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In this paper we introduce the sequential precedence test for testing the equality of two con-

tinuous distribution functions, against the stochastically ordered alternative. This procedure

replaces the classical precedence test, used in life-testing experiments, by a sequence of tests

which are applied at the failure times of one of the samples. This allows the possibility of

stopping the experiment earlier than the precedence test. By means of extensive Monte Carlo

simulations and real data, we show that the proposed methodology results in substantial

saving of experimental time and cost, without compromising in power. Algorithms for the

implementation of the sequential precedence test are included.
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1. Introduction

In life-testing experiments data naturally become available in an ordered fashion,

with the smallest observation coming first, the second smallest next, and so on.

This feature enables one to apply time-saving statistical procedures, wherein only
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early failures need to be observed. In this context, a classical problem is to test

for the equality of two continuous distributions, against the stochastically ordered

alternative; more specifically,

H0 : FX = FY vs. H1 : FX > FY . (1)

Precedence tests (PT) are distribution-free, two-sample tests, traditionally used

for testing the hypotheses in (1). They are known to be robust, easy to implement

and time/cost-efficient. Observe that continuity of the distributions is essential, as

otherwise PT would not be distribution-free.

PT are based on the number of observations from one sample that precede a spe-

cific order statistic from the other sample. The data from both samples is summa-

rized using the placement statisticsM1,M2, . . ., whereMi is the number ofX-values

between the (i−1)-th and the i-th Y -order statistics. PT are characterized by a pos-

itive integer parameter r, a critical value d and a function fr : N
r → R. The experi-

ment ends when the r-th Y -value is observed; H0 is rejected if fr(M1, . . . ,Mr) ≥ d.

If a given level α ∈ (0, 1) is specified, then d can be determined so as to make the

size of the test equal (or as close as possible) to α.

A well-known example is the classical PT, with fr(m1, . . . ,mr) =
∑r

i=1mi, first

introduced in [1], based on the exceedance test of [2]. The classical PT has many

interesting features but suffers from a tendency to lose power as r increases, for

some distributions. This undesirable peculiarity, which can be interpreted as a

masking phenomenon, motivated the introduction of the maximal PT in [3] , with

fr(m1, . . . ,mr) = max{m1, . . . ,mr}. Later, the Wilcoxon-type rank-sum PT and

other natural extensions of the classical and the maximal PT were introduced;

see [4, 5]. More recent developments on the theory and applications of PT can be

found in [6], [7] and [8]. The interested reader is referred to the monograph [9],

for a thorough discussion of properties of PT and extensive bibliography on the

subject.

PT are acknowledged as efficient because they allow to reach a conclusion using

relatively few experimental units. In some cases, reducing the number of experi-

mental units is an important ethical or economical issue that has to be addressed.
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Our aim is to contribute in this direction by introducing a more cost-efficient

sequential-like PT.

A natural measure of efficiency for PT is the user-defined parameter r, which is

the number of placement statistics to be observed before coming to a conclusion.

In practice, however, a decision could be made earlier if at some stage of the

experiment we anticipate that H0 will be rejected. For instance, suppose we have

observed M1, . . . ,Mi. Then, if fr(M1, . . . ,Mi,mi+1, . . . ,mr) ≥ d, for all possible

values mi+1, . . . ,mr of the, so far unobserved, placement statistics Mi+1, . . . ,Mr,

the experiment can be terminated at that point by rejecting H0. So in fact, a PT

can terminate at a random index less than r and the number of experimental units

be reduced.

Inspired by the observation above we propose to define a flexible sequential-like

PT, resulting in more efficiency and better or comparable power with respect to

standard PT. The idea consists in applying a sequence of PTs, as the placement

statistics M1,M2, . . . become available, and stopping the experiment at the first

rejection of H0. We call such procedure sequential precedence test (SPT). Precise

definitions are in Section 2.

It is of interest to mention that our proposal is close in spirit to the sequential

monitoring of clinical trials, now a standard practice; see, for example, [10] and

[11].

By means of extensive Monte Carlo simulations and real data, we focus on show-

ing that the proposed methodology is advantageous because, in exchange of a

slightly more complex implementation, it is more efficient than standard PT. The

empirical results support the foregoing claim and allow us to recommend the use

of SPT in place of PT.

The rest of the paper is organized as follows. In Section 2 we introduce the nota-

tion, give formal definitions and discuss the practical implementation of the tests.

Section 3 is dedicated to numerically assess the performance of our methodology,

using massive simulation and real data. Results are presented in a series of ta-

bles. Concluding remarks are made in Section 4. Finally, the Appendix contains

descriptions of the algorithms used in the implementation of the tests, presented

in pseudocode style, which could be useful to anyone wishing to analyze their own
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data.

2. Preliminaries and Definitions

Let X1, . . . , Xn1
and Y1, . . . , Yn2

be two mutually independent, iid random samples

from continuous distributions FX and FY , respectively, and letX1:n1
≤ · · · ≤ Xn1:n1

and Y1:n2
≤ · · · ≤ Yn2:n2

be their corresponding order statistics. The placement

statistics M1, . . . ,Mn2
are defined as

Mi = #{j | Yi−1:n2
< Xj ≤ Yi:n2

}, i = 1, . . . , n2, (2)

where #{·} denotes the cardinality of {·} and Y0:n2
= −∞ by convention.

We present below a formal definition of PT. To that end we introduce the notion

of test-vector as a vector of functions f = (f1, . . . , fn2
), whose components fi :

N
i → R, i = 1, . . . , n2, are called test-functions. The set of possible values of

(M1, . . . ,Mi) is denoted by

Mi = {(m1, . . . ,mi) ∈ N
i :

i∑
j=1

mj ≤ n1}. (3)

Probability and expectation under Hi are denoted by Pi and Ei, respectively, for

i = 0, 1.

2.1. Precedence test

Definition 2.1: Let r ≤ n2 be a positive integer, d ∈ R and f = (f1, . . . , fn2
) a

test-vector. The PT with placement number r, test-vector f and critical value d

(referred to as (r,f , d)-PT) has its rejection region as

R = {(m1, . . . ,mr) ∈ Mr : fr(m1, . . . ,mr) ≥ d}.

In practice d is determined so that the size P0[R] is as close to α ∈ (0, 1) (from
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Table 1. Test-vectors.

Name i-th component

f1 Classical precedence f1
i =

∑i
j=1 mj

f2 Maximum f2
i = max{m1, . . . ,mi}

f3 Wilcoxon-type Wmin f3
i = −(n1(n1 + 2i+ 1)/2−∑i

j=1(i+ 1− j)mj)

f4 Wilcoxon-type Wmax f4
i = −(n1(n1 + 2n2 + 1)/2−∑i

j=1(n2 + 1− j)mj)

f5 Wilcoxon-type WE f5
i = (f3

i + f4
i )/2

f6 Young’s f6
i = max1≤l≤i

{∑l
j=1 mj − (l − 1)

}

f7 Modified Young’s f7
i = max1≤l≤i

{∑l
j=1 mj −

⌊
l n1
n2+1

⌋}

f8 Wilcoxon-type Wmix f8
i = f3

i if i ≤ �r/2�; f4
i if i > �r/2�

below) as possible, that is, the critical value is calculated as

dα = min{d : P0[f(M1, . . . ,Mr) ≥ d] ≤ α}. (4)

Observe that P0 is distribution-free, in the sense of being independent of the specific

form of FX(= FY ). So, dα in (4) can be easily calculated from the null joint

probability function of M1, . . . ,Mi, given in page 62 of [9] as

P0[M1 = m1, . . . ,Mi = mi] =

(n1+n2−∑i
j=1 mj−i

n2−i

)
(
n1+n2

n2

) , (5)

for (m1, . . . ,mi) ∈ Mi, i = 1, . . . , r.

Observe also that R only depends on the r-th component of the test-vector and

so it is unnecessary to use a test-vector to characterize the PT. However, we prefer

to express it in vector form so that PT is a particular case of SPT, defined below.

We present in Table 1 the test-vectors f1, . . . ,f8 to be considered in this paper.

In the first column we list their names and in the second, their i-th component.

We have included functions which are well known and/or have good performance,

as reported in the literature; see [9].

The first five test-vectors (functions) in Table 1 have been analyzed in great detail

in [9]. Observe that, in contrast to the cited reference, f3 and f4 are expressed

here with a leading negative sign in order to have a rejection region of the form

f j
r (·) ≥ d.

Young’s statistic f6 was used by Little in [12] with the purpose of making early
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decisions in a PT. The statistic originally defined by Young is the instantaneous

difference between the number of X-values and the number of Y -values and Little

proposed to reject H0 the first time that Young’s statistic attains a critical level

d (before the r-th Y -value). Although this test is not formally PT (since it may

reject the null hypothesis before r), the rejection region is exactly that of PT, with

test-vector f6. Vector f7 is a slight modification of Young’s statistic where, instead

of subtracting l− 1 from
∑l

j=1mj , we subtract E0[
∑l

j=1Mj ] = ln1/(n2 + 1). The

test-vector f8 is a sort of mixture between f3 and f4, defined by f8
i = f3

i if

i ≤ �r/2� and f8
i = f4

i if i > �r/2�.

2.1.1. Stopping time of PT

In the naive implementation of PT the experiment always ends when the r-th

placement statistic is observed. As commented in the Introduction, this can be

significantly improved by anticipating that H0 will be rejected. After observing

each placement statistic, the evidence is evaluated to see if H0 will be rejected

later. This idea is formalized in Definition 2.2.

Let, for 1 ≤ i < j ≤ r,

Mij =
{
(mi+1, . . . ,mj) ∈ N

j−i :

i∑
l=1

Ml +

j∑
l=i+1

ml ≤ n1

}

be the (random) set of possible values of (Mi+1, . . . ,Mj), given M1, . . . ,Mi, and

let also, for 1 ≤ i ≤ r − 1,

μi(M1, . . . ,Mi) = min{fr(M1, . . . ,Mi,mi+1, . . . ,mr) : (mi+1, . . . ,mr) ∈ Mir},

with μr(M1, . . . ,Mr) = fr(M1, . . . ,Mr).

Definition 2.2: The stopping time of the (r,f , d)-PT is defined by

T = min{1 ≤ i ≤ r : μi(M1, . . . ,Mi) ≥ d},

if μi ≥ d, for some i = 1, . . . , r, and by T = r otherwise.
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2.1.2. Increasing test-functions

Definition 2.3: A test-function fi : Mi → R is said to be increasing if fi is a

non-decreasing function in each of its arguments.

The importance of this property is the simplification it brings to checking

the condition μi(M1, . . . ,Mi) ≥ d. Indeed, for increasing fr, μi(M1, . . . ,Mi) =

fr(M1, . . . ,Mi, 0, . . . , 0). Although test-functions need not be increasing, a “rea-

sonable” PT has test-vector with increasing functions since it should be easier to

reject H0 when larger values of M1, . . . ,Mr are observed. This is indeed the case

of vectors in Table 1.

2.2. Sequential precedence test

We introduce the sequential precedence test (SPT) as a more efficient alternative

to PT.

Definition 2.4: Let r ≤ n2 be a positive integer, d = (d1, . . . , dr) ∈ R
r and

f = (f1, . . . , fn2
) a test-vector. The SPT with placement number r, test-vector f

and critical vector d (referred to as (r,f ,d)-SPT) has its rejection region as

Rs = {(m1, . . . ,mr) ∈ Mr : fi(m1, . . . ,mi) ≥ di, for some i = 1, . . . , r}.

Given α ∈ (0, 1), the critical vector d should be determined so that the size of the

test is closest to α ∈ (0, 1) (from below) but, contrary to standard PT, no simple

solution exists in this multidimensional setting. We present below a strategy based

on α-spending sequences, similar to α-spending functions of clinical trials. Here

again, as we deal with placement statistics under H0, the null joint probability

function in (5) can be made use of.

Observe that the (r,f , d)-PT is identical to the (r,f ,d)-SPT with dr = d and

d1, . . . , dr−1 large enough so that

P0[fi(M1, . . . ,Mi) ≥ di] = 0, i = 1, . . . , r − 1.
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This suggests that any PT can be improved, in terms of power and/or cost-

efficiency, by a suitably chosen SPT.

2.2.1. Stopping time of SPT

The stopping time of the (r,f ,d)-SPT is the (random) index at which the ex-

periment terminates with a decision. This can be initially interpreted as min{1 ≤
i ≤ r : fi(M1, . . . ,Mi) ≥ di} if H0 is rejected, and T = r otherwise. But, as we

did for PT, we can examine the available information to see if H0 will be rejected

later on. So, even if fj(M1, . . . ,Mj) < dj for j = 1, . . . , i, H0 should be rejected at

stage i if we foresee that, for some k > i, fk(M1, . . . ,Mk) ≥ dk. More formally, for

1 ≤ i < j ≤ r, let

μij(M1, . . . ,Mi) = min{fj(M1, . . . ,Mi,mi+1, . . . ,mj) : (mi+1, . . . ,mj) ∈ Mij}

and μii(M1, . . . ,Mi) = fi(M1, . . . ,Mi).

Definition 2.5: The stopping time of the (r,f ,d)-SPT is defined by

Ts = min{1 ≤ i ≤ r : μij(M1, . . . ,Mi) ≥ dj for some j ≥ i},

if H0 is rejected, and T = r otherwise.

As in the case of PT, the use of increasing test-functions fi greatly simplifies the

implementation of SPT since μij(M1, . . . ,Mi) = fj(M1, . . . ,Mi, 0, . . . , 0). Here-

inafter we assume that all test functions related to SPT are increasing.

2.2.2. α-spending sequence and critical values

We describe a procedure for calculating a vector of critical values in SPT, using

α-spending sequences.

Definition 2.6: For r ≤ n2 and α ∈ (0, 1), an α-spending sequence is a vector

α = (α1, . . . , αr) such that αi ≥ 0, for i = 1, . . . , r, and
∑r

i=1 αi = α.

Table 2 displays the α-spending sequences αj , j = 0, . . . , 4, to be considered later

in our study. Their names appear in the first column and describe the manner in

which the overall α is spent. The case α0 corresponds to the PT because α is
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Table 2. α-spending sequences.

Name Notation Components

Nonsequential α0 α0
1 = · · · = α0

r−1 = 0, α0
r = α

Constant α1 α1
i = α/r, i = 1, . . . , r

Linear increasing α2 α2
i = 2iα/(r(r + 1)), i = 1, . . . , r

Linear decreasing α3 α3
i = 2(r + 1− i)/(r(r + 1)), i = 1, . . . , r

Extreme bins α4 α4
1 = α/2, α4

2 = · · · = α4
r−1 = 0, α4

r = α/2

assigned entirely to the last stage.

We now inductively define a vector of critical values as follows.

Definition 2.7: For r ≤ n2, let α = (α1, . . . , αr) be an α-spending sequence

and f a test-vector. Define the critical vector dα = (d1α, . . . , drα) inductively as

follows. Let

d1α = min{d : P0[f1(M1) < d] ≥ 1− α1}.

Assume d1α, . . . , d(k−1)α given and define dkα as the least d such that

P0

[
k−1⋂
i=1

{fi(M1, . . . ,Mi) < diα}, fk(M1, . . . ,Mk) < d

]
≥ 1−

k∑
i=1

αi, (6)

for k = 2, . . . , r.

Observe that the (r,f ,dα)-SPT related to Definition 2.7 has level α. Observe

also that αi, which can be interpreted as the approximate size of the i-th test

differs from the actual probabilities α∗
i of incorrectly rejecting H0 at stage i but,

of course,
∑r

i=1 α
∗
i =

∑r
i=1 αi. Finally notice that, if α = (0, . . . , 0, α), then the

(r,f ,dα)-SPT and the (r,f , drα)-PT are equivalent.

There seems to be no efficient way of computing dα from a given α-spending

sequence if we require the α∗
i s to stay close to the αis. This difficulty has no

practical implication since the value of αi must only be understood as a guide. The

key point is to keep the size of the test close to but below α. In this respect, the

flexibility of SPT allows for the possibility of getting the size closer to the target

value α than PT.

The implementation of the (r,f ,dα)-SPT requires finding dα from f and α. This
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can be easily done by using Algorithm 2 (see Appendix), which calls Algorithm

1 for computing the probabilities in (6). Once these values are determined, the

implementation of the SPT is described in Algorithm 3.

3. Performance of SPT

We assess the performance of SPT over a wide range of sample sizes, placement

numbers, distributions, test-vectors and α-spending sequences. We adopt power

and efficiency as the primary criteria in our comparison, with the latter being

measured in terms of the expected stopping time of the test; see Definition 3.1

below. Recall that PT and SPT are the same test when α = (0, . . . , 0, α) and so,

comparisons between PT and SPT are included in our study.

Definition 3.1: Consider a SPT with rejection region Rs (Definition 2.4) and

stopping time Ts (Definition 2.5). Define

a) the power of the SPT by P1[Rs],

b) the expected stopping time by E1[Ts|Rs] and

c) the measure of relative efficiency by E1[Ts|Rs]/(r − 1).

Observe that the expected stopping time is calculated with respect to P1, condi-

tional on rejection. Observe also that the measure of relative efficiency is normalized

by r − 1 and not by r because the maximal efficiency gain is r − 1. Finally notice

that, unlike P0, P1 depends on both FX and FY and so, results concerning power

and efficiency, as defined above, are always conditional on the choice of FX and

FY .

The SPTs that we consider for evaluation have test-vectors and α-spending se-

quences as shown in Tables 1 and 2. This gives a total of 40 combinations, 32 of

which correspond to genuine SPT (with α1, . . . ,α4) while 8 are just PT (with α0).

We have selected 15 cases to illustrate the computations of the critical vector dα

and the size of the tests. These results, derived exactly from formula (5) (not from

simulation), are presented in Table 3. For α0 (corresponding to PT) only drα is

displayed.

For example, in the line corresponding to f1 and α4, under r = 5, α is spent
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Table 3. Critical vectors dα and sizes, for α = .05, n1 = 15, n2 = 20 and r = 5, 7.

r = 5 r = 7
Test-vectora α-SS dα = (d1α, . . . , d5α) Size dα = (d1α, . . . , d7α) Size

f1

α0 8 .045 10 .034
α1 5,6,7,8,9 .044 6,7,7,9,9,10,11 .040
α2 6,7,8,8,8 .047 7,8,8,9,9,10,10 .042
α3 5,6,7,8,9 .044 5,6,7,8,9,11,11 .049
α4 5,6,8,10,9 .035 5,6,8,10,11,12,11 .030

f3

α0 170 .047 184 .046
α1 130,141,151,161,170 .048 129,140,150,159,168,176,184 .048
α2 129,139,150,160,170 .047 128,138,148,158,167,176,184 .047
α3 130,141,152,161,169 .046 130,141,151,161,169,176,183 .050
α4 130,141,150,158,170 .048 130,141,150,158,165,170,183 .045

f7

α0 6 .030 6 .039
α1 5,5,5,6,6 .044 6,6,6,6,6,6,6 .039
α2 6,6,6,6,6 .030 7,7,7,7,7,6,6 .039
α3 5,5,5,6,6 .044 5,5,5,6,6,7,7 .046
α4 5,5,6,8,6 .040 5,5,6,8,8,8,6 .048

aCritical values for f3 (Wmin) must be taken with a negative sign.

Table 4. Distributions FX , FY : U [0, 1] = uniform on [0, 1], Exp(1) = stan-

dard exponential, Gamma(1, 5) = gamma with scale, shape parameters 1,5,

N(0, 1) = standard normal, LN(0, 0.5) = lognormal with parameters 0, 0.5,

Beta(a, b) = beta with parameters a, b.

FX FY

Lehmann Type I Exp(1) F 3
X(·)

Shifted Exponential Exp(1) FX(· − 0.5)

Shifted Gamma Gamma(1, 5) FX(· − 0.5)

Shifted Normal N(0, 1) FX(· − 0.5)

Shifted Lognormal LN(0, 0.5) FX(· − 0.5)

Shifted Uniform U [0, 1] FX(· − 0.5)

Reshaped Beta Beta(1, 2) 1− FX(1− ·) = Beta(2, 1)

Lehmann Type II Exp(1) 1− (1− FX(·))2

half in the first stage and half in the last. The values 5, 6, 8, 10, 9 mean that H0 is

rejected in the first stage if M1 ≥ 5; in the second if M1 < 5 and M1 + M2 ≥ 6,

etc. Observe that, in spite of the value d4α = 10, H0 is to be rejected at stage 4 if

M1 + · · ·+M4 ≥ 9 because of the anticipative implementation of the test. Finally,

note that the size is 0.035, less than the target value 0.05. The lines corresponding

to α0 are standard PT and values there coincide with those reported in [9].

Our objective is to evaluate SPTs over an ample selection of distributions, so

that conclusions are useful for a range of applications. We have chosen to work

with pairs FX , FY shown in Table 4. The first five have been studied in [9], in the

context of PT, and we have added three more to extend the scope of the study.

Observe that in 5 out of 8 cases, the distribution FY is a shifted version of FX .
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Table 5. Power and expected stopping time, for n1 = 15, n2 = 20, r = 5 and α = 0.05.

f1 f3 f7

FX , FY α-SS Power EST Power EST Power EST

Lehmann Type I
α0 0.770 2.83 0.875 1.68 0.756 1.99
α1 0.832 1.60 0.877 1.63 0.832 1.60
α2 0.800 2.15 0.875 1.68 0.756 1.99

Shifted Exponential
α0 0.606 2.37 0.891 1.17 0.728 1.21
α1 0.858 1.07 0.897 1.14 0.858 1.07
α2 0.749 1.31 0.891 1.17 0.728 1.21

Shifted Gamma
α0 0.363 3.70 0.465 2.32 0.321 2.74
α1 0.407 2.15 0.469 2.22 0.407 2.15
α2 0.385 3.11 0.465 2.32 0.321 2.74

Shifted Normal
α0 0.292 3.94 0.306 2.63 0.240 3.20
α1 0.293 2.62 0.308 2.54 0.293 2.62
α2 0.302 3.57 0.306 2.63 0.240 3.20

Shifted Lognornal
α0 0.487 3.37 0.653 1.99 0.467 2.30
α1 0.578 1.79 0.659 1.89 0.578 1.79
α2 0.526 2.61 0.653 1.99 0.467 2.30

Shifted Uniform
α0 0.945 1.69 0.992 1.05 0.965 1.13
α1 0.986 1.04 0.992 1.04 0.986 1.04
α2 0.973 1.16 0.992 1.05 0.965 1.13

Reshaped Beta
α0 0.396 3.83 0.387 2.61 0.335 3.17
α1 0.389 2.65 0.389 2.54 0.389 2.65
α2 0.406 3.49 0.387 2.61 0.335 3.17

Lehmann Type II
α0 0.314 4.00 0.280 2.79 0.255 3.40
α1 0.294 2.90 0.281 2.72 0.294 2.90
α2 0.320 3.73 0.280 2.79 0.255 3.40

3.1. Results

While formula (5) is available to calculate P0[Rs], there is no closed-form expression

for the power P1[Rs], except in the case of Lehmann Type I and Type II distri-

butions. Further, no closed-form exists for the expected stopping time. Therefore,

we estimate these values by means of Monte Carlo simulations, where, for each

combination, a total of 105 runs were carried out.

3.1.1. Preliminary evaluation

We consider three test-vectors: f1 (classical precedence), f3 (Wmin) and f7

(modified Young’s). For the α-spending sequences, besides the baseline α0 of PT,

we take α1 (constant) and α2 (linear increasing); see Tables 1 and 2 for details.

The sample sizes are set as n1 = 15 and n2 = 20, and the placement number as

r = 5; other choices of n1, n2, r will be considered later on. Combining the above

settings with all pairs of distributions from Table 4, we have 72 cases in total. Table

5 presents the results, showing the estimates of power (under the heading Power)

and of the expected stopping time (under the heading EST).

As can be seen from Table 5, SPT outperforms PT in terms of both power and

early rejection. This is clearly seen for f1 while, for f3 and f7, the performance

of SPT is slightly better than that of PT, when using α1. On the other hand, PT
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and SPT perform as well when α2 is used.

3.1.2. Extended evaluation

We expand the scope by considering multiple choices, which define simulation

scenarios. A scenario is defined in terms of n1, n2, r and the distribution pair

FX , FY . Observe that r has to be chosen in accordance with n1 and n2 and, in this

respect, we follow [9]. Our choices, detailed below, yield a total of 96 scenarios.

• (n1, n2) ∈ {(10, 10), (10, 15), (15, 15), (15, 20)};
• r ∈ {3, 4, 5} if (n1, n2) ∈ {(10, 10), (10, 15), (15, 15)},
• r ∈ {3, 5, 7} if (n1, n2) = (15, 20);

• All pairs FX , FY from Table 4.

Within each scenario we use every test-vector f j , j = 1, . . . , 8, from Table 1, and

compare PT (related to α0) with SPT (related to α1, . . . ,α4). Thus, for each f j

we make 384 = 96× 4 comparisons.

3.1.3. Percentages

Results in terms of percentages are presented in Table 6, where each row is

associated with a test function, from f1 to f8. Column 1 displays the percentage

of the 384 comparisons where PT and SPT are identical; column 2 the percentage

of cases where the size of SPT is larger (closer to α) than that of PT; column 3

the percentage of cases where SPT has greater power than PT and column 4 the

percentage of cases where SPT has smaller expected stopping time (under H1) than

PT. Note that in columns 2, 3 and 4 percentages are calculated with respect to

the number of cases where PT and SPT differ. The computational implementation

leading to Table 6 is based on Algorithms 1, 2 and 3, shown in the Appendix.

Results in the first two columns are exact while those in the last two are estimated

by Monte Carlo simulations, with 105 runs for each case.

For the sake of illustration, in row 1, column 1, we read that PT and SPT are the

same test, in 2.08% of the instances, while in row 2, column 1 we see they coincide

70.83% of times. In column 4, rows 1, 3, 6 and 7, we find that, for test-vectors

f1,f3,f6 and f7, SPT rejects H0 earlier (on average) than PT, in 100% of cases.
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Table 6. Percentages.

Equal tests Greater size Higher power Earlier stop

f1 2.08 87.23 94.15 100
f2 70.83 92.86 97.32 96.43
f3 54.17 77.27 81.82 100
f4 2.08 76.60 82.18 98.94
f5 8.33 84.09 80.11 97.44
f6 64.58 94.12 95.59 100
f7 47.92 96.00 96.50 100
f8 0 62.50 79.17 99.22

Table 7. Power increase.

Min Q1 Med Q3 Max

f1 -0.065 0.039 0.073 0.136 0.479
f2 -0.030 0.057 0.099 0.156 0.241
f3 -0.029 0.001 0.006 0.015 0.098
f4 -0.041 0.003 0.019 0.042 0.259
f5 -0.037 0.002 0.013 0.029 0.193
f6 -0.068 0.033 0.066 0.107 0.276
f7 -0.068 0.033 0.057 0.096 0.276
f8 -0.050 0.002 0.026 0.056 0.282

3.1.4. Beyond percentages

We look at differences of power and efficiency by computing the increase (possibly

negative) of power and of relative efficiency of SPT with respect to PT. For each

test-vector f j , j = 1, . . . , 8, the power difference is calculated as the power of

SPT using αj , j = 1, . . . , 4, minus the power using α0 (actually, PT). In these

calculations we take into account only combinations (out of the 384 considered)

where PT and SPT are not equal. Analogously, the difference of relative efficiency

is obtained by subtracting the value related to α0 from the one related to αj , j =

1, . . . , 4.

In Tables 7 and 8, we display the minimumMin, the first quartile Q1, the median

Med, the third quartile Q3 and the maximum Max of the quantities described

above. For instance, the value 0.259 in row 4, column 5 of Table 7 means that,

among all combinations there is one where the difference between SPT and PT

in terms of power is 0.259, when f4 is used. Note that we summarize results

using order statistics, instead of averages and standard deviations, because of the

heterogeneity of the instances.

In Tables 6-8 we find that in most combinations where SPT and PT differ, SPT

has greater power and efficiency, which can be high in some cases. Even when

SPT has lower power, the difference is quite small and clearly compensated by the
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Table 8. Increase of relative efficiency.

Min Q1 Med Q3 Max

f1 3.21 22.97 31.29 39.72 69.09
f2 -0.57 0.41 3.68 8.92 17.66
f3 0.21 5.22 8.79 12.01 21.67
f4 -0.41 11.74 18.36 26.24 42.46
f5 -1.43 7.04 15.18 21.39 36.76
f6 1.13 7.39 9.89 12.50 18.95
f7 2.00 7.90 10.80 14.08 22.56
f8 -0.37 14.05 20.23 26.89 42.08

efficiency gain.

A few negative entries appear in the Min column of Table 8, which means that,

for some combinations, the expected stopping time increases. This is counterintu-

itive since SPT is designed to stop earlier than the PT. We believe this happens

mainly because SPT may reject H0 in the last stages, while PT does not reject H0,

thus shifting the stopping time of SPT to the right. Nevertheless, this phenomenon

is indeed rarely seen: out of 384 combinations (for each test vector) it only happens

in 4 of them, for f2 and f4; in 8, for f5, and in 3, for f8. It does not occur in any

combination for f1, f3, f6 and f7. Moreover, the negative values in Table 8 are

quite small (recall they are percentages) and this indicates that the unnormalized

values (differences of expected stopping times) are very close to 0, the maximum

being 0.043.

It is clear from Tables 6 and 8 that, in most cases, a decrease of the expected

stopping time is observed. Furthermore, an important reduction can be achieved

in the total number of placement statistics needed until rejection: medians range

from 3.68%, for f2, to 31.29%, for f1.

3.1.5. Optimal α-spending sequence

An important issue in our methodology is the proper choice of the α-spending

sequence. It is worth mentioning here that the analogous problem is also a matter

of discussion in the field of clinical trials but, to our knowledge, no clear answer

has emerged so far.

A guide for an optimal α-spending sequence is out of the scope of this paper. We

can expect such optimum to depend quite strongly on the shapes of FX or FY and

so, a universal and useful solution seems infeasible. Instead, we explore a simple

strategy, independent of FX or FY , whereby we define as optimal the α-spending
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Table 9. Percentages under optimal α-spending sequence.

Equal tests Greater size Higher power Earlier stop

f1 0 100 98.96 100
f2 41.67 100 100 92.86
f3 41.67 100 94.64 100
f4 0 83.33 83.33 98.96
f5 0 100 81.25 98.96
f6 41.67 100 100 100
f7 16.67 100 100 100
f8 0 83.33 80.21 98.96

Table 10. Power increase under optimal α-spending

sequence.

Min Q1 Med Q3 Max

f1 -0.012 0.054 0.094 0.161 0.458
f2 0.041 0.061 0.112 0.161 0.241
f3 -0.009 0.006 0.014 0.027 0.095
f4 -0.041 0.004 0.027 0.051 0.231
f5 -0.037 0.004 0.015 0.038 0.187
f6 0.022 0.040 0.081 0.119 0.221
f7 0.014 0.040 0.068 0.105 0.221
f8 -0.050 0.003 0.031 0.070 0.282

Table 11. Increase of relative efficiency using opti-

mal α-spending sequence.

Min Q1 Med Q3 Max

f1 3.21 25.84 34.46 41.47 68.93
f2 -0.57 0.30 3.17 8.24 11.35
f3 0.21 7.10 11.14 13.96 20.36
f4 -0.37 16.33 24.29 30.07 41.03
f5 -0.37 12.60 20.90 24.82 36.76
f6 1.13 7.22 9.62 11.03 14.70
f7 2.00 7.80 10.13 13.01 22.56
f8 -0.37 15.36 23.00 29.44 40.84

sequence leading to a test with largest size.

We have implemented this procedure on the combinations considered above.

Recall that we have 384 for each test-vector, which correspond to 96 possibilities

of (n1, n2, r) and FX , FY , for every α-spending sequence α1, . . . ,α4. In each of

the 96 combinations, we choose α∗ (among α1, . . . ,α4) such that the size of the

corresponding test is closest to α = 0.05. Table 9 (with the same structure of Table

6) presents percentages of better performance of SPT, when α∗ is used. Tables 10

and 11 show results analogous to those in Tables 7 and 8, respectively.

Results in Tables 9-11 show an improvement, especially in terms of power, over

those in Tables 6-8, indicating that the suggested choice of spending sequence is

quite reasonable. Observe in the third column of Table 9 that power increases (with

respect to PT) from 80% to 100% of cases, depending on the test-vector. Also, from

Table 10, we learn that the median of power increase ranges from 0.014 to 0.112.
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Table 12. Performace on Nelson’s data, with n1 = n2 =

10, r = 6 and α = 0.05.

α0 α1 α2 α3 α4 α∗

f1 (–, 0.016) – 1 – – (–, 0.050)
f2 (–, 0.032) – 1 – – (1, 0.043)
f3 (4, 0.045) 4 1 4 1 (1, 0.050)
f4 (6, 0.049) 6 1 6 6 (6, 0.050)
f5 (6, 0.049) 6 1 6 6 (6, 0.050)
f6 (–, 0.026) – 1 – – (1, 0.035)
f7 (–, 0.026) – 1 – – (1, 0.035)
f8 (6, 0.049) 4 1 6 1 (1, 0.049)

3.1.6. Real data

We close with a performance study of SPT on real data. The data were taken

from Nelson’s book [13] and correspond to times to insulating fluid breakdown. See

pages 58, 99 and 172 in [9] where these data were used to analyze the performance

of PT. The sample sizes are n1 = n2 = 10; for the placement number, as in [9], we

take r = 6 and the level is set to α = 0.05. The observed values of the placement

statistics are

(M1, . . . ,M6) = (5, 0, 0, 2, 0, 2).

Results are displayed in Table 12, where rows correspond to test-vectors f j , j =

1, . . . , 8 and columns to α-spending sequences αj , j = 0, . . . , 4 and α∗, defined in

the previous paragraph. The first columns shows the performance of PT, in terms of

the stopping time and size (first and second values between parentheses). The last

column, associated to the optimal α-spending sequence, has the same description

as the first one. All other columns, for αj , j = 1, . . . , 4, show just the value of the

stopping time. Symbol – indicates that H0 was not rejected. For example, from

line 6 we learn that (nonsequential) Little’s test has a size of 0.026 and does not

reject H0. But, when α2 or α∗ are used, H0 is rejected (with stopping time 1) and,

for the latter, the size attains the value 0.035.

In the example with Nelson’s data we see that the size of SPT is closer to α than

PT. This leads to rejection of H0 by SPT in cases where PT, with size far from α,

does not reject. Also, a significant saving in experimental units is achieved.
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4. Concluding remarks

In light of the results obtained from simulation and real data, we see that SPT is

more efficient than PT in terms of saving experimental units. This saving is not

translated into a loss of power; on the contrary, since SPT has size closer to α

than PT, its power increases in most cases or shows a very small decrease, in a few

occasions. Moreover, SPT is easy to implement. We therefore conclude that SPT

is superior and should be preferred to PT in life-testing experiments.

It is worth noticing that PT have also been developed for testing hazard rate

ordering between two distributions; see, for example, [14, 15]. In this regard, it

would be of interest to explore the possibility of developing sequential-type versions

for these procedures.
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Appendix A. Algorithms

Algorithm A.1 Function prob region i
Require: n1, n2, f1, . . . , fi, d1, . . . , di
Ensure: P [f1(M1) < d1, f2(M1,M2) < d2, . . . , fi(M1, . . . ,Mi) < di | H0]

A ← 0
for all j1 = 0, . . . , n1 do

if f1(j1) < d1 then
for all j2 = 0, . . . , n1 − j1 do

if f2(j1, j2) < d2 then
· · ·
for all ji = 0, . . . , n1 − j1 − · · · − ji−1 do

if fi(j1, . . . , ji) < di then

s ← ∑i
l=1 jl

A ← A+
(
n1+n2−s−i

n2−i

)
/
(
n1+n2

n2

)
end if

end for
· · ·

end if
end for

end if
end for
RETURN A
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Algorithm A.2 Computation of critical values d1, . . . , dr
Require: n1, n2, f1, . . . , fr, α1, . . . , αr, x1, . . . , xr
Ensure: d1, . . . , dr

α′
1 ← α1

for all i = 2, . . . , r do
α′
i ← α′

i−1 + αi

end for
for all i = 1, . . . , r do

di ← xi + 1
while prob region i(d1, . . . , di) ≥ 1− α′

i do
di ← di − 1

end while
di ← di + 1

end for
RETURN d1, . . . , dr

Algorithm A.3 Test

Require: d1, . . . , dr,m1, . . . ,mr

Ensure: Decision, stopping time
for all i = 1, . . . , r do

for all j = i, . . . , r do
if fj(m1, . . . ,mi, 0, . . . , 0) ≥ dj then

ending-bin= i
RETURN “Reject H0”, stopping time

end if
end for

end for
ending-bin=r
RETURN “Do not reject H0”, stopping time


