000087852 001__ 87852
000087852 005__ 20201022135734.0
000087852 0247_ $$2doi$$a10.1021/acscatal.9b04214
000087852 0248_ $$2sideral$$a116266
000087852 037__ $$aART-2019-116266
000087852 041__ $$aeng
000087852 100__ $$aLiu L.
000087852 245__ $$aDetermination of the Evolution of Heterogeneous Single Metal Atoms and Nanoclusters under Reaction Conditions: Which Are the Working Catalytic Sites?
000087852 260__ $$c2019
000087852 5060_ $$aAccess copy available to the general public$$fUnrestricted
000087852 5203_ $$aIdentification of active sites in heterogeneous metal catalysts is critical for understanding the reaction mechanism at the molecular level and for designing more efficient catalysts. Because of their structural flexibility, subnanometric metal catalysts, including single atoms and clusters with a few atoms, can exhibit dynamic structural evolution when interacting with substrate molecules, making it difficult to determine the catalytically active sites. In this work, Pt catalysts containing selected types of Pt entities (from single atoms to clusters and nanoparticles) have been prepared, and their evolution has been followed, while they were reacting in a variety of heterogeneous catalytic reactions, including selective hydrogenation reactions, CO oxidation, dehydrogenation of propane, and photocatalytic H2 evolution reaction. By in situ X-ray absorption spectroscopy, in situ IR spectroscopy, and high-resolution electron microscopy techniques, we will show that some characterization techniques carried out in an inadequate way can introduce confusion on the interpretation of coordination environment of highly dispersed Pt species. Finally, the combination of catalytic reactivity and in situ characterization techniques shows that, depending on the catalyst-reactant interaction and metal-support interaction, singly dispersed metal atoms can rapidly evolve into metal clusters or nanoparticles, being the working active sites for those abovementioned heterogeneous reactions.
000087852 536__ $$9info:eu-repo/grantAgreement/ES/MINECO-AEI-FEDER/MAT2016-79776-P$$9This project has received funding from the European Union’s Horizon 2020 research and innovation program under grant agreement No H2020 823717-ESTEEM3$$9info:eu-repo/grantAgreement/EC/H2020/823717/EU/Enabling Science and Technology through European Electron Microscopy/ESTEEM3$$9This project has received funding from the European Union’s Horizon 2020 research and innovation program under grant agreement No H2020 671093-SynCatMatch$$9info:eu-repo/grantAgreement/EC/H2020/671093/EU/MATching zeolite SYNthesis with CATalytic activity/SynCatMatch$$9info:eu-repo/grantAgreement/ES/DGA/E13-17R$$9info:eu-repo/grantAgreement/ES/MINECO/SEV-2016-0683
000087852 540__ $$9info:eu-repo/semantics/openAccess$$aby-nc$$uhttp://creativecommons.org/licenses/by-nc/3.0/es/
000087852 590__ $$a12.35$$b2019
000087852 591__ $$aCHEMISTRY, PHYSICAL$$b12 / 159 = 0.075$$c2019$$dQ1$$eT1
000087852 592__ $$a4.633$$b2019
000087852 593__ $$aChemistry (miscellaneous)$$c2019$$dQ1
000087852 593__ $$aCatalysis$$c2019$$dQ1
000087852 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000087852 700__ $$aMeira D.M.
000087852 700__ $$0(orcid)0000-0002-2071-9093$$aArenal R.$$uUniversidad de Zaragoza
000087852 700__ $$aConcepcion P.
000087852 700__ $$aPuga A.V.
000087852 700__ $$aCorma A.
000087852 7102_ $$12003$$2395$$aUniversidad de Zaragoza$$bDpto. Física Materia Condensa.$$cÁrea Física Materia Condensada
000087852 773__ $$g9, 12 (2019), 10626-10639$$pACS catal.$$tACS CATALYSIS$$x2155-5435
000087852 8564_ $$s2744101$$uhttps://zaguan.unizar.es/record/87852/files/texto_completo.pdf$$yVersión publicada
000087852 8564_ $$s111115$$uhttps://zaguan.unizar.es/record/87852/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000087852 909CO $$ooai:zaguan.unizar.es:87852$$particulos$$pdriver
000087852 951__ $$a2020-10-22-13:50:43
000087852 980__ $$aARTICLE