000087600 001__ 87600
000087600 005__ 20230914083240.0
000087600 0247_ $$2doi$$a10.3390/app9235228
000087600 0248_ $$2sideral$$a115813
000087600 037__ $$aART-2019-115813
000087600 041__ $$aeng
000087600 100__ $$aSanz-Herrera, José A.
000087600 245__ $$aMultiscale characterisation of cortical bone tissue
000087600 260__ $$c2019
000087600 5060_ $$aAccess copy available to the general public$$fUnrestricted
000087600 5203_ $$aMultiscale analysis has become an attractive technique to predict the behaviour of materials whose microstructure strongly changes spatially or among samples, with that microstructure controlling the local constitutive behaviour. This is the case, for example, of most biological tissues-such as bone. Multiscale approaches not only allow, not only to better characterise the local behaviour, but also to predict the field-variable distributions (e.g., strains, stresses) at both scales (macro and micro) simultaneously. However, multiscale analysis usually lacks sufficient experimental feedback to demonstrate its validity. In this paper an experimental and numerical micromechanics analysis is developed with application to cortical bone. Displacement and strain fields are obtained across the microstructure by means of digital image correlation (DIC). The other mechanical variables are computed following the micromechanics theory. Special emphasis is given to the differences found in the different field variables between the micro- and macro-structures, which points out the need for this multiscale approach in cortical bone tissue. The obtained results are used to establish the basis of a multiscale methodology with application to the analysis of bone tissue mechanics at different spatial scales.
000087600 536__ $$9info:eu-repo/grantAgreement/ES/MICINN/PGC2018-097257-B-C31$$9info:eu-repo/grantAgreement/ES/MINECO/DPI2014-58233-P$$9info:eu-repo/grantAgreement/ES/MINECO/DPI2017-82501-P
000087600 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/
000087600 590__ $$a2.474$$b2019
000087600 591__ $$aPHYSICS, APPLIED$$b62 / 154 = 0.403$$c2019$$dQ2$$eT2
000087600 591__ $$aENGINEERING, MULTIDISCIPLINARY$$b32 / 91 = 0.352$$c2019$$dQ2$$eT2
000087600 591__ $$aCHEMISTRY, MULTIDISCIPLINARY$$b88 / 176 = 0.5$$c2019$$dQ2$$eT2
000087600 591__ $$aMATERIALS SCIENCE, MULTIDISCIPLINARY$$b161 / 314 = 0.513$$c2019$$dQ3$$eT2
000087600 592__ $$a0.418$$b2019
000087600 593__ $$aEngineering (miscellaneous)$$c2019$$dQ1
000087600 593__ $$aFluid Flow and Transfer Processes$$c2019$$dQ2
000087600 593__ $$aProcess Chemistry and Technology$$c2019$$dQ2
000087600 593__ $$aInstrumentation$$c2019$$dQ2
000087600 593__ $$aMaterials Science (miscellaneous)$$c2019$$dQ2
000087600 593__ $$aComputer Science Applications$$c2019$$dQ3
000087600 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000087600 700__ $$aMora-Macías, Juan
000087600 700__ $$aReina-Romo, Esther
000087600 700__ $$aDomínguez, Jaime
000087600 700__ $$0(orcid)0000-0001-8741-6452$$aDoblaré, Manuel$$uUniversidad de Zaragoza
000087600 7102_ $$15004$$2605$$aUniversidad de Zaragoza$$bDpto. Ingeniería Mecánica$$cÁrea Mec.Med.Cont. y Teor.Est.
000087600 773__ $$g9, 23 (2019), 5228 [17 pp.]$$pAppl. sci.$$tApplied Sciences (Switzerland)$$x2076-3417
000087600 8564_ $$s3063916$$uhttps://zaguan.unizar.es/record/87600/files/texto_completo.pdf$$yVersión publicada
000087600 8564_ $$s100450$$uhttps://zaguan.unizar.es/record/87600/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000087600 909CO $$ooai:zaguan.unizar.es:87600$$particulos$$pdriver
000087600 951__ $$a2023-09-13-10:48:01
000087600 980__ $$aARTICLE