000087850 001__ 87850
000087850 005__ 20220617151028.0
000087850 0247_ $$2doi$$a10.1038/s41598-019-40769-2
000087850 0248_ $$2sideral$$a116262
000087850 037__ $$aART-2019-116262
000087850 041__ $$aeng
000087850 100__ $$aLeón Félix L.
000087850 245__ $$aGold-decorated magnetic nanoparticles design for hyperthermia applications and as a potential platform for their surface-functionalization
000087850 260__ $$c2019
000087850 5060_ $$aAccess copy available to the general public$$fUnrestricted
000087850 5203_ $$aThe integration of noble metal and magnetic nanoparticles with controlled structures that can couple various specific effects to the different nanocomposite in multifunctional nanosystems have been found interesting in the field of medicine. In this work, we show synthesis route to prepare small Au nanoparticles of sizes <d> = 3.9 ± 0.2 nm attached to Fe 3 O 4 nanoparticle cores (<d> = 49.2 ± 3.5 nm) in aqueous medium for potential application as a nano-heater. Remarkably, the resulted Au decorated PEI-Fe 3 O 4 (Au@PEI-Fe 3 O 4 ) nanoparticles are able to retain bulk magnetic moment M S = 82–84 Am 2 /kg Fe3O4 , with the Verwey transition observed at T V = 98 K. In addition, the in vitro cytotoxicity analysis of the nanosystem microglial BV2 cells showed high viability (>97.5%) to concentrate up to 100 µg/mL in comparison to the control samples. In vitro heating experiments on microglial BV2 cells under an ac magnetic field (H 0 = 23.87 kA/m; f = 571 kHz) yielded specific power absorption (SPA) values of SPA = 43 ± 3 and 49 ± 1 µW/cell for PEI-Fe 3 O 4 and Au@PEI-Fe 3 O 4 NPs, respectively. These similar intracellular SPA values imply that functionalization of the magnetic particles with Au did not change the heating efficiency, providing at the same time a more flexible platform for multifunctional functionalization.
000087850 536__ $$9info:eu-repo/grantAgreement/ES/DGA/E26$$9info:eu-repo/grantAgreement/ES/MINECO/MAT2016-78201-P
000087850 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/
000087850 590__ $$a3.998$$b2019
000087850 591__ $$aMULTIDISCIPLINARY SCIENCES$$b17 / 71 = 0.239$$c2019$$dQ1$$eT1
000087850 592__ $$a1.341$$b2019
000087850 593__ $$aMultidisciplinary$$c2019$$dQ1
000087850 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000087850 700__ $$aSanz B.
000087850 700__ $$0(orcid)0000-0002-6873-5244$$aSebastián V.$$uUniversidad de Zaragoza
000087850 700__ $$0(orcid)0000-0002-6116-9331$$aTorres T.E.
000087850 700__ $$aSousa M.H.
000087850 700__ $$aCoaquira J.A.H.
000087850 700__ $$0(orcid)0000-0003-0681-8260$$aIbarra M.R.$$uUniversidad de Zaragoza
000087850 700__ $$0(orcid)0000-0003-1558-9279$$aGoya G.F.$$uUniversidad de Zaragoza
000087850 7102_ $$15005$$2555$$aUniversidad de Zaragoza$$bDpto. Ing.Quím.Tecnol.Med.Amb.$$cÁrea Ingeniería Química
000087850 7102_ $$12003$$2395$$aUniversidad de Zaragoza$$bDpto. Física Materia Condensa.$$cÁrea Física Materia Condensada
000087850 773__ $$g9, 1 (2019), 4185 [11 pp]$$pSci. rep.$$tScientific Reports$$x2045-2322
000087850 8564_ $$s6944509$$uhttps://zaguan.unizar.es/record/87850/files/texto_completo.pdf$$yVersión publicada
000087850 8564_ $$s240591$$uhttps://zaguan.unizar.es/record/87850/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000087850 909CO $$ooai:zaguan.unizar.es:87850$$particulos$$pdriver
000087850 951__ $$a2022-06-17-15:02:35
000087850 980__ $$aARTICLE