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Abstract
In this work, we introduce a novel algorithm for transient rendering in participating media. Our method is consistent, robust
and is able to generate animations of time-resolved light transport featuring complex caustic light paths in media. We base our
method on the observation that the spatial continuity provides an increased coverage of the temporal domain, and generalize
photon beams to transient-state. We extend stead-state photon beam radiance estimates to include the temporal domain. Then, we
develop a progressive variant of our approach which provably converges to the correct solution using finite memory by averaging
independent realizations of the estimates with progressively reduced kernel bandwidths. We derive the optimal convergence rates
accounting for space and time kernels, and demonstrate our method against previous consistent transient rendering methods for
participating media.

Keywords: computing methodologies collision detection, hardware sensors and actuators, hardware PCB design and layout,
ACM CCS: Computer Graphics → Three-dimensional graphics and realism; Raytracing; Transient rendering

1. Introduction

The emergence of transient imaging has led to a vast number of
applications in graphics and vision [JMMG17], where the abil-
ity of sensing the world at extreme high temporal resolution al-
lows new applications such as imaging light in motion [VWJ*13],
appearance capture [NZV*11], geometry reconstruction [BH04,
MHM*17] or vision through media [Bus05, WJS*18] and around
the corner [VWG*12, AGJ].

Sensing through media is one of the key applications: The ability
of demultiplexing light interactions in the temporal domain is a very
promising approach for important practical domains such as non-
invasive medical imaging, underwater vision or autonomous driving
through fog. Accurately simulating light transport could help enor-
mously in these applications, potentially serving as a benchmark,
a forward model in optimization or as a training set for machine
learning.

Transient rendering in media is, however, still challenging: The
increased dimensionality (time) increases variance dramatically in
Monte Carlo algorithms, potentially leading to impractical render-
ing times. This variance is especially harmful in media, where the
signal tends to be smooth due to the low-pass filtering behaviour

of scattering, in both the spatial and temporal domains. One of
the major drawbacks of transient rendering is that it requires much
higher sampling rates to fill up the extended temporal domain, spe-
cially when using 0D (photon) point samples, which are sparsely
distributed across both time and space. We make the observation
that 1D photon trajectories populate both space and time much
more densely; hence, a technique based on photon beams [JNSJ11]
should significantly reduce the rendering time when computing a
noise-free time-resolved render, and, given its density estimation na-
ture, it could naturally combine with the temporal domain density
estimation proposed by Jarabo et al. [JMM*14].

We present a new method for transient-state rendering of partic-
ipating media, that leverages the good properties of density es-
timation for reconstructing smooth signals. Our work improves
Jarabo et al. [JMM*14] by extending progressive photon beams
(PPBs) [JNT*11] to the transient domain, and combining it with
temporal density estimation for improved reconstruction in both the
spatial and temporal domains. Our technique is biased but consis-
tent, converging to the ground truth using finite memory by tak-
ing advantage on the progressive [HOJ08, KZ11] nature of den-
sity estimation. We analyse the asymptotic convergence of our
proposed space-time density estimation, computing the optimal

c© 2019 The Authors
Computer Graphics Forum c© 2019 The Eurographics Association and
John Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.

1



2 J. Marco et al. / Progressive Transient Photon Beams

kernel reduction ratios for both domains. Finally, we demonstrate
our method on a variety of scenes with complex volumetric light
transport, featuring high-frequency occlusions, caustics or glossy
reflections, and show its improved performance over naively ex-
tending PPB to the transient domain.

This paper is an extension of our previous work on rendering
transient volumetric light transport [MJGJ17], where we proposed
a naive extension of photon beams to transient state. Here, we in-
crease the applicability of the method, by proposing a progressive
version of the space-time density estimation, and rigorously analyse
its convergence.

2. Related Work

Rendering participating media is a long-standing problem in com-
puter graphics, with a vast literature on the topic. Here, we fo-
cus on works related directly with the scope of the paper. For a
wider overview on the field, we refer to the recent survey by Novák
et al. [NGHJ18].

Photon-based light transport Photon mapping [Jen01] is one
of the most versatile and robust methods for rendering complex
global illumination, with several extensions for making it com-
patible with motion blur [CJ02], adapting the distribution of pho-
tons [SJ09, GRv*16], carefully selecting the radiance estimation
kernel [SJ09, KD13, JRJ11], combining it with unbiased tech-
niques [GKDS12, HPJ12] or making it progressive for ensur-
ing consistency within a limited memory budget [HOJ08, KZ11].
Hachisuka et al.’s [HJG*13] recent SIGGRAPH course provides an
in-depth overview.

Jensen and Christensen [JC98] were the first to extend photon
mapping to media, and Jarosz and colleagues [JZJ08] significantly
improved its efficiency with the beam radiance estimate, which re-
places repeated point queries with one ‘beam’ query finding all
photons along the entire camera ray. Jarosz et al. [JNSJ11] later
applied this idea to the photon tracing process by storing full pho-
ton trajectories (photon beams), leading to a dramatic increase in
photon density for the same photon tracing step. Their progressive
and hybrid counterparts [JNT*11, KGH*14] leveraged the benefits
of photon beams while providing consistent solutions using finite
memory. Recently, Bitterli and Jarosz [BJ17] generalized 0D photon
points and 1D photon beams to even higher dimensions, proposing
the use of photon planes (2D), volumes (3D) and, in theory, higher
dimensional geometries, leading to unbiased density estimation. All
these works are, however, restricted to steady-state renders; we in-
stead focus on simulating light transport in transient state.

Transient rendering Though the transport equations [Cha60,
Gla95] are time-resolved, most rendering algorithms focus on
steady-state light transport. Still, several works have been proposed
to deal with light transport in a time-resolved manner. In particular,
most previous work on transient rendering has focused on simulating
surfaces transport: Klein et al.[KPM*16] extended Smiths’ transient
radiosity [SSD08] for second bounce diffuse illumination, while
other work has used more general methods based on transient exten-
sions of Monte Carlo (bidirectional) path tracing [Jar12, JMM*14,

PBSC14, JA18] and photon mapping [MNJK13, OHX*14]. Sev-
eral works have also dealt with time-resolved transport on the field
of neutron transport [CPH53, BG70, Wil71, DM79]. Closer to our
work, Ament and colleages [ABW14] rendered transient light trans-
port in refractive media using volumetric photon mapping, but they
do not provide an efficient approach that guarantees consistency.
Jarabo et al. [JMM*14] proposed a transient extension of the path
integral, and introduced an efficient technique for reconstructing the
temporal signal based on density estimation. They also proposed a
set of techniques for sampling media interactions uniformly in time.
Their method is, however, limited to bidirectional path tracing and
photon mapping, often failing to densely populate media in the tem-
poral domain. Finally, Bitterli [Bit16b] and Marco et al. [Mar13,
MJGJ17] proposed a transient extension of the photon beams al-
gorithm, but these approaches are not progressive, therefore not
converging to the correct solution in the limit. Our work extends the
latter, proposing a progressive, consistent and robust method for ren-
dering transient light transport. We leverage beams continuity and
spatio-temporal density estimation to mitigate variance in the tem-
poral domain, and derive the parameters for optimal convergence of
the method.

3. Transient Radiative Transfer

The radiative transfer equation (RTE) [Cha60] models the be-
haviour of light travelling through a medium. While the original
formulation is time-resolved, its integral form used in traditional
rendering ignores this temporal dependence, and computes the ra-
diance L reaching any point x from direction �ω as

L(x, �ω) = Tr (x, xs)Ls(xs , �ω) +
∫ s

0
μs(xq ) Tr (x, xq )Lo(xq , �ω) dq,

(1)

where xd = x − d · �ω is a point at distance d,μs is the scattering co-
efficient and Tr (x, xd ) = exp(− ∫ d

0 μt (xd ′ ) dd ′) is the transmittance
describing the fraction of photons that make it between x and xd
without undergoing extinction at any point xd ′ , determined by the
extinction coefficient μt (xd ′ ). The outgoing radiance Lo in direction
�ω from a medium point xq at distance q is defined by the scattering
integral:

Lo(xq , �ω) = Le(xq , �ω) +
∫
S
fs(xq , �ωi, �ω)L(xq , �ωi) d �ωi, (2)

where S is the spherical domain and fs is the phase function.
Ls is defined analogously via the rendering equation [Kaj86], but
integrated over the hemispherical domain, and using the cosine-
weighted BSDF in place of the phase function.

Transient RTE Equations (1) and (2) assume that the speed of
light is infinite. However, if we want to solve the RTE at time
scales comparable to the speed of light, we need to incorporate the
different delays affecting light. In the following, we review the main
practical considerations for accounting time into the integral form
of the RTE for its application in transient rendering. Light takes a
certain amount of time to propagate through space, and therefore
light transport from a point x0 towards a point x1 does not occur
immediately. In the absence of scattering effects, transport between
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Figure 1: The SOCCER scene (steady-state render on the right) features complex volumetric caustics due to multiple reflections and refractions
off smooth dielectrics inside the medium. We are able to efficiently render the transient light transport (left sequence) by formulating a
progressive, transient form of photon beam density estimation which provably eliminates error while working within a finite memory budget.
Please refer to the Supplementary Video S1 for the full sequence.

two points x0 and x1 occurs as

L(x1, �ω, t) = L(x0,−�ω, t −�t), (3)

where �t is the time it takes the light to go from x0 to x1. In turn,
�t is defined by

�t(x0 ↔ x1) =
∫ x1

x0

η(x)

c
dx, (4)

where η(x) is the index of refraction at a medium point x and c is the
speed of light in vacuum. Note that in this case, light does not travel
in a straight line, but by following the Eikonal equation [ABW14,
GMAS05]. In a medium with a constant index of refraction η(x) =
ηm, then �t(x0 ↔ x1) can be expressed as

�t(x0 ↔ x1) = ηm

c
||x1 − x0||. (5)

The second form of delay occurs in the scattering events, and might
occur from different sources, including electromagnetic phase shift,
fluorescence and phosphorescence, or multiple scattering within the
surface (or particle) microgeometry. To account for these sources
of scattering delays, we introduce a temporal variable in the phase
function as fs(x, �ωi, �ω, t), where t is the instant of light interacting
with the particle before it is scattered. With those delays in place,
we reformulate the RTE (Equations (1) and (2)) introducing the
temporal dependence as [Gla95]

L(x, �ω, t) = Tr (x, xp)Ls(xp, �ω, t −�tp)

+
∫ p

0
μs(xq ) Tr (x, xq )Lo(xq , �ω, t −�tq ) dq, (6)

Lo(xq , �ω, t) =
∫ t

−∞
Le(xq , �ω, t) dt ′

+
∫
S

∫ t

−∞
fs(xq , �ωi, �ω, t−t ′)L(xq , �ωi, t) dt ′ d �ωi,

(7)

with �tp = �t(x ↔ xp) and �tq = �t(x ↔ xq ) (Equation (4)).
Ls changes analogously. Note that we assume that the matter does
not change at time-scales comparable to the speed of light, and

(a) (b)

Figure 2: (a) A photon emitted from the light source will take a
time tb0 = ηm

c
(s1 + s2 + s3) to get to xb. (b) Radiance estimation in

the medium is done by intersecting every ray against the photon
beam map, and performing density estimations at the ray-beam
intersections (red).

therefore avoid any temporal dependence on μs and μt . Introducing
temporal variation at such speeds would produce visible relativistic
effects [WKR99, JMV*15].

4. Transient Photon Beams

Photon beams [JNSJ11] provide a two-pass numerical solution
for rendering participating media in steady state: In the first pass
(Figure 2), a series of random walk paths are traced from the light
sources. These paths represent packages of light (photons) travel-
ling through the medium. Every interaction of a photon within the
medium is stored on a map as a beam with a direction �ωb, position
xb and power �b.

In the second pass (Figure 2), rays are traced from the camera
against the scene, and Equation (1) is approximated by summing up
the contribution of all near photon beams Rb of the eye ray defined
by r = (xr ,−�ωr )

L(xr , �ωr ) ≈
∑
b∈Rb

Lb(xr , �ωr ), (8)

c© 2019 The Authors
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(a) (b)

Figure 3: (a) Ray-beam intersection for density estimation using a
2D kernel (top) and 1D kernel (bottom). Time delays tb, tr within
these spatial density estimations will depend on the ray-beam orien-
tation the blur region intersections sb, sr , the speed of light and the
index of refraction of the media. (b) Radiance estimate of a single
beam at pixel ij using a 2D blur generates a temporal footprint over
a time interval [t−, t+] (top), while radiance estimate using a 1D
blur occurs at a single time instant t (bottom).

whereLb(xr , �ωr ) is the contribution of photon beam b. Every photon
beam b is considered to have certain radius Rb, and radiance seen
by a camera ray is computed by performing a density estimation on
every ray-beam intersection. For 1D and 2D kernels, this radiance
is computed as

L1D
b (xr , �ωc) = K1D(Rb)�bfs(θb)μs

e−μt sb e−μt sr

sin θb
, (9)

L2D
b (xr , �ωr ) = K2D(Rb)�bfs(θb)μs

e−μt (s−c −s+c )(|cos θb |−1) − 1

eμt (s
−
r +s−

b
)μt (| cos θb| − 1)

,

(10)

where the beam is defined by xb + sb �ωb and the ray is defined by
xr + sr �ωr (see setups in Figure 3).

Our algorithm To generalize photon beams to the transient do-
main, we need to account for the duration of light paths. This
requires considering propagation and scattering delays along the
camera and light subpaths, but also the effect of time in the density
estimation connecting these two subpaths.

Creating the photon map We compute the photon propagation as
a standard random walk through the scene, which can be modelled
using the subpath formulation defined by Jarabo et al. [JMM*14].
Let us define a light subpath x̄l = x0 . . . xk−1, with k vertices, where
x0 is the light source. This light path defines k − 1 photon beams,
in which a beam bj is defined by its origin at xbj = xj and direction

�ωbj = xj+1−xj
‖xj+1−xj ‖ . Using Jarabo’s definition of the path integral (and

therefore of the contribution of the subpaths), we compute the flux
of each photon as:

�bj = f (x̄j , τ̄j )
Mp(x̄j , τ̄j )

= Le(x0 → x1, τ0)T (x̄j , τ̄j )

M
∏j

i=0 p(xi , τi)
, (11)

with x̄j the subpath of x̄l up the vertex j , f the subpath contribution
function, τ̄j = τ0 . . . τj the sequence of time delays up to vertex j ,

M the number of photon random walks sampled, Le(x0 → x1, τ0)
the emission function, p(xi , τi) the probability density of sampling
vertex xi with time delay τi . The throughput, T (x̄j , τ̄j ), of subpath
(xi , τj ) is defined as:

T (x̄j , τ̄j ) =
[
j−1∏
i=1

fs(xi , τj )

][
j−1∏
i=0

G(xi , xi+1)V (xi , xi+1)

]
,

(12)

with fs(xi , τj ) the scattering event at vertex xi with delay τj , and
G(xi , xi+1) and V (xi , xi+1) the geometry and visibility terms be-
tween vertices xi and xi+1, respectively. Finally, for transient state,
we need to know the instant tbj at which the photon beam is created
(through emission or scattering), defined as:

tbj =
j−1∑
i=0

τj +
j−1∑
i=0

�t(xi , xi+1). (13)

Rendering For rendering, we adapt Equation (8) to account for the
temporal domain, as

L(xr , �ωr, t) ≈
∑
b∈Rb

Lb(xr , �ωr, t), (14)

with Lb(xr , �ωr, t) the radiance estimation for beam b to ray t at
instant t . In essence, Lb(xr , �ωr, t) will return zero radiance if t is
out of the temporal footprint of the density estimation kernel. De-
pending on the dimensionality of the density estimation, Jarosz and
colleagues [JNSJ11] proposed three different estimators based on
3D, 2D and 1D kernels. Since the 3D kernel results impractical
due to costly 3D convolutions, we focus on 1D and 2D kernels
(Equations (9) and (10)), and extend them to transient state, assum-
ing homogeneous media.

Kernel 2D We generalize Jarosz’s et al.’s 2D estimate L2D
b

(Equation (10)) by introducing a temporal function W (t) as

L2D
b (xr , �ωr, t) = K2D(Rb)�bfs(θb, t)μs

× e−μt (s−r −s+r )(|cos θb |−1) − 1

eμt (s
−
r +s−

b
)μt (| cos θb| − 1)

W2D(t), (15)

where [s−r , s
+
r ] are the limits of the ray-beam intersection (Figure 3),

θb is the angle between �ωb and �ωr and K2D(Rb) is a canonical 2D
kernel with radius Rb. The temporal function W2D(t) models the
temporal footprint of the 2D kernel as

W2D(t) =
{ 1
t+−t− if t ∈ (t−, t+)
0 otherwise

, (16)

where t− = tb + tr + ηm
c

(s−r + s−b ) and t+ = tb + tr + ηm
c

(s+r +
s+b ), and tr and tb are the initial times of the camera ray and beam, re-
spectively. Note that due to transmittance, the photon energy varies
as it travels across the blur region. Evenly distributing the integrated
radianceLb across this interval introduces temporal bias, in addition
to the inherent spatial bias introduced by density estimation. How-
ever, we observed this even distribution provides a good tradeoff
between bias, variance and computational overhead.

c© 2019 The Authors
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Kernel 1D In the 1D kernel defined for density estimation by Jarosz
et al., the spatial blur is performed over a line. Therefore, the en-
ergy of the beam is just spread on the ray on a single point at r(sr ),
from a single point of the beam b(sb) (Figure 3). In consequence,
s±r → sr and s±b → sb, which implies that t± → tbr , and the tem-
poral function reduces to W1D(t − tb) = δ(t), with δ(t) the Dirac
delta function. With that in place, we transform Jarosz et al. 1D
estimate to

L1D
b (xr , �ωr, t) = K1D(Rb)�bfs(θb, t)μs

× e−μt sb e−μt sr

sin θb
δ(t − tb), (17)

with K1D(Rb) a 1D kernel with radius Rb.

Implementation Since photon beams correspond to full photon
trajectories, they allow us to estimate radiance at any position xb +
s �ωb of the beam, and therefore at any arbitrary time t(xb + s �ωb).
As mentioned, one-dimensional radiance estimate corresponds to a
single time across the beam. In a traditional rendering process where
camera rays are traced through view-plane pixels against the beams
map, the temporal definition within a pixel will be proportional to the
amount of samples per pixel taken. Additionally, 2D blur requires
distributing every radiance estimate along a time interval, which
reduces variance in the time dimension of a pixel at the expense of
introducing additional temporal bias.

Finally, note that the temporal footprint of the density estimation
might be arbitrarily small, so the probability of finding a beam
b at an specific time might be very low. We alleviate this issue
using path reuse via density estimation [JMM*14]. In particular,
for the non-progressive results, we use histogram temporal density
estimation. In this technique, the samples in the temporal domain are
reused across all frames by evaluating their contribution functions,
which correspond to the temporal window covered by each frame.
In Section 5, we introduce temporal kernel-based density estimation
and combine it with the spatial density estimation of the beam.

5. Progressive Transient Photon Beams

By means of Equations (15) and (17), we have introduced temporal
dependence on the spatial density estimations that use 2D and 1D
kernels, respectively. These density estimations reduce variance at
the expense of introducing bias in the results, which means both
Equations (8) and (14) will not converge to the correct solution, even
with an infinite number of photons M . To avoid this, progressive
density estimation aims to provide a biased, yet consistent technique,
that in the limit converges to the expected value (in other words,
the bias vanishes in the limit). The key idea is to average several
render passes with a finite number of photon random walks M ,
progressively reducing the bias in each iteration while allowing
variance to slightly increase.

In order to fully leverage a progressive approach, we pro-
pose to combine our time-resolved spatial density estimations
(Section 4) with additional temporal density estimations. While
our time-resolved 2D spatial kernel implicitly performs a temporal
blur over the interval [t−, t+], it is coupled with the spatial blur. This
does not allow to choose its own initial kernel size for the temporal

density estimation, which is a desirable degree of freedom since
the temporal resolution may not be proportional to the spatial one.
In contrast, our time-resolved 1D spatial kernel does not perform a
temporal blur, since the footprint is a single instant in time. As we
show in the remainder of this section, this allows us to perform addi-
tional progressive temporal density estimations with an independent
initial kernel size, while keeping the same two-dimensionality (1D
spatial and 1D temporal). In the following, we introduce our spatio-
temporal beam density estimation based on our time-resolved 1D
kernel, and then present our progressive approach.

Spatio-Temporal Beam Estimation Jarabo et al. [JMM*14]
showed that progressive density estimations in the temporal domain
can in fact improve the convergence rate for transient rendering,
in particular when compared with the histogram method used in
Section 4 for rendering the temporal domain. To combine such ap-
proach with the (progressive) spatial density estimation in photon
beams [JNT*11], we reformulate the 1D kernel in Equation (17),
by convolving it with a 1D temporal kernel KT (t) so that

L1D
b (xr , �ωr, t) = K1D(Rb)�bfs(θb, t)μs

× e−μt sb e−μt sr

sin θb
KT (t − tb). (18)

Progressive Transient Photon Beams We generalize the compu-
tation of L(xr , �ωr, t) (Equation (14)) using an iterative estimator,
defined as

L(xr , �ωr, t) ≈ L̂n(xr , �ωr, t) = 1

n

n∑
i=0

∑
b∈Bi

Lb(xr , �ωr, t) (19)

with L̂n the estimate of L after n iterations, and Bi the set of photon
beams in iteration i. Note that the previous equation assumes that
the camera ray r is the same for all iterations. That is not necessarily
true (and in fact it is not) but for simplicity, we express this way.

The error of the estimate L̂n is defined by its bias and variance,
which as shown in Appendix B is dependent on the bandwidth of
the spatial and temporal kernels. In particular, the variance of the
error increases linearly with the bandwidth of the kernels, while

c© 2019 The Authors
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bias is reduced at the same rate. Then, on each iteration, we reduce
the bias by allowing the variance to increase at a controlled rate of
(i + 1)/(i + α), with α ∈ [0, 1] being a parameter that controls how
much the variance is allowed to increase at each iteration. To achieve
that reduction, on each iteration i + 1, we reduce the footprint of
kernels K1D and KT (Rb |j and Ti) by

Rb |i+1

Rb |i
=

(
i + α

i + 1

)βR

,
Ti+1

Ti
=

(
i + α

i + 1

)βT

, (20)

where βR and βT control the individual reduction ratio of each
kernel, with βT = 1 − βR . A pseudo-code of the main steps of our
progressive approach can be found in Algorithm 1. In the following,
we analyse the convergence rate of the method and compute the
optimal values for the parameters α, βT and βR .

Convergence analysis We analyse the convergence of the algo-
rithm as a function of the asymptotic mean squared error (AMSE)
defined as

AMSE(L̂n) = Var[L̂n] + E[εn]
2, (21)

where Var[L̂n] is the variance of the estimate and E[εn] is the bias at
the end of iteration n (see Appendix A). As shown in Appendix C,
the variance converges with rate

Var[L̂n] ≈ O(n−1) +O(n−α) = O(n−α), (22)

while the bias converges with rate

E[εn] = O(n1−α)−2βT +O(n1−α)2βT −2. (23)

Plugging Equations (22) and (23) into Equation (21), we can
model the AMSE as

AMSE(L̂n) = O(n−α) + (
O(n1−α)−2βT +O(n1−α)2βT −2

)2
. (24)

Finally, by minimizing Equation (24) (see Appendix D), we ob-
tain the values for optimal asymptotic convergence βT = 1/2 and
α = 2/3, which by substitution gives us the final asymptotic con-
vergence rate of our progressive transient photon beams

AMSE(L̂n) = O(n− 2
3 ). (25)

6. Results

In the following, we illustrate the results of our proposed method in
five scenes: CORNELL SPHERES, MIRRORS, PUMPKIN, SOCCER [SZLG10],
PUMPKIN and JUICE. See Figures 1 (right), 4, and 8 (left) for stady-
state renders of the scenes. Results of Figures 5 and 6 were taken
on a desktop PC with Intel i7 and 4GB RAM using a transient 2D
kernel (Equation (15)). Figures 1, 7 and 8 were rendered on an Intel
Xeon E5 with 256GB RAM, using our progressive spatio-temporal
kernel density estimations (Section 5) derived from the transient
spatial 1D kernel (Equation (17)). In each iteration, we use a fixed
radius for our spatio-temporal density estimators (instead of using

Cornell spheres Mirrors Pumpkin

Figure 4: Steady-state renders for the scenes CORNELL SPHERES

(Figure 5), MIRRORS (Figure 6) and PUMPKIN (Figure 7).
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Figure 5: Comparison of CORNELL SPHERES scene using camera-
unwarping (top), where we do not take into account the camera
time, and real propagation of light (bottom). In the bottom row, the
shape of the wavefront is altered by the camera time, as if we were
scanning the scene from the viewpoint towards the furthest parts of
the scene. Camera unwarping on the other hand illustrates more
intuitively how light propagates locally.

a nearest neighbour approach). Please refer to the Supplementary
Video S1 for the full sequences of all the scenes.

Figure 5 shows a Cornell box filled with a scattering medium,
and demonstrates the effect of camera unwarping [VWJ*13] when
rendering. Camera unwarping is an intuitive way of visualizing how
light propagates locally on the scene without accounting for the
time light takes to reach the camera. The scene consists of a diffuse
Cornell box with a point light on the top, a glass refractive sphere
(top, IOR = 1.5) and a mirror sphere (bottom). While Figure 5(b)
shows the real propagation of light—including camera time—,
Figure 5(a) depicts more intuitively how light comes out from the
point light, travels through the refractive sphere and the generated
caustic bounces on the mirror sphere. Note how in the top sequence
we can clearly see how light is slowed down through the glass sphere
due to the higher index of refraction. We can also observe multiple
scattered light (particularly noticeable in frames t = 4 ns and t =
6 ns) as a secondary wavefront.

Figure 6 compares visualizations of light propagation within the
MIRRORS scene using Heaviside and Dirac delta light emission. The
scene is composed by two coloured mirrors and a glass sphere
with IOR = 1.5, and was rendered using the previously mentioned
camera unwarping. We can observe how delta emission generates
wavefronts that go through the ball and bounce in the mirrors,
creating wavefront holes where constant emission creates medium
shadows. In the last frame of the top row, Delta emission clearly

c© 2019 The Authors
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Figure 6: Comparison between Dirac delta (top) and continuous emission (bottom). Dirac delta emission lets us see how a pulse of light
travels and scatters across the scene, depicting the light wavefronts bouncing on the mirrors and going through the glass ball. Continuous
emission shows how light is emitted until it reaches every point in the scene, as if we were taking a picture with a camera at very slow-motion.

[Jarabo 2014]

Ours

t = 6.3 ns t = 6.42 ns t = 6.85 ns t = 8.4 ns        (+4 EV) t = 10.2 ns       (+4 EV)

time (ns)

10-6

10-4

10-2 Ours
Jarabo 2014
Reference

6 8 10 12

R
ad

ia
nc

e

# iterations (equal time)
210 103

10-7

10-6

M
ea

n-
sq

ua
re

d 
er

ro
r

Ours
Jarabo 2014

Equal-time comparison, 4096 iterations

Figure 7: The PUMPKIN scene shows a jack o’lantern embedding a point light that creates hard shadows through the holes. The left frames show
a sequence of the time-resolved renders after 4096 iterations of our algorithm (10 k beams/iteration), and temporal KDE on a progressive
transient path tracer (PTPT, 16 spp/iteration) [JMM*14]. The middle plot compares the whole temporal footprint at the pink marker.
Reference solution (dark grey) was obtained with a transient path tracer (no KDE) using 64 M samples per pixel. Right plot shows MSE
convergence with respect to the number of progressive iterations (in log-log scale), at 1 min/iteration on each algorithm. As expected, the
convergence of our method (O(n− 2

3 )) is slower than PTPT (O(n− 4
5 )) ;however, as shown in the equal-time comparison, our algorithm presents

better temporal behaviour with much less variance on later timings.

t=4.6 ns t=5.1 ns t=5.3 ns t=5.5 ns

t=6.1 ns t=6.3 ns t=6.6 nst=5.9 ns +2 EV +2 EV +2 EV +2 EVSteady state

t=4.6 ns t=5.1 ns t=5.3 ns t=5.5 ns

t=6.1 ns t=6.3 ns t=6.6 nst=5.9 ns +2 EV +2 EV +2 EV +2 EVSteady state

Figure 8: We illustrate the potential of our method in the JUICE scene [Bit16a], which presents a scene very difficult to render for path
tracing methods, but well handled by photon-based methods. The scene is filled by a thin participating medium, while the glass contains ruby
grapefruit juice as measured by Narasimhan et al. [NGD*06]. The highly forward phase function of the juice, as well as the delta interactions
on the glass, ice cubes and the mirror floor surface, generates complex caustic patterns which our method is able to simulate in transient
state. Bottom row has increased exposure respect to top row to show the radiance at later timings.

depicts the slowed down caustic through the glass ball respect to the
main wavefront.

Our progressive method combines time-resolved 1D spatial ker-
nels of photon beams and temporal density estimations, reducing
bias while providing consistent solutions in the limit with an optimal
convergence rate ofO(n− 2

3 ). In Figure 7, we analyse its convergence
with respect to progressive transient path tracing with temporal KDE
[JMM*14] (PTPT). In the middle graph, we show the temporal pro-
file on a single pixel for both our algorithm and PTPT after 4096
equal-time iterations, where both algorithms converge to the refer-
ence solution taken with transient path tracing (no temporal KDE)

with 64 million samples. While PTPT presents faster convergence
(see Figure 7, right graph), our algorithm presents a better behaviour
over time where variance increases due to the lack of samples (centre
graph). Additionally, it requires much fewer iterations than PTPT
to achieve a similar MSE (see log-log right graph).

In Figure 1, we show a more complex scenario, with different
caustics rendered, with our progressive algorithm. It contains a
smooth dielectric figurine with different transmission albedos placed
within a participating medium with an isotropic phase function. Our
method is capable of handling complex caustics transmitted from
light sources through the player, and then through the ball. Our

c© 2019 The Authors
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algorithm progressively reduces bias and variance to provide a con-
sistent solution.

Finally, in Figure 8, we illustrate a setup combining differ-
ent media properties, and specular refractive and reflective ma-
terials. The liquid has a very forward phase function, making
the light first travel through the direction of the stream (t = 4.6
ns), and then going through the liquid inside the glass (t =
5.1 ns to t = 6.3 ns). The mirror surface makes the light to bounce
back to the surrounding medium as a caustic through the water spills
and ice cubes at t = 5.1 ns and t = 6.6 ns. Note that these are not
fully observable in the steady-state render (left) due to the accu-
mulated radiance from the surrounding medium and the adjusted
exposure of the image.

7. Conclusions

In this paper, we have presented a robust progressive method for
efficiently rendering transient light transport with consistent results.
We derived our method based on PPBs [JNT*11], extending its
density estimators to account for light time-of-flight and deriving a
new progressive scheme. We then compute the convergence of the
method and derive the parameters for optimal asymptotic conver-
gence. Our results demonstrate that combining continuous photon
trajectories in transient state and our optimal spatio-temporal con-
vergence rates allows to robustly compute a noise-free solution to
the time-resolved RTE for complex light paths. We believe that out
work might be very useful for developing new techniques for tran-
sient imaging and reconstruction in media, as well as to obtain new
insights on time-resolved light transport.

As future work, it would be interesting to analyse more thoroughly
the optimal performance and kernels for variance reduction and bias
impact in transient state, under varying media characteristics. In
addition, extending our method to leverage recent advances in media
transport, such as transient-state adaptations of higher dimensional
photon estimators [BJ17] as well as hybrid techniques [KGH*14],
could improve performance of time-resolved rendering for a general
set of geometries and media characteristics.
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Appendix A:Error in Transient Progressive Photon Beams

Here, we analyse the consistency of the transient progressive photon
beams (PPB)s algorithm described in Section 5. For our analysis on
the error of the estimate, we use the asymptotic mean squared error
(AMSE) defined as

AMSE(L̂n) = Var[L̂n] + E[εn]
2, (A.1)

where Var[L̂n] is the variance of the estimate and E[εn] is the bias
at iteration n. We model Var[L̂n] as [KZ11]

Var[L̂n] = 1

n
Var[� L] + 1

n2

n∑
j=1

Var[� εj ], (A.2)

where � is the contribution of the eye ray and εj is the bias for
iteration j . The first term is the standard variance of the Monte
Carlo estimate, which is unaffected by the kernel. The second term,
on the other hand, is the variance of the error and is dependent on
density estimation. On the other hand, the estimated value of the
error (bias) E[L̂n] is defined as

E[L̂n] = L+ E[�]E[εn], (A.3)

where E[εn] is the bias of the estimator after n steps:

E[εn] = 1

n

n∑
j=1

E[εj ], (A.4)

with E[εj ] the expected error at iteration j . In the following, we
first derive the variance and expected value of the error for a single
iteration. Then, we analyse the asymptotic behaviour of these terms
and compute the values for optimal convergence for βT , βR and α.

Appendix B: Variance and Expected Value of the Error of the
Time-Resolved Beam Radiance Estimate

We first analyse the variance and expected value of the error (bias)
introduced by the radiance estimate at each iteration. Let us first
define the error in each iteration as:

ε = L̂n(xr , �ωr, t) − L(xr , �ωr, t)

=
M∑
i=1

K1D(Rb)KT (t − ti)�i − L(xr , �ωr, t). (B.1)

Variance We first define the variance of the error Var[ε] as (in the
following, we omit dependences for clarity):

Var[ε] = Var

[
M∑
i=1

K1DKT�− L

]
(B.2)

= (Var[K1D] + E[K1D]2)(Var[KT ] + E[KT ]2)

× (Var[�] + E[�]2) − E[K1D]2E[KT ]2E[�]2.

In order to compute the variance of the error Var[ε], we need to
make a set of assumptions: First, we assume that the beams’ prob-
ability density is constant within the kernel K1D in the spatial do-
main [JNT*11], and withinKT in the temporal domain [JMM*14].
We denote these probabilities as pRb and pT , respectively. We also
assume that the distance between view ray and photon beam, time tb
and beams’ energy�i are independent samples of the random vari-
ables D, T and �, respectively, which are mutually independent.
Finally, we assume thatD and T have probability densities pRb and
pT .

c© 2019 The Authors
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With these assumptions, and taking into account that E[K1D] =
pRb and E[KT ] = pT , we can model the the variance introduced by
the temporal kernel Var[KT ] as [JMM*14]

Var[KT ] = pT

T

∫
R

kT (ψ)2 dψ − p2
T , (B.3)

where we expressKT as a canonical kernel kT with unit integral such
that KT (ξ ) = kT (ξ/T )T −1. Analogously, Var[K1D] is [JNT*11]:

Var[K1D] = pRb

Rb

∫
R

k1D(ψ)2 dψ − p2
Rb
. (B.4)

This allow us to express the variance of the error Var[ε] as:

Var[ε] ≈ (
Var[�] + E[�]2

)(pRb
Rb

C1D

)(pT

T CT
)
, (B.5)

where C1D and CT are kernel-dependent constants. The last term
can be neglected by assuming that the kernels cover small areas
in their respective domains, which effectively means that C1D �
pRb and CT � pT . Equation (B.5) shows that for transient density
estimation, the variance Var[ε] is inversely proportional to RbT .

Bias Bias at each iteration j is defined as the expected value of the
error E[εj ] as

E[εj ] = E

[
M∑
i=1

K1D KT �− L

]
= E[K1D] E[KT ] E[�] − L.

Using a second-order expansion ofpT andpRb , instead of the zeroth-
order used when modelling variance, we can express the expected
value of KT as [JMM*14]

E[KT ] ≈ pT + T 2

∫
R

kT (ψ)O(‖ψ‖2) dψ = pT + T 2CiiT ,

(B.6)

while the expected value of K1D is [JNT*11]

E[K1D] ≈ pRb + Rb

∫
R2
k1D(ψ)O(‖ψ‖2) dψ = pRb + RbCii1D,

(B.7)

where CiiT and Cii1D are constants dependent on the higher order
derivatives of the spatio-temporal light distribution. Using (B.6) and
(B.7), and L = pRbpT E[�] we finally compute E[εj ] for iteration
j as

E[εj ] ≈ (
pRb + Rb

2Cii1D
) (
pT + T 2CiiT

)
E[�] − pRbpT E[�]

= E[�]
(
pRbT 2CiiT + pT Rb

2Cii1D + T 2CiiT Rb2Cii1D
)
. (B.8)

Appendix C: Convergence Analysis of Progressive Transient
Photon Beams

Based on the expressions for Var[ε] and E[εj ] defined above
(Equations (B.5) and (B.8)), we can now derive the asymptotic
behaviour of Equation (21). For that, we will compute the variance
Var[L̂n] and bias E[εn] after n iterations.

Variance Assuming that the random variables � and εj are in-
dependent, we model the variance of the estimator Var[L̂n] in
Equation (A.2) as [KZ11]:

Var[L̂n] = 1

n
Var[�L] + 1

n2

n∑
j=1

Var[�εj ] (C.1)

= 1

n
Var[�L] + Var[�]

1

n2

n∑
j=1

Var[εj ] +

× E[�]2 1

n2

n∑
j=1

Var[εj ] + Var[�]
1

n2

n∑
j=1

E[εj ]
2.

Following [KD13], we can approximate Var[εn] as a function of the
variance at the first iteration Var[ε1] as:

Var[εn] ≈ Var[ε1]

(2 − α)nα
= O(n−α). (C.2)

Finally, by applying Var[εn] and asypmtotic simplifications, we can
formulate Var[L̂n] ((C.2)) as:

Var[L̂n] ≈ 1

n
Var[�L] + E[�]2Var[εn]

≈ 1

n
Var[�L] + Var[ε1]

(2 − α)nα

= O(n−1) +O(n−α) = O(n−α). (C.3)

Bias The expected value of the error E[εn] is modelled in
Equation (A.3) as a function of the averaged bias introduced at
each iteration E[εj ] (B.8). Computing the kernels’ bandwidth Tj
and Rbj at iteration j by expanding Equation (20) as a function of
their initial value, we get

Tj = T1(j α B(α, j ))−βT , (C.4)

Rbj = Rb1(j α B(α, j ))−βRb , (C.5)

where B(x, y) is the Beta function. Using (C.4) and (C.5) in
Equation (B.8), we can express E[εj ] as a function of the initial
kernel bandwidths

E[εj ] = E[�]pRbCiiT T 2
1 �(j 1−α)−2βT

+ E[�]pT Cii1DRb2
1�(j 1−α)−2βRb

+ E[�]CiiT Cii1DT 2
1 Rb

2
1�(j 1−α)−2(βT +βRb). (C.6)

c© 2019 The Authors
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Finally, we use
∑n

j=1�(jx) = n O(nx) to plug Equation (C.6)
into Equation (A.4) to get the asymptotic behaviour of E[εn] in
transient PPBs:

E[εn] = O(n1−α)−2βT +O(n1−α)−2βRb +O(n1−α)−2(βT +βRb),

which, by using the equality βRb = 1 − βT , becomes:

E[εn] = O(n1−α)−2βT +O(n1−α)2βT −2 +O(n1−α)−2

= O(n1−α)−2βT +O(n1−α)2βT −2. (C.7)

Appendix D: Minimizing Asymptotic Mean Squared Error

Using the asymptotic expression for variance and bias in
Equations (C.3) and (C.7), we can express the AMSE (21) as

AMSE(L̂n) = O(n−α) + (
O(n1−α)−2βT +O(n1−α)2βT −2

)2
,

(D.1)

which is a function of the parameters α and βT . Given that the vari-
ance is independent of βT , we first obtain the optimal value for this
parameter that yields the highest convergence rate of the bias E[εn].
We differentiate Equation (C.7), apply asymptotic simplifications
and equating to zero, we obtain the optimal value βT = 1/2. By
plugging this value in Equation (D.1), we obtain:

AMSE(L̂n) = O(n−α) +O(n−2(1−α)). (D.2)

Finally, by finding the minimum again with respect to α, we get
the optimal parameter α = 2/3, which results in the optimal con-
vergence rate of the AMSE for our transient PPBs as

AMSE(L̂n) = O(n− 2
3 ) +O(n−2(1− 2

3 )) = O(n− 2
3 ). (D.3)
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