000087543 001__ 87543
000087543 005__ 20230914083231.0
000087543 0247_ $$2doi$$a10.1039/c8cp07509c
000087543 0248_ $$2sideral$$a110844
000087543 037__ $$aART-2019-110844
000087543 041__ $$aeng
000087543 100__ $$0(orcid)0000-0001-6089-6126$$aMunárriz, J.$$uUniversidad de Zaragoza
000087543 245__ $$aA first step towards quantum energy potentials of electron pairs
000087543 260__ $$c2019
000087543 5060_ $$aAccess copy available to the general public$$fUnrestricted
000087543 5203_ $$aA first step towards the construction of a quantum force field for electron pairs in direct space is taken. Making use of topological tools (Interacting Quantum Atoms and the Electron Localisation Function), we have analysed the dependency of electron pairs electrostatic, kinetic and exchange-correlation energies upon bond stretching. Simple correlations were found, and can be explained with elementary models such as the homogeneous electron gas. The resulting energy model is applicable to various bonding regimes: from homopolar to highly polarized and even to non-conventional bonds. Overall, this is a fresh approach for developing real space-based force fields including an exchange-correlation term. It provides the relative weight of each of the contributions, showing that, in common Lewis structures, the exchange correlation contribution between electron pairs is negligible. However, our results reveal that classical approximations progressively fail for delocalised electrons, including lone pairs. This theoretical framework justifies the success of the classic Bond Charge Model (BCM) approach in solid state systems and sets the basis of its limits. Finally, this approach opens the door towards the development of quantitative rigorous energy models based on the ELF topology.
000087543 536__ $$9info:eu-repo/grantAgreement/ES/MCIU/CTQ2015-65790-P$$9info:eu-repo/grantAgreement/ES/MCIU/EST17-00161$$9info:eu-repo/grantAgreement/ES/MCIU/FPU14-06003$$9info:eu-repo/grantAgreement/ES/UZ-IBERCAJA-CAI/CB6-17
000087543 540__ $$9info:eu-repo/semantics/openAccess$$aAll rights reserved$$uhttp://www.europeana.eu/rights/rr-f/
000087543 590__ $$a3.43$$b2019
000087543 591__ $$aPHYSICS, ATOMIC, MOLECULAR & CHEMICAL$$b8 / 37 = 0.216$$c2019$$dQ1$$eT1
000087543 591__ $$aCHEMISTRY, PHYSICAL$$b66 / 159 = 0.415$$c2019$$dQ2$$eT2
000087543 592__ $$a1.143$$b2019
000087543 593__ $$aPhysics and Astronomy (miscellaneous)$$c2019$$dQ1
000087543 593__ $$aPhysical and Theoretical Chemistry$$c2019$$dQ1
000087543 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/acceptedVersion
000087543 700__ $$aLaplaza, R.
000087543 700__ $$aMartín Pendás, A.
000087543 700__ $$aContreras-García, J.
000087543 7102_ $$12012$$2755$$aUniversidad de Zaragoza$$bDpto. Química Física$$cÁrea Química Física
000087543 773__ $$g21, 8 (2019), 4215-4223$$pPhys. chem. chem. phys.$$tPHYSICAL CHEMISTRY CHEMICAL PHYSICS$$x1463-9076
000087543 8564_ $$s698432$$uhttps://zaguan.unizar.es/record/87543/files/texto_completo.pdf$$yPostprint
000087543 8564_ $$s549624$$uhttps://zaguan.unizar.es/record/87543/files/texto_completo.jpg?subformat=icon$$xicon$$yPostprint
000087543 909CO $$ooai:zaguan.unizar.es:87543$$particulos$$pdriver
000087543 951__ $$a2023-09-13-10:44:36
000087543 980__ $$aARTICLE