000087851 001__ 87851
000087851 005__ 20201022135734.0
000087851 0247_ $$2doi$$a10.1021/acscatal.9b03207
000087851 0248_ $$2sideral$$a116265
000087851 037__ $$aART-2019-116265
000087851 041__ $$aeng
000087851 100__ $$aFernández E.
000087851 245__ $$aLow-Temperature Catalytic NO Reduction with CO by Subnanometric Pt Clusters
000087851 260__ $$c2019
000087851 5060_ $$aAccess copy available to the general public$$fUnrestricted
000087851 5203_ $$aThe catalytic subnanometric metal clusters with a few atoms can be regarded as an intermediate state between single atoms and metal nanoparticles (>1 nm). Their molecule-like electronic structures and flexible geometric structures bring rich chemistry and also a different catalytic behavior, in comparison with the single-atom or nanoparticulate counterparts. In this work, by combination of operando IR spectroscopy techniques and electronic structure calculations, we will show a comparative study on Pt catalysts for CO + NO reaction at a very low temperature range (140-200 K). It has been found that single Pt atoms immobilized on MCM-22 zeolite are not stable under reaction conditions and agglomerate into Pt nanoclusters and particles, which are the working active sites for CO + NO reaction. In the case of the catalyst containing Pt nanoparticles (~2 nm), the oxidation of CO to CO2 occurs in a much lower extension, and Pt nanoparticles become poisoned under reaction conditions because of a strong interaction with CO and NO. Therefore, only subnanometric Pt clusters allow NO dissociation at a low temperature and CO oxidation to occur well on the surface, while CO interaction is weak enough to avoid catalyst poisoning, resulting in a good balance to achieve enhanced catalytic performance.
000087851 536__ $$9info:eu-repo/grantAgreement/ES/MINECO-AEI-FEDER/MAT2016-79776-P$$9This project has received funding from the European Union’s Horizon 2020 research and innovation program under grant agreement No H2020 823717-ESTEEM3$$9info:eu-repo/grantAgreement/EC/H2020/823717/EU/Enabling Science and Technology through European Electron Microscopy/ESTEEM3$$9info:eu-repo/grantAgreement/ES/DGA/E13-17R
000087851 540__ $$9info:eu-repo/semantics/openAccess$$aby-nc$$uhttp://creativecommons.org/licenses/by-nc/3.0/es/
000087851 590__ $$a12.35$$b2019
000087851 591__ $$aCHEMISTRY, PHYSICAL$$b12 / 159 = 0.075$$c2019$$dQ1$$eT1
000087851 592__ $$a4.633$$b2019
000087851 593__ $$aChemistry (miscellaneous)$$c2019$$dQ1
000087851 593__ $$aCatalysis$$c2019$$dQ1
000087851 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000087851 700__ $$aLiu L.
000087851 700__ $$aBoronat M.
000087851 700__ $$0(orcid)0000-0002-2071-9093$$aArenal R.$$uUniversidad de Zaragoza
000087851 700__ $$aConcepcion P.
000087851 700__ $$aCorma A.
000087851 7102_ $$12003$$2395$$aUniversidad de Zaragoza$$bDpto. Física Materia Condensa.$$cÁrea Física Materia Condensada
000087851 773__ $$g9, 12 (2019), 11530-11541$$pACS catal.$$tACS CATALYSIS$$x2155-5435
000087851 8564_ $$s6177550$$uhttps://zaguan.unizar.es/record/87851/files/texto_completo.pdf$$yVersión publicada
000087851 8564_ $$s110147$$uhttps://zaguan.unizar.es/record/87851/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000087851 909CO $$ooai:zaguan.unizar.es:87851$$particulos$$pdriver
000087851 951__ $$a2020-10-22-13:50:40
000087851 980__ $$aARTICLE