. 13 — Box-whisker plots showing SOM distribution in
cP 02%6 0061 0.174 0446 datasets used for calibration and validation (from 10 runs).
as & W WUl GERGE (e The bottom and top of the box represent the 25th and 75th
L 0.357 0.071 0.211 0.538 & . s e
P 0360 0066 0216 0502 percentile, respectively. The cross inside the box shows
850 IS 0348 0074 0.190 0.560 the mean. The band near the middle of the box is the
I 0358 0.071 0.212 0539 median. The ends of the whiskers represent the 5th and
CP 0362 0.066 0.216 0.503 the 95th percentile. Solid dots correspond to maximum
870 IS 0.353 0074 0.197 0.565 and minimum values; hollow dots represent outliers.
L 0363 0.071 0.214 0.543
CP 0.367 0.066 0.218 0.508
901 1S 0.362 0.073 0.207 0.575 o B
L 0372 0071 0218 0550 , 2 (Yo - i)
cp 0375 0066 0222 0521 Rl e (6)
931 IS 0.372 0.073 0.218 0.583 Z' 1(Y"’ B YP)
L 0.382 0071 0.223 0558 where: ¢ and p refer to the corresponding calibration and
ool ]CSP 8;?; gg% g;z gzgg validation datasets; n is the numbeAr of samples, Y; is the
L 0388 0071 0227 0563 observed SOM value for ith s:tmple, Yi. is the predicted SOM
cp 0391 0067 0230 0542 value for the ith sample, and Y is the mean value of Y; for all
1051 1S 0.409 0.074 0.257 0.617 Samples‘
1 0417 0071 0.242 0.582 RMSECV (Eq. (7)) and RMSEP (Eq. (8)) were used to reflect the
Cp 0421 0068 0245 0.571 inaccuracy of the spectroscopic models and were calculated
1302 IS 0.36280,082 510 2978810.669 according to the following expressions:
L 0468 0.079 0.262 0.628
CP 0474 0.077 0.264 0.623 = B
1401 1S 0455 0082 0.291 0641 Z,"‘I(Yu - Y.vc)
L 0460 0079 0253 0617 MY =N"%—0+D @)
CP 0.466 0.077 0.254 0.609
1903 IS 0439 0081 0.277 0.622 Where: where f is the number of variables used in the
L 0438 0078 0.243 0.603 regression model equation.
CP 0.449 0.077 0.244 0.603
2201 IS 0.434 0.081 0.272 0.615 N2
L 0439 0078 0238 0593 i (Y,.p a0
CP 0443 0076 0236 0584 RMSEP = Vin* @)
2263 IS 0439 0.081 0.275 0.625 ’
L 0447 0079 0243 0.611 The SEP. is the standard error of the prediction corrected
cp 0450 0076 0242 0594 by bias (Eq. (9) and Eq. (10)) and is equivalent to the standard
2300 IS 0428 0.079 0.270 0.612 o Y s g 5 .
- RS o e deviation (SD) 91’ the predicted resjlduals in validation dataset.
cp 0440 0074 0237 0583 The SEP. and bias, represent two independent components of
2352 IS 0410 0078 0241 0584 the RMSEP.
L 0417 0.075 0.224 0.569 -
CP 0420 0.072 0.224 0.558 . G
2430 IS 0398 0080 0241 0S4 0¥ T ;(Y”’ - V) ©
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CP 0.402 0.072 0.212 0.545
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Table 4 — Descriptive statistics for SOM content in datasets used for calibration and validation. Average values for ten runs.
Calibration Validation
n Min Max Mean SD n Min Max Mean SD
IS dataset 61 1.11 12.98 6.09 2.78 20 242 12.62 6.22 2.76
L dataset 61 1.04 12.98 6.08 2.74 20 2.:35 12.59 6.24 2.86
CP dataset 61 111 13.24 6.12 2.75 20 2:35 11.82 6.11 2.82

Table 5 — SOM calibration results (for 61 samples). Presented values are averages for ten calibrations; the range of R%cy and

RMSECV values is given in parenthesis.

Statistic Setup IS Setup L Setup CP

Recy 0.66 (0.62-0.70) 0.77 (0.74-0.78) 0.74 (0.68—0.77)
RMSECV (g 100 g ) 1.91 (1.75-2.08) 1.56 (1.47-1.65) 1.69 (1.46-1.81)
f 5-20 7-20 11-20

Factors 3-6 5=6 5-6

RPD (Eq. (11)) is calculated to assess the predictive ability of
the VIS-NIR-SWIR model.

RPD = (11)

RMSEP

RPD thresholds suggested by Chang et al. (2001) and used to
evaluate model performance in multiple studies (Gomez,
Viscarra-Rossel, & McBratney, 2008; Gras, Barthes, Mahaut, &
Trupin, 2014; Lu, Wang, Niu, Li, & Zhang, 2013) consider that
predictive capacity of the model is good when RPD is higher
than 2.0, reasonable when RPD is in the range 1.4-2.0; and
poor when it is below 1.4.

heterogeneity being variation in the content of organic com-
pounds (Ben-Dor et al., 1999).

In spite of similarity of reflectances from the three tested
setups, visual appreciation reveals some differences
(Fig. 11). The most noticeable is the noise in the IS spectra at
wavelengths less than 400 nm and wavelengths greater
than 2300 nm. There is a clear pattern in the levels of albedo
intensity among the setups (Figs. 11 and 12): the highest
values correspond to Setup CP, followed by Setup L and
Setup IS.

Descriptive statistics of reflectances in selected bands are
presented in Table 3. ANOVA demonstrates that differences in
reflectance values among setups are not statistically signifi-
cantatp <0.05 level. The largest differences in albedo intensity
are observed between IS and CP (RMSD 0.012); they range from
0.009 in 2201 nm wavelength to 0.014 in 850 nm and 870 nm

3. Results and discussion spectral bands. CP-L and L-IS differences are smaller (RMSD
0.005 and 0.008, respectively). Compared to Setup IS, other
3.1.  Comparison of soil reflectance spectra configurations overestimate reflectances; the bias is 0.007 and

Reflectance spectra obtained with the three setups (Figs. 11
and 12) are quite similar, which is not strange given that
they were measured with the same spectroradiometer. This is
in agreement with previous research (Ben-Dor et al., 2010; Ge
et al, 2011; Knadel et al., 2013). However, published literature
also contains indications that variations in instrumentation,
protocols, environmental conditions and personnel may have
negative consequences and affect comparability of the results
(Ben-Dor et al., 2015; Brown, 2007; Ge et al., 2011).
Reflectance spectra present the shape characteristic for
soils with major absorption features associated with the hy-
groscopic water and O—H group near 1400 nm and 1900 nm
(Stoner & Baumgardner, 1981); and clay minerals near
1400 nm and 2200 nm (Hunt & Salisbury, 1970; Hunt, 1977,
Viscarra-Rossel & Behrens, 2010). In spectral curves of some
samples, these absorption features are small (Fig. 12d), while
in others they are much more pronounced (Fig. 12e). Observed
between-sample differences in the slope of the curve and
overall level of reflectance are probably due to the differences
in composition of analysed samples, i.e. heterogeneity present
in the dataset (Ge et al., 2011), one of the aspect of this

0.011 for Setup L and CP, respectively. Several previously
published studies have already mentioned signal underesti-
mation in measurements using integrating sphere (Merzlyak
et al.,, 2002; Nostell, Roos, & Ronnow, 1999; Yanez-Rausell
et al., 2014) because there is a distance between the exter-
nally placed sample and the sphere inner cavity, causing part
of the reflected light to fail to strike the integrating surface.

Reflectances registered with the three setups are highly
variable; coefficients of variation (CV) above 16% for all the
bands are probably explained by the heterogeneity of the
dataset. Nevertheless, compared to other setups, CVs based
on data from Setup CP are lower, demonstrating greater sta-
bility of the measurements, the fact observed by other re-
searchers (Painter et al., 2007; Summers, Lewis, Ostendorf, &
Chittleborough, 2011).

3.2.  Distribution of SOM content

Measured reflectances were applied for modelling SOM con-
tent, a property considered a good indicator of soil post-fire

recovery (Jiménez-Gonzdlez et al, 2016). Descriptive
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statistics of SOM distribution in analysed data are presented
in Fig. 13 and Table 4.

Soil samples are rich in SOM and present normal distri-
bution with the mean close to 6 g 100 g *, and the range be-
tween ~1g100g ' gand ~13 g100 g . These levels of organic
content are typical for the study area (Pérez-Cabello,
Echeverria, Ibarra, & de la Riva, 2009); they are higher than
the average SOM for forest soils in European Land Use/Land
Cover Area frame Statistical Survey (LUCAS) soil database
(Stevens, Nocita, Téth, Montanarella, & van Wesemael, 2013).
It was a surprise to observe so high SOM values considering
that soils affected by wildfires constitute half of the dataset,
and, rather, we would have expected lower than usual content
of organic material due to burning, as reported by Cécillon
et al. (2009) studying similar ecosystems (Mediterranean
pine forests). Unusually high content of organic matter is
probably explained by the fact that burned soils were sampled
six or more years after the burn, and accelerated vegetation
recovery contributes to quick replenishing of organic material
depleted by the fire (Jiménez-Gonzalez et al., 2016; Vlassova &
Pérez-Cabello, 2016).

ANOVA detected no statistically significant differences
among data subsets used for predictive modelling.

3.3. SOM prediction

Table 5 summarises statistics estimating performance of the
PLSR — Step-down Algorithm (SA-PLSR) calibration for SOM.
Similar results were obtained in the 10 calibration runs. Ex-
amples of scatter plots (modelled versus predicted SOM
values) corresponding to setups IS, L and CP, are presented in
Fig. 14. The three setups provided data for SOM models
capable of good (Setup IS, R? = 0.66) and accurate (Setups L
and CP, R%cy > 0.7) predictions. Models based on Setup L
demonstrate the highest R’y (0.77) and the lowest RMSECV
(1.56 g 100 g ). On the other hand, models using data from
Setup IS present the lowest R?cy (0.66) and highest level of
uncertainty (RMSECV = 1.91 g 100 g %), probably because of
the stray light in the space between the externally placed
sample and the sphere inner cavity. It is possible that better
results could be achieved with bigger (and much more
expensive) integrating spheres in which the fraction of
sphere surface occupied by the ports is smaller, ensuring
better integration of the sample signal before it reaches the
sphere's detector, although it should be also considered that
the increase in the sphere diameter diminishes the energy
flux on the sphere detector resulting in an increase in
instrumental noise.

Compared to L, CP models showed comparable predictive
capacity (R%cy = 0.74), but higher RMSECV (1.69 g 100 g ). This
fact deserves closer attention because contact probes are the
accessories widely used in soil VIS-NIR spectroscopy due to
their versatility; they are second in popularity only to config-
urations featuring bare optic fibre (Ben-Dor et al, 2015).
However, in our experiment, better results were obtained with
setup featuring Illuminator Lamp, and not the contact probe.

Statistics estimating accuracy of validation models are
summarised in Table 6. Coefficients of determination (R%) are
slightly above those achieved by the corresponding calibra-
tions; closeness of calibration and validation estimates
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Fig. 14 — Examples of scatter plots of predicted versus
observed SOM values for Setup IS (a), Setup L (b) and Setup
CP (c). In each graphic data points corresponding to
calibration are shown with circles; data points
corresponding to validation are shown with triangles.
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Table 6 — SOM validation results (for 20 samples). Presented values are averages ten validations; the range of obtained

values is given in parenthesis.

Statistic Setup IS Setup L Setup CP

Ry 0.73 (0.64-0.83) 0.81 (0.78-0.86) 0.75 (0.69-0.81)
RMSEP (g 100 g %) 1.48 (1.13-1.80) 1.28 (1.10-1.43) 141 (1.23-1.57)
SEP. (2100 g Y 1.50 (1.16—1.78) 1.27 (1.11—-1.45) 141 (1.22-1.54)
biasya (g 100 g7) ~0.34-0.47 ~0.35-0.75 ~0.63-0.65

RPD 1.88 (1.60-2.21) 2.25 (2.13-2.55) 2.00 (1.81-2.25)

evidences good quality of models and leads to the conclusion
that there is no overfitting. As in the case of calibration,
models based on Setup L demonstrate the best predictive ca-
pacity, explaining around 80% of the variance (average
R%, = 0.81;0.78 < R?, < 0.86; 2.13 < RPD < 2.55) comparable to
those obtained by Gras et al. (2014) and registering the lowest
error among the three setups (average RMSEP = 1.28 g 100 g
1.10 g 100 g * < RMSEP < 1.43 g 100 g '). In terms of RPD the
accuracy of L and CP models (1.88 < average RPD < 2.25)
compared very well with results of other studies (Ge et al.,
2011; Gubler, 2011; Knadel et al., 2013; Stevens et al., 2013;
Vasques et al., 2008). According to (Brown, Bricklemyer, &
Miller, 2005; Terra et al., 2015; Viscarra-Rossel, McGlynn, &
McBratney, 2006). Considerably greater between-runs varia-
tion of all the indicators related to IS model points to the
reduced stability of IS model.

4, Conclusions

Comparison of soil reflectances obtained with the three labora-
tory setups, each one with a different spectroscopy accessory
(integrating sphere, Illuminator lamp and contact probe) detec-
ted no statistically significant differences. The most stable
measurements of fire-affected soils were obtained with the setup
using [lluminator lamp (Setup L). Thus, the use of the [lluminator
lamp or contact probe is preferable to that of the integrating
sphere due to the noisier signal in some spectral regions and
technical difficulties related to the measurement protocol.
Modelling based on a small number of previously defined
spectral variables proved to be sufficient for obtaining SOM
predictions of good quality. Acceptable accuracy levels with
average R? above 0.65 were achieved in the SA-PLSR calibrations
and validations of SOM content. Although reflectance levels
obtained with the tested setups were quite close, between-
setups differences in average R? of spectroscopic models were
up to 11% for calibrations and 8% for validations. High predictive
capacity of models based on the setup with Illuminator Lamp
(Setup L) leads to a conclusion that VIS-NIR-SWIR spectroscopic
configurations including this accessory can be used for moni-
toring post-fire evolution of soils, although it should be further
examined with a larger number of samples and soil properties.
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Resumen
El sistema de cultivo roza-y-quema tiene efectos negativos en la fertilidad del suelo a mediano-largo plazo,
modificando sus propiedades fisicas y quimicas. Estos cambios implican cambios en propiedades espectrales,
que pueden ser analizadas mediante espectro-radiometria de las regiones espectrales de visible e infrarrojo
cercano (VIS-NIR). El estudio evalia la viabilidad de aplicar espectro-radiometria para la prediccion del
contenido de matetia orginica (CMO) en suelos afectados por las quemas agricolas. Las 18 muestras de suelo
fueron recolectadas en 2015 en dos areas de cultivo de maiz (Zea mays) en Los Rios (6 anos de quemas repetidas
v una sola quema). El espectro-radiometro ASD con rango espectral 350-2500nm fue utilizado en el laboratorio
para obtener los espectros de las muestras previamente tamizadas y secadas al aire. Se detectaron las diferencias
estadisticamente significativas entre curvas espectrales de las muestras de los dos grupos. La reflectividad de
suelos repetidamente quemados fue 20% mas alta para 65% de las muestras, siendo especialmente importante
en VIS (>45%), probablemente debido al nivel mas bajo de CMO. Los modelos de CMO obtenidos
aplicando regresion de Minimos Cuadrados Parciales (PLSR) mostraron alta capacidad predictiva (R?>0.8). El
estudio demuestra el gran potencial de espectro-radiometria para monitoreo de CMO en suelos bajo sistema

1r0za-y-quema.
Palabras claves: espectro-radiometria VIS-NIR, materia organica, suelos, roza-y-quema, PLSR.

Abstract
Slash-and-burn agriculture have negative mid- and long-term effects on soil fertility, modifying its physical and
chemical properties. These changes are accompanied with changes in spectral properties, which can be analysed
using spectroradiometry in visible (VIS) and near-infrared (NIR) spectral regions. The study assesses the
feasibility of applying spectroradiometry to predict organic matter content in soils (SOM) affected by
agricultural burning. 18 soil samples were collected in 2015 in two areas of maize (Zea mays) cultivation in the
province of Los Rios (one with 6 burns and another with only one burn). ASD spectroradiometer (350-2500nm
spectral range) was used in the laboratory to obtain spectra of sieved and air-dried samples. Statistically
significant differences were detected between spectral curves of samples from two groups. The reflectivity of
repeatedly burned soils was 20% higher for 65% of samples, being especially important in VIS (>45%),
probably due to the lower SOM. PLSR models for SOM showed high predictive capacity (R>0.8). The study
demonstrates high potential of spectroradiometry as a tool for monitoring status of soils in slash-and-burn
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agriculture.
Keywords: VIS-NIR spectroradiometry, organic mattet, soils, slash-and-burn, PLSR.

Introduccion
En Ecuador el impacto de las actividades humanas sobre el medio ambiente resulta en pérdida de biodiversidad,
tasas anuales de deforestacion de hasta 3.5%, v disminucion de calidad y erosion de suelos (Saltos & Vasquez,
2009), creando dificultades en el camino a conseguir la seguridad alimentaria de la poblacion, derecho estipulado
en el Art. 14 de la Constitucion. Con el constante crecimiento demogrifico y demanda de alimentos, es necesario
aumentar y estabilizar su produccién aplicando los modelos agricolas sostenibles (De la Rosa, 2008).

La técnica de roza-y-quema es un sistema de cultivo tradicional en la agricultura tropical no-mecanizada (Hauser
& Norgrove, 2013). En el litoral ecuatoriano es un método ampliamente utilizado por los pequefios agricultores,
especialmente para los cultivos de ciclo corto, e.g, arroz y maiz (SINAGAP, 2012). T.a siembra se realiza en el
suclo preparado quemando los residuos secos de la cosecha anterior (u otro tipo de vegetacion pre-existente)
con el minimo de labranza (Cerri et al., 2007; Thomaz, 2009). La quema elimina las malezas, reduce riesgo de
parasitos y enfermedades, siendo, ademas, un método de limpieza simple y econémico (Jordan, 1989; Kato,
Kato, Denich, & Vlek, 1999). La primera cosecha suele ser abundante por el incremento poco duradero de la
fertilidad de suelos con la incorporacion de calcio, magnesio y potasio provenientes de las cenizas (Nye &
Greenland, 1961).

Este tipo de agricultura fue desarrollado por los indigenas durante siglos con la sostenibilidad asegurada por los
largos ciclos de rotacion. Sin embargo, la presion demografica lleva a los periodos cada vez mds cortos entre las
quemas (Lawrence, Radel, Tully, Schmook, & Schneider, 2010). El tiempo entre las quemas resulta insuficiente
para la recuperacion de los suclos, mermandose cada vez mas su fertilidad. Se ha demostrado que las quemas
de los restos organicos causan pérdidas significativas de los carbonos organicos y nutrientes por volatilizacion,
asi como procesos de erosion, escorrentia y lixiviacion de suelos (Juo & Manu, 1996). Asi, se pierde el delicado
equilibrio entre los periodos de labranza y periodos de recuperacion, caracteristicos para los sistemas de roza-y-
quema ancestrales.

A mediano y largo plazo las quemas regulares tienen efectos negativos en los suelos. Se modifican las
propiedades fisicas y quimicas, tales como textura y estabilidad estructural (Thomaz, 2017), acelerando los
procesos de erosion, disminuye el contenido de la materia organica y nutrientes disponibles (Certini, 2005). Las
propiedades bioldgicas del suclo también son afectadas observandose la disminucion de la biomasa microbiana,
macro y microfauna (Neary et al., 1999). El resultado cumulativo de estos cambios es la reduccion de la fertilidad
(Bento-Gongalves et al., 2012, Certini, 2005, Mataix-Solera et al., 2011). La cuantificacion y analisis de evolucion
de los cambios en el tiempo pueden ayudar en introducir los cambios conducientes al manejo sustentable
(Uriarte, Schneider, & Rudel, 2010). Sin embargo, hasta donde conocemos, en Ecuador no existen estudios que
determinen los periodos de cultivo y los de recuperacion que asegurarfan el equilibrio buscado para cada cultivo
y tipo de suelo especificos.

Los cambios en las propiedades fisicas y quimicas de suelos implican cambios en sus propiedades espectrales,
que pueden ser analizadas mediante espectro-radiometria de las regiones espectrales de visible (VIS), infrarrojo
cercano (NIR) ¢ infrarrojo de onda corta (SWIR), que comprenden las longitudes de onda de 400-700nm, 700-
1300nm y 1300-2500nm, respectivamente (Lugassi, Ben-Dor, & Eshel, 2014; Rosero-Vlasova, Pérez-Cabello,
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Llovetia, & Vlassova, 2016). La técnica fue con éxito aplicada para detectar las propiedades del suclo relevantes
para agricultura (Dematté, Campos, Alves, Fiorio, & Nanni, 2004; Stevens et al., 2008), fijindose algunos de
ellos en problemas de contaminacién (Cheng, Shi, & Zhu, 2007), salinidad (Farifteh, Van der Meer, Van der
Meijde, & Atzberger, 2008), contenido de materia organica (He, Huang, Garcfa, Hernandez, & Song, 2007), y
nutrientes (Kuang & Mouazen, 2013). Esa nueva técnica ofrece una alternativa a los tradicionales métodos de
analisis de suelos, que requieren de considerable inversion de tiempo y recursos (Ben-Dor, Irons, & Epema,
1999). Comparado con los métodos tradicionales espectro-radiometria de las regiones espectrales VIS-NIR-
SWIR es (1) no-destructiva, (2) flexible: las mediciones pueden ser realizadas tanto en el campo, como en el

laboratorio; (3) varias propiedades pueden ser estimadas a partir de un mismo espectro (Viscarra Rossel,

Walvoort, McBratney, Janik, & Skjemstad, 2000).

En este contexto, el propdsito del estudio es evaluar la viabilidad de aplicar espectro-radiometria en condiciones
controladas para la prediccién del contenido de materia organica en suelos afectados por las quemas agricolas.
La hipotesis operativa de esta investigacion consiste en que la espectroradiometria VIS-NIR-SWIR es la
herramienta suficientemente confiable para el monitoreo de la fertilidad de los suelos cultivados bajo el sistema

de roza-y-quema.

Metodologia
Area de estudio
Los Rios es la provincia con la mayor superficie ocupada por el cultivo de maiz (Zea mays) en el Ecuador
(140000 ha) siendo los cantones Ventanas y Mocache las dreas de mayor concentracion, Se produce
principalmente el maiz duro que se destina a la elaboracién de balanceado que es esencial para la alimentacién
de pollos y cerdos. El maiz tiene una superficie cultivada de 21042.82 hectareas y se localiza en todo el cantén
ocupando el 37.17% de la superticie del canton. Se cultiva en parcelas pequenas de extension entre lha y 5ha,
muy pocas mis de 5ha. El sistema de cultivo generalmente utilizado para este cultivo por los pequefios
agricultores es el de roza-y-quema por ser el que involucra minimos requerimientos financieros y tecnoldgicos.

El estudio se realiz6 en el sitio Bella Sombra del cantén Mocache, provincia de Los Rios, Ecuador, en un area
donde se cultiva maiz bajo el sistema roza-y-quema (Figura 1). La zona de topografia irregular cuyas elevaciones
fluctdan entre 80msnm y 120msnm se caracteriza por un clima megatérmico himedo (Pourrut, 1983) con la
temperatura media anual de 24 °C y precipitaciéon media anual de 1800-2000mm. Las estaciones secas (junio-
diciembre) y la lluviosa (enero-mayo) estan claramente diferenciadas. Segin (Holdridge, 1987), la zona se
clasifica como bosque tropical seco.

Muestreo de suclos

La Figura 2 presenta la vista general del area de estudio. Las 18 muestras de la capa supetficial de suelo (0-2cm)
fueron obtenidas en septiembre de 2015 en dos dreas dedicadas al cultivo de maiz bajo el sistema de roza-y-
quema (irea total de 5ha): (1) area sometida a quemas periddicas durante los 6 afos anteriores; y (2) drea
recientemente incorporada al cultivo donde se realizé una quema al eliminar los arboles de cacao para sembrar
maiz y la siguiente, mas reciente, después de la primera cosecha. Las muestras fueron obtenidas al siguiente dia

después de la quema.

Cada muestra fue dividida en dos partes: una parte se utilizé para los analisis convencionales de contenido de
materia organica en el suelo efectuada en el laboratorio de Instituto de Investigaciones Agropecuarias INTAP,
sede Quevedo; y la otra (~160g por muestra) se transport6 al laboratorio de Espectroradiometrfa Ambiental
de la Universidad de Zaragoza para las mediciones espectrales.
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Océano
Pacifico

COLOMBIA

ECUADOR

Mocache

Figura 1
Localizacion del area de estudio: (A) Mapa de referencia. El poligono verde cortesponde al Cantén Mocache,
provincia de Los Rios, Ecuador; (B) Imagen de Landsat-8 (Composicion de bandas 7-5-3, afio 2014). Limite
del cantén Mocache se muestra como linea blanca. Punto amarillo indica el lugar de muestreo.
Fuente: Autores

Figura 2

Vista general del darea de estudio: (A) cultivo de maiz cosechado aun no quemado; (B) area después de la
quema.
Fuente: Autores

Mediciones espectrales

Las mediciones espectrales se realizaron a las muestras recogidas en el campo que han sido anteriormente
preparadas. El primer paso de la preparacién fue separar la fraccién fina (tamafio de particula <2mm). Luego
fueron colocadas en placas Petri de cristal (90 mm de didgmetro) y presionadas para formar una capa de ~15mm
de espesor. Posteriormente las muestras (~160g) de superficie homogénea fueron secadas en horno durante 24
horas a 105°.

Para obtener los espectros de suclos se utilizé un espectroradiémetro Analytical Spectral Device (ASD)
FieldSpec®4, que estd compuesto internamente por tres especttometros (detectores), cada uno dedicado al
trabajo en un rango espectral especifico. El instrumento registra la sefial en el VIS-NIR (350-1000nm) y dos
regiones en SWIR (1001-1800 nm y 1801-2500nm) con un intervalo de muestreo espectral de 1.4nm y 2nm, y
una resolucién espectral (Full Width at Half Maximum - FWHM) de 3nm y 10nm, respectivamente (ASDa,
2012). La senal recibida por el sensor es corregida por la sefial eléctrica de base (corriente oscura) y re-muestreada
a un intervalo de 1nm sobre toda la region de onda registrada por el software del dispositivo (Fyfe, 2004). Las
medidas estimadas como factor de reflectancia son por lo general referidas simplemente como reflectancia. Este

se define como la relacion del flujo radiante reflejado por la supetficie del objetivo con respecto a aquel reflejado
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por una superficie estandar ideal bajo la misma geometria de observacion (Shaepman-Strub, Schaepman, Painter,
Dangel, Martonchik, 2006). Cuando las medidas son realizadas en condiciones de iluminacion controladas, el
espectroradiémetro registra un Factor de Reflectancia Bicénica (BCRF por sus siglas en inglés), ya que, en este
caso, ambos, tanto la radiancia entrante como reflejada, pueden ser aproximadas a unos conos (Schaepman-
Strub et al., 2006).

La superficie de referencia debe tener una reflectancia perfecta sobre todo el rango de longitud de onda vy ser
resistente a contaminantes del ambiente. El panel de referencia de Spectralon® calibrados hechos
depolitetrafluoroetileno (PTFE por sus siglas en inglés) proporcionado por el fabricante satisface todos los
requerimientos vy fue usado para convertir las medidas de radiancia en valores de reflectancia. Las mediciones
fueron desarrolladas en un laboratorio oscuro bajo condiciones de iluminacion controladas usando una
configuracién que incluyé el uso de la limpara ASD IlluminatorLamp, accesorio de total compatibilidad con el
espectroradiometro, ya que esta disefiado para trabajar sobre el mismo rango de longitud de onda que el equipo.
La lampara fue encendida previamente a las mediciones durante 15 minutos (ASDb, 2012).

Antes de empezar el escanco de las muestras, el software ASD RS® (ASDa, 2012) fue configurado para
promediar 10 espectros por cada escaneo de muestra, 25 — blanco de referencia, v 10 — corriente oscura para
reducir el ruido y mejorar la relacion sefial-al-ruido.

La Figura 3 presenta una vista general de la configuracion del experimento. Para una iluminacién optima de la
muestra, se calculd previamente la geometria de observacion, tomando en cuenta (i) la distancia entre la muestra
y el sensor, (i) la distancia entre la muestra y la fuente de iluminacion, y (iii) el angulo entre los dos. El calculo
del area detectada por el sensor se basé en la documentacion del ASD Illuminator Lamp. Esto resulté en la
siguiente configuracion (Figwra 4): (1) lampara Illuminator Lamp (ingulo del haz de luz 6=12° unida de
manera vertical al tripode sobre la muestra de suelo (H=42cm) generando un lugar de iluminacion sobre la
superficie de la muestra de 8.82cm de diametro (D); (2) pistol grip unido al otro tripode a una altura de
h=7.5cm (FOVFipe_desnuda =25°% diametro del sitio escaneado d=6.99cm) y un angulo «=45° con respecto al
eje vertical. En esta configuracion los sensores registran la sefial del sitio que cubre el drea dentro de la Petri, y
el procedimiento de medicién no involucra la manipulacion de la muestra. El espectro de la muestra es un

promedio de 50 mediciones radiométricas.

Figura 3
Vista general de la instrumentacién utilizada en las mediciones espectrales. Las imdgenes de la derecha
muestran (de arriba abajo): la lampara ASD Illuminator Lamp, panel de referencia, y Pistol grip usado para
fijar la fibra Sptica.
Fuente: Autores
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Figura 4
Diagrama de configuracién y geometria de observacion.
Fuente: Autores

Durante la sesion de trabajo, el cable de fibra Optica estaba regularmente dirigido al panel de referencia
Spectralon con la misma geometria de observacion. Debido a que las medidas fueron realizadas en el laboratorio
bajo condiciones de iluminacién controladas, no fue necesario realizar la calibracion antes de cada escaneo de
la muestra.

Anailisis estadistico

El analisis de los espectros de reflectancia medidos se basé en longitudes de ondas con la mayor informacion
de propiedades edafica sugerida por Dematté y Terra (2014). La importancia de estas bandas para la deteccion
de materia organica, minerales de arcilla, y 6xidos de hierro y aluminio han sido ya publicados en investigaciones
previas (Ben-Dor, Heller, Chudnovsky, 2008; Melendez-Pastor, Navarro-Pedrefio, Gémez, Koch, 2008). Las
bandas analizadas incluyen: 6 bandas en region espectral VIS (401nm, 440nm, 530nm, 550nm, 650nm, 700nm),
7 bandas en region espectral NIR (845nm, 850nm, 870nm, 901nm, 931nm, 951nm, 1051nm) and 8 bandas en
region espectral SWIR (1302nm, 1401nm, 1903nm, 2201nm, 2263nm, 2300nm, 2352nm and 2430nm). No se
aplicé ningun tipo de pre-procesamiento a los espectros originales, algo comunmente utilizado para reducir la
incertidumbre (Vasques, Grunwald, Sickman, 2008).

La significancia de las diferencias observadas entre los dos grupos de espectros de reflectancia, fue verificada
por el analisis de varianza (one-way ANOVA). El analisis de varianza (one-way ANOVA) fue aplicado para
probar la significancia de las diferencias observadas entre el grupo de espectros de reflectancia. Esta técnica usa
la distribucion I para averiguar si los promedios de dos o més grupos son diferentes. Se utiliza cuando variables
continuas son usadas como predictores de una variable dependiente (por lo cual es llamada one-way ANOVA).
ILa hipétesis nula dice que las muestras son tomadas de la misma poblacion, esta es aceptada o rechazada
basandose en el estadistico — F (la relacion de la varianza calculada entre los promedios con respecto a la varianza
dentro de la muestra). Para que el estadistico sea confiable, deben cumplirse algunas condiciones: (1) los errores
son independientes y siguen una distribucién normal; (2) las muestras son independientes y extraidas de
poblaciones con varianzas iguales.

Finalmente, se aplicé Regresién de Minimos Cuadrados Parciales (PLSR por sus siglas en inglés) (Tenenhaus,
1998; Wold, Sjostrom, Eriksson, 2001) con el algoritmo de seleccion de predictores implementado en el software
XLStat (Addinsoft S.A., 2014) para la calibracién y validacion del modelo predictivo para materia organica, una

de las propiedades mas relevantes para la valoracion de la fertilidad v capacidad productiva del suelo.

PLSR es ampliamente utilizado en Espectroscopfa VIS-NIR-SWIR de suelo (e.g, (Kooistra et al., 2003; Viscarra-
Rossel, Walvoort, McBratney, Janik y Skjemstad, 2006) por su capacidad de resolver el problema de
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multicolinearidad en modelos con la gran cantidad de predictores (Wold et al., 2001).

El método combina las caracteristicas del analisis de componentes principales y regresion lineal maltiple. Los
predictores se usan para calcular un conjunto de los vectores ortogonales llamados las variables latentes que
explican la mayor parte de varianza en la variable dependiente (Martens & Naes, 1989). El nimero de las
variables latentes (componentes) v el modelo final se definen a través de la validacion cruzada, durante la cual
se computa una seric de modelos de regresion, cada vez dejando fuera una de las muestras; el modelo luego se

aplica para predecir el valor para la muestra omitida (Duckworth, 1998).

Los modelos obtenidos por la regresién PLSR a veces sufren de ajuste excesivo, por cuanto pueden incluir los
predictores relevantes solo para el conjunto de datos usados para calibracion (ruido), mostrando disminucion
del poder predictivo, al analizar los datos adquiridos independientemente del conjunto original (Christy &
Kvalheim, 2007). Para evitar el sobreajuste, el presente estudio aplica el algoritmo de seleccion de predictores,
que excluye del modelo las variables independientes menos importantes. En el proceso iterativo de validacion
cruzada en cada ciclo se elimina el predictor con el menor (valor absoluto) coeficiente estandarizado.

La bondad de ajuste del modelo fue evaluado usando el Coeficiente de Determinaciéon (R2?) que es el cociente
de las varianzas de valores estimados (predichos) y valores observados de la variable dependiente. R? se calcula

segun la siguiente formula:
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I ==
(]

pe _L (=)
T %-7)

1

(]

~

Donde Yies el valor observado de CMO para la /enésima muestra, 1 es el valor predicho de CMO para la i-

enésima muestra, y ¥ es el valor promedio para todas las muestras.

De acuerdo a Terra, Dematte y Viscarra-Rossel (2015), un valor de R?> 0.75 indica un modelo preciso para la
prediccion cuantitativa de propiedades del suelo, aquellos con valores para R? entre 0.50 and 0.75 revela un
ajuste aceptable que puede ser mejorado v los modelos de calibracién con R2 menor de 0.50 son considerados
poco fiables.

Resultados y Discusion
Analisis de laboratorio
La Tabia 1 presenta los valores promedio de la textura y contenido de materia organica en las muestras estimadas
por técnicas de laboratorio convencionales. Los resultados demuestran que en general, en el area de estudio,
los suelos tienen alto contenido de materia orginica (=6 g 100 g!) v son franco-limosos con contenido de
limo por encima de 50% y el de arena mayor de 30%.
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Tabla 1

Textura y contenido de la materia organica de las muestras analizadas (valores promedios)

Textura (%) Materia
orgénica
(g100 g
Suelo 1 6 31.67 52.00 16.33 5.92

Afios bajo sistema

Gi
upo Roza-y-Quema Arena Limo Arcilla

Suelo 2 1 39.33 51.67 9.00 7.00

Fuente: Autores

Analisis cualitativo de espectros de reflectancia

La Fignra 5 muestra las curvas espectrales de reflectancia para los dos grupos de suelos. Presentan la forma tipica
para los suelos sin rasgos de absorcion claros en la region del visible (VIS) y el infrarrojo cercano (NIR), donde
las curvas se diferencian principalmente por el nivel de intensidad de reflectancia y la tendencia de la pendiente.
Sin embargo, en SWIR resaltan los rasgos de absorcion asociados con el agua higroscopica y grupo O-H en las
longitudes de ondas de 1400nm y 1900nm (Stoner & Baumgardner, 1981); y con minerales de arcillas en las
longitudes de ondas de 2200nm (Viscarra-Rossel & Behrens, 2010).

Las diferencias en la pendiente de las curvas y el nivel de reflectancia evidentes en todo el rango espectral
analizado, probablemente se deben a las diferencias en la composicion de las muestras, e.i. su heterogeneidad
(Ge et al.,, 2011), siendo uno de los aspectos de esta heterogeneidad la variacion en el contenido de los
compuestos organicos (Ben-Dor et al., 1999). Estos resultados son consistentes con los resultados obtenidos
por otros investigadores. Por ejemplo, Dematte et al. (2004) ha demostrado loa niveles de reflectancia mas bajos
a lo largo de todo el espectro, debido al contenido mas alto de materia organica en los suelos de los suelos de
Brasil que analizaron, mientras que Henderson et al. (1992) explicaron esta disminucién, en la intensidad de
reflectancia por el hecho de mayor absorcion de la energfa por la materia organica.

Se aprecia claramente la diferencia en los niveles de reflectancia entre las curvas espectrales correspondientes a
los dos grupos de suelos analizados, demostrando los suelos de las areas con mas ciclos de cultivo bajo el sistema
de roza-y-quema las reflectancias mas altas, especialmente en el rango de las longitudes de onda de 800nm-
1350nm.

Ademas, en el espectro de los suelos del Grupo 1 se observa concavidad de la curva espectral en el rango de
longitudes de onda 440-850nm, segun estudios previos (Dematte et al., 2016) caracteristico a los suelos con el
alto contenido de materia organica; el rasgo ausente en el espectro de los suclos de Grupo 2 que han

experimentado mayor impacto de las quemas agricolas.
0.45 T T T
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Figura 5

Factor de reflectancia

Curvas de reflectancia de los dos grupos de suclos analizados (espectro promedio en cada caso)
Fuente: Autores
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Resultados de ANOVA
Se ha comprobado que los datos analizados cumplen las condiciones referentes a la normalidad de la
distribucion, igualdad de las varianzas e independencia de los datos muestreados, que garanticen la confiabilidad

de los resultados del test.

Se detectaron las diferencias estadisticamente significativas entre las reflectancias en las bandas seleccionadas de
los dos grupos (p<0.05), siendo la reflectancia de suelos repetidamente quemados (Suelo 1) 20% mas alta
(promedio para todo el espectro) para 65% de las muestras. Las diferencias mas importantes observadas en las
regiones espectrales de VIS (>45%) y NIR (~35%), probablemente se deben al contenido mas bajo de materia
organica en los suelos del primer grupo (Tabla 7).

Analisis usando PLSR

Los valores de contenido de materia orginica (MO) vy los datos de las respuestas espectrales en las longitudes
de onda seleccionadas fueron usados para desarrollar los modelos predictivos utilizando el método de PLSR. El
mejor poder predictivo fue demostrado por el modelo con 6-factores (componentes) y 19 predictores (Figura
6).

Las bandas de 650nm y 530nm fueron las que tienen coeficientes mas altos, lo que significa que aportaron mayor
informacion sobre MO para el modelo. Coincidiendo con los resultados de otros estudios, varias bandas de la
region espectral de NIR y SWIR también mostraron altos coeficientes. El gran contenido informativo de
reflectancias en estas longitudes de onda fue anteriormente comprobado por multiples estudios (Knadel,
Stenberg, Deng, Thomsen, & Greve, 2013; Dematté & da Silva Terra, 2014). Algunas de las bandas NIR-SWIR
se asocian con la absorcién por el agua (951nm y 1401nm) y presencia de las arcillas (2201nm y 2263nm). La
importancia que tiene para el modelo la banda de 2201nm indica la probabilidad de alto contenido del mineral
caolinita (Dematte et al., 2016).

El modelo también contiene los predictores con altos coeficientes (1903nm y 2201nm), que segun los trabajos
anteriores (Viscarra-Rossel & Behrens, 2010) se relacionan con el contenido de MO, que muestra los rasgos

espectrales en esta region.
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Figura 6
Grifico de los coeficientes estandarizados de las variables predictoras
Fuente: Autores

El alto coeficiente de determinacion del modelo de MO (R?=0.78) obtenido aplicando regresion de minimos

cuadrados parciales (PLSR), es la evidencia de su gran poder predictivo y buen ajuste (Figura 7).
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Figura 7
Grifico de dispersion de la MO observada versus la MO predicha.
Fuente: Autores

Aunque se conoce que el contenido de materia organica es una de las propiedades que tiene una respuesta
espectral directa y por eso puede modelarse con bastante éxito a partir de los datos de espectroscopia VIS-NIR-
SWIR, el poder predictivo de los modelos estadisticos puede variar ampliamente dependiendo de los tipos de
suelos y método estadistico empleado, compariandose los resultados obtenidos en este estudio con los mejores
obtenidos por otros investigadores (Mouazen, Kuang, De Baerdemaeker, & Ramodn, 2010; Udelhoven,
Emmerling, & Jarmer, 2003).

Conclusiones
El estudio evalud la capacidad de la espectroradiometria de suelos para detectar los cambios en los suelos
utilizados en el sistema de cultivo de roza-y-quema. Se han detectado las diferencias estadisticamente
significativas entre las curvas espectrales de suelos cultivados con este método durante los 6 anos (grupo 1) v 1
afio (grupo 2), asociandose los niveles de reflectancia mas altos con los suelos del primer grupo. Las diferencias
probablemente se explican por la disminucién de la materia organica en los suelos que han soportado mis ciclos
de cultivo y mayor nimero de quemas agricolas.

Los modelos de contenido de materia organica obtenidos aplicando regresion de minimos cuadrados parciales
(PLSR) presentaron el coeficiente de determinacion superior a 0.75 demostrando alta precision v capacidad
predictiva. El estudio es una prueba del gran potencial de espectro-radiometria para monitoreo de cambios en

los suelos cultivables con sistema roza-y-quema.
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1 | INTRODUCTION

Deterioration of soil conditions closely related to land use and land
cover (LULC) changes is a threat to human well-being (Lal & Stewart,
2010; Pimentel, 2006). The scope and environmental effects of LULC

12® | Lidia Vlassova®(

D | Fernando Pérez-Cabello? @ |
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Abstract

Land use changes due to natural and human-related factors, which include wildfires
and crop abandonment, are among the most important drivers of soil degradation
and demand regular monitoring. Proximal soil sensing in visible-near infrared-
shortwave infrared spectral regions could offer a solution. However, to become
operational, optimal combination of data and technique has to be defined. Thus,
the purpose of this study was (a) to predict the soil organic matter (SOM) content
and soil texture in areas of wildfire burns and crop abandonment in Aragén Province,
Northern Spain, from their laboratory reflectance spectra using novel correlated com-
ponents regression with a step-down variable selection algorithm (CCR-SD) and (b) to
compare the CCR-SD and the partial least squares regression (PLSR) methods. The
results obtained by the tested methods were similar. CCR-SD models showed high
predictive capacity with coefficients of determination (RY) in the range of
0.80-0.86 and 0.70-0.87 for calibration and validation data sets, respectively, and
the highest R? value was attained in the SOM estimation. Moreover, the CCR-SD
models stand out for the superior accuracy-parsimony relationship: the number of pre-
dictors varied from 16 (silt models) to 49 (SOM models). On average, the CCR-SD cal-
ibrations needed less than a half of the predictors employed in PLSR models. This
research confirmed that CCR-SD can be used for monitoring SOM content and texture
of soils from visible-near infrared-shortwave infrared spectra in the study area and,
probably, in other areas of land use/land cover change and that CCR-SD can create
highly parsimonious models that achieve results comparable with the commonly used
PLSR method.

KEYWORDS

correlated components regression, land cover change, soil organic matter, soil texture, VIS-NIR-
SWIR spectroscopy

changes caused by natural and human factors vary in space and time
(Garcia-Ruiz, 2010; Lu, Li, Valladares, & Batistella, 2004). In Mediterra-
nean ecosystems, regular wildfires, which can trigger soil erosion
(Cerda & Robichaud, 2009), have contributed to landscape formation

for several centuries (Pausas, Llovet, Rodrigo, & Vallejo, 2009),

544 I © 2019 John Wiley & Sons, Ltd.
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whereas the spread of cropland abandonment in the region is an
example of a more recent LULC phenomenon linked to the soil condi-
tions (Nadal-Romero, Cammeraat, Pérez-Cardiel, & Lasanta, 2016).

The urgent need for action to reduce soil degradation is recog-
nized in several sustainable development goals (SDGs) formulated in
the United Nations 2030 Agenda for Sustainable Development
(United Nations, 2015). The SDG 15.3 is specifically dedicated to land
degradation and mentions the restoration of degraded land and soil
and the achievement of a land degradation-neutral world. To evaluate
the movement towards SDGs, it is necessary to establish, register, and
compare relevant soil characteristics (Montanarella & Panagos, 2018).
Moreover, in spite of the seriousness of the problem, our knowledge
on soil degradation and the scope and effects of mitigation strategies
are incomplete (Assessment, 2005). Thus, monitoring the soil status
on a regular basis is imperative (Téth, Hermann, da Silva, &
Montanarella, 2018), especially in areas of natural and anthropogenic
disturbances, such as Mediterranean (Merino, Moreno, Navarro, &
Gallardo, 2016). Examples of successful systems for monitoring soil
variables (including soil organic content (SOC) and texture) at a
regional level exist in Europe (soil monitoring network in Slovakia;
Kobza, 2015) and Australia (New South Wales Monitoring, Evaluation,
and Reporting Programme; Chapman et al., 2011).

The soil status can be evaluated through a set of soil
attributes/indicators. According to a published review (Biinemann
et al., 2018), a minimum set of soil attributes/indicators should include
chemical, physical and biological indicators. A large number of studies
reviewed by Biinemann et al. (2018) include soil organic matter (SOM)
and texture among the most important indicators of soil quality. SOM,
which is one of the main sources of soil carbon and plant nutrients,
determines soil fertility and plays an important role in both water cycle
(infiltration and runoff) and quality (T6th et al., 2018). On the other
hand, land productivity is directly impacted by soil erosion (Troeh &
Thompson, 2005), with texture being one of the basic indicators of soil
erodibility (Goldman, Bursztynsky, & Jackson, 1986) and other hydrau-
lic properties (Téth et al., 2018).

Conventional methods for the estimation of soil properties
require important investments of time and effort, which motivate
the search for alternatives. Spectral sensing methods, such as visible
(VIS)-near infrared (NIR)-shortwave infrared (SWIR) spectroscopy,
may be one of the time and cost-effective solutions (Dematté
et al., 2016). Based on results of previous research, which demon-
strated that soil characteristics correlate with their spectral signa-
tures (Dematté & da Silva Terra, 2014; Stevens, Nocita, Toth,
Montanarella, & van Wesemael, 2013), this technique uses electro-
magnetic spectra in VIS, NIR, and SWIR spectral regions to estimate
soil properties. Because soil spectra are obtained by sensors located
near (<2 m) the soil surface, this method is sometimes referred to as
proximal sensing.

Spectroradiometers produce more accurate results than satellite
and airborne instruments because of the high-resolution spectra
(contain >2,000 of narrow [up to 1 nm] bands) obtained in con-
trolled environmental conditions (Ben-Dor & Dematté, 2016). Soil
VIS-NIR-SWIR spectra have been successfully applied to estimate
soil carbon, SOM, and texture (Conforti, Matteucci, & Buttafuoco,
2018; Lugassi, Ben-Dor, & Eshel, 2014; Mouazen, Karoui, De
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Baerdemaeker, & Ramon, 2005). High-resolution spectra of soil sur-
face samples obtained under laboratory conditions serve as a stan-
dard in spectral unmixing of remote sensing images acquired by
sensors on airborne and satellite platforms and are used for digital
mapping of soils and other environmental variables (Ben-Dor &
Dematté, 2016; Dematté et al., 2016).

Because soils are mixtures of organic and inorganic particles
with highly variable proportions of each substance and particle size,
their spectra present overlaps of spectral features corresponding to
specific soil constituents (Ben-Dor & Dematté, 2016). Soil variables
are not directly calculated from the spectra; instead, they are related
to a set of known reference samples representative of the soil
variation in the study area through the development of multivariate
statistical models. Models calibrated for a certain area are not
usually transferable to another area (Grunwald, Thompson, &
Boettinger, 2011).

Extracting information from a large number of highly correlated
spectral bands is a challenging task. There is a wide range of statistical
tools available for multivariate modelling of soil properties. Ongoing
research is continuously evaluating new tools at the same time striving
to clarify the viability of application of VIS-NIR-SWIR soil spectros-
copy in specific scenarios (e.g., Gholizadeh, Saberioon, Carmon,
Boruvka, & Ben-Dor, 2018; Ogen, Neumann, Chabrillat, Goldshleger,
& Ben-Dor, 2018; Ostovari et al., 2018; Terra, Dematté, & Viscarra
Rossel, 2018; Viscarra Rossel & Brus, 2018).

Methods based on linear models, especially partial least squares
regression (PLSR), are among the most popular (Mouazen, Kuang, De
Baerdemaeker, & Ramon, 2010; Vasques, Dematté, Viscarra Rossel,
Ramirez-Lopez, & Terra, 2014; Viscarra Rossel, McGlynn, &
McBratney, 2006), although latest comparative studies report on suc-
cessful applications of data mining techniques and tools, such as arti-
ficial neural networks (Mouazen et al, 2010), support vector
machines (Viscarra Rossel & Behrens, 2010), and memory-based learn-
ing (Gholizadeh, Bor(ivka, Saberioon, & Vasat, 2016).

The frequent choice of PLSR is explained by its capacity to pro-
duce well-fit models from data sets containing a small number of
observations characterised by a great number of correlated
predictors. Robustness of the models is mainly achieved through
reduction of data dimensionality using a set of orthogonal vectors
(components) (Wold, Sjostrom, & Eriksson, 2001). Still, PLSR models
sometimes demonstrate unrealistically high fit due to inclusion of
noise variables relevant only for calibration dataset, which is known
as overfitting (Babyak, 2004; Esbensen, Guyot, Westad, &
Houmoller, 2002).

A recently introduced method of correlated components regres-
sion (CCR) is trying to avoid overfitting problem in a different way. It
prevents model over fit through application of the regularisation pro-
cess, which involves identification of suppressors and elimination of
less relevant predictors (Magidson, 2013). Because of development,
CCR has been successfully applied to very diverse research areas, such
as socio-demography (Alkerwi, Vernier, Sauvageot, Crichton, & Elias,
2015), medicine (Ruiz-Rodado et al., 2014), and logistics research
(Garver & Williams, 2018). However, CCR was not used in soil spec-
troscopic modelling until now, even though the characteristics of
CCR are very attractive.

71



CHAPTER 7. Testing algorithms applied in multivariate statistical modelling of SOM

and texture fractions of fire-affected soils

ROSERO-VLASOVA T AL.

2 | WILEY

In this context, the study seeks to contribute to the search and
assessment of the methods more adequate for modelling soil
properties from spectral data in specific scenarios and answer the
following research questions: (a) is it possible to predict SOM con-
tent and texture fractions of soils from wildfire burns and cropland
abandonment in Mediterranean environment from VIS-NIR-SWIR
spectra using CCR? and (b) what are the advantages of using CCR
in simultaneous modelling SOM and soil texture compared to two
versions of PLSR? This allows formulating the corresponding
research hypotheses: (@) CCR is an adequate tool for monitoring
SOM and texture of soils in areas of LULC changes, and (b) CCR
offers several advantages in simultaneous modelling soil texture
and SOM compared with PLSR.

10 5 0 10 20km

2 | METHODOLOGY

2.1 | Study area and soil sampling

The study area of approximately 310 km? (Figure 1) is located in the
Aragén region, Northern Spain (42°10'-42°37'N, 0°16'-1°17'W), and
contains sites affected by (a) wildfire burns and (b) cropland abandon-
ment. The area of uneven topography (elevations between 450 and
1,300 m) is characterised by a Mediterranean climate with a mean
annual temperature of approximately 10°C and a precipitation range
of 600-800 mm (Cuadrat & Martin-Vide, 2007).

The mosaic of vegetation covers in the study area is composed of
plant communities dominated by Quercus gr. Cerrioides (Willk and

Atlantic Ocean

Mediterranean
1 Ses

Datum WGS84
Projection UTM Zone 30N

FIGURE 1 Location of the study area and sampling sites [Colour figure can be viewed at wileyonlinelibrary.com]
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Costa) and Quercus ilex L. and pine forests of Pinus sylvestris L., Pinus
nigra (Arnold), Pinus halepensis L., and Pinus pinaster (Aiton) interspersed
with shrublands dominated by Buxus sempervirens L. and Genista scor-
pius L. (Ruiz de la Torre, 1990). In areas affected by wildfires, typical
soils that formed on calcaric materials have coarse and medium tex-
tures and are classified as Cambisols, and there are some patches of
Regosols and Leptosols (Badia-Villas & del Moral, 2016). On the other
hand, in areas previously used for agriculture, thin soils with silt loam
texture are classified as Leptic Calcaric Regosols (FAO, 2015).

A total of 113 soil samples were collected from the surface soil
layer (0-10 cm) during the 2013 and 2014 field campaigns. Approxi-
mately two thirds of the samples (82) were from wildfire burns that
occurred during 1975-2009. The sample site locations were deter-
mined by the spatial pattern of the burned areas throughout that
period. Wildfire perimeters were identified using databases of the
Aragén Government (Service for Management of Wildfires and Coor-
dination, Head Office for Forest Management), as well as mapping
products produced in the context of the research project “Forest fires
and predictive models of ecologic vulnerability to fire: restoration
management activities and application of climate change scenarios”
GA-LC-042/2011 (Caixa-DGA). Within the wildfire boundaries, the
precise location of the samples is a function of accessibility factors,
plant-community variability in the context of Aragén and wildfire size.
In the absence of prefire soil data, a paired-sample approach (Novara,
La Mantia, Barbera, & Gristina, 2012) was applied; at each of the 41
selected sites, a pair of samples was obtained—one sample of the
burned soil and a reference sample of the same/similar unburned soil.
The unburned soils are located in areas near the outer perimeter of
the burned lands that have not been affected by fire, which are repre-
sentative of large areas with similar physical conditions. The SOM con-
tent in these samples was estimated with UV-VIS spectrophotometry.
The soil texture, ie, the relative proportion of sand, silt, and clay (%) in
the dry and sieved (<2 mm) samples, was determined using the stan-
dard particle size-distribution analysis (USDA, 1996).

Samples of soils affected by cropland abandonment (31) were col-
lected in the Araguas catchment, where cultivation of terraced fields
stopped in the 1950s. Subsequent afforestation with P. nigra and
P. sylvestris occurred a decade later, although some areas underwent
a process of natural secondary succession with Genista scorpius and
Buxus sempervirens. Sampling was carried out at sites with five differ-
ent landcovers typical for the area (bare soil, permanent pasturelands,
secondary succession, afforestation with P. sylvestris and P. nigra)
selected based on the analysis of aerial photography, topographic
maps, and field survey information. The samples were obtained from
five 5m x 5 m plots with a similar topography established at each site.
After collecting five surface (0-10 cm) samples from locations at each

of the plot diagonals, they were combined into one sample. For these
samples, the loss on ignition method was used to determine SOM; soil
texture fractions were determined using a particle analyser
(Micromeritics, SediGraph 5100, Nocross, USA). Descriptive statistics
characterizing the collected samples are presented in Table 1.

Additional details on the study area, as well as the sampling proce-
dure, are available in the studies of Rosero-Vlasova, Pérez-Cabello,
Montorio Lloveria, & Vlassova (2016; (wildfire burns) and Nadal-
Romero et al. (2016; abandoned croplands).

2.2 | Soil spectra

For spectral measurements, the fine soil fraction (particle size <2 mm)
of each sample was placed in a Petri dish (90 mm in diameter) and
dried in an oven at 105°C for 24 hr.

Soil spectral curves were obtained using an analytical spectral
device (ASD) FieldSpec®4spectroradiometer (Analytical Spectral
Devices Inc., Boulder, CO, USA) under controlled laboratory condi-
tions, with a setup that included an ASD illuminator lamp (Analytical
Spectral Devices Inc., Boulder, CO, USA) and a pistol grip (Rosero-
Vlasova et al., 2016). Figure 2 shows the general view and details of
observations geometry. The soil sample area detected by the optic
fibre cable (sensor) is determined by the following geometry: an illumi-
nator lamp (field of view [FOV]: 6 = 12) is attached to the tripod in a
cenital position at a height of H = 42 cm generating a lighted spot
8.82 cm in diameter (D). The setup also includes a pistol grip attached
to another tripod at a height of h = 7.5 cm (FOVgare Fibre B = 25, diam-
eter SPOT d = 6.99 cm) and an angle a = 25" relative to the vertical
axis (Figure 2a). The spectral response of the white reference panel
was obtained with the same viewing geometry (Figure 2b).

Radiances measured in the VIS-NIR (350-1000 nm) and two
SWIR regions (1,001-1,800 and 1,801-2,500 nm; Castro-Esau,
Sanchez-Azofeifa, & Rivard, 2006) were corrected for the baseline
electrical signal (dark current) and converted into reflectance values
using a calibrated white Spectralon panel as a reference. The ASD illu-
minator halogen lamp was employed as a light source. Previous
research (Rosero-Vlasova et al., 2016) has demonstrated that this
experimental setup ensures an optimal observation environment
resulting in low-noise spectra.

Radiometric jumps, evident at the wavelengths situated at the
joins between the detectors (at 1,000 and 1,800 nm), were corrected
using a procedure suggested in the study of Danner, Locherer, Hank,
& Richter (2015), which compensates the difference between the
reflectance using the values of the first detector (VIS range) as a base-
line. The following formulas were applied:

TABLE 1 Descriptive statistics for soil organic matter content (g 100 g*) and clay, silt, and sand (%) in collected soil samples

Soil properties n Min

SOM (g 100 g™%) 113 1.04
Clay (%) 113 9.21
Silt (%) 113 2218
Sand (%) 113 5.41

Note. n: number of samples; Min: minimum; Max: maximum; SD: standard deviation; SOM: solid organic matter.

Max Median Mean SD

23.40 5.80 6.59 3.68
48.04 27.28 27.14 8.09
66.19 41.48 40.23 10.26
66.37 32.16 32.64 14.57
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tuminator Lamp

FIGURE 2 Experimental setup: (a) general view and (b) view during spectral measurements (optimization process) [Colour figure can be viewed

at wileyonlinelibrary.com]

Corr_valiooo = Ri-1001 ~ (2"Ra-1000 = Ra=999), (1)

Corr_valigoo = Ry-1801 = (2:Rx=1800 =~ Ra-1799), ()

where R, is the reflectance at A wavelength and Corr_valiooo and
Corr_valigoo are correction values at the spectral splitting points,
which are added to the original values and, depending on their
algebraic sign, either increase or decrease reflectances in all further
wavelengths.

Moreover, the noisy bands at the extremes of the spectra (<400
and >2470 nm) were removed, leaving 2,071 bands for statistical
modelling.

2.3 | Statistical modelling

Modelling of SOM content and texture fractions is based on 70
preselected spectral bands (11 bands in VIS, 18 bands in NIR, and 48
bands in SWIR spectral regions). The importance of this set of wave-
lengths for soil property detection was previously reported in multiple
studies (Ben-Dor, Heller, & Chudnovsky, 2008; Dematté et al., 2016;
Dematté & da Silva Terra, 2014; Melendez-Pastor, Navarro-Pedrefio,
Goémez, & Koch, 2008; Rosero-Vlasova, Borini Alves, Vlassova,
Perez-Cabello, & Montorio Lloveria, 2017).

The presence of outliers in scaled and centred data sets was
assessed with principal components analysis. Three data points lying
outside the 95% confidence level Hotelling's T2 ellipse in the score plot
representing the loadings of the two first principal components
(Figure 3) were excluded as outliers, leaving 110 soil spectra for analy-
sis. These were randomly divided into calibration (~65%) and validation
(~35%) sets, containing 80 and 30 samples, respectively. To ensure
robust results, this procedure was repeated three times to obtain three
sample sets of calibration and validation data (S1, S2, and S3). Descrip-
tive statistics of the data used in model building are presented in
Table 2 and Figure 4. Because each data set contains more than 30
samples, the Kolmogorov-Smirnov test with Lilliefors significance

correction was applied to test the SOM,; silt, clay, and sand distributions
for normality; one-way ANOVA was run to detect significant differ-
ences between the distributions of the tested variables in S1, S2, and
S3. All the tests were performed using IBM SPSS Statistics version
20.00 (2011)

statistics).

software  (https://www.ibm.com/products/spss-

Statistical models were developed using (a) a routinely applied
(Dematté et al., 2016) full-spectrum PLSR (PLSR-full; Wold et al.,
2001) implemented in The Unscrambler X software (2016; CAMO
Software AS, Norway, 2016), version 10.4 (https://www.camo.com/
unscrambler); (b) PLSR with predictors selected by Martens uncer-
tainty test (Martens & Martens, 2000) available in The Unscrambler X
software (2016) version 10.4 (PLSR-MUT), and (c) a novel technique
of CCR with a step-down variable selection algorithm (CCR-SD;
Magidson, 2010; Magidson, 2013) implemented as an XLSTAT Pearson
Edition (2014; Addinsoft S.A., New York, NY, USA, 2014), version
2014.5.03 (http://www.xlIstat.com) complement for the Microsoft
Office Excel (2010) software. For each sample, all the soil properties
of interest in our study (SOM, clay, silt, and sand) were predicted
simultaneously.

04

02

0.1 ..

PC2
-

0.1 e Piaa

02 %

FIGURE 3 Score plot from principal components analysis showing
PC1 versus PC2: Hotelling's T2 ellipse (95% confidence level) for outlier
detection [Colour figure can be viewed at wileyonlinelibrary.com]
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TABLE 2 Descriptive statistics for soil organic matter content (g 100 g™%), clay, silt, and sand (%) in three calibration and prediction sample sets

(S1, S2, and S3)

Soil
properties

SOM (g 100 g%)

Sample
set

S1
S2
S3

S1
S2
S3

S1
S2
S3

S1
S2
S3

Clay (%)

Silt (%)

Sand (%)

CALIBRATION VALIDATION

Skewness Skewness
n Min Max Mean SD Q25 Q75 (Pearson) n Min Max Mean SD Q25 Q75 (Pearson)
80 104 2074 6.28 345 408 6.69 179 30 259 2340 746 430 486 972 178
80 1.04 2074 6.53 349 434 800 155 30 246 2340 681 433 420 799 217
80 1.04 2340 635 352 425 7.73 235 30 177 19.02 7.27 419 452 1032 093
80 9.82 48.04 2733 832 29.63 4228 0.22 30 9.21 4377 2672 7.86 3245 47.57 -0.08
80 9.21 48.04 2659 8.38 31.70 47.77 0.21 30 11.18 46.78 28.69 749 3515 46.27 -0.12
80 9.21 48.04 2734 839 3236 47.21 015 30 11.18 43.00 26.70 7.66 3245 4747 0.0
80 2246 66.19 4044 1030 19.86 29.77 0.40 30 23.66 55.89 40.21 10.30 2290 30.53 -0.16
80 2246 66.19 40.15 10.70 21.25 30.48 0.31 30 2468 5791 4099 9.08 2380 3183 0.34
80 23.28 66.19 4036 10.20 21.75 31.74 0.31 30 2246 61.39 4043 1057 2287 30.71 0.10
80 541 6422 3223 14.66 3143 4537 0.20 30 10.80 66.37 33.11 14.85 20.75 4425 0.34
80 541 66.37 3327 1525 20.64 4458 0.14 30 880 6258 30.33 1292 19.68 39.08 0.46
80 849 66.37 3232 14.68 2045 4211 030 30 541 6258 32.87 14.81 20.12 4425 0.07

Note. S1: sample set 1; S2: sample set 2; S3: sample set 3; n: number of samples; Min: minimum; Max: maximum; Q25: lower quartile; Q75: upper quartile;

SD: standard deviation; SOM: solid organic matter.
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FIGURE 4 Box-whisker plots showing the soil organic matter (SOM),
clay, silt, and sand distribution in S2 for the (a) calibration set and (b)
validation set. The bottom and top of the box represent the 25th and
75th percentiles. The cross inside the box indicates the mean value.
The band near the middle of the box is the median. The whiskers
represent the 5th and 95th percentiles. The solid dots correspond to
maximum and minimum values [Colour figure can be viewed at
wileyonlinelibrary.com]

Both CCR and PLSR are capable of dealing with a large number of
highly correlated predictors (in this study, the correlation coefficients
R? are in the range of 0.639-0.999). Multicollinearity of spectral data

is approached by means of regularisation (the enforcement of model
sparsity), consisting in dimension reduction.

PLSR proceeds by calculating a set of orthogonal components
(latent variables) that explain most of the variance in predictors and
responses (Wold, 2001). Determination of the optimum number of
components and selection of the final model is performed through
the leave-one-out cross-validation: the model is developed leaving
out one of the samples, which is later substituted into the model to
evaluate the adjustment; the process is repeated for each sample,
and the final model is that showing the best fit.

Because exclusion of the less important (noisy) predictors may
improve model accuracy, in the second tested method, PLSR models
used only most important variables selected by the Martens uncer-
tainty test (PLSR-MUT), which estimates uncertainty of regression
coefficients obtained in leave-one-out cross validation (Martens &
Martens, 2000).

On the other hand, in CCR-SD, data dimension is reduced through
(a) calculation of correlated components and (b) elimination of less rel-
evant predictors from the model with step-down variable selection
algorithm, resulting in sparser models (Magidson, 2013).

CCR utilises K <
Skcomponent being an exact linear combination of g predictors
(g = 1, 2, ... P). Predictions for Y in the first (primary) component (

P correlated components, with each

V) directly affect the outcome and are obtained from the simple
ordinary least squares (OLS) regression of Y on S;. Similarly, the
second component S, is calculated by the simple OLS regression
of Y on S; and S,. The calculation of the remaining components
follows the same process. Once the models for all the components
are obtained, the final model (Equation 3) is computed using the
expression:

Y =a® 45" 8%,
where a and B are regression coefficients.
Thus, the components are not orthogonal; the second and subse-

quent components are correlated to the first component and repre-
sent the influence of ‘suppressor’ variables (Magidson & Wassmann,
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2010). The inclusion of suppressor variables removes the noise of
some irrelevant variables included in the first component, improving
the model quality.

At the same time, the method controls overfitting through a
reduction in the number of predictors, leaving out the less impor-
tant predictors. Thus, CCR was combined with a step-down variable
selection algorithm, which excludes the least important predictors
(Bennett, 2013; Magidson, 2010). This is achieved through M-fold
cross-validation. Each round (10 rounds in this study) consists of
a series of operations. First, the data are randomly divided into M
groups (folds) of equal size (5 groups of 80/5 = 16 samples each
in our study). Next, samples from four groups are used to build
the model, while the samples from the fifth group are used for
model validation. The process is run for each group (M times). In
the next round, the process is repeated with newly randomised M
groups. Thus, the quality of the final model is assessed on the
out-of-sample fit, ensuring replication of the calibration results on
real-life data, which has been a long-time concern related to
published models (Nuzzo, 2014). Model assessment based on new
out-of-sample cases means that modelling with CCR does not
pose requirements to satisfy sampling assumptions, which are
the basis of traditional hypothesis testing (Curl, Thompson, &
Aspinall, 2015).

2.4 | Model performance assessment

Model performance was evaluated using the coefficient of determina-
tion R? (Equation 4), which measures how successful the calibration
fit is in explaining the variation in the data, root mean square

error of calibration (Equation 5) and root mean square error of cross-
validation (Equation 6), which assess the model accuracy.

(4)

(5)

(6)

where n is the number of samples, subscript ¢ and p refer to calibra-
tion and validation datasets; Y; is the measured value for sample i, \7,
is the predicted value for sample i, Y is the mean value, and f is the
number of variables used in the regression equation. The predictive
ability of the models was also evaluated with the root mean square
error of prediction (RMSEP; Equation 7), with bias of validation
(bias,a) and standard error of prediction (SEP.) being independent
components of RMSEP (Rosero-Vlasova et al., 2016; Stevens et al.,
2013); and the ratio of performance to interquartile (RPIQ) range
(Bellon-Maurel & McBratney, 2011), which was calculated according
to Equation 8.

% (Y, ,-

RMSEP — Z"i( @ )
Q3 -Q

RPIQ =221, ®)

RPIQ is based on inter-quartile distances (IQ = Q3-Q1), where Q1
represents the lowest 25% of the samples and Q3 is the value below
which 75% of the samples can be found. RPIQ is the ratio of IQ to
the RMSEP and adequately represents populations with skewed distri-
butions and a large number of low values, such as the soil sample sets
in this study. Finally, the Akaike information criterion (AIC), computed
following Equation 9, was applied to determine the model with the
best accuracy-parsimony relationship (Akaike, 1973; Viscarra Rossel
& Behrens, 2010).

AIC = n InRMSEP + 2f, 9)

where n is the number of samples and f is the number of predictors.
The smaller the AIC criterion is, the better the model.

3 | RESULTS AND DISCUSSION

3.1 | SOM content and texture fractions

Table 2 and Figure 4 present descriptive statistics for the SOM and
soil texture fractions (clay, silt, and sand) of the used data sets.
ANOVA detected no statistically significant differences among S1,
S2, and S3 (p < 0.05).

The SOM content ranges between ~1-100 g and ~20-100 g, and
the mean is ~6-100 g, demonstrating levels characteristic of the study
area (Pérez-Cabello, Echeverria, Ibarra, & Riva, 2009). These values are
higher than the average values registered in global (Brown, Shepherd,
Walsh, Mays, & Reinsch, 2006) and European (Stevens et al., 2013)
soil databases, which is rather surprising given that approximately
one third of the samples is from the burned areas. However, the
unusually high SOM content in samples of burned soils may be due
to vigorous vegetation development in the burned areas, which may
have contributed to accelerated recovery of organic material
destroyed by the fire (Jiménez-Gonzilez et al., 2016; Vlassova &
Pérez-Cabello, 2016).

The soil texture fraction values are highly variable, especially for
sand (Table 2 and Figure 5): The values change from approximately
5% to close to 65%, which is not strange considering the landscape
heterogeneity in the study area. However, samples from different land
covers in the cropland abandonment areas show similar textures dom-
inated by silt, confirming the findings by Laudicina et al. (2012), who
observed that land use change did not affect soil texture. Thus, the
variability in the soil texture of the analysed set is caused by the con-
tribution of soils from wildfire burns. In general, the clay content in
sampled soils is higher (mean 27%), and the sand proportion is lower
(mean 33%) than the average for European soils in the LUCAS data-
base (Stevens et al., 2013).
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FIGURE 5 A soil texture triangle (USDA, 2010) showing the soil
textures as determined by the proportion of sand, silt, and clay.
The red points represent soil samples from areas affected by
wildfires, and the blue points represent soil samples from areas of
crop abandonment [Colour figure can be viewed at wileyonlinelibrary.
com]

3.2 | Soil spectra

Spectral curves of the analysed soils are presented in Figure 6a, b
(wildfire burns) and Figure 6c, d (abandoned croplands). Their
form is typical for soil reflectance spectra: a gradual increase

WILEY——&

through the VIS wave range, an almost flat segment in NIR, and
slightly lower reflectance values in SWIR (Ben-Dor,
Epema, 1999). The small number of absorbance features can be
ascribed to the presence of water (1,400 and 1,900 nm) and clay
minerals (2200 nm; Brown, 2007; Brunet, Barthés, Chotte, &
Feller, 2007).

The soil spectra differ mainly in reflectance intensity, confirming
the results of previous research (Bellon-Maurel, Fernandez-Ahumada,
Palagos, Roger, & McBratney, 2010; Chabrillat, Ben-Dor, Viscarra-
Rossel, & Dematté, 2013; Dematté, Campos, Alves, Fiorio, & Nanni,
2004; Stenberg, Viscarra Rossel, Mouazen, & Wetterlind, 2010). Thus,
the maximum reflectance values of soils from wildfire burns range

Irons, &

from 0.25 to 0.65, whereas the maximum reflectance values of soil
samples from cropland abandonment areas are considerably smaller
(0.38-0.55). This finding can be explained by differences in organic
matter and texture: high SOM contents and smaller particle size result
in spectral curves with lower reflectance (Ben-Dor et al, 2009;
Conforti, Froio, Matteucci, & Buttafuoco, 2015; Viscarra Rossel,
Walvoort, McBratney, Janik, & Skjemstad, 2006). The high variability
in the soil spectra from wildfire burns is caused by the inclusion of
undisturbed forest soil samples with organic matter content higher
than that of any of the soils from crop abandonment, as well as
burned soils, whose organic matter was completely destroyed by fire
(Figure 6b).

Shape is another key for the differentiation of soils through visual
inspection. Thus, the shape of the bare soil spectrum in Figure éd is
quite different from the rest of the spectra: convex in the
500-600 nm wave range and almost horizontal in the NIR and part
of the SWIR spectral regions, which is typical for weathered soils
(Dematté, 2002).
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FIGURE 6 Spectra of soils from wildfire burns: (a) all the spectra and (b) spectra of the burned (dotted line) and unburned (dashed line) soil
samples. Spectra of soils from agricultural abandonment areas: (c) all the spectra and (d) average spectra of soils from areas with different land

use types after crop abandonment
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3.3 | Statistical modelling

The results of simultaneous statistical modelling of SOM, clay, silt, and
sand from reflectance spectra using the two versions of PLSR (PLSR-
full and PLSR-MUT) and CCR-SD methods are presented in Table 3
(model calibration) and Table 4 (model validation).

The values correspond to three data sets (S1, S2, and S3),
resulting from different random partitions of available samples in
the calibration (80 samples) and validation (30 samples) groups. In
each case, the final model was obtained after 100 iterations/
rounds.

The optimal number of components is similar for all the models:
9-10 for PLSR-full and 8-10 for other methods (PLSR-MUT and
CCR-SD); fewer components used in PLSR-MUT and CCR-SD
models for SOM. The number of predictors is more variable. Because
standard PLS regression (PLSR-full) does not discard any predictor,
these models include the full range of available bands (2,071). In case
of PLSR-MUT and CCR-SD models resulting from procedures
eliminating less relevant predictors, the number of predictors varies

a lot depending on the predicted property and sample dataset. In
PLSR-MUT models the number of predictors varies from one dataset
to another, but it is the same for all the modelled properties (171, 39,
and 197 for S1, S2, and S3, respectively), while in CCR-SD the num-
ber of predictors depends not only on the data set but also on the
modelled property (e.g., there are 49, 28, 19, and 22 predictors in
S1 models for SOM, clay, silt, and sand, respectively). It is worth
to note, that variable selection in PLSR is realised after running
the full spectrum model necessary to estimate importance of
the variables, whereas in CCR-SD method, estimation of variable
relevance and development of the final model are performed
simultaneously.

In general, the number of predictors in CCR-SD models is
greater for SOM (49, 61, 58 for S1, S2, and S3, respectively) because
organic compounds exhibit spectral activity along the whole spec-
trum, although proportion of specific organic constituents in SOM
varies a lot depending, among other factors, on overall SOM concen-
tration and geological heterogeneity of the area (Stenberg et al.,
2010). The number of predictors is decreasing in CCR-SD models

TABLE 3 Calibration and cross-validation results of soil organic matter, clay, silt, and sand modelling (80 samples) obtained with CCR-SD, PLSR-

full, and PLSR-MUT

Soil Properties Sample set Statistic Factors
SOM S1 CCR-SD 8
PLSR-full 10
PLSR-MUT 9
52 CCR-SD 8
PLSR-full 9
PLSR-MUT 8
S3 CCR-SD 8
PLSR-full 10
PLSR-MUT 9
CLAY S1 CCR-SD 10
PLSR-full 10
PLSR-MUT 9
S2 CCR-SD 10
PLSR-full 9
PLSR-MUT 8
S3 CCR-SD 10
PLSR-full 10
PLSR-MUT 9
SILT S1 CCR-SD 10
PLSR-full 10
PLSR-MUT 9
S2 CCR-SD 10
PLSR-full 9
PLSR-MUT 8
S3 CCR-SD 10
PLSR-full 10
PLSR-MUT 9
SAND S1 CCR-SD 10
PLSR-full 10
PLSR-MUT 9
52 CCR-SD 8
PLSR-full 9
PLSR-MUT 8
53 CCR-SD 10
PLSR-full 10
PLSR-MUT 9

RMSEC RMSECV

f R% (g100g™) Ricy (g100g™)
49 0.86 211 0.77 1.30
2,071 0.81 1.49 0.73 1.82
171 0.82 146 0.76 1.70
61 0.86 275 0.78 1.31
2,071 0.81 1.51 0.72 1.86
39 0.79 1.60 0.73 1.82
58 0.85 2.62 0.77 1.35
2,071 0.85 1.37 0.78 1.65
197 0.82 146 0.75 1.77
28 0.80 4.68 0.67 3.76
2,071 0.73 4.32 0.58 541
171 0.64 496 0.51 5.86
21 0.83 4.02 0.60 345
2,071 0.64 5.01 0.46 6.22
39 0.61 5.18 0.49 6.04
29 0.83 432 0.67 344
2,071 0.69 4.63 0.54 5.76
197 0.67 481 0.53 5.79
19 0.86 4.39 0.75 3.83
2,071 0.83 4.23 0.73 542
171 0.80 4.52 0.73 5.36
16 0.84 4.78 0.70 4.27
2,071 0.81 4.67 0.64 6.43
39 0.62 6.58 0.40 8.32
58 0.86 7.40 0.72 3.82
2,071 0.78 4.66 0.62 6.32
197 0.75 5.10 0.52 6.32
22 0.84 6.90 0.71 5.86
2,071 0.86 5.46 0.76 723
171 0.78 6.87 0.70 8.11
32 0.75 9.89 0.61 7.63
2,071 0.81 6.68 0.63 9.32
39 0.65 9.00 0.47 11.20
70 0.79 19.81 0.61 6.69
2,071 0.81 6.40 0.65 8.78
197 0.79 6.64 0.67 8.52

Note. CCR-SD: correlated components regression with a step-down variable selection algorithm; PLSR-full: full-spectrum partial least squares regression;
PLSR-MUT: partial least squares regression Martens uncertainty test; R%c: coefficient of determination for calibration; R%cy: coefficient of determination
for cross-validation; RMSEC: root mean square error of calibration; RMSECV: root mean square error of cross-validation; S1: sample set 1; S2: sample
set 2; S3: sample set 3; f: number of variables used in the regression equation. The presented values are averages for 100 rounds.
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TABLE 4 Validation results for soil organic matter, clay, silt, and sand modelling (30 samples) obtained with CCR-SD, PLSR-full, and PLSR-MUT
Soil Sample RMSEP SEP, bias,a
Properties set Statistic R?, (g100g™) (g100g™) (g100g™) RPIQ AIC
SOM S1 CCR-SD 0.87 1.55 1.53 0.36 3.14 111.13
PLSR-full 0.88 1.59 1.58 -0.33 3.06 415591
PLSR-MUT 0.77 2.04 207 0.08 2.38 363.39
S2 CCR-SD 0.86 1.61 1.64 0.07 236 136.30
PLSR-full 0.82 181 1.83 -0.10 2.10 4159.80
PLSR-MUT 0.76 2.08 211 0.03 1.82 99.97
S3 CCR-SD 0.89 1.89 1.52 1.14 3.08 135.03
PLSR-full 0.89 1.96 1.55 -1.24 296 4162.19
PLSR-MUT 0.86 205 175 =1.12 293 415.54
CLAY S1 CCR-SD 0.54 5.98 6.01 -0.95 1.28 109.66
PLSR-full 0.53 691 6.68 214 1.10 4199.99
PLSR-MUT 0.28 7.05 715 0.44 1.08 400.59
S2 CCR-SD 0.71 471 476 0.52 171 88.47
PLSR-full 0.59 5.18 521 -0.75 1.55 4191.34
PLSR-MUT 0.56 5.34 521 -1.49 1.50 128.26
S3 CCR-SD 0.73 4.47 4.47 0.83 175 102.94
PLSR-full 0.55 5.80 5.69 -1.54 1.35 4194.74
PLSR-MUT 0.57 6.14 5.82 =2.21 1.28 448.44
SILT S1 CCR-SD 0.70 7.08 6.68 2.65 214 96.73
PLSR-full 0.74 6.30 5.63 -3.02 240 4197.22
PLSR-MUT 0.65 8.48 7.81 -3.60 1.78 406.13
S2 CCR-SD 0.72 523 5.10 -1.48 213 81.63
PLSR-full 0.80 4.29 409 1.51 259 4185.69
PLSR-MUT 0.58 5.87 5.93 0.65 1.90 131.10
S3 CCR-SD 0.68 6.80 6.60 201 221 173.49
PLSR-full 0.80 5.12 5.21 0.09 293 4190.99
PLSR-MUT 0.64 7.09 7.02 -1.62 212 452.76
SAND S1 CCR-SD 0.69 8.76 8.61 -2.25 2.68 109.10
PLSR-full 0.66 9.37 9.49 0.84 2.51 4209.13
PLSR-MUT 0.59 11.62 11.38 3.12 2.02 415.58
S2 CCR-SD 0.71 7.04 743 0.66 275 122.55
PLSR-full 0.80 5.92 5.97 =075 3.28 4195.35
PLSR-MUT 0.74 6.59 6.65 0.85 294 134.57
S3 CCR-SD 0.69 9.18 875 -3.20 2.63 206.50
PLSR-full 0.79 7.09 7.06 1.45 3.40 4200.76
PLSR-MUT 0.71 9.31 8.62 3.84 2,59 460.93

Note. AIC: Akaike information criterion; bias,,: bias of validation; CCR-SD: correlated components regression with a step-down variable selection algorithm;
PLSR-full: full-spectrum partial least squares regression; PLSR-MUT: partial least squares regression Martens uncertainty test; R?: coefficient of determi-
nation for validation; RMSEP: root mean square error of prediction; RPIQ: ratio of performance to interquartile range; SEP¢: standard error of prediction;

S1: sample set 1; S2: sample set 2; S3: sample set 3.

for silt and sand, although in these models it varies more from one
analysed subset to another. The number of variables in clay models
developed using the same method varies the least (21, 28 ,and 29
predictors for S1, S2, and S3, respectively), which is not strange,
because it is the only texture fraction directly associated with
minerals having detectable spectral features in VIS-NIR-SWIR
(Escribano, Schmid, Chabrillat, & Garcia,
2017), often referred to as clay minerals (for example, kaolinite,
and illite).

Examples of the scatter plots for S2 (modelled versus predicted

Rodriguez-Caballero,

values) are presented in Figure 7. Among modelled properties,
SOM calibrations showed the highest predictive capability account-
ing on average for 86% (CCR-SD) and 82% (PLSR-full and PLSR-
MUT) of the variance in the calibration and 87% (PLSR-full and
CCR-SD) and 79% (PLSR-MUT) in the validation data sets. The
CCR-SD and PLSR-full models for SOM developed in this study
are more accurate (R? 0.05-0.07 higher and the average RPIQ
above 3) than the SOM models we built previously for soil samples
from wildfire burns from the same area using PLSR with the step-
down variable selection algorithm (Rosero-Vlasova, Vlassova, Pérez-

Cabello, Montorio, & Nadal-Romero, 2018), which is probably due
to the different modelling algorithm and larger calibration data set
used in this study. The superior RPIQ of the SOM models (~3 or
above) developed with CCR-SD and PLSR-full is another indicator
of their high quality. Similar results were previously reported by
researchers working on applications of VIS-NIR-SWIR spectros-
copy for soil characterisation in other areas of LULC change (Ge,
Thomasson, & Sui, 2011; Knadel, Stenberg, Deng, Thomsen, &
Greve, 2013).

The CCR-SD models estimating texture fractions also showed
good fit, with coefficients of determination in the ranges of 0.84-
0.86 (calibration) and 0.68-0.72 (validation) for the silt models and
0.80 (calibration) and 0.70 (validation) for the clay and sand predic-
tions. The coefficients of determination of PLSR silt models were
lower and varied considerably among datasets (0.62-0.80). Sand
was the only property where CCR-SD models (R’ = 0.79;
R?, = 0.70) were outperformed by those developed with PLSR-full
(R%c = 0.83; R%, = 0.75). The most important difference between
methods was observed in clay models, where good fit of CCR-SD
models contrasted with considerably lower performance of PLSR
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FIGURE 7 Scatter plot examples of predicted versus observed values of soil organic matter (SOM; a), clay (b), silt (c), and sand (d) for S2 for
correlated components regression with a step-down variable selection algorithm (CCR-SD), full-spectrum partial least squares regression (PLSR-
full), and partial least squares regression Martens uncertainty test (PLSR-MUT) models. In each plot, the data points corresponding to calibration
are shown as circles, and the data points corresponding to validation are shown as triangles

calibrations (R?c = 0.69; R%, = 0.56 for PLSR-full and R%c = 0.64;
R%y = 0.47 for PLSR-MUT vss R?c = 0.82; R%, = 0.66 for CCR-SD).
A better fit of SOM models was previously observed by other
researchers (Dematté et al., 2016; Viscarra Rossel, Walvoort, et al.,
2006). However, it was rather unexpected that CCR-SD models for

On the whole, validation results were similar for all the
methods. They compare well to the best achievements in modelling
of the same soil characteristics reported in previous research
(Conforti et al, 2018; Dematté et al, 2016; Mouazen et al.,
2010; Rosero-Vlasova et al, 2017). However, the important

clay, silt and sand showed similar performance, albeit not as good as
that of the SOM models. Usually clay is another successfully
modelled property, but satisfactory fit for silt calibrations is rarely
obtained (Pinheiro, Ceddia, Clingensmith, Grunwald, & Vasques,
2017; Stenberg et al., 2010).

difference lies in the structure of the models created by different
algorithms evident in the number of predictors in models developed
using the three compared methods. The same high quality of
PLSR-full models using as predictors 2,071 bands present in the
measured reflectance spectra was achieved by CCR-SD using a
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greatly reduced number of bands/predictors (49, 21, 16, and 22 for
SOM, clay, silt, and sand, respectively). Compared with the PLSR-
MUT models, which also implements variable selection mechanism,
the CCR-SD produced better results for all the modelled properties
and data sets, except slightly better fit at validation of PLSR
sand models for of S2 and S3 data sets (Table 4). The accuracy-
parsimony relationship estimated by the AIC shows considerable
superiority of all the CCR-SD models in this aspect (average
AIC = 122.80, Table 4); the lowest (best) AIC values correspond
to the CCR-SD models for clay (AIC = 100.35). Average AIC

5.0
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values for PLSR-full and PLSR-MUT models are 4,186.93 and
327.19, respectively.

Figure 8 presents the coefficients for the CCR-SD model pre-
dictors and shows the relative importance of specific bands the
studied soil properties. Thus, for analysed soil samples spectral
regions closely related to SOM in these models (Figure 8a) include
the 500-550, 1000-1050, 1500-1550, 1800-1910, 2200-2250,
and 2310-2350 nm wave ranges and can be attributed to the
presence of water and organic molecules with C—O, C=0O, and
N—H bonds (Bellon-Maurel et al., 2010). Although the absorption
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features characteristic of clay minerals in these soils are masked
by the high content of organic matter, the highest coefficients in
the clay model (Figure 8b) correspond to bands related to clay
minerals, such as kaolinite (1,395, 1,414, and 2,208 nm) and illite
(2,206, 2,300-2,340 nm; Bellon-Maurel et al, 2010; Ben-Dor &
Banin, 1995; Brunet et al., 2007). The presence of a considerable
quantity of illite in soils from the studied areas of cropland
abandonment (Nadal-Romero, Regiliés, Marti-Bono, & Serrano-
Muela, 2007) supports these findings. In most cases, bands from
these intervals are also selected as important predictors in PLSR
models.

4 | CONCLUSIONS

The study confirmed the viability of using CCR-SD algorithm in
modelling of organic matter content and texture fractions of soils from
VIS-NIR-SWIR spectra for monitoring soil quality in areas recovering
from natural (wildfires) and anthropic (agricultural cultivation)
disturbances. A novel CCR-SD algorithm created models with good
predictive capacities that simultaneously estimated SOM, clay, silt,
and sand (R? in the range of 0.80-0.86 for the calibration data
set and 0.70-0.87 for the validation dataset), with the highest

coefficient of determination being achieved by the SOM predictions.
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The reliability of the CCR-SD models resulted similar to the PLSR
models with full (PLSR-full) and reduced (PLSR-MUT) number of
predictors. However, the CCR-SD models achieved good fit using a
smaller number of available predictors. One of the advantages of
CCR-SD application is the possibility of running calibrations in a
familiar interface of the EXCEL (Microsoft) software package. Further
research is planned to test the methodology on a wider database of
soils from erosion-risk environments, such as areas of slash-and-burn
agriculture.

Up-to-date information supporting activities protecting soil from
degradation will allow the control of short- and long-term conse-
quences of management decisions. The methodological results
obtained in this work may provide an interesting operational tool to
analyse soil properties and support sustainable management
programmes in forest areas with degradation risks, thematic area
explicitly mentioned in SDG 15: “Sustainably manage forests, combat
desertification, halt and reverse land degradation, halt biodiversity
loss” (2030 Agenda for Sustainable Development).
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Abstract. Land use/land cover (LULC) changes create the need for regular monitoring of soil
properties. Modern technology and data sources offer possibilities to perform it. In this context,
the objective of the study is to explore the possibility of predicting soil organic matter (SOM)
content and texture from the spectral information of the three last generation satellites [Landsat-
8, Sentinel-2, and the Environmental Mapping and Analysis Program (EnMAP)]. Soil samples
(113) were collected in areas affected by wildfires and cropland abandonment in Aragén,
Northern Spain. Reflectance spectra of soils were obtained in controlled laboratory conditions
using the analytical spectral device Fieldspec4 spectroradiometer (spectral range 350 to
2500 nm). Reflectances simulated for Landsat-8, Sentinel-2, and EnMAP bands were used as
predictors in multivariate models developed using partial least squares regression (PLSR) and
step-down variable selection algorithm (SD). Modeling of all soil variables was performed
simultaneously. The EnMAP models employed few predictors (10 to 58 of 244) and demon-
strated good fit (R2,; > 0.8 and R2, ~ 0.8), especially for SOM (R2, and R2, = 0.9; RMSEP
~1.6). Landsat models showed the least reliable estimates (R2, 0.54 to 0.77 and R2, 0.42 to
0.80), whereas Sentinel-2 models showed R?, of 0.70 to 0.81 and R2, between 0.67 (clay) and
0.79 (SOM). The results confirm high potential of spectral data from multispectral and hyper-
spectral satellites for soil monitoring. Application of PLSR combined with SD results in sparser
and better-fit models. SOM and soil texture can be estimated with an acceptable accuracy from
EnMAP and Sentinel-2 data enabling soil status monitoring in areas of wildfire burns and crop-
land abandonment. © 2018 Society of Photo-Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1
JRS.12.042803]

Keywords: soil properties; VIR-NIR-SWIR spectroscopy; Landsat-8; Sentinel-2; EnMAP; par-
tial least squares regression; step-down variable selection algorithm.

Paper 180264SS received Apr. 12, 2018; accepted for publication Jun. 8, 2018; published online
Aug. 2, 2018.

1 Introduction

Land use/land cover changes (hereafter LULC) affect soil properties and may contribute to soil
erosion. In Mediterranean landscapes, LULC changes are caused by natural and human-related
drivers. Among the most important natural factors are the wildfires, which have long been
a natural process for landscape development in this area.'”> However, at present the number
and intensity of wildfires are experiencing continuous increase.® Frequent high intense fires
modify physical and chemical characteristics of soils, triggering erosion and soil losses.* On
the other hand, one of the most important human-related drivers of LULC changes is the phe-
nomenon of cropland abandonment.” Management activities undertaken to prevent soil erosion

*Address all correspondence to: Olga A. Rosero-Vlasova, E-mail: oarosero@unizar.es

1931-3195/2018/$25.00 © 2018 SPIE
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in abandoned areas often include afforestation, although sometimes it may result in unforeseen
hydrological impacts.®” Thus, to assess the effects of LULC change and to understand the most
effective components of land management systems, it is necessary to have an accurate picture of
soil status, which can be evaluated through soil organic matter (SOM) content and texture. Both
properties play a key role in belowground carbon storage, availability, and retention of nutrients®
and closely related to soil erodibility.”

One of the tools gaining popularity for regular estimation of several soil variables, including
organic matter and texture, is proximal soil sensing, also known as soil spectroscopy.'*!" It offers
a cost-effective alternative to traditional laboratory methods of soil analysis. Spectral signatures
obtained with spectroradiometers can be used together with data obtained by satellite remote
sensing for soil mapping and analysis.'>”'* Reviews,'*!>!® including recently published,'>"’
offer a thorough inspection and state-of-the-art assessment of advances in this field.
Examples include mapping of expansive soils in Colorado, USA, from advanced visible/infrared
imaging spectrometer (AVIRIS) and HyMap hyperspectral images;”> mineral composition of
soils in a volcanic area of the Chilean—Bolivian Altiplano from Hyperion, advanced land imager
and ASTER images;'® maps of soil properties (iron, SOM, and texture) in Santa Monica
Mountains, California;'® as well as recent experience with mapping of soil properties from
Sentinel-2 and Landsat in South-Western Burkina Faso.*’

Decades of research have also revealed major challenges. A great difference may exist
between a soil spectrum registered in a carefully configured and performed laboratory experi-
ment and that obtained with the multi- or even hyperspectral satellite/airborne sensor because it
contains information not only about soil, but also about the mixture of elements naturally present
on the land surface, such as photosynthetic and nonphotosynthetic vegetation, rock outcrops,
dust, and water, to name a few. Moreover, satellite images need preprocessing (radiometric, geo-
metric, and atmospheric corrections) not necessary for the laboratory spectra.”! Different spectral
unmixing techniques? have been tested to differentiate soils and quantify their properties from
the real-life images. For example, Palacios-Orueta et al.'” applied a two-step hierarchical analy-
sis when mapping soil properties in coastal valleys in California from AVIRIS data; first, using
singular-value decomposition to discriminate the soils between two valleys, and then training
vectors for each area to estimate and map their organic matter and iron oxides content. In con-
trast, Garcia-Haro et al.> achieved delineation of spectrally homogeneous soil zones using var-
iable multiple end member spectral mixture analysis (VMESMA). Once the areas and spectral
signatures are defined, statistical modeling of soil variables is usually performed using partial
least squares regression (PLSR) and stepwise multiple linear regression, although application of
data mining algorithms is becoming more popular.'* The accuracy of the models is quite var-
iable, with coefficient of determination R? ranging between 0.1 and 0.7 for Landsat and 0.05 to
0.9 for hyperspectral sensors (e.g., Hyperion, AHS, AVIRIS, CASI, and DAIS);'"? the best results
demonstrated modeling soil texture and SOM content. It had been also demonstrated that com-
bined use of different sensors/satellites and ancillary data (terrain metrics and other landscape
characteristics) may significantly improve the results.'>!%17:24

Coexistence and availability of compatible data from multiple satellites, such as Landsat-8,
Sentinel-2A/B (orbiting the Earth since February 2013, and June 2015/March 2017, respec-
tively), and the launch of satellites expected to provide data of even higher resolution in
near future the Environmental Mapping and Analysis Program [(EnMAP) scheduled for
2020] open possibilities for land surface monitoring and sustainable management.

In this context, the objective of this study is to explore the potential of the three last gen-
eration satellites (Landsat-8, Sentinel-2, and EnMAP) to estimate SOM content and texture in
soils from areas of the wildfire burns and cropland abandonment.

2 Study Area and Data

Study area extends over 300 km? located in Aragén, Northern Spain (Fig. 1) at elevations rang-
ing from 450 to 1300 m above the sea level. Its vegetation is typical for Mediterranean with
forests of Quercus gr. cerrioides (Willk and Costa) and Quercus ilex L.; and several pine species,
such as Pinus sylvestris L. (PS), Pinus nigra (PN) (Arnold), Pinus halepensis L., and Pinus
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Fig. 1 Map of the study area: (a) General view. Red points indicate sampling sites in areas

affected by wildfire burns (two samples collected at each site); (b) enlarged area showing the
Araguas catchment with sampling sites in the areas of cropland abandonment (one sample
per site).

pinaster (Aiton). Complex vegetation mosaic includes shrublands consisting mainly of Buxus
sempervirens L. and Genista scorpius L.% Soil cover is heterogeneous with patches of cambi-
sols, regosols, and leptosols.?® Highly variable Mediterranean climate of the area is characterized
by 10°C to 12°C average annual temperature and precipitation of around 560 mm with maxima in

spring and autumn and minimum in summer.

27

Studied soil samples were collected in areas of wildfire burns in spring of 2013 and in
September 2014 in areas cropland abandonment (Fig. 1). Samples from the wildfire burns con-
stitute pairs of burnt and corresponding unburnt soil from the same sampling site. Samples from
abandoned croplands were gathered in a small catchment (Araguds catchment), where terraced
fields abandoned in 1950s present different vegetation covers due to different postabandonment
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triangle (USDA, 2010): (a) calibration dataset and (b) validation dataset. Red points indicate
soil samples from wildfire burns; black points indicate soil samples from areas of cropland
abandonment.
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evolution paths: natural secondary succession, afforestation with PN and PS, permanent pasture-
land and bareland. More details on the study area, as well as on sampling procedure, are available
in Refs. 11 (wildfire burns) and 28 (abandoned croplands).

In general, soil samples present characteristics typical for the study area. The average SOM
content is around 6 g 100 g~! with the range between ~1 g 100 g~! in bare areas and ~20 g
100 g~! under the undisturbed forests.>” These levels are higher than the world and European
averages.’®! In terms of texture, the averages for clay and sand content are 27% and 33%,
respectively. Thus, according to the USDA (United States Department of Agriculture) soil
texture triangle, most soils from the wildfire burns can be classified as loam and clay loam,
and those form the areas of cropland abandonment as silty loam (Fig. 2).

3 Methodology

3.1 Spectral Measurements

Sample preparation for spectral measurement consisted in placing of dry and sieved soils
(<2 mm) in glass Petri dishes 90 mm in diameter. Analytical Spectral Device (ASD)
FieldSpec4 spectroradiometer that is used to obtain soil spectra employs three sensors registering
radiances in the spectral regions of 350- to 1000-nm (VIS-NIR), 1001- to 1800-nm (SWIRI),
and 1801- to 2500-nm (SWIR2) wavelengths. The spectra consist of 2101 narrow bands with full
width at half maximum of 3 nm in VIS-NIR and 10 nm in SWIR, respectively. Calibrated white
Spectralon® panel acts as a reference necessary for the transformation of radiances into reflec-
tance spectra. The setup, which uses ASD Illuminator halogen lamp as a light source (Fig. 3),
ensures generation of stable low noise spectra and demonstrated reliability in our previous
research. !

3.2 Preparation of Reflectance Spectra for Multivariate Modeling

Bands from measured soil spectra and simulated reflectance values were used as predictors in
statistical models for SOM, silt, clay, and sand. Models based on original laboratory-measured
soil spectra considered 70 bands with the highest information content on SOM and other soil
properties.>” The selected wavebands are located in VIS,!! NIR,'® and SWIR?® spectral regions.
Because of high stability of obtained spectra, no spectral preprocessing was performed. Three
outliers detected with principal components analysis (PCA) were excluded from the dataset.
After this, a total of 110 samples used in multivariate modeling were splitted into calibration
(80 samples) and validation (30 samples) sets, which constitute ~65% and ~35% of the total
number of the samples.

Fig. 3 Laboratory setup used for spectral measurements.
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3.3 Simulation of Satellite Spectral Bands

High-resolution spectra generated using ASD were resampled to simulate reflectance values
for the optical bands of one hyperspectral (EnMAP) and two multispectral (Landsat-8 and
Sentinel-2) satellites.

Landsat-8 is the recent addition to the series of NASA’s missions, which has been orbiting the
Earth for almost 50 years. Its optical sensor Operational Land Imager (OLI) registers signal in
nine spectral ranges: VIS—bands 1 to 4 and 8 (panchromatic); NIR—band 5 and SWIR—bands
6, 7, and 9, providing images of 30-m spatial resolution. Resampling of ASD spectra to OLI
bands was performed using the corresponding spectral response functions available from
NASA.*

We also simulated bands of another Sentinel-2 satellite built and put on orbit by the European
Space Agency (ESA). It is equipped with the multispectral instrument (MSI) sensor, which
acquires data in 13 VIS-SWIR bands at 10- to 60-m spatial resolution and has a 5-day revisit
period (versus 16 days for Landsat).*> Spectral response functions of MSI bands used for resam-
pling were downloaded from the ESA.*

Finally, we simulated reflectances for the hyperspectral imager instrument of the EnMAP
satellite created in the frame of the German satellite program. The satellite will obtain data
in the 244 narrow bands (420- to 2450-nm wavelengths) sampled at 6.5 nm in VIS-NIR
and at 10-nm intervals in SWIR at a spatial resolution of 30 m [Figs. 4(c) and 4(d)].Y
Spectral response functions were obtained from the freely available EnMAP toolbox.*® All
the processing related to resampling was performed using the ENVI 4.7 (The Environment
for Visualizing Images) software.”

Reference values of SOM (g 100 g~') and texture fractions (%) were determined by ana-
lytical methods traditionally used in soil analysis. UV-visible spectrophotometry and the
loss on ignition method were applied for SOM estimation in samples from wildfire burns
and areas of cropland abandonment, respectively. Standard particle size distribution analysis
method*’ was employed to estimate texture fractions in the samples from the wildfire burns,
whereas particle analyzer (Micromeritics, SediGraph 5100, Nocross) was used for soils from
the areas of cropland abandonment. Normal distribution of SOM, silt, clay, and sand values
in both subsets was confirmed with Shapiro—Wilk test.

3.4 Statistical Modeling

Modeling of SOM, clay, silt, and sand was performed simultaneously using PLSR.*'*? Due to its
capacity to deal with a great number of predictors, PLSR is routinely applied in soil VIS-NIR-
SWIR spectroscopy.*** It is recognized that PLSR is prone to overfitting, i.e., including in
models predictors relevant only to the calibration dataset.*> One of the ways to control overfitting
is to reduce the number of predictors, leaving out less important, which results in sparser
models.*® Thus, PLSR was combined with the step-down variable selection algorithm
(PLSR-SD). The step-down variable selection algorithm reduces the number of variables without
the loss of information through elimination of the less important variables, i.e., those with the
lowest (absolute value) coefficient, during cross validation.*’ For each model, this iterative proc-
ess was configured to run 10 rounds of fivefold cross validation.

Models fit was evaluated with the following statistics: coefficient of determination of
calibration (Rgal), coefficient of determination of validation (R\z,a,), and root mean square
error (RMSE).

4 Results and Discussion

4.1 Soil Spectra

Reflectance spectra of the samples (Fig. 5) present a shape typical for soils: continuous positive
tendency along the visible wave range, close to flat spectrum line in NIR, and gradual reflectance
decrease in SWIR.*** As usual for soil spectra, absorbance features are few and are related to
the presence of water (1400 and 1900 nm), iron oxides (510, 650, and 940 nm), clay minerals
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Fig. 5 Reflectance spectra for: (a) calibration set and (b) validation set. Spectra of soils from
wildfire burns are shown in green; spectra of soils from areas of cropland abandonment are
shown in black.

(2200 nm), and carbonate bands (2330 nm).>** These features are more pronounced in some
spectra compared with the others, probably due to the heterogeneity of the dataset. '

Visual appreciation of Fig. 5 confirms that spectra can be differentiated by reflectance
intensity.!“!'>333! It is evident that the range of reflectance maximums is greater for the soils
from wildfire burns than for the soils from the areas of cropland abandonment (0.25 to 0.65
versus 0.38 to 0.55), one of the reasons being variability in the SOM content and differences
in texture: increase in SOM and reduction of soil particle size produce lower reflectance
spectra.’>™* The fact that the samples from the wildfire burns include undisturbed highly fertile
soils and burned soils with very low organic matter explains higher variability of their spectra
compared with the spectra of soils from cropland abandonment areas (Fig. 5).
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Fig. 6 Reflectance spectra of varying resolution for one of the soil samples: (a) original radiometric
scan (2101 bands), (b) spectrum resampled to EnMAP bands (244), (c) spectrum resampled to
Sentinel-2 bands,'® and (d) spectrum resampled to Landsat-8 optical bands.®
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The effect of sensor spectral resolution on the spectrum can be visually appreciated in Fig. 6,
whereas the shape and detail of ENMAP spectrum are very similar to the original spectrum, none
of the absorption features can be seen in the broadband spectra of Sentinel-2 and Landsat-8,
respectively.

4.2 Prediction of Soil Properties

Table 1 summarizes statistics estimating performance of the PLSR-SD models for SOM, silt,

clay, and

sand, whereas Fig. 7 shows scatter plots (modeled versus predicted values) illustrating

the models fit. The results demonstrate that there is a relationship between the number of avail-
able predictors (reflectance bands) and the predictive capacity of the model: higher spectral
resolution (greater number of narrower bands) of spectroradiometer and EnMAP bands explains
higher predictive capacity of their models. The R?> of models based on hyperspectral (ASD
and EnMAP) and broadband data is around 0.07 to 0.15 for Sentinel-2 and 0.10 to 0.30 for
Landsat-8, respectively.

The best results were achieved by the EnMAP and ASD models for SOM: Rg,] =0.89 and

al

R2, =0.86 for EnMAP, and R, = 0.88 and R?, = 0.85 for ASD. The performance of
the ASD, EnMAP, and Sentinel-2 models predicting texture fractions was also quite good

Table 1

Statistics assessing performance of predictive model. A2, is the coefficient of determi-

nation for calibration dataset; Fisa, is the coefficient of determination for validation dataset; the
highest coefficient values are in bold; RMSEC, root mean square of calibration; and RMSEP,
root mean square error of prediction.

Components Predictors RE, RMSEC R2, RMSEP
SOM (g 100 g71)
ASD 10 10 0.882 1.286 0.847 1.685
EnMAP 10 58 0.892 2.221 0.861 1.614
Sentinel-2 10 11 0.814 1.625 0.773 2.044
Landsat-8 8 8 0.778 1.736 0.801 1.900
Silt (%)
ASD 10 39 0.860 5.636 0.754 4.813
EnMAP 10 10 0.808 5.021 0.775 4.568
Sentinel-2 10 10 0.768 5.510 0.786 4.336
Landsat-8 6 6 0.543 7.527 0.424 7.020
Clay (%)
ASD 10 42 0.834 4.992 0.733 4516
EnMAP 10 38 0.806 5.086 0.761 4.870
Sentinel-2 10 13 0.707 4.961 0.673 4.955
Landsat-8 8 8 0.632 5.363 0.621 5.155
Sand (%)
ASD 10 50 0.831 10.357 0.804 5.973
EnMAP 10 36 0.844 8.131 0.822 6.878
Sentinel-2 10 10 0.760 7.997 0.759 6.893
Landsat-8 8 8 0.568 10.566 0.500 9.797
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Fig. 7 Scatter plots of predicted versus observed values of (a) SOM, (b) silt, (c) clay, and (d) sand
for models based on data simulated for Landsat-8, Sentinel-2, and EnMAP satellites. In each
graphic, data points corresponding to calibration are shown with circles; data points corresponding
to validation are shown with triangles.

(coefficients of determination for calibration and validation >0.70). Models based on Landsat-8
bands were not so accurate: they could explain between 54% (silt) and 78% (SOM) of variance at
calibration, and between 42% (silt) and 0.80% (SOM) at validation stages, whereas Sentinel-2
models showed R? in the ranges of 0.71 to 0.81 and 0.67 to 79 at calibration and validation,
respectively. These results are in agreement with the earlier efforts in statistical modeling of
SOM and soil texture.’>>> They also coincide with the information available for soils in
other areas of LULC changes.'>’
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Application of the step-down variable selection algorithm is especially important for the
models based on bands of hyperspectral sensors, i.e., spectroradiometer and EnMAP.
Variable selection allowed development of high-quality models (R? close or above 0.8) for
all the modeled properties (SOM, silt, clay, and sand). The models using reflectances from
ASD and EnMAP stand out because they are capable of obtaining accurate prediction while
employing a few numbers of available predictors. Best ASD models use 10, 39, 42, and 50
bands, whereas EnMAP employ 58, 38, 10, and 36 reflectance bands out of more than
2000 to estimate SOM, clay, silt, and sand, respectively (Table 1).
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Fig. 8 Coefficients of determination R? for calibration (in blue) and validation (in red) of models
based on original ASD bands: (a) SOM, (b) clay, (c) silt, and (d) sand. Horizontal axis shows
the number of predictors.
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Fig. 9 Coefficients of determination R? for calibration (in blue) and validation (in red) of models
based on simulated EnMAP bands: (a) SOM, (b) clay, (c) silt, and (d) sand. Horizontal axis shows
the number of predictors.
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To test the capabilities of the SD algorithm, we ran it several times on the same reflectance
bands each time limiting the maximum number of predictors included in the final model to 70,
60, 50, 40, 30, and 10. The results of this test shown in Fig. 8 (spectroradiometer bands) and
Fig. 9 (simulated EnMAP bands) reveal that even when limited to no more than 10 predictors, the
algorithm was capable to create models whose quality was comparable with models based on the
initially available number of bands. Moreover, SOM, clay, and sand models demonstrated almost
the same or a little higher R? both for calibration (R%) and validation (R?,), which means that
the values are not inflated by overfitting.*’
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Fig. 10 Standardized coefficients of predictors in (left) Landsat-8 and (right) Sentinel-2 models for:
(a) SOM, (b) silt, (c) clay, and (d) sand.
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As soils represent a complex heterogeneous mixture of particles of a different form, size, and
chemical composition, relating spectral bands and ranges to specific properties is not a simple
task. Their importance can be assessed by analyzing coefficients of predictors included in the
model (Fig. 10). SOM and sand models based on Landsat-8 data present the highest coefficients
for the bands in visible and SWIR spectral regions, whereas predictions based on Sentinel reflec-
tances contain the highest coefficients for the Vegetation Red Edge bands (BS, B6, and B7) not
available for Landsat. As for the hyperspectral models (ASD and EnMAP), the results point to
the wavelengths located in the 500 to 1000—-nm and 2150- to 2300-nm ranges as the most rel-
evant. These results are supported by numerous earlier published researches: it has been long
recognized, that organic compounds are spectrally active through all the visible range;*3*’ the
importance of SWIR bands according to the recent review'’ being related to the presence of
nitrogen and carbon groups. The highest coefficients in the Sentinel-2 silt model also correspond
to the vegetation red edge bands; the highest coefficients in the EnMAP silt models correspond to
the wavelengths around 2080 and 2098 nm in the SWIR region. As for the clay predictions, the
bands in blue and green visible, and SWIR bands appear as most relevant for all the sensors,
except ENMAP, which gives more importance (bigger coefficients in absolute values) for the
wavelengths >1830 nm. Importance of these wavelengths has been already reported in other
studies.!”*° Further research on image data is necessary to assess the possibility of applying
the spectral potential on the operational level.

5 Conclusions

The results confirm high potential of operational multispectral satellites (Landsat-8 and Sentinel-
2) and even so of the EnMAP satellite data for detection and quantification of SOM, silt, clay,
and sand in areas of LC changes due to the wildfires and cropland abandonment. The spectra of
the analyzed soils are nonspecific, but due to the higher proportion of sand particles, reflectances
of soils from the wildfire burns are in general higher compared with soils from the areas of
cropland abandonment.

PLSR models were successful simultaneously predicting modeled soil properties with coef-
ficients of determination around 0.80 for calibration and validation datasets. Predictions of the
SOM content (R? around 0.90) are the most accurate. Combination of the PLSR and the step-
down variable selection algorithm result in considerable model improvement, especially for
hyperspectral data, producing sparser, and better-fit models.

Further research will be centered at the analysis of contribution of specific spectral ranges and
wavelengths to soil reflectances.
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ABSTRACT

Deforestation in Amazon basin due, among other factors, to frequent wildfires demands continuous post-fire
monitoring of soil and vegetation. Thus. the study posed two objectives: (1) evaluate the capacity of Visible — Near
InfraRed — ShortWave InfraRed (VIS-NIR-SWIR) spectroscopy to estimate soil organic matter (SOM) in fire-affected
soils, and (2) assess the feasibility of SOM mapping from satellite images. For this purpose, 30 soil samples (surface
layer) were collected in 2016 in areas of grass and riparian vegetation of Campos Amazonicos National Park, Brazil,
repeatedly affected by wildfires. Standard laboratory procedures were applied to determine SOM. Reflectance spectra of
soils were obtained in controlled laboratory conditions using Fieldspec4 spectroradiometer (spectral range 350nm-
2500nm). Measured spectra were resampled to simulate reflectances for Landsat-8, Sentinel-2 and EnMap spectral
bands. used as predictors in SOM models developed using Partial Least Squares regression and step-down variable
selection algorithm (PLSR-SD). The best fit was achieved with models based on reflectances simulated for EnMap bands
(R*=0.93; R%cv=0.82 and NMSE=0.07; NMSEcv=0.19). The model uses only 8 out of 244 predictors (bands) chosen by
the step-down variable sclection algorithm. The least reliable estimates (R*=0.55 and R?cv=0.40 and NMSE=0.43;
NMSEcv=0.60) resulted from Landsat model, while Sentinel-2 model showed R*=0.68 and R*cv=0.63; NMSE=0.31 and
NMSEcv=0.38. The results confirm high potential of VIS-NIR-SWIR spectroscopy for SOM estimation. Application of
step-down produces sparser and better-fit models. Finally, SOM can be estimated with an acceptable accuracy
(NMSE~0.35) from EnMap and Sentinel-2 data enabling mapping and analysis of impacts of repeated wildfires on soils
in the study area.

KEYWORDS: Soil Organic Matter (SOM), VIR-NIR-SWIR spectroscopy. Landsat, Sentinel-2, EnMap. PLSR, step-
down variable selection algorithm (SD)

1. INTRODUCTION
Tropical savannas locally known as Cerrado occupy more than 2 million km® and are among the most important
biomes in Brazil [1]. These areas are prone to wildfires, which have long been a natural process for their development
[2]. However, at present, due to human activities and climate change. the number and intensity of wildfires are
experiencing continuous increase [3]. Frequent high intense fire influence modifies physical and chemical characteristics
of soils, triggering erosion and soil losses [4]. Thus, monitoring of changes in soil properties after fire is of great
importance since it provides information for decisions related to choice of landscape management practices.

One of the tools gaining popularity for regular estimation of key soil variables, such as organic matter and texture, is
proximal sensing. also known as soil spectroscopy [5. 6]. It offers a cost-effective alternative to traditional laboratory
methods of soil analysis. Spectral signatures obtained with spectroradiometers can be integrated with data obtained by
satellite remote sensing and used for soil mapping and analysis [7, 8]. Coexistence and availability of compatible data
from multiple satellites, such as Landsat-8, Sentinel-2A/B (orbiting the Earth since February, 2013 and June,
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2015/March, 2017, respectively), and the launch of satellites expected to provide data of even higher resolution in near
future (EnMap scheduled for 2019) opens new possibilities for land surface monitoring and sustainable management.

In this context, the study posed two objectives: (1) to evaluate the capacity of Visible — Near InfraRed — ShortWave
InfraRed (VIS-NIR-SWIR) spectroscopy to estimate Soil Organic Matter (SOM) content in fire-affected soils for their
further discrimination, and (2) to assess the feasibility of SOM mapping from images of the three last generation
satellites (Landsat-8, Sentinel-2 and EnMap).

2. STUDY AREA AND DATA

Study area is located in Campos Amazonicos Savanna Enclave (CASE), Brazil, a continuous area of savanna
vegetation in a region dominated by rainforest (Figure 1a) [9]. It spreads over 4342 km® and is considered one of the
biggest savanna enclaves in Amazon [10]. Currently, 47% of the CASE belong to the limits of the Campos Amazonicos
National Park (CANP). Vegetation is not restricted to savanna-type: it varies from grasslands to forests [11]. Detailed
distribution of vegetation can be appreciated in Figure 1b, showing Landsat Vegetation Continuous Field tree cover layer
for 2015. Grasslands. shrubby grasslands and shrubby savanna predominate in the interfluvial areas, while forested areas
are mainly located in the proximity of the streams (riparian vegetation).

The climate is characterized by mean annual temperatures in the range of 24°C-28°C, and average annual rainfall up
to 2000mm. There are two seasons, wet (November-March) and dry (May-September): April and October usually
correspond to the transition between the two seasons [12]. Typical soils are neosols marked by the presence of plinthite
in the B horizon) [10, 13].

Field campaign which included collection of soil samples was realized in September 2016 in parts of CASE within
CANP, which are characterized by different wildfire [14]. Soil samples were obtained from surface layer (0-10cm) in
areas of shrubby grassland (15 samples) and riparian (15 samples) vegetation. Sampled locations are shown in Figure 1c.

A

a)

Amazon

BRAZIL

Cerrado
(Savanna)

Figure 1. Map of the study area: a) the CASE in the middle of Brazilian Amazon biome; b) tree cover (% per pixel); ¢) location of

soil sampling sites.
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3. METHODOLOGY

Reference SOM values were determined using wet combustion, which is the standard laboratory procedure. Spectral
measurements were performed on air-dried sieved (particle size <2mm) samples placed in Petri dishes (90 mm in
diameter. ~15mm high). Reflectance spectra of soils were obtained in controlled laboratory conditions using Fieldspec4
spectro-radiometer (spectral range 350nm-2500nm). We used ASD Illuminator halogen lamp as a light source.
Observation geometry was determined considering (i) distance between the target and the sensor, (ii) distance between
the target and the source of illumination, and (iii) the angle between the two. This setup (Figure 2) demonstrated
reliability in our previous research [6].

Figure 2. Laboratory setup used for spectral measurements.

Measured high resolution spectra were resampled to simulate reflectance values for Landsat-8. Sentinel-2 and EnMap
optical spectral bands (8. 13 and 244 bands. respectively) in VIS, NIR and SWIR spectral regions. Since obtained spectra
demonstrated high stability, no spectral pre-processing was performed.

Bands from measured soil spectra and simulated reflectance values were used as predictors in SOM models. Models
based on original laboratory-measured soil spectra considered 21 bands, which according to previous research have the
highest information content on SOM and other soil properties [15]. Two outliers detected by initial Principal
Components Analysis were excluded from the set of predictors resulting in 28 analyzed soil samples.

Modeling was performed using Partial Least Squares regression [16, 17]. Due to its capacity to deal with a great
number of predictors PLSR is routinely applied in soil VIS-NIR spectroscopy (e.g. [18. 19]. In this study it was
combined with the step-down variable selection algorithm (PLSR-SD). The step-down variable selection algorithm
reduces the number of variables without the loss of information through elimination of the less important variables
during the process of cross-validation [20]. The procedure was run with 10 rounds of 7-fold cross-validation.

Model perforxmnge was assessed using the determination coefficient of the model (R?), the determination coefficient
of cross-validation (R°-y) and the Normed Root-Mean-Square Error (NMSE).

Proc. of SPIE Vol. 10421 104210V-3
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4. RESULTS AND DISCUSSION

Reflectance spectra of samples (Figure 3) present the shape with very few absorption features, which is typical for
soils [21]. There is a lot of similarity, but there are also observable differences between particular curves: the absorption
features, e.g. near 1400nm and 1900nm (due to presence of water and O-H group) [22], are small in some spectra and
more pronounced in the others, probably due to the heterogeneity of the dataset [23], one of the reasons of this
heterogeneity being differences in SOM content [24].
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Figure 3. Reflectance spectra of soil samples.
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Table 1 summarizes statistics estimating performance of the PLSR-SD models for SOM, while Figure 4 shows scatter
plots (modeled versus predicted SOM values) illustrating fit of SOM models based on reflectances from bands simulated
for three satellites (Landsat-8, Sentinel-2 and EnMap) and original bands from measured spectra (21 selected bands).
The results demonstrate that there is the relationship between the number of available predictors (reflectance bands) and
the predictive capacity of the model: higher spectral resolution (greater number of narrower bands) corresponds to higher
predictive capacity of the SOM model.

Table 1. Statistics assessing quality of SOM models.
PLSR_SD NMSE f Factors

31 band R? 0.909 0.088 . .
il 0.830 0.168

EnM R? 0.929 0.068 3 2

nMa

PRy, 0.816 0.189

Sentinel-2 R? 0.682 0.306 10 1

entinel-

R%cv 0.617 0.375
R? 0.549 0.435

Landsat-8 |_, 2 2
R%ev 0.401 0.601

Proc. of SPIE Vol. 10421 104210V-4

107



CHAPTER 8. Modeling soil organic matter and texture from satellite data

Thus. the best model based on 21 original bands with 7 predictors chosen by the SD algorithm produced SOM values
very close to the reference (chal=0.909%z R%v=0.83% and Normed Mean Square Error NMSEcal=0.09:
NMSEcv=0.18 for calibration and cross-validation, respectively). Very similar results were achieved with models based
on reflectances simulated for EnMap bands (R’=0.93; R%cv=0.82 and NMSE=0.07; NMSEcv=0.19). This quality was
achieved by the model with only 8 out of 244 predictors (bands) chosen by the step-down variable selection algorithm.
The least reliable estimates (Rj=0.55 and R%cv=0.40 and NMSE=0.43; NMSE=0.60) resulted from Landsat-8 model
(bands 6 and 8 as predictors). while Sentinel-2 model (10 predictors) showed R’=0.68 and R*cv=0.63; NMSE=0.31 and
NMSEcv=0.38.
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Figure 4. Scatter plots of predicted versus observed SOM values for models based on data from (a) original bands measured by spectroradiometer;
bands simulated for the following satellites (b) EnMap, (c) Sentinel-2, and (d) Landsat-8.

CONCLUSIONS

The results confirm high potential of VIS-NIR-SWIR spectroscopy as a flexible and cost-effective alternative for
determining SOM content in soil samples in laboratory conditions. Application of step-down variable selection algorithm
resulted in considerable model improvement producing sparser and better-fit models. We conclude that SOM can be
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estimated with an acceptable accuracy (NMSE~0.35) from EnMap hyperspectral and Sentinel-2 multispectral satellite
images providing the basis for mapping and analysis of impacts of repeated wildfires on soils in the study arca.

ACKNOWLEDGEMENTS

Authors appreciate financial support provided to the first author of this article by Secretariat for Higher Education,
Science, Technology and Innovation ( SENESCYT). Ecuador, grant no. 211-2012.We also thank the CAPES Foundation
(Brazil) for the grant (process number 9540-13-0) given to Daniel Borini Alves. We are also grateful to Bruno Contursi
Cambraia and all the team of the Campos Amazonicos National Park for help in data collection and for encouragement
of research development.

REFERENCES

[1]

2]
131

[4]
151

[6]

[7]
(8]

9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]
[17]

[18]

Cavalcanti, R. B., Joly. C. A. "Biodiversity and conservation priorities in the Cerrado region," The cerrados of
Brazil: ecology and natural history of a neotropical savanna, Columbia University Press, New York, USA, 351-
367 (2002).

Hardesty, J., Myers. R., and Fulks, W.. "Fire, ecosystems, and people: a preliminary assessment of fire as a
global conservation issue." Fire Management, 22 (4), 78-87 (2005).

Goldammer, J., “Historical biogeography of fire: tropical and subtropical.” Fire in the environment: the
ecological atmospheric, and climatic importance of vegetation fires. Wiley, New York, 297-314 (1993).

Certini, G., “Effects of fire on properties of forest soils: a review,” Oecologia, 143(1), 1-10 (2005).

Dematté. J. A. M., Campos. R. C., Alves. M. C. et al., “Visible-NIR reflectance: a new approach on soil
evaluation.” Geoderma, 121(1-2). 95-112 (2004).

Rosero-Vlasova, O. A.. Pérez-Cabello. F.. Lloveria, R. M. ef al., “Assessment of laboratory VIS-NIR-SWIR
setups with different spectroscopy accessories for characterisation of soils from wildfire burns,” Biosystems
Engineering, (2016).

Chabrillat, S., Ben-Dor, E., Rossel, R. A. V. et al. “Quantitative soil spectroscopy.” Applied and
Environmental Soil Science, (2013).

Dematté. J., Morgan, C., Chabrillat, S. ef al.. “Spectral sensing from ground to space in soil science: State of the
art, applications, potential and perspectives,” Land Resources Monitoring, Modeling, and Mapping with Remote
Sensing, CRC Press, Boca Raton, USA, 661-732 (2015).

Ratter, J. A, Bridgewater, S., and Ribeiro, J. F., “Analysis of the floristic composition of the Brazilian cerrado
vegetation III: comparison of the woody vegetation of 376 areas.” Edinburgh journal of botany, 60(1), 57-109
(2003).

ICMBio, Chico Mendes Institute for Biodiversity Conservation, [Management plan of Campos Amazonicos
National Park]. ICMBIO/MMA, Brasilia, Brazil, (2016).

Oliveira-Filho, A. T., and Ratter, J. A., “Vegetation physiognomies and woody flora of the cerrado biome.” The
cerrados of Brazil: ecology and natural history of a neotropical savanna, Columbia University Press, New York,
USA. 91-120 (2002).

Marengo. J. A.. Nobre, C. A., Tomasella, J. ef al., “The drought of Amazonia in 2005,” Journal of Climate,
21(3). 495-516 (2008).

Motta, P. E., Curi, N., and Franzmeier, D. P., “Relation of soils and geomorphic surfaces in the Brazilian
Cerrado.” The cerrados of Brazil: ecology and natural history of a neotropical savanna, Columbia University
Press. New York. USA, 13-32 (2002).

Alves, D. B., and Pérez-Cabello. F., “Multiple remote sensing data sources to assess spatio-temporal patterns of
fire incidence over Campos Amazonicos Savanna Vegetation Enclave (Brazilian Amazon),” Science of The
Total Environment, 601, 142-158 (2017).

Dematté. J. A. M., and Da Silva Terra, F., “Spectral pedology: A new perspective on evaluation of soils along
pedogenetic alterations.” Geoderma, 217-218(0). 190-200 (2014).

Tenenhaus,M., [La régression PLS: théorie et pratique| Editions Technip, Paris, France, (1998).

Wold, S., Sjostrom, M., and Eriksson, L., “PLS-regression: a basic tool of chemometrics,” Chemometrics and
intelligent laboratory systems, 58(2). 109-130 (2001).

Kooistra, L., Wanders. J., Epema. G. F. ef al., “The potential of field spectroscopy for the assessment of
sediment properties in river floodplains,” Analytica Chimica Acta, 484(2), 189-200 (2003).

Proc. of SPIE Vol. 10421 104210V-6

109



CHAPTER 8. Modeling soil organic matter and texture from satellite data

[19] Viscarra Rossel. R. A., McGlynn, R. N., and McBratney, A. B., “Determining the composition of mineral-
organic mixes using UV-vis—NIR diffuse reflectance spectroscopy.” Geoderma, 137(1-2), 70-82 (2006).

[20] Magidson. J.. “Correlated component regression: Re-thinking regression in the presence of near collinearity,”
New perspectives in partial least squares and related methods. Springer, New York, USA, 65-78 (2013).

[21] Stoner, E. R., and Baumgardner, M., “Characteristic variations in reflectance of surface soils.” Soil Science
Society of America Journal, 45(6), 1161-1165 (1981).

[22] Hunt, G. R., and Salisbury, J. W., “Visible and near infrared spectra of minerals and rocks. II. Carbonates.”
Modern Geology, 2. 23-30 (1971).

[23] Ge, Y.. Thomasson, J. A., and Sui, R.. “Remote sensing of soil properties in precision agriculture: A review.”
Frontiers of Earth Science, 5(3), 229-238 (2011).

[24] Ben-Dor, E., Irons, J. R., and Epema, G. F.. [Soil reflectance]. John Wiley & Sons, New York. USA, (1999).

Proc. of SPIE Vol. 10421 104210V-7

110



CHAPTER 9. Conclusions and future research

9. Conclusions and future research

This study deals with application of soil spectroscopy in VIS-NIR-SWIR (400-
2500nm) spectral regions for estimation of organic matter (SOM) content and texture
(percent of sand, silt and clay) of soils which suffered from anthropogenic disturbances
(controlled agricultural burning and cropland abandonment) and wildfires. It uses soil
samples collected at different locations: areas affected by wildfires in Campos
Amazonicos National Park in Brazil, areas of agricultural burns in Mocache district on
Ecuadorian coast, and burns and abandoned croplands in Aragon (Spain), the latter

being the data source. The main findings of this research are presented below.

During last decades in a great number of publications present proximal soil sensing
as a relatively low cost technology for estimation of soil properties in controlled
laboratory conditions using different commercially available accessories. However, at
present there is no consensus on which experimental setup, the accessories and the
protocol are the most suitable for each particular situation. In this context, the study
compared laboratory setups with different spectroscopic accessories applied for soil
spectral measurements: (1) integrating sphere in the setup IS; (2) ASD illuminating
sphere and pistol grip in the setup L; and (3) contact probe in the setup CP. The results
demonstrated that:

- The highest reflectance values correspond to the setup CP and the lowest to the
setup IS.

- Spectral curves obtained with setup CP are characterized by greater stability
and show lower coefficients of variation compared to other setups.

- Soil spectra obtained with setup IS show considerable noise at wavelengths less
than 400 nm and wavelengths greater than 2300 nm.

- Application of soil spectra in development of predictive models with standard
method of partial least squares regression (PLSR) yielded the best results
produced with the L setup. The differences between estimations realized with
the models based on data obtained with different laboratory setups were up to

119% for calibration models and 8% for validation models.

Because of good results obtained with setup L, it was considered to be the optimum

configuration for spectral measurements of soils from the areas of study.
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The determination of the most appropriate statistical method for modeling of soil
organic matter content and texture was approached through comparison of the following
methods: (i) partial least squares regression using the full range of available reflectances
as predictors (PLSR-full); (ii) partial least squares regression using as predictors the
bands selected by Martens uncertainty test (PLSR-MUT); as well as a n novel statistical
method of (c) correlated components regression with step-down variable selection
algorithm (CCR-SD). In general terms, all statistical approaches were capable of
generating good quality models (R*> 0.7), especially in case of organic matter (R*>
0.8). Models created using CCR-SD demonstrated the best predictive capacity
estimating organic matter content, clay, silt and sand at calibration and validation stages
(R? in the range of 0.80-0.86 and 0.70-0.87, respectively). Besides good fit, CCR-SD
models stand out for their parsimony, i.e. they are capable of achieving parameters/soil
properties with the same or better precision as other methods employing fewer

predictors.

Analysis of soil properties estimations allowed the identification of certain patterns
in their spectral behavior. For soils analyzed in this study, the spectral regions
particularly important for SOM predictions include 500-550, 750-830, 850-930, 1000—
1050, 1500-1550, 1800-1910, 2200-2230, 2260-2280 and 2310-2360 nm, with
reflectance levels affected mainly by the presence of water and C-O, C=0, and N-H
links in organic molecules. On the other hand, although absorption features related to
clay minerals appeared masked by the spectral influence of the relatively high organic
matter content in the analyzed soil samples, the highest coefficients in clay models
correspond to the bands related to kaolinite (1395, 1414 and 2205 nm) and illite (1414,
2205 and 2300-2340 nm).

Finally, laboratory analysis of VIS-NIR-SWIR spectra confirmed high potential of
three last generation satellites (Landsat-8, Sentinel-2 and EndMAP) in estimation of
organic matter content and texture of analyzed soils. It was observed that apart from
location of the satellite reflectance bands within the electromagnetic spectrum, the
predictive capacity of the model is related to the number of available predictors. Hence,
greater number of bands in EnMAP images is one of the factors explaining higher
predictive capacity of corresponding models. The results of this research demonstrate
that SOM and sand models based on Landsat-8 data present the highest coefficients for

the bands in visible and SWIR spectral regions; whereas predictions based on Sentinel-2
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reflectances contain the highest coefficients for the Vegetation Red Edge bands (B5, B6,
and B7).

Considering the results of the present research further advances in development of
statistical models estimating soil properties is deemed of great importance. The arising
research lines could include incorporation of reflectance normalization with ISS
(Internal soil standard) suggested by Pimstein et al. (2011) and Ben-Dor et al. (2015) in
the soil spectral measurements procedure; mapping of soil properties from hyperspectral
images; and wider integration of soil spectroscopy in work on other research topics in
the frame of evaluation of consequences of forest fires other land cover/land use change

processes.
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10. Conclusiones y trabajos futuros

La presente tesis doctoral se ha centrado en la aplicacion de técnicas de
espectroscopia de suelos, regiones VIS-NIR-SWIR (400-2500nm), para la estimacion
del contenido de materia organica (CMO) y textura (porcentajes de arenas, limos y
arcillas) en suelos que han sufrido alteraciones de origen antropogénico (quemas
agricolas, abandono de la superficie cultivable) o incendios forestales. Se han utilizado
muestras de suelos procedentes de diferentes localizaciones: &reas afectadas por
incendios forestales en el Parque Nacional de Campos Amazonicos en Brasil, &reas de
quemas agricolas en el canton Mocache en la costa del Ecuador, areas correspondientes
a zonas quemadas y de abandono de cultivos en Aragon (Espafia), siendo esta ultima la
zona principal en cuanto a suministro de muestras. Los principales hallazgos de este

trabajo de investigacion se exponen en los siguientes parrafos.

En las ultimas décadas, se han publicado numerosos trabajos en los que la
espectroscopia de suelos se presenta como una técnica de relativo bajo coste, para
realizar estimaciones de propiedades edéaficas en condiciones controladas de laboratorio,
mediante el uso de diferentes accesorios disponibles en el mercado. Sin embargo, no
hay consenso sobre la configuracién experimental, los accesorios mas adecuados vy el
protocolo de mediciones éptimo para cada situacion particular. En este contexto, se
compararon diferentes configuraciones y accesorios de espectroscopia: (1) esfera
integradora en la configuraciéon —IS-; (2) lampara halégena de ASD y empufiadura de
tipo pistola para la fibra Optica en la configuracion experimental —L-; y (3) sonda de
contacto en la configuracion experimental —CP-. Los resultados demostraron que:

Los valores mas altos corresponden a la configuraciéon con CP y los méas bajos a

la configuracion IS.

— Las curvas espectrales obtenidas con la configuracion CP se caracterizan por una
mayor estabilidad, mostrando los coeficientes de variacion més bajos

— Los espectros obtenidos con la configuracién IS muestran un considerable ruido
en longitudes de onda inferiores a 400nm y longitudes de onda superiores a
2300nm.

— La aplicacion de los espectros con una finalidad predictiva mediante el método

estandar de regresion parcial por minimos cuadrados (PLSR) arroj6 los mejores

resultados con la configuracion L. Las diferencias entre estimaciones realizados
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por modelos que usaron los datos de diferentes configuraciones fueron ~11%

para los modelos de calibracion y del ~8% para los modelos de validacion.

Dados los buenos resultados de la Lampara halégena (L), esta fue la configuracion
considerada como Optima para la adquisicion de los espectros VIS-NIR-SWIR de los

suelos en las areas de estudio.

En relacion con la identificacion del método estadistico mas adecuado para la
modelacion del contenido de la materia organica y textura se compararon los siguientes
métodos: (i) regresion parcial por minimos cuadrados usando todas las bandas de
reflectancia disponibles como predictores (PLSR-full), (ii) regresion parcial por
minimos cuadrados usando como predictores las bandas seleccionadas con la prueba de
incertidumbre de Martens (PLSR-MUT), asi como un método de modelamiento
estadistico novedoso de (iii) regresion de las componentes correlacionadas y el
algoritmo iterativo para la seleccién de los predictores (CCR-SD). En términos
generales, todos los enfoques estadisticos fueron capaces de generar modelos de buena
calidad (R*>> 0.7), especialmente en el caso de la materia organica (R*> 0.8). Los
modelos creados con CCR-SD demostraron la mejor capacidad predictiva al estimar
CMO, arcilla, limo y arena en las etapas de calibracién y validacion (R? en el rango de
0.80-0.86 y 0.70-0.87, respectivamente). Ademas de buen ajuste, los modelos CCR-SD
se destacan por su parsimonia, es decir, crean modelos capaces de estimar los
parametros/propiedades de suelo con igual o mejor precision que otros métodos

empleando un nimero menor de predictores.

El andlisis de las estimaciones de las propiedades edaficas permitio identificar
algunos patrones en su comportamiento espectral. Para los suelos analizados en este
trabajo, las regiones espectrales particularmente importantes para predicciones de CMO
incluyen 500-550, 750-830, 850-930, 1000-1050, 1500-1550, 1800-1910, 2200-2230,
2260-2280 y 2310-2360 nm con niveles de reflectividad afectados principalmente por
la presencia de agua y los enlaces C-O, C=0, y N-H en las moléculas organicas. Por
otro lado, aunque los rasgos de absorcion caracteristicos para los minerales de arcilla
resultan enmascarados por la influencia espectral del relativamente alto contenido de
materia organica en las muestras analizadas, los coeficientes mas altos en los modelos
de arcilla corresponden a las bandas relacionadas con caolinita (1395, 1414, and 2205
nm) e illita (1414, 2205, 2300-2340 nm).
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Finalmente, el analisis en laboratorio de los espectros (VIS-NIR-SWIR) confirma el
alto potencial de tres satélites de ultima generacion (Landsat-8, Sentinel-2 y EnMAP) en
la estimacion del contenido de materia organica y la textura de los suelos analizados. Se
comprobd que, ademéas de la ubicacion de las bandas de reflectividad dentro del
espectro electromagnetico, la capacidad predictiva de los modelos esta relacionada con
la cantidad de predictores disponibles. En este sentido, el elevado nimero de bandas en
las iméagenes de EnMAP, se relaciona con una mayor capacidad predictiva en los
modelos correspondientes. Los resultados de la investigacion demuestran, que los
modelos de CMO y de arena basados en los datos de Landsat-8 presentan los
coeficientes més altos para las bandas en las regiones espectrales del visible y SWIR,
mientras que las predicciones basadas en Sentinel-2 contienen los coeficientes mas altos
para las bandas de Vegetation Red Edge (B5, B6, y B7).

A partir de los resultados de esta tesis se considera necesario seguir avanzando en el
desarrollo de modelos de calibracion de las propiedades edéaficas. Estos avances podrian
ir en la linea de integrar estandares de reflectividad del suelo (ISS -InternalSoil
Standard) como sugieren Pimstein et al. (2011) y Ben-Dor et al. (2015); explorar el
desarrollo de productos cartograficos sobre propiedades edaficas a partir de imagenes
hiperespectrales; y amplificar la integracion de la espectroscopia de suelos en trabajos
sobre nuevos objetivos tematicos en el marco de las consecuencias de los incendios

forestales y los cambios de usos del suelo.
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