Resumen: We present a way to derive a deformation of special relativistic kinematics (possible low-energy signal of a quantum theory of gravity) from the geometry of a maximally symmetric curved momentum space. The deformed kinematics is fixed (up to change of coordinates in the momentum variables) by the algebra of isometries of the metric in momentum space. In particular, the well-known example of ¿-Poincaré kinematics is obtained when one considers an isotropic metric in de Sitter momentum space such that translations are a subgroup of the isometry group, and for a Lorentz covariant algebra one gets the also well-known case of Snyder kinematics. We prove that our construction gives generically a relativistic kinematics and explain how it relates to previous attempts of connecting a deformed kinematics with a geometry in momentum space. Idioma: Inglés DOI: 10.1103/PhysRevD.100.104031 Año: 2019 Publicado en: Physical Review D 100, 10 (2019), 104031 1-10 ISSN: 2470-0010 Factor impacto JCR: 4.833 (2019) Categ. JCR: PHYSICS, PARTICLES & FIELDS rank: 6 / 29 = 0.207 (2019) - Q1 - T1 Categ. JCR: ASTRONOMY & ASTROPHYSICS rank: 16 / 68 = 0.235 (2019) - Q1 - T1 Factor impacto SCIMAGO: 1.664 - Physics and Astronomy (miscellaneous) (Q1)