000087580 001__ 87580
000087580 005__ 20200716101539.0
000087580 0247_ $$2doi$$a10.1039/c9nr07365e
000087580 0248_ $$2sideral$$a115781
000087580 037__ $$aART-2019-115781
000087580 041__ $$aeng
000087580 100__ $$aPiquero-Zulaica, Ignacio
000087580 245__ $$aSurface state tunable energy and mass renormalization from homothetic quantum dot arrays
000087580 260__ $$c2019
000087580 5060_ $$aAccess copy available to the general public$$fUnrestricted
000087580 5203_ $$aQuantum dot arrays in the form of molecular nanoporous networks are renowned for modifying the electronic surface properties through quantum confinement. Here we show that, compared to the pristine surface state, the band bottom of the confined states can exhibit downward shifts accompanied by a lowering of the effective masses simultaneous to the appearance of tiny gaps at the Brillouin zone boundaries. We observed these effects by angle resolved photoemission for two self-Assembled homothetic (scalable) Co-coordinated metal-organic networks. Complementary scanning tunneling spectroscopy measurements confirmed these findings. Electron plane wave expansion simulations and density functional theory calculations provide insight into the nature of this phenomenon, which we assign to metal-organic overlayer-substrate interactions in the form of adatom-substrate hybridization. To date, the absence of the experimental band structure resulting from single metal adatom coordinated nanoporous networks has precluded the observation of the significant surface state renormalization reported here, which we infer to be general for low interacting and well-defined adatom arrays.
000087580 536__ $$9info:eu-repo/grantAgreement/EC/FP7/307760/EU/Tuning electronic surface properties by molecular patterning/SURFPRO$$9info:eu-repo/grantAgreement/ES/MINECO/FIS2016-75862-P$$9info:eu-repo/grantAgreement/ES/MINECO/MAT2016-78293-C6
000087580 540__ $$9info:eu-repo/semantics/openAccess$$aby-nc$$uhttp://creativecommons.org/licenses/by-nc/3.0/es/
000087580 590__ $$a6.895$$b2019
000087580 591__ $$aMATERIALS SCIENCE, MULTIDISCIPLINARY$$b50 / 314 = 0.159$$c2019$$dQ1$$eT1
000087580 591__ $$aNANOSCIENCE & NANOTECHNOLOGY$$b25 / 103 = 0.243$$c2019$$dQ1$$eT1
000087580 591__ $$aCHEMISTRY, MULTIDISCIPLINARY$$b28 / 177 = 0.158$$c2019$$dQ1$$eT1
000087580 591__ $$aPHYSICS, APPLIED$$b23 / 154 = 0.149$$c2019$$dQ1$$eT1
000087580 592__ $$a2.18$$b2019
000087580 593__ $$aNanoscience and Nanotechnology$$c2019$$dQ1
000087580 593__ $$aMaterials Science (miscellaneous)$$c2019$$dQ1
000087580 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000087580 700__ $$aLi, Jun
000087580 700__ $$aAbd El-Fattah, Zakaria M.
000087580 700__ $$aSolianyk, Leonid
000087580 700__ $$aGallardo, Iker
000087580 700__ $$aMonjas, Leticia
000087580 700__ $$aHirsch, Anna K.H.
000087580 700__ $$aArnau, Andrés
000087580 700__ $$aOrtega, J. Enrique
000087580 700__ $$aStöhr, M.
000087580 700__ $$0(orcid)0000-0003-2698-2543$$aLobo-Checa, Jorge$$uUniversidad de Zaragoza
000087580 7102_ $$12003$$2395$$aUniversidad de Zaragoza$$bDpto. Física Materia Condensa.$$cÁrea Física Materia Condensada
000087580 773__ $$g11, 48 (2019), 23132-23138$$pNanoscale$$tNanoscale$$x2040-3372
000087580 8564_ $$s15869814$$uhttps://zaguan.unizar.es/record/87580/files/texto_completo.pdf$$yVersión publicada
000087580 8564_ $$s115454$$uhttps://zaguan.unizar.es/record/87580/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000087580 909CO $$ooai:zaguan.unizar.es:87580$$particulos$$pdriver
000087580 951__ $$a2020-07-16-09:38:53
000087580 980__ $$aARTICLE