000087687 001__ 87687
000087687 005__ 20240201145617.0
000087687 0247_ $$2doi$$a10.1002/cphc.201801042
000087687 0248_ $$2sideral$$a111196
000087687 037__ $$aART-2019-111196
000087687 041__ $$aeng
000087687 100__ $$aPark, W.
000087687 245__ $$aManipulation of Supramolecular Columnar Structures of H-Bonded Donor-Acceptor Units through Geometrical Nanoconfinement
000087687 260__ $$c2019
000087687 5060_ $$aAccess copy available to the general public$$fUnrestricted
000087687 5203_ $$aAmbipolar organic semiconductors are considered promising for organic electronics because of their interesting electric properties. Many hurdles remain yet to be overcome before they can be used for practical applications, especially because their orientation is hard to control. We demonstrate a method to control the orientation of columnar structures based on a hydrogen (H)-bonded donor-acceptor complex between a star-shaped tris(triazolyl)triazine and triphenylene-containing benzoic acid, using physicochemical nanoconfinement. The molecular configuration and supramolecular columnar assemblies in a one-dimensional porous anodic aluminium oxide (AAO) film were dramatically modulated by controlling the pore-size and by chemical modification of the inner surface of the porous AAO film. In situ experiments using grazing-incidence X-ray diffraction (GIXRD) were carried out to investigate the structural evolution produced at the nanometer scale by varying physicochemical conditions. The resulting highly ordered nanostructures may open a new pathway to effectively control the alignment of liquid crystal ambipolar semiconductors.
000087687 536__ $$9info:eu-repo/grantAgreement/ES/DGA-FSE/E47-17R$$9info:eu-repo/grantAgreement/ES/MINECO-FEDER/MAT2015-66208-C3-1-P
000087687 540__ $$9info:eu-repo/semantics/openAccess$$aAll rights reserved$$uhttp://www.europeana.eu/rights/rr-f/
000087687 590__ $$a3.144$$b2019
000087687 592__ $$a1.008$$b2019
000087687 591__ $$aPHYSICS, ATOMIC, MOLECULAR & CHEMICAL$$b10 / 37 = 0.27$$c2019$$dQ2$$eT1
000087687 593__ $$aPhysical and Theoretical Chemistry$$c2019$$dQ1
000087687 591__ $$aCHEMISTRY, PHYSICAL$$b72 / 159 = 0.453$$c2019$$dQ2$$eT2
000087687 593__ $$aAtomic and Molecular Physics, and Optics$$c2019$$dQ1
000087687 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/acceptedVersion
000087687 700__ $$aFeringán, B.
000087687 700__ $$aYang, M.
000087687 700__ $$aRyu, S.H.
000087687 700__ $$aAhn, H.
000087687 700__ $$aShin, T.J.
000087687 700__ $$0(orcid)0000-0001-7091-077X$$aSierra, T.$$uUniversidad de Zaragoza
000087687 700__ $$0(orcid)0000-0002-7854-6316$$aGiménez, R.$$uUniversidad de Zaragoza
000087687 700__ $$aYoon, D.K.
000087687 7102_ $$12013$$2765$$aUniversidad de Zaragoza$$bDpto. Química Orgánica$$cÁrea Química Orgánica
000087687 773__ $$g20, 6 (2019), 890-897$$pChemphyschem$$tCHEMPHYSCHEM$$x1439-4235
000087687 8564_ $$s1334209$$uhttps://zaguan.unizar.es/record/87687/files/texto_completo.pdf$$yPostprint
000087687 8564_ $$s1592172$$uhttps://zaguan.unizar.es/record/87687/files/texto_completo.jpg?subformat=icon$$xicon$$yPostprint
000087687 909CO $$ooai:zaguan.unizar.es:87687$$particulos$$pdriver
000087687 951__ $$a2024-02-01-14:52:07
000087687 980__ $$aARTICLE