000087593 001__ 87593
000087593 005__ 20201130083156.0
000087593 0247_ $$2doi$$a10.3390/ijms20246203
000087593 0248_ $$2sideral$$a115804
000087593 037__ $$aART-2019-115804
000087593 041__ $$aeng
000087593 100__ $$aLeone, Piero
000087593 245__ $$aMutation of aspartate 238 in FAD synthase isoform 6 increases the specific activity by weakening the FAD binding
000087593 260__ $$c2019
000087593 5060_ $$aAccess copy available to the general public$$fUnrestricted
000087593 5203_ $$aFAD synthase (FADS, or FMN:ATP adenylyl transferase) coded by the FLAD1 gene is the last enzyme in the pathway of FAD synthesis. The mitochondrial isoform 1 and the cytosolic isoform 2 are characterized by the following two domains: the C-terminal PAPS domain (FADSy) performing FAD synthesis and pyrophosphorolysis; the N-terminal molybdopterin-binding domain (FADHy) performing a Co++ /K+-dependent FAD hydrolysis. Mutations in FLAD1 gene are responsible for riboflavin responsive and non-responsive multiple acyl-CoA dehydrogenases and combined respiratory chain deficiency. In patients harboring frameshift mutations, a shorter isoform (hFADS6) containing the sole FADSy domain is produced representing an emergency protein. With the aim to ameliorate its function we planned to obtain an engineered more efficient hFADS6. Thus, the D238A mutant, resembling the D181A FMNAT “supermutant” of C. glabrata, was overproduced and purified. Kinetic analysis of this enzyme highlighted a general increase of Km, while the kcat was two-fold higher than that of WT. The data suggest that the FAD synthesis rate can be increased. Additional modifications could be performed to further improve the synthesis of FAD. These results correlate with previous data produced in our laboratory, and point towards the following proposals (i) FAD release is the rate limiting step of the catalytic cycle and (ii) ATP and FMN binding sites are synergistically connected.
000087593 536__ $$9info:eu-repo/grantAgreement/ES/DGA/E35-17R$$9info:eu-repo/grantAgreement/ES/MINECO/BIO2016-75183-P
000087593 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/
000087593 590__ $$a4.556$$b2019
000087593 591__ $$aCHEMISTRY, MULTIDISCIPLINARY$$b48 / 177 = 0.271$$c2019$$dQ2$$eT1
000087593 591__ $$aBIOCHEMISTRY & MOLECULAR BIOLOGY$$b74 / 297 = 0.249$$c2019$$dQ1$$eT1
000087593 592__ $$a1.317$$b2019
000087593 593__ $$aMedicine (miscellaneous)$$c2019$$dQ1
000087593 593__ $$aPhysical and Theoretical Chemistry$$c2019$$dQ1
000087593 593__ $$aComputer Science Applications$$c2019$$dQ1
000087593 593__ $$aInorganic Chemistry$$c2019$$dQ1
000087593 593__ $$aSpectroscopy$$c2019$$dQ1
000087593 593__ $$aOrganic Chemistry$$c2019$$dQ1
000087593 593__ $$aMolecular Biology$$c2019$$dQ2
000087593 593__ $$aCatalysis$$c2019$$dQ2
000087593 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000087593 700__ $$aGalluccio, Michele
000087593 700__ $$aQuarta, Stefano
000087593 700__ $$0(orcid)0000-0002-6649-9153$$aAnoz-Carbonell, Ernesto$$uUniversidad de Zaragoza
000087593 700__ $$0(orcid)0000-0001-8743-0182$$aMedina, Milagros$$uUniversidad de Zaragoza
000087593 700__ $$aIndiveri, Cesare
000087593 700__ $$aBarile, Maria
000087593 7102_ $$11002$$2060$$aUniversidad de Zaragoza$$bDpto. Bioq.Biolog.Mol. Celular$$cÁrea Bioquímica y Biolog.Mole.
000087593 773__ $$g20, 24 (2019), 6203 [17 pp.]$$pInt. j. mol. sci.$$tInternational Journal of Molecular Sciences$$x1661-6596
000087593 8564_ $$s3269024$$uhttps://zaguan.unizar.es/record/87593/files/texto_completo.pdf$$yVersión publicada
000087593 8564_ $$s108494$$uhttps://zaguan.unizar.es/record/87593/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000087593 909CO $$ooai:zaguan.unizar.es:87593$$particulos$$pdriver
000087593 951__ $$a2020-11-30-07:58:07
000087593 980__ $$aARTICLE