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Abstract

Disorders/differences of sex development (DSD) cause profound psychological and repro-

ductive consequences for the affected individuals, however, most are still unexplained at

the molecular level. Here, we present a novel gene, 3-hydroxy-3-methylglutaryl coenzyme A
synthase 2 (HMGCS2), encoding a metabolic enzyme in the liver important for energy pro-

duction from fatty acids, that shows an unusual expression pattern in developing fetal

mouse gonads. Shortly after gonadal sex determination it is up-regulated in the developing

testes following a very similar spatial and temporal pattern as the male-determining gene

Sry in Sertoli cells before switching to ovarian enriched expression. To test if Hmgcs2 is
important for gonad development in mammals, we pursued two lines of investigations.

Firstly, we generated Hmgcs2-null mice using CRISPR/Cas9 and found that these mice had 
gonads that developed normally even on a sensitized background. Secondly, we screened 
46,XY DSD patients with gonadal dysgenesis and identified two unrelated patients with a 
deletion and a deleterious missense variant in HMGCS2 respectively. However, both vari-

ants were heterozygous, suggesting that HMGCS2 might not be the causative gene. Analy-

sis of a larger number of patients in the future might shed more light into the possible 
association of HMGCS2 with human gonadal development.
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Introduction

Disorders or differences of sex development (DSD) are defined as congenital conditions in which

the development of chromosomal, gonadal, or anatomical sex is atypical [1–3]. One such condi-

tion, 46,XY gonadal dysgenesis (46,XY GD), is caused by partial or complete disruption of testis

development. 46,XY GD patients show a wide spectrum of phenotypes such as hypospadias,

ambiguous genitalia, undescended or atrophic testes, and complete male-to-female sex reversal.

In addition, 46,XY GD often results in infertility and an increased risk of gonadal cancer. Thus,

this condition can have profound psychological and medical consequences for the individual. The

first causative variant in 46,XY GD was identified in the testis-determining gene SRY located on

the Y chromosome [4, 5]. Since then, our understanding of the molecular and cellular processes

of testis determination and differentiation has significantly advanced. However, despite this as

many as 60% of 46,XY GD cases are still unexplained at the molecular level [3, 6, 7].

In mammals, testes in an XY and ovaries in an XX individual develop from a common pre-

cursor, the genital ridges. In mouse, at around 11.5 days post coitum (dpc), transient expres-

sion of SRY in pre-Sertoli cells leads to the up-regulation of the related transcription factor

SOX9, which drives the differentiation of the genital ridges into testes [8–13]. A key step dur-

ing this process is the differentiation of Sertoli cells, which requires a high-glucose metabolism

[14, 15]. Sertoli cells surround germ cells to form the testis cords. In the interstitium, between

testis cords, Leydig cells differentiate to produce testosterone which is ultimately responsible

for the development of the male phenotype [13]. If the male-determining genetic program is

disrupted, the female genetic program, marked by the expression of Wnt4, Rspo1, and Foxl2, is

induced and the genital ridge will differentiate into an ovary [13, 16–21].

The autosomal HMGCS2 gene encodes mitochondrial 3-hydroxy-3-methylglutaryl coen-

zyme A synthase 2, one of the major control points of ketogenesis in the liver [22]. When

blood glucose levels are low, such as during starvation and sustained exercise, HMGCS2
expression is up-regulated in the liver and ketogenesis is induced during which acetyl-CoA,

derived from fatty acid ß-oxidation, is converted into ketone bodies such as ß-hydroxybutyrate

(ßHB) [22, 23]. These ketone bodies are then transported from the liver to other tissues where

they can be re-converted to acetyl-CoA for energy production. In humans, homozygous or

compound heterozygous variants in HMGCS2 lead to HMGCS2 deficiency disorder (OMIM:

605911), a very rare, autosomal recessive metabolic disorder [24–27]. Patients are usually

asymptomatic and only present with symptoms such as vomiting, hypoketotic hypoglycemia,

or coma after infections or prolonged fasting [28].

There is emerging evidence that expression of HMGCS2 and ketogenesis is not restricted to

the liver but is also evident in other tissues such as in the eye, the intestine, and adult gonads

[29–31]. In retinal pigment epithelial cells, HMGCS2 produces ßHB, which is used as a metabo-

lite by retinal cells [29]. Apart from providing energy from fatty acids, HMGCS2 is also involved

in gene regulation. In the intestine, ßHB produced by HMGCS2 inhibits histone deacetylases,

known inhibitors of gene expression [32], to induce the expression of differentiation markers

underlying intestinal cell differentiation [30]. HMGCS2 expression was also discovered in ste-

roidogenic cells of adult rat testes and ovaries, Leydig and theca cells respectively [31]. It was

speculated that HMGCS2 could be involved in androgen production in these tissues [31]. In

contrast, a role for HMGCS2 in fetal gonad development has not been described to date.

Material & methods

Ethical considerations

Protocols and use of animals were approved by the Animal Welfare Unit of the University of

Queensland (approval # IMB/131/09/ARC) and the Anatomy & Neuroscience Animal Ethics
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Committee of the University of Melbourne (approval # 1513724 and # 1613957). All experi-

ments were performed in accordance with relevant guidelines and regulations. All clinical

investigations have been performed according to the Declaration of Helsinki principles. The

first part of the study was approved by the Bioethics Committee at Poznan University of Medi-

cal Sciences (authorization number 817/13) and the Geneva Ethical Committee (CCER, autho-

rization number 14–121). All participants in the massive parallel sequencing approach

provided written informed consent as part of The Royal Children’s Hospital Ethics committee

approved study (HREC22073) or their local institution (medical ethics committee of Dr Kar-

iadi Hospital/FMDU, Semarang).

Mouse strains

For gene and protein expression studies wildtype embryos were collected from timed matings

of the outbred CD1 mouse strain, with noon of the day on which the mating plug was observed

designated 0.5 days post coitum (dpc). For more accurate staging of embryos up to 12.5dpc,

the tail somite (ts) stage was determined by counting the number of somites posterior to the

hind limb [33]. Using this method, 10.5dpc corresponds to 8ts, 11.5dpc to 18ts, and 12.5dpc to

30ts. Genetic sex was determined by PCR as described previously [34].

Hmgcs2-null deletion mice were generated using CRISPR/CAS9 at the University of Ade-

laide. A high scoring CRISPR guide RNA (gRNA) targeting the Hmgcs2 coding sequence

(UACAAUCCCUCCUGCUCCCCUGG) was identified using the MIT CRISPR design tool

(https://zlab.bio/guide-design-resources) and animals were generated as previously described

[35]. Heterozygous Hmgcs2-/+ mice on a C57BL/6 background were intercrossed to generate

control and homozygous Hmgcs2-/- embryos. Genotyping analysis for the Hmgcs2 locus (S1

Table) was performed using genomic DNA isolated from tail tissue.

Hmgcs2-null mice lacking one copy of the Fgfr2c gene were generated by crossing heterozy-

gous Fgfr2c-/+ mice [36] on a C57BL/6 background, which contain a translational stop codon

in Fgfr2 exon 9, with heterozygous C57BL/6 Hmgcs2-/+ mice. Resultant double heterozygous

Fgfr2c-/+;Hmgcs2-/+ mice were backcrossed with heterozygous Hmgcs2-/+ to generate control

and XY Fgfr2c−/+;Hmgcs2−/− embryos at 13.5 dpc and 15.5 dpc. Genotyping analysis for the

Fgfr2c locus [36] and the Hmgcs2 locus (S1 Table) was performed using genomic DNA isolated

from tail tissue.

Section in situ hybridization (ISH) and immunohistochemistry (IHC)

The ISH probe for Hmgcs2 (NP_032282) was cloned by RT-PCR from RNA prepared from

whole mouse embryos at 13.5 dpc. Primers used to generate the Hmgcs2-specific ISH probes

are listed in S1 Table. Mouse embryos were fixed in 4% paraformaldehyde (PFA) in PBS (137

mM NaCl, 10 mM phosphate, 2.7 mM KCl, pH of 7.4) at 4˚C, embedded in paraffin, and sec-

tion ISH carried out as described previously [37]. Simultaneous detection of RNA and protein

in tissue sections was carried out by section ISH as described above followed by immunohis-

tochemistry (IHC) as described previously [38]. Images were taken with an Olympus BX-51

microscope.

Immunofluorescence

Mouse embryos were fixed in 4% PFA in PBS at 4˚C, embedded in paraffin, sectioned at 5μm,

and immunofluorescence performed as described previously [39]. Primary antibodies used for

this study were anti-HMGCS2 rabbit monoclonal (1:50; ab137043, Abcam), anti-SOX9 sheep

polyclonal (1:100; [40]), anti-MVH goat polyclonal (1:200; AF2030, R&D systems), anti-AMH

goat polyclonal (1:200; sc6886, Santa Cruz), anti-AMH goat polyclonal (1:50; AF1446 R&D
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systems), anti-SYCP3 mouse monoclonal (1:100; ab97672, Abcam), anti-FOXL2 rabbit poly-

clonal (1:300; [41]) and anti-CYP11A1 rabbit polyclonal [42]. Secondary antibodies used were

donkey anti-rabbit Alexa 488, donkey anti-rabbit Alexa 568, donkey anti-goat Alexa 488, don-

key anti-goat Alexa 546, donkey anti-mouse Alexa 488, and donkey anti-sheep Alexa 647

obtained from Invitrogen and used at 1:300. Images were taken with a Zeiss LSM 510 Meta

confocal microscope at the Australian Cancer Research Foundation Dynamic Imaging Centre

for Cancer Biology, University of Queensland and with a Zeiss LSM800 confocal microscope

at the Biological Optical Microscopy Platform (BOMP) at the Department of Anatomy and

Neuroscience, The University of Melbourne.

Hematoxylin & eosin (H&E) staining

Embryos were harvested from at 13.5 and 15.5dpc, fixed in 4% PFA overnight and then

embedded in paraffin. Paraffin blocks were sectioned at 5 μm and sections stained with hema-

toxylin and eosin (H&E) for histological analysis.

Quantitative real-time (RT-qPCR) and droplet digital (RT-ddPCR)

RT-PCR

RT-qPCR using SYBR green (Invitrogen) [43, 44] and RT-ddPCR [45] were performed as

described previously. For all stages, gonad-only samples (mesonephroi removed) were used,

which were snap-frozen in liquid nitrogen immediately after dissection. For RT-qPCR, 200 ng

of input RNA, pooled from like samples, was subjected to cDNA synthesis with SuperScript III

First-Strand Synthesis System for RT-PCR (Invitrogen) as per manufacturer’s instructions. 1μl

of the resultant cDNA reaction was used in a 20μl qPCR mastermix containing 1 SYBR Green

PCR Master Mix (Applied Biosystems) and 175nM each of the forward and reverse primers.

5μl triplicate reactions were run in 384-well plates on a Viia7 Real Time PCR System (Applied

Biosystems) as technical replicates. The PCR products were analyzed by gel electrophoresis,

cloned and sequenced to verify specificity of amplified sequence, and primer efficiency was

determined. Gene expression was normalized to Sdha [43]. For ddPCR, cDNA samples were

diluted with RNAse-free water 1:10 to 1:1000 for expression analysis. ddPCR was performed

using a BioRad QX100 system. A two-step thermocycling protocol [95˚C, 10 min; 40× (94˚C,

30 s, 60˚C, 60 s); 98˚C, 10 min; ramp rate set at 2.5˚C/s] was carried out in a BioRad C1000

Touch thermal cycler. Analysis of the ddPCR data was performed with QuantaSoft analysis

software (BioRad). ddPCR data were normalized to Tbp [43].

RT-PCR analyses were performed on at least three independent biological samples. For

each gene, data sets were analyzed for statistically significant differences between XX and XY

expression levels using a two-tailed, unpaired t-test with confidence intervals set at 95%. Prim-

ers used are described in S1 Table.

Patient case reports

Patient 1 from Poland was diagnosed at the age of 16 years with 46,XY DSD with gonadal dys-

genesis. The patient displayed primary amenorrhea, female genitalia, undeveloped secondary

sexual characteristics, small hypoplastic uterus, gonadal dysgenesis, streak gonads, the height

of 175cm, and a 46,XY karyotype. Prolactin was at normal level, FSH et 80 IU/L, LH at 50 IU/

L and low estradiol levels at 5pg/mL. Genomic DNA from the proband was isolated from

blood samples using the Qiagen DNA mini kit (Qiagen, Valencia, California).

Patient 2 from Indonesia was identified as 46,XY with suspected gonadal dysgenesis and

severe hypospadias. The patient was Quigley stage 2 with a phallus of 2cm and the urethral

meatus located in scrotal area. Chordee was also noted. The right testicle (2ml in volume) was
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present in the right scrotal region, while the left testis was absent and could not be detected by

ultrasound.

Massively parallel sequencing

Patient recruitment, consent and DNA extraction was carried out described previously [7].

Total genomic DNA was sequenced on a targeted panel (HaloPlex, Agilent) that includes 64

diagnostic DSD genes (described in [7]).

Exome sequencing, comparative genomic hybridization (CGH) and qPCR

An array-CGH 244K (Agilent) was performed using the manufacturer’s recommended proto-

cols without modifications. Exome capture was performed using the SureSelect Human All

Exon v3 kit (Agilent Inc). Sequencing was carried out on an Illumina HiSeq 2000 instrument.

Fastq files were obtained using the Illumina CASAVA v1.8.1 software and processed using our

“in house” bioinformatic pipeline running on the Vital-IT Center for high-performance com-

puting of the Swiss Institute of Bioinformatics (SIB; http://www.vital-it.ch) as described in

[46]. Results did not reveal obvious pathogenic variants. The detected deletion was confirmed

by quantitative PCR on genomic DNA using the primers listed in S1 Table.

Generation of wildtype and mutant HMGCS2 expression constructs

cDNA encoding HMGCS2 protein without the signal peptide was amplified from liver by PCR

and cloned into the expression plasmid pMAL-c2x as described in [26]. Variant c.1502G>C

(p.Arg501Pro) was introduced on pMAL-HMGCS2 using the QuickChange™ Site-Directed

Mutagenesis Kit (Agilent) according to the manufacturer’s instructions. DNA sequencing of

the new construct was performed to confirm target mutation.

Expression and purification of wildtype and mutant HMGCS2 proteins

E. coli strain BL21 expressing MBP-HMGCS2 wild-type or mutant protein were grown in LB

medium (10 g Peptone 140, 5 g Yeast Extract, 5 g sodium chloride per liter) at 37˚C to an A600

of 0.8–1.0. Optimal protein expression was induced with 0.3mM IPTG at 20˚C for 18h. Cells

were recovered, lysed and disrupted by thermal shock at 37ºC (15min), 80ºC (45min) and

37ºC (3min). The soluble fraction containing the MBP-HMGCS2 fusion proteins were loaded

into an amylase affinity column, washed, and finally eluted from the affinity resin using a

buffer containing the protease factor Xa [26].

Western blot analysis

Purified proteins were quantified by Bradford’s method. 5μg of each protein sample were sub-

jected to 15% SDS-PAGE electrophoresis and transferred to a 0.45μm PVDF membrane.

Membranes were probed with a 1:500 dilution of a monoclonal antibody (M06) against amino

acids 424–508 of human HMGCS2 (Abnova, Taipei City, Taiwan) and a 1:1000 dilution of a

secondary anti-mouse antibody. The blots were developed with the Immobilon Western

Chemiluminescent HRP Substrate (Millipore) kit. The images obtained were processed using

Adobe Photoshop 5.0. The relative amounts of mutated compared with wildtype (assigned

100%) HMGCS2 protein were determined using the software “Image Studio Lite Analysis Soft-

ware for Western Blots”.
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Enzymatic activity

Mitochondrial HMG-CoA synthase activity was determined measuring the amount of acetoa-

cetyl-CoA by spectrophotometry at 304 nm, as previously described in the literature. Each

experiment was performed in triplicate [26].

In silico analyses

For evolutionary sequence comparisons the following NCBI (https://www.ncbi.nlm.nih.gov)

reference proteins were used: Homo sapiens HMGCS2 (NP_005509.1), Mus musculus
HMGCS2 (NP_032282.2), Bos taurus HMGCS2 (NP_001039348.1), Homo sapiens HMGCS1

(NP_001091742.1), Mus musculus HMGCS1 (NP_666054.2), Bos taurus HMGCS1

(NP_001193507.1), Danio rerio HMGCS (NP_957379.2), Drosophila melanogaster HMGCS

(NP_524711.1), and Arabidopsis thaliana HMGCS (NP_192919.1). The reference proteins

were aligned with the online program Clustal Omega (https://www.ebi.ac.uk/Tools/msa/

clustalo/). To predict the effect of the substitution p.R501P on HMGCS2 protein function the

following in silico algorithms were used: PolyPhen-2 (http://genetics.bwh.harvard.edu/pph2/)

[47], SIFT (http://sift.jcvi.org/) [48], and MutationTaster (http://www.mutationtaster.org/)

[49]. The PyMOL molecular visualization system (Schrödinger) was used for computational

modeling of the p.Arg501Pro substitution based on the human HMGCS2 protein (PDB

2WYA [50]).

Results

Hmgcs2 switches from testis to ovary-enriched expressed during fetal

gonad development

In a recent study to identify novel genes that are expressed at higher levels in the ovary com-

pared to testis during early mouse gonad development [38], we discovered that the gene

encoding the metabolic enzyme HMGCS2 is ovary-enriched expressed at 13.5 dpc. To analyze

in more detail Hmgcs2 expression during gonad development we used quantitative real-time

RT-PCR (RT-qPCR) and section in situ hybridization (ISH) of mouse gonads at different

stages during fetal development and postnatally (Fig 1). RT-qPCR analyses showed that at

11.5dpc Hmgcs2 was expressed almost 3-fold higher in XY than in XX gonads (Fig 1A). How-

ever, at 12.5dpc Hmgcs2 expression had decreased in XY gonads, while at the same time

expression had increased in XX gonads, resulting in approximately 2-fold higher Hmgcs2
expression levels in XX compared to XY gonads (Fig 1A). At 13.5dpc, Hmgcs2 expression in

XY gonads continued to be down-regulated and was approximately 5-fold lower than in XX

gonads (Fig 1A). We confirmed these findings by section ISH analysis. At 11.5dpc, Hmgcs2
was strongly expressed throughout the XY gonad, but was down-regulated at 12.5dpc and was

barely detectable by 13.5dpc (Fig 1B). In contrast in XX gonads, Hmgcs2 was only weakly

expressed at 11.5dpc, but was up-regulated at 12.5dpc and continued to be strongly expressed

at 13.5dpc (Fig 1B).

The pattern of expression as seen in the section ISH suggested that Hmgcs2 was expressed

in somatic cells but not in germ cells. To confirm the expression in somatic cells, we performed

section ISH for the Hmgcs2 transcript (purple staining) followed by immunohistochemistry

(IHC, brown staining) for the SRY protein, which is known to be expressed in pre-Sertoli cells

at 11.5dpc [51]. This analysis demonstrated that the Hmgcs2 gene was expressed in SRY-posi-

tive pre-Sertoli cells, although not all SRY-positive cells were also Hmgcs2-positive (Fig 1C).

One day later, at 12.5dpc, double immunofluorescence (IF) analysis for HMGCS2 and the Ser-

toli cell marker SRY-box 9 (SOX9) confirmed that HMGCS2 was expressed in Sertoli cells of
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the developing testis cords (Fig 1D). In contrast, at 4 weeks of age, Hmgcs2 expression was

detected in steroidogenic cells, theca and Leydig cells in ovaries and testes respectively (Fig 1B,

right panel), as has been described before [31]. Furthermore, ISH of sections of whole embryos

at 12.5dpc showed that the main sites of Hmgcs2 expression were the developing liver and

gonads (Fig 1E). Taken together, these data confirmed that Hmgcs2 is enriched in XY gonads

at the time of testis determination and that its expression switches from testis to ovary-

enriched between 11.5dpc and 12.5dpc.

To explore in more detail the spatio-temporal relationship between Hmgcs2 and SRY

expression in the developing testes, we performed expression analysis between 11.0dpc and

12.5dpc by counting tail somites (ts), a more accurate staging system [33]. As previously

shown [39], SRY was only detected in a few scattered cells in the central region of the genital

ridge at 14ts (Fig 1F, first panel, brown staining), but was robustly expressed throughout the

XY genital ridges by 16ts (Fig 1F, second panel). In contrast, Hmgcs2 expression was not yet

detectable at 14ts (Fig 1, first panel) and was only observed in a few cells at 16ts (Fig 1F, second

panel, purple staining). The Hmgcs2-positive cells were, comparable to SRY-positive cells at

14ts, predominantly located in the central region of the developing testis (Fig 1F, second

panel). By 19ts, Hmgcs2 was strongly expressed throughout the XY genital ridges (Fig 1F, third

panel). After 19ts, both the number of SRY- and Hmgcs2-expressing cells declined, and they

were mainly restricted to the gonadal poles by 26ts and 30ts (Fig 1F, fourth and fifth panel).

These data showed that expression of Hmgcs2 closely follows that of SRY with a delay of

approximately 2 tail somites, equaling around 4h [52], during the critical phase of gonadal sex

determination.

Hmgcs2-null mice develop normally

To functionally test the role of Hmgcs2 in gonad development in vivo we used CRISPR/Cas9

genome editing to generated mice lacking a functional HMGCS2 protein. A CRISPR guide

RNA (S1 Table) was designed to target exon 2 of the Hmgcs2 gene. Sequence analysis identi-

fied sixteen indels ranging from -647 to +84 nucleotides in 19 out of 25 offspring. Among the

19 mutated animals, 8 were compound heterozygotes, 3 were heterozygous and 8 were mosaic.

We generated lines for two of the founders with the first one having a deletion of 647 nucleo-

tides (named Δ647) spanning from the start of exon 2, which encodes two of three amino acids

(Glu132 and Cys166) of the catalytic triad [50], into intron 2 (Fig 2A, upper panel, pink under-

lay), resulting in a stop codon seven codons after the break point (Fig 2A, second panel). The

second founder (named +84) had a deletion of 9 nucleotides within exon 2 of the Hmgcs2 gene

(Fig 2A, red box), in addition to an insertion of 93 nucleotides of largely unrelated sequences

(Fig 2A, sequence in green, bottom panel), which also resulted in a premature stop codon (Fig

2A, bottom panel). For both lines, mice heterozygous for the mutation were viable and fertile,

and were subsequently used to generate homozygous Hmgcs2-/- embryos. Both lines had the

same phenotype, hence only data for the (Δ647) is shown.

First, we tested if HMGCS2 was successfully deleted in these mice. IF analysis using an

HMGCS2-specific antibody (Fig 2B, purple) together with a marker for germ cells, MVH (Fig

Fig 1. Hmgcs2 expression switches from testis-to-ovary enriched. (A) qRT-PCR analyses for Hmgcs2 in XY (blue bars) and XX (pink bars) gonads between 11.5

and 13.5 dpc. Mean ± SEM, n = 3. �P< 0.05, ����P< 0.0001. (B) Section ISH for the Hmgcs2 transcript on XY and XX gonad sections between 11.5 and 13.5 dpc

(scale bar, 100 μm), and at 4 weeks (scale bar, 30 μm). (C) In situ hybridization for the Hmgcs2 transcript (purple), followed by immunohistochemistry for SRY

(brown) on XY gonad sections between 14 and 30 tail somites. Scale bar, 15 μm. (D) Double immunofluorescence for HMGCS2 (green) and the Sertoli cell

marker SOX9 (purple) on testis sections at 12.5 dpc. Scale bar, 50 μm. (E) Section ISH for Hmgcs2 on whole XY and XX embryos at 12.5dpc. Scale bar, 1 mm. (F)

Section ISH for the Hmgcs2 transcript (purple), followed by immunohistochemistry for SRY (brown) on XY gonad sections between 14 and 30 tail somites. Scale

bar, 100 μm. All images of fetal gonad sections are oriented so that the anterior pole is at the top and the mesonephros is on the left of the gonad.

https://doi.org/10.1371/journal.pone.0227411.g001
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Fig 2. Generation of Hmgcs2-null mice. (A) Part of the genomic DNA sequence of the mouse Hmgcs2 gene. Exon 2, which was targeted with

CRISPR/Cas9 genome editing, is marked in bold with codons separated by blanks. Two stable mouse lines were generated with founder 1 (Hmgcs2
KO(Δ647) transcript) having a deletion of 647 nucleotides (marked with pink underlay in upper panel) encompassing most of exon 2 and part of
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stop codon (marked in red in bottom panel). (B) Double immunofluorescence analysis for HMGCS2 (purple) and MVH (green) on sagittal sections
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2B, green) on paraffin sections of wildtype and Hmgcs2-null ovaries at 14.5 dpc demonstrated

that in contrast to wildtypes, HMGCS2 protein was undetectable in the ovary and liver in the

knockout animals (Fig 2B). Quantitative ddRT-PCR on RNA isolated from 14.5dpc wildtype

and knockout testes and ovaries confirmed that exon 2 is missing in Hmgcs2-null mice

(Fig 2C).

In order to determine if loss of HMGCS2 affects testis determination and development, we

performed double IF on paraffin sections of wildtype and Hmgcs2-null embryos at 14.5 dpc.

All XY Hmgcs2-null embryos developed testes that were indistinguishable from wildtype testes

as shown by the formation of testes cords (compare Fig 3B, 3E and 3H with Fig 3A, 3D and

3G), the expression of the Sertoli cell marker AMH (Fig 3A and 3B) and Leydig cell marker

CYP11A1 (Fig 3G and 3H), as well as the absence of the meiosis marker SYCP3 (Fig 3B and

3C) and the granulosa cell marker FOXL2 (Fig 3E and 3F), which are ovary-specific at this

stage. Furthermore, quantification of testicular and ovarian markers by quantitative

ddRT-PCR confirmed that XY Hmgcs2-null testes expressed Sox9 (Fig 3J, blue bars) and Amh
(Fig 3K, blue bars) at similar levels to those seen in wildtype XY testes, and at much higher lev-

els than in XX wildtype and XX Hmgcs2-null gonads (Fig 3J and 3K, pink bars). Also in agree-

ment with the IF analysis, Foxl2 expression levels in XY wildtype and Hmgcs2-null gonads

were negligible (Fig 3L, blue bars), in contrast to wildtype and Hmgcs2-null XX gonads (Fig

3L, pink bars). In addition, the mRNA levels of another ovarian marker, Wnt4, in XY Hmgcs2-

null gonads were comparable to those of XY wildtype and markedly lower to the expression

levels in XX gonads of either genotype (Fig 3M).

Similar to XY animals, XX Hmgcs2-null mice developed ovaries indistinguishable from XX

wildtype (S1 Fig), including normal differentiation of somatic supporting cells, shown by the

expression of FOXL2 (S1A–S1C Fig, green fluorescence), and germ cells, shown by the meiosis

marker SYCP3 (S1D–S1F Fig, green fluorescence) at 14.5 dpc. Furthermore, testicular mark-

ers such as SOX9 were not expressed in 14.5 dpc XX Hmgcs2-null gonads (S1G–S1I Fig, green

fluorescence). Quantification of gonadal markers by quantitative ddRT-PCR demonstrated

that XX Hmgcs2-null ovaries expressed the ovarian markers Foxl2 (Fig 3L, pink bars) and

Wnt4 (Fig 3M, pink bars) at similar levels to those seen in XX wildtype ovaries. In addition,

the mRNA levels of the testicular markers Sox9 (Fig 3J, blue bars) and Amh (Fig 3K, blue bars)

in XX Hmgcs2-null ovaries were very low compared to XY wildtype and Hmgcs2-null gonads

and similar to wildtype XX ovaries.

These data show that in mouse, gonad development and differentiation are not affected by

the loss-of-function of HMGCS2.

Gonads develop normally in Hmgcs2-/-:Fgr2c-/+ mice

A gonadal phenotype in mice might only be evident on a sensitized background; hence we

crossed the Hmgcs2-null (+84) onto a Fgfr2c heterozygous background. FGFR2c has been

shown to be important for testis development; likely through the repression of the WNT4- and

FOXL2-driven ovarian determining pathways [53]. While XY Fgfr2c heterozygous mice

develop normal testes, XY Fgfr2c-null mice display complete testis-to-ovary sex reversal by

15.5 dpc [53]. Histological analysis using hematoxylin and eosin staining (H&E) on paraffin

of wildtype (WT) and Hmgcs2-null (Δ647 KO) mouse fetuses at 14.5 dpc shows loss of HMGCS2 protein in the knockout. Scale bar, 100 μm. All

images of fetal gonad sections are oriented so that the anterior pole is at the top and the mesonephros is on the left of the gonad. Asterisks mark liver.

(C) Quantitative ddRT-PCR for Hmgcs2 mRNA in 14.5 dpc testes (blue bars) and ovaries (pink bars) from wildtype (WT) and Hmgcs2-null (Δ647

KO) mice demonstrated absence of Hmgcs2 exon 2 in the knockout. ddRT-PCR data were obtained from at least three independent samples. Error

bars represent SEM.

https://doi.org/10.1371/journal.pone.0227411.g002
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sections of XX and XY wildtype controls (Fig 4A, 4B and 4D; WT) as well as XY compound

mutant Fgfr2c-/+:Hmgcs2-/- (Fig 4C and 4E; sensitized KO) at 13.5 and 15.5 dpc demonstrated

that mice heterozygous for Fgfr2c and homozygous null for Hmgcs2 developed testes that

appeared normal compared to the wildtype control, with testis cords throughout at 13.5 dpc

and 15.5 dpc (Fig 4A–4E). In addition, double IF analysis for the Sertoli cell marker AMH and

the granulosa cell marker FOXL2 on sections of 13.5 dpc XX and XY wildtype and XY

Hmgcs2-null (Fig 4F–4H), as well as 15.5 dpc XY wildtype and Hmgcs2-null fetuses (Fig 4I

and 4J) demonstrated that also at the molecular level XY Hmgcs2-null mice developed normal

testes.

Identification of a 20 kb deletion within the HMGCS2 gene in a 46,XY DSD

patient with complete gonadal dysgenesis

To test if HMGCS2 plays an important role in gonad development in humans we first used 1

million probe comparative genomic hybridization arrays (aCGH) on genomic DNA from

twenty-three unexplained cases of 46,XY GD European descent, for which variants in SRY and

in other genes known to cause 46,XY DSD, such as nuclear receptor subfamily 5, group A,

member 1 (NR5A1) and mitogen-activated protein kinase kinase kinase 1 (MAP3K1) [6, 54,

55], were excluded. Among them, we identified a heterozygous deletion within the HMGCS2
gene in a 46,XY DSD patient with complete gonadal dysgenesis and male-to-female sex rever-

sal (Fig 5A). The deletion had a size of approximately 20 kb and removed almost the entire

HMGCS2 gene, from exon 2 until the last non-coding exon 10 (Fig 5A). Quantitative PCR

analyses on the patient’s genomic DNA validated the deletion from exon 2 to at least exon 5

(amino acids 35 to 339) of the HMGCS2 gene (Fig 5B). Any protein generated from the short-

ened HMGCS2 transcript would lack all three amino acids (Glu132, Cys166, and His301; [50]

of the catalytic triad, rendering the truncated protein non-functional. As DNA samples from

family members were unavailable, it is unknown if the deletion is de novo or if any family

member displayed any clinical signs or symptoms.

Identification of a heterozygous HMGCS2 missense variant in a 46,XY

DSD gonadal dysgenesis patient

To search for additional 46,XY GD cases with variants in the HMGCS2 locus, we incorporated

the HMGCS2 gene into our targeted massively parallel sequencing (MPS) screen, which offers

a tool for diagnosis and for identifying novel DSD genes [7]. The HaloPlex screen (Agilent)

currently has a targeted region size of 2.5 Mb covering 1031 genes, including all known DSD

genes as well as candidate DSD genes. Among 52 patients with 46,XY GD that were sequenced

by MPS, we identified a previously unreported, heterozygous HMGCS2 missense variant in

exon 9, c.1502G>C (p.Arg501Pro) in a 46,XY GD patient (Fig 6A). Family members of this

patient were not available for sequencing.

The change affects two transcripts, both of which are expressed in the testis: NM_005518:

c.1502G>C; p.(Arg501Pro) and NM_001166107: c.1437G>C; p.(Arg459Pro). The variant is

Fig 3. Markers of gonadal differentiation in wildtype and Hmgcs2-null mice. (A-I) Double immunofluorescence on

sagittal sections of gonads from wildtype (XY and XX WT) and Hmgcs2-null (XY KO (Δ647)) fetuses at 14.5 dpc for

(A-C) AMH (purple, Sertoli cells) and SYCP3 (green, germ cell meiosis); (D-F) AMH (purple) and FOXL2 (green, pre-

granulosa cells); and (G-I) MVH (purple, germ cells) and CYP11A1 (green, Leydig cells). Scale bar, 100 μm. All images

of fetal gonad sections are oriented so that the anterior pole is at the top and the mesonephros is on the left of the

gonad. (J-M) Expression of mRNA was measured at 14.5 dpc by quantitative ddRT-PCR and is shown relative to the

expression levels of Tbp. XX samples are shown in pink, XY in blue. (J) Sox9 expression; (K) Amh; (L) Foxl2; (M)

Wnt4. ddRT-PCR data were obtained from at least three independent samples. Error bars represent SEM.

https://doi.org/10.1371/journal.pone.0227411.g003
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predicted to result in a major amino acid change from arginine to proline (Grantham score:

103). All of the in silico protein predictions deemed the change to be pathogenic (PolyPhen,

Mutation taster and SIFT). Although the variant is present in gnomAD; it is extremely rare

(reported in 0.0012%, 0 homozygotes), however its slightly more prevalent in the “Other East

Asian” population (frequency: 0.011%, 0 homozygotes). It should be noted that our patient is

from a South Asian origin. We could not establish whether the variant was de novo as the

parents were not available for analysis. There is also a ClinVar entry which describes the vari-

ant seen in our patient and concludes that it is a variant of uncertain significance. In addition

to the variant identified in our patient, there are a further two other variants that have been

reported in gnomAD. A rare missense change c.1502C>T;p.Arg501Lys (frequency 0.00039%,

0 homozygotes) as well as a premature stop codon c.1501G>A; p.Arg501Ter (frequency:

0.0012%, 0 homozygotes).

To test if p.Arg501Pro could affect HMGCS2 protein structure, we first performed in silico
analyses. While the mitochondrial HMGCS2 enzyme is restricted to mammals, its homolog,

the cytosolic HMGCS1 enzyme, is highly conserved in eukaryotes including frog, zebrafish,

fruit fly, and plants. Evolutionary sequence comparison revealed that arginine 501 (Arg501) is
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https://doi.org/10.1371/journal.pone.0227411.g004
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highly conserved in mammalian HMGCS2 and HMGCS1 proteins as well as in HMGCS1

homologs (Fig 6B), suggesting that this amino acid is critical for HMGCS protein function.

Consistent with this, human p.Arg501Pro was predicted to be damaging by the three in silico
algorithms SIFT (score 0) [48], MutationTaster (score 0.99) [49], and PolyPhen-2 (score 1)

[47] with near-maximal to maximal scores. Based on the human HMGCS2 protein structure

(PDB 2WYA [50]), it was predicted that the positively charged Arg501 of beta sheet E17 forms

a salt bridge with the negatively charged aspartic acid 101 (Asp101) of helix H3 near the dimer-

ization surface (Fig 6C). If arginine is replaced by the non-polar proline at position 501 this

salt bridge can no longer form and therefore is likely to disturb protein structure (Fig 6D). In

addition, Arg501 is located within beta sheet E17 (Fig 6C) and proline is a known beta sheet

breaker [56], suggesting that p.Arg501Pro will disrupt the beta sheet and therefore the protein

structure.
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To confirm the in silico results of the variant HMGCS2 protein in a functional assay, we

expressed wildtype and variant HMGCS2 proteins tagged with MBP in E. coli and purified

them using amylose affinity columns [26]. Western blot analysis showed that the mutant pro-

tein was obtained in a soluble form and at a similar level (89.3% of that of wild-type) (Fig 6E).

Next, we measured HMGCS2 enzymatic activity using a spectrophotometric method that

determines the amount of acetoacetyl-CoA consumed [26]. In contrast to the wildtype

HMGCS2 protein, the variant HMGCS2 protein showed no detectable specific activity

(Table 1; n = 3). This demonstrates that the missense variant c.1502G>C (p.Arg501Pro)

completely abolished HMGCS2 enzymatic activity. In summary, although the functional data

presented here supports the importance of this residue, following ACMG guidelines the cur-

rent evidence is insufficient to conclude that this variant is having a clear role in the patient’s

phenotype and therefore we have classified it as a variant of uncertain significance.

In summary, while Hmgcs2 shows a unique expression pattern in mouse fetal gonads,

which implies it might be necessary for sex differentiation, based on our functional data in

mouse and the fact that the two cases of 46,XY DSD with variants in HMGCS2 identified here

were heterozygous variants, we believe that it is unlikely that HMGCS2 plays an important

role in gonad development and therefore is an unlikely cause of DSDs in human.

Discussion

Here, we report the unusual expression pattern of the metabolic enzyme HMGCS2 during

mouse fetal gonad development. Our analysis showed that in fetal testes Hmgcs2 is expressed

in the same transient spatio-temporal pattern as Sry in supporting Sertoli cells with a delay of

about 4h. Interestingly, while Hmgcs2 expression is down-regulated in the developing testis

from approximately 11.5dpc onwards, it is up-regulated in the developing ovary, becoming

ovary-enriched from 12.5dpc. To our knowledge this is the only gene that shows a switch from

testis- to ovary-enriched expression.

To test a possible role for HMGCS2 in gonad development, we followed two lines of investi-

gations, the generation of mice lacking functional HMGCS2 and the screening of DSD patients

for variants in HMGCS2. Using CRISPR/Cas9 genome editing we successfully established

Hmgcs2-null mice. However, phenotypic analysis showed that the loss of this enzyme is not

sufficient to cause disruption of fetal gonad development. Furthermore, while we identified

two unrelated patients with 46,XY gonadal dysgenesis with a deletion and variant in HMGCS2,

respectively, both variants were heterozygous. Hence, based on the ClinGen tool (https://

clinicalgenome.org/), these patients are not expected to present with the disorder HMGCS2

deficiency and it is questionable whether their DSD phenotype was caused by these variants.

Patient 1 carried a heterozygous deletion, which removed almost the entire HMGCS2 gene,

and presented as a phenotypic female with complete gonadal dysgenesis despite having a 46,

XY karyotype. Patient 2, displayed severe hypospadias with suspected gonadal dysgenesis, and

carried a heterozygous missense variant c.1502G>C (p.Arg501Pro). The missense variant

showed complete loss of HMGCS2 enzymatic activity in vitro, suggesting that it could play a

Table 1. Enzymatic activity of purified wildtype and variant HMGCS2. Specific HMGCS2 enzymatic activity of wildtype and variant (Arg501Pro) was measured using

a spectrophotometric method that determines the amount of acetoacetyl-CoA consumed.

Variation Exon Protein effect Specific activity (μmol/min.mg-enz) % Activity

WT - - 0.910±0.01 100%

c.1502G>C E9 p.R501P nd 0%

nd—not detectable

https://doi.org/10.1371/journal.pone.0227411.t001
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role in the DSD phenotype. Computational modelling predicts that the p.Arg501Pro substitu-

tion disrupts the protein structure close to the dimeric interface due to loss of a salt bridge that

is normally formed between Arg501 and Asp101. Alongside the substitutions p.Arg500His, p.

Tyr503Cys and Arg505Gln previously identified in HMGCS2-deficiency syndrome [25, 57], p.

Arg501Pro is now the fourth substitution found at the C-terminal end of the HMGCS2 protein

(Fig 5A), highlighting the critical function of this region.

Homozygous variants in human HMGCS2 are well known to cause the very rare metabolic

disorder HMGCS2 deficiency [24] (OMIM: 605911), which is characterized by severe hypoke-

totic hypoglycemia, encephalopathy, and hepatomegaly that is triggered after extended periods

of fasting or after infections [28]. To date, 27 HMGCS2 deficiency patients have been identi-

fied including ten males, three females, and 14 patients for which the sex was not reported

[24–28, 57–61]. However, gonadal defects have not yet been described in any of these patients

who carry homozygous or compound heterozygous HMGCS2 variants.

Does this mean that HMGCS2 does not play a role in gonad development in humans and

that the DSD individuals described here were caused by other genes? Based on our data in

mice, this is certainly the most likely interpretation. Further analysis would be necessary to

establish the expression of HMGCS2 in human fetal gonads as well as investigate a larger num-

ber of patients to establish an association of HMGCS2 with gonadal development. However,

there are examples of genes, such as the testis-determining gene Sox9, for which it has been

shown that there is a difference in dosage requirements between human and mouse. In

humans, loss of one SOX9 allele is sufficient to cause XY sex reversal in most cases [8, 9],

whereas in mouse both alleles need to be deleted [10, 11, 62]. There is a possibility that the two

DSD individuals described here carry modifier genes that exacerbate specifically the testicular

phenotype with no influence on the metabolic role of HMGCS2. Indeed, there is recent data

suggesting an oligogenic basis for some DSDs [63–65]. It also is possible that the lack of

HMGCS2 activity in the developing gonads only affects testis differentiation when combined

with low glucose levels at the time of gonadal development (see below), which could be tested

by keeping pregnant female mice on a ketogenic diet.

The question remains as to what role HMGCS2 might play during testis determination.

HMGCS2 function is best known in the liver where it is important for ßHB production from

fatty acids under low glucose conditions, which then can be used as energy source by other

organs. In the adult rat testis, HMGCS2 is expressed in steroidogenic Leydig cells, and it was

suggested that the expression of HMGCS2 in this cell type is a mechanism for promoting

androgen production [31]. In contrast, we show here that in the fetal testis, Hmgcs2 is not

expressed in steroidogenic but in the supporting cell lineage, the Sertoli cells, indicating that

HMGCS2 might play a different role during early testis development. We found that Hmgcs2
is transiently expressed in Sertoli cells at the time of gonadal sex determination, and that its

spatiotemporal expression pattern follows closely that of the sex-determining gene Sry. The

timing of Hmgcs2 expression correlates with a critical phase during testis determination in

which maintenance of SOX9 expression in pre-Sertoli cells and thus Sertoli cell differentiation

requires a high-glucose metabolism [14]. It is therefore possible that in humans, if glucose lev-

els are too low, HMGCS2 could provide additional energy from fatty acids required for proper

Sertoli cell differentiation.

Recently, it has been demonstrated that apart from providing energy, HMGCS2 also plays

an important role in gene regulation [30]. One of the end products of ketogenesis, the ketone

body ßHB, is an endogenous and specific inhibitor of class I histone deacetylases (HDACs)

[32]. HDACs are a class of enzymes that remove acetyl groups from histones, which is associ-

ated with gene silencing. In the intestine, ßHB inhibits HDACs as evidenced by increased acet-

ylation of histone H3 lysine 9 (AcH3K9) to induce the expression of intestinal differentiation
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markers such as p21 and CDX2 [30]. The production of ßHB by HMGCS2 in the fetal testis

could thus be important for the expression of important testicular genes such as SRY and

SOX9, which otherwise would be repressed by HDACs. Indeed, just recently, it has been dem-

onstrated that histone acetylation of the Sry promoter is required for Sry/SRY expression and

thus testis determination [66]. Mouse embryos with reduced histone acetyl-transferase activity

showed reduced Sry expression and complete XY gonadal sex reversal, most likely due to a

reduction in H3K27Ac marks at the Sry promoter [66].

In summary, while Hmgcs2 expression in mouse suggests a role in sex differentiation, cur-

rent evidence is insufficient to conclude that HMGCS2 variants could be causative of DSD in

humans.

Supporting information

S1 Fig. Markers of gonadal differentiation in XX wildtype and Hmgcs2-null mice. Double

immunofluorescence on sagittal sections of gonads from XX and XY wildtype (WT) and XX

Hmgcs2-null (KO (Δ647)) fetuses at 14.5 dpc for (A-C) MVH (purple, germ cells) and FOXL2

(green, pre-granulosa cells); (D-F) MVH (purple, germ cells) and SOX9 (green, Sertoli cells);

and (G-I) MVH (purple, germ cells) and SYCP3 (green, meiotic germ cells). Scale bar, 100 μm.

All images of fetal gonad sections are oriented so that the anterior pole is at the top and the

mesonephros is on the left of the gonad.

(PDF)

S1 Table. Primers used in this study. Sequences of primers used in various experiments.

(DOCX)
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