000087746 001__ 87746
000087746 005__ 20200716101551.0
000087746 0247_ $$2doi$$a10.3390/ijms20225557
000087746 0248_ $$2sideral$$a115871
000087746 037__ $$aART-2019-115871
000087746 041__ $$aeng
000087746 100__ $$aLusinska, Joanna
000087746 245__ $$aComparatively barcoded chromosomes of brachypodium perennials tell the story of their karyotype structure and evolution
000087746 260__ $$c2019
000087746 5060_ $$aAccess copy available to the general public$$fUnrestricted
000087746 5203_ $$aThe Brachypodium genus is an informative model system for studying grass karyotype organization. Previous studies of a limited number of species and reference chromosomes have not provided a comprehensive picture of the enigmatic phylogenetic relationships in the genus. Comparative chromosome barcoding, which enables the reconstruction of the evolutionary history of individual chromosomes and their segments, allowed us to infer the relationships between putative ancestral karyotypes of extinct species and extant karyotypes of current species. We used over 80 chromosome-specific BAC (bacterial artificial chromosome) clones derived from five reference chromosomes of B. distachyon as probes against the karyotypes of twelve accessions representing five diploid and polyploid Brachypodium perennials. The results showed that descending dysploidy is common in Brachypodium and occurs primarily via nested chromosome fusions. Brachypodium distachyon was rejected as a putative ancestor for allotetraploid perennials and B. stacei for B. mexicanum. We propose two alternative models of perennial polyploid evolution involving either the incorporation of a putative x = 5 ancestral karyotype with different descending dysploidy patterns compared to B. distachyon chromosomes or hybridization of two x = 9 ancestors followed by genome doubling and descending dysploidy. Details of the karyotype structure and evolution in several Brachypodium perennials are revealed for the first time.
000087746 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/
000087746 590__ $$a4.556$$b2019
000087746 591__ $$aCHEMISTRY, MULTIDISCIPLINARY$$b48 / 177 = 0.271$$c2019$$dQ2$$eT1
000087746 591__ $$aBIOCHEMISTRY & MOLECULAR BIOLOGY$$b74 / 297 = 0.249$$c2019$$dQ1$$eT1
000087746 592__ $$a1.317$$b2019
000087746 593__ $$aMedicine (miscellaneous)$$c2019$$dQ1
000087746 593__ $$aPhysical and Theoretical Chemistry$$c2019$$dQ1
000087746 593__ $$aComputer Science Applications$$c2019$$dQ1
000087746 593__ $$aInorganic Chemistry$$c2019$$dQ1
000087746 593__ $$aSpectroscopy$$c2019$$dQ1
000087746 593__ $$aOrganic Chemistry$$c2019$$dQ1
000087746 593__ $$aMolecular Biology$$c2019$$dQ2
000087746 593__ $$aCatalysis$$c2019$$dQ2
000087746 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000087746 700__ $$aBetekhtin, Alexander
000087746 700__ $$0(orcid)0000-0002-7734-8481$$aLopez-Alvarez, Diana
000087746 700__ $$0(orcid)0000-0001-7793-5259$$aCatalan, Pilar$$uUniversidad de Zaragoza
000087746 700__ $$aJenkins, Glyn
000087746 700__ $$aWolny, Elzbieta
000087746 700__ $$aHasterok, Robert
000087746 7102_ $$15011$$2063$$aUniversidad de Zaragoza$$bDpto. CC.Agrar.y Medio Natural$$cÁrea Botánica
000087746 773__ $$g20, 22 (2019), 5557  [19 pp.]$$pInt. j. mol. sci.$$tInternational Journal of Molecular Sciences$$x1661-6596
000087746 8564_ $$s3463097$$uhttps://zaguan.unizar.es/record/87746/files/texto_completo.pdf$$yVersión publicada
000087746 8564_ $$s481578$$uhttps://zaguan.unizar.es/record/87746/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000087746 909CO $$ooai:zaguan.unizar.es:87746$$particulos$$pdriver
000087746 951__ $$a2020-07-16-09:46:30
000087746 980__ $$aARTICLE