000087674 001__ 87674
000087674 005__ 20200221144311.0
000087674 0247_ $$2doi$$a10.1088/0957-4484/27/28/285302
000087674 0248_ $$2sideral$$a95326
000087674 037__ $$aART-2016-95326
000087674 041__ $$aeng
000087674 100__ $$0(orcid)0000-0001-6771-6941$$aPablo-Navarro, Javier$$uUniversidad de Zaragoza
000087674 245__ $$aThree-dimensional core-shell ferromagnetic nanowires grown by focused electron beam induced deposition
000087674 260__ $$c2016
000087674 5060_ $$aAccess copy available to the general public$$fUnrestricted
000087674 5203_ $$aFunctional nanostructured materials often rely on the combination of more than one material to confer the desired functionality or an enhanced performance of the device. Here we report the procedure to create nanoscale heterostructured materials in the form of core-shell nanowires by focused electron beam induced deposition (FEBID) technologies. In our case, three-dimensional (3D) nanowires (<100 nm in diameter) with metallic ferromagnetic cores of Co- and Fe-FEBID have been grown and coated with a protective Pt-FEBID shell (ranging 10-20 nm in thickness) aimed to minimize the degradation of magnetic properties caused by the surface oxidation of the core to a non-ferromagnetic material. The structure, chemistry and magnetism of nanowire cores of Co and Fe have been characterized in Pt-coated and uncoated nanostructures to demonstrate that the morphology of the shell is conserved during Pt coating, the surface oxidation is suppressed or confined to the Pt layer, and the average magnetization of the core is strengthened up to 30%. The proposed approach paves the way to the fabrication of 3D FEBID nanostructures based on the smart alternate deposition of two or more materials combining different physical properties or added functionalities.
000087674 536__ $$9info:eu-repo/grantAgreement/ES/DGA/E26$$9info:eu-repo/grantAgreement/ES/MINECO/MAT2014-51982-C2
000087674 540__ $$9info:eu-repo/semantics/openAccess$$aby-nc-nd$$uhttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
000087674 590__ $$a3.44$$b2016
000087674 591__ $$aMATERIALS SCIENCE, MULTIDISCIPLINARY$$b59 / 275 = 0.215$$c2016$$dQ1$$eT1
000087674 591__ $$aPHYSICS, APPLIED$$b27 / 147 = 0.184$$c2016$$dQ1$$eT1
000087674 591__ $$aNANOSCIENCE & NANOTECHNOLOGY$$b34 / 87 = 0.391$$c2016$$dQ2$$eT2
000087674 592__ $$a1.339$$b2016
000087674 593__ $$aBioengineering$$c2016$$dQ1
000087674 593__ $$aChemistry (miscellaneous)$$c2016$$dQ1
000087674 593__ $$aElectrical and Electronic Engineering$$c2016$$dQ1
000087674 593__ $$aNanoscience and Nanotechnology$$c2016$$dQ1
000087674 593__ $$aMechanical Engineering$$c2016$$dQ1
000087674 593__ $$aMechanics of Materials$$c2016$$dQ1
000087674 593__ $$aMaterials Science (miscellaneous)$$c2016$$dQ1
000087674 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/acceptedVersion
000087674 700__ $$0(orcid)0000-0002-6761-6171$$aMagén, César$$uUniversidad de Zaragoza
000087674 700__ $$0(orcid)0000-0001-9566-0738$$aDe Teresa, José María$$uUniversidad de Zaragoza
000087674 7102_ $$15001$$2065$$aUniversidad de Zaragoza$$bDpto. Ciencia Tecnol.Mater.Fl.$$cÁrea Cienc.Mater. Ingen.Metal.
000087674 7102_ $$12003$$2395$$aUniversidad de Zaragoza$$bDpto. Física Materia Condensa.$$cÁrea Física Materia Condensada
000087674 773__ $$g27, 28 (2016), 285302 [10pp.]$$pNanotechnology$$tNanotechnology$$x0957-4484
000087674 8564_ $$s998389$$uhttps://zaguan.unizar.es/record/87674/files/texto_completo.pdf$$yPostprint
000087674 8564_ $$s247328$$uhttps://zaguan.unizar.es/record/87674/files/texto_completo.jpg?subformat=icon$$xicon$$yPostprint
000087674 909CO $$ooai:zaguan.unizar.es:87674$$particulos$$pdriver
000087674 951__ $$a2020-02-21-13:37:13
000087674 980__ $$aARTICLE