Molecular dynamics simulations for genetic interpretation in protein coding regions: where we are, where to go and when
Resumen: The increasing ease with which massive genetic information can be obtained from patients or healthy individuals has stimulated the development of interpretive bioinformatics tools as aids in clinical practice. Most such tools analyze evolutionary information and simple physical–chemical properties to predict whether replacement of one amino acid residue with another will be tolerated or cause disease. Those approaches achieve up to 80–85% accuracy as binary classifiers (neutral/pathogenic). As such accuracy is insufficient for medical decision to be based on, and it does not appear to be increasing, more precise methods, such as full-atom molecular dynamics (MD) simulations in explicit solvent, are also discussed. Then, to describe the goal of interpreting human genetic variations at large scale through MD simulations, we restrictively refer to all possible protein variants carrying single-amino-acid substitutions arising from single-nucleotide variations as the human variome. We calculate its size and develop a simple model that allows calculating the simulation time needed to have a 0.99 probability of observing unfolding events of any unstable variant. The knowledge of that time enables performing a binary classification of the variants (stable-potentially neutral/unstable-pathogenic). Our model indicates that the human variome cannot be simulated with present computing capabilities. However, if they continue to increase as per Moore’s law, it could be simulated (at 65°C) spending only 3 years in the task if we started in 2031. The simulation of individual protein variomes is achievable in short times starting at present. International coordination seems appropriate to embark upon massive MD simulations of protein variants.
Idioma: Inglés
DOI: 10.1093/bib/bbz146
Año: 2021
Publicado en: BRIEFINGS IN BIOINFORMATICS 22, 1 (2021), 3–19
ISSN: 1467-5463

Factor impacto JCR: 13.994 (2021)
Categ. JCR: BIOCHEMICAL RESEARCH METHODS rank: 3 / 79 = 0.038 (2021) - Q1 - T1
Categ. JCR: MATHEMATICAL & COMPUTATIONAL BIOLOGY rank: 1 / 57 = 0.018 (2021) - Q1 - T1

Factor impacto CITESCORE: 11.6 - Computer Science (Q1) - Biochemistry, Genetics and Molecular Biology (Q1)

Factor impacto SCIMAGO: 3.032 - Molecular Biology (Q1) - Information Systems (Q1)

Financiación: info:eu-repo/grantAgreement/ES/DGA/E45-17R
Financiación: info:eu-repo/grantAgreement/EUR/INTERREG-POCTEFA/PIREPRED-EFA086/15
Financiación: info:eu-repo/grantAgreement/ES/MINECO/BFU2016-78232-P
Tipo y forma: Artículo (Versión definitiva)
Área (Departamento): Área Bioquímica y Biolog.Mole. (Dpto. Bioq.Biolog.Mol. Celular)

Creative Commons Debe reconocer adecuadamente la autoría, proporcionar un enlace a la licencia e indicar si se han realizado cambios. Puede hacerlo de cualquier manera razonable, pero no de una manera que sugiera que tiene el apoyo del licenciador o lo recibe por el uso que hace. No puede utilizar el material para una finalidad comercial.


Exportado de SIDERAL (2023-05-18-13:16:20)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
Artículos



 Registro creado el 2020-02-18, última modificación el 2023-05-19


Versión publicada:
 PDF
Valore este documento:

Rate this document:
1
2
3
 
(Sin ninguna reseña)