000087693 001__ 87693
000087693 005__ 20200716101433.0
000087693 0247_ $$2doi$$a10.1016/j.combustflame.2019.01.017
000087693 0248_ $$2sideral$$a110880
000087693 037__ $$aART-2019-110880
000087693 041__ $$aeng
000087693 100__ $$0(orcid)0000-0003-4679-5761$$aAlzueta, M.U.$$uUniversidad de Zaragoza
000087693 245__ $$aCH3SH conversion in a tubular flow reactor. Experiments and kinetic modelling
000087693 260__ $$c2019
000087693 5060_ $$aAccess copy available to the general public$$fUnrestricted
000087693 5203_ $$aThe use of non-conventional fuel sources, such as shale gas, brings new research requisites for its proper use in an environmental friendly manner. In this context, shale gas may include different sulphur containing compounds, such as methanethiol, that is also formed as intermediate during sulphur containing residues processing. The present work includes an experimental and kinetic modelling study of the oxidation of methanethiol, CH3SH, in a quartz flow tubular reactor at atmospheric pressure and in the 300–1400 K temperature range. The influence of the temperature, the O2 concentration and the presence of H2O on the conversion regime of CH3SH and the formation of different compounds has been analysed. The experimental results have been interpreted in terms of a detailed gas-phase mechanism compiled in the present work, and the elementary steps involved in the conversion of CH3SH have been identified. In general, oxidation of CH3SH is favoured by both oxygen level and temperature, while the presence of H2O does not modify the CH3SH conversion profile. The main sulphur containing products are SO2, H2S and CS2, pointing to a significant role of other products, apart from SO2, for the control of pollutant emissions.
000087693 536__ $$9info:eu-repo/grantAgreement/ES/DGA/GPT$$9info:eu-repo/grantAgreement/ES/MINECO-FEDER/CTQ2015-65226
000087693 540__ $$9info:eu-repo/semantics/openAccess$$aby-nc-nd$$uhttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
000087693 590__ $$a4.57$$b2019
000087693 592__ $$a2.079$$b2019
000087693 591__ $$aENGINEERING, MECHANICAL$$b15 / 130 = 0.115$$c2019$$dQ1$$eT1
000087693 593__ $$aChemical Engineering (miscellaneous)$$c2019$$dQ1
000087693 591__ $$aENGINEERING, CHEMICAL$$b27 / 143 = 0.189$$c2019$$dQ1$$eT1
000087693 593__ $$aChemistry (miscellaneous)$$c2019$$dQ1
000087693 591__ $$aENGINEERING, MULTIDISCIPLINARY$$b11 / 91 = 0.121$$c2019$$dQ1$$eT1
000087693 593__ $$aPhysics and Astronomy (miscellaneous)$$c2019$$dQ1
000087693 591__ $$aTHERMODYNAMICS$$b7 / 61 = 0.115$$c2019$$dQ1$$eT1
000087693 593__ $$aFuel Technology$$c2019$$dQ1
000087693 591__ $$aENERGY & FUELS$$b36 / 112 = 0.321$$c2019$$dQ2$$eT1
000087693 593__ $$aEnergy Engineering and Power Technology$$c2019$$dQ1
000087693 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/acceptedVersion
000087693 700__ $$aPernía, R.
000087693 700__ $$0(orcid)0000-0001-7559-9669$$aAbián, M.$$uUniversidad de Zaragoza
000087693 700__ $$0(orcid)0000-0001-5426-6486$$aMillera, Á.$$uUniversidad de Zaragoza
000087693 700__ $$0(orcid)0000-0002-5420-0943$$aBilbao, R.$$uUniversidad de Zaragoza
000087693 7102_ $$15005$$2555$$aUniversidad de Zaragoza$$bDpto. Ing.Quím.Tecnol.Med.Amb.$$cÁrea Ingeniería Química
000087693 7102_ $$15005$$2790$$aUniversidad de Zaragoza$$bDpto. Ing.Quím.Tecnol.Med.Amb.$$cÁrea Tecnologi. Medio Ambiente
000087693 773__ $$g203 (2019), 23-30$$pCombust. flame$$tCombustion and Flame$$x0010-2180
000087693 8564_ $$s325752$$uhttps://zaguan.unizar.es/record/87693/files/texto_completo.pdf$$yPostprint
000087693 8564_ $$s265846$$uhttps://zaguan.unizar.es/record/87693/files/texto_completo.jpg?subformat=icon$$xicon$$yPostprint
000087693 909CO $$ooai:zaguan.unizar.es:87693$$particulos$$pdriver
000087693 951__ $$a2020-07-16-08:52:29
000087693 980__ $$aARTICLE