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Resumen 

Los inconvenientes asociados al empleo de combustibles fósiles para la obtención de 

energía están impulsando la investigación hacia fuentes renovables. Una de las que más 

crecimiento ha experimentado es la energía solar, cuyo mercado sigue dominado por 

paneles de silicio ultrapuro. Recientemente han emergido una variedad de dispositivos 

solares con perspectivas de viabilidad en un futuro próximo. Un ejemplo de ello son las 

celdas de tipo Grätzel o DSSCs, en las cuales un colorante transforma la luz solar en 

electrones, y que presenta ciertas ventajas como su precio o la posibilidad de trabajar bajo 

condiciones de escasa luminosidad, o incluso de luz artificial.  

En este Trabajo de Fin de Máster, se han sintetizado colorantes derivados de la 

trifenilamina, utilizando ácido cianoacético como grupo aceptor y unidos a la plataforma 

calixareno, empleando como espaciadores diferentes heterociclos para modular sus 

propiedades. Se han mejorado las propiedades fotovoltaicas, casi se ha alcanzado el 5% 

de eficiencia, lo que supone un aumento del 28% con respecto al colorante Cx-2-TPA ya 

publicado. 

Abstract 

The drawbacks associated with the use of fossil fuels for energy are driving research into 

renewable sources. Solar energy has experienced a notorious growth. Ultrapure silicon 

cells dominate this market, but recently a variety of solar devices with viability prospects 

in a nearly future have appeared. An example of these devices are Grätzel cells or DSSCs 

type, in which a dye transforms sunlight into electric power, which has certain advantages 

as its price or the possibility of working under low light conditions, or even artificial light. 

In this Final Master Project, dyes derived from triphenylamine (donor) have been 

synthesized, using cyanoacetic acid (acceptor) group and linked to the calixarene platform 

using different heterocycles (-spacers) to modulate their properties. It has been improved 

the photovoltaic properties. The novel dye reached almost 5% which means an increase 

of the 28% with respect to the dye Cx-2-TPA. 
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1. Introducción 

Los combustibles fósiles siguen siendo la fuente principal de energía en el mundo, pero 

debido a la creciente demanda de energía eléctrica y todos los problemas de 

contaminación que conlleva su empleo masivo, cada vez cobra más importancia el 

desarrollo de fuentes de energía renovables. La contribución por parte de la energía solar 

al conjunto de las renovables es todavía muy pequeña, pero es la fuente con un mayor 

crecimiento desde los años 90 con una media del 46% al año.[1]  

Actualmente, el mercado se encuentra dominado por paneles de silicio ultrapuro 

multicristalino, que alcanzan una eficiencia máxima del 21%. Dentro de este mismo 

concepto de celdas inorgánicas, existen variedades más eficientes, pero mucho menos 

extendidas, como pueden ser las celdas basadas en arseniuro de galio, que llegan a 

alcanzar un 46% de eficiencia. Sin embargo, este tipo de celdas tiene una aplicación muy 

limitada con fines especializados.[2] 

Debido a los múltiples inconvenientes que presentan estos dispositivos, en cuanto a 

procesado, precio y rigidez, se han desarrollado en los últimos años diferentes alternativas 

con propiedades muy interesantes, como son las celdas orgánicas, las basadas en 

perovskitas o las celdas de tipo Grätzel o DSSCs,[3] en las que nos centraremos en este 

trabajo. 

Las celdas de tipo Grätzel consisten en un semiconductor inorgánico, generalmente TiO2, 

unido covalentemente a un colorante sensibilizador y depositado sobre un sustrato 

conductor, que actúa como ánodo. Un electrolito actúa de mediador rédox y se localiza 

entre el ánodo y el cátodo, que es un electrodo de platino. 

Cuando la luz incide sobre el colorante, éste se excita y transfiere los electrones al 

semiconductor que los transfiere al sustrato conductor. El electrón es transportado hasta 

el cátodo generando así la corriente eléctrica. El colorante oxidado vuelve al estado neutro 

al ser regenerado por el electrolito reiniciando así el ciclo. (Figura 1.1.1). 
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Figura 1.1.1. Representación esquemática de una celda de tipo Grätzel. 

Para que un colorante sea válido para este tipo de celdas, es necesario que cumpla unos 

requisitos energéticos. Por un lado, el potencial de oxidación del estado excitado ha de 

ser más negativo que el de la banda de conducción del dióxido de titanio al que se 

encuentra anclado (-0,50 V) para que se produzca de manera eficiente la transferencia 

electrónica. Por otra parte, su potencial de oxidación del estado fundamental ha de ser 

mayor que el del par redox del electrolito que se emplee (el más común es el par I3
-/I-, 

cuyo valor es de 0,40 V). 

Los sistemas dador-espaciador -aceptor han sido ampliamente estudiados y son los 

compuestos más comúnmente empleados como sensibilizadores, fundamentalmente 

debido a su sencillez y a la facilidad de modificación de sus propiedades con pequeños 

cambios estructurales. 

Se ha demostrado que sistemas dador-espaciador -aceptor con varios grupos de anclaje 

en disposición adecuada tienen propiedades fotovoltaicas mejoradas[4]. Además, la 

introducción de estos sistemas en una plataforma calixareno mejora notablemente la 

solubilidad, aumenta el coeficiente de absorción molar en derivados de calixareno con 

dos colorantes e impide la formación de agregados que disminuyan la eficiencia de las 

celdas. [5] 

En este grupo se han sintetizado sistemas utilizando la plataforma calixareno (Esquema 

1.1.1) como base de unión de dos cromóforos con buenas eficiencias en DSSCs. 
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Esquema 1.1.1. Colorante basado en la plataforma calixareno 

El dispositivo basado en el colorante Cx-2-TPA dio resultados aceptables, pero 

presentaba un hándicap importante en cuanto a su longitud de onda de trabajo. En este 

trabajo se intentará mejorar las propiedades del colorante Cx-2-TPA.[5a] 

Como grupo dador empleamos la trifenilamina, que es un sistema ampliamente estudiado 

y que proporciona buenos resultados y da lugar a celdas relativamente estables en el 

tiempo. El aceptor será el ácido cianoacético, que es uno de los más comunes y posee un 

grupo de anclaje al dióxido de titanio. Para los espaciadores , se realizó una búsqueda[6] 

para emplear aquellos que permitieran mejorar las propiedades fotovoltaicas. 

Se sabe que los anillos heteroaromáticos son buenos espaciadores, ya que combinan 

capacidad de transferencia de carga con alta estabilidad térmica. En este caso 

estudiaremos la infuencia de añadir distintos heterociclos al espaciador, un anillo de 

tiofeno que aporte estabilidad extra al sistema, un anillo benzotiadiazol, que al ser 

electrodeficiente facilite la separación de cargas, o un anillo de benzotiadiazol unido a un 

anillo de benceno que estabilice el sistema y pueda disminuir velocidad de 

recombinación. [7] 
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2. Objetivos y plan de trabajo 

2.1 Objetivos 

El objetivo de este trabajo de fin de master es la preparación de derivados de trifenilamina, 

introduciendo diferentes anillos heteroaromáticos, la unión a la plataforma de calixareno 

(Figura 2.1.1), y el estudio de sus propiedades para ser utilizados como colorantes para 

celdas solares de tipo Grätzel. 

 

Figura 2.1.1. Moléculas preparadas 

2.2 Plan de trabajo  

1) Se estudiarán mediante cálculos DFT las propiedades de los diferentes colorantes 

propuestos para comprobar su utilidad en celdas DSSCs. 

2) Se prepararán los colorantes funcionalizados (alcoholes) y se unirán a la 

plataforma calixareno (diácido), proporcionada por el grupo de investigación, 

mediante una reacción de esterificación. 

3) Todas las moléculas sintetizadas se caracterizarán por las técnicas habituales: 

RMN, infrarrojo, espectrometría de masas, etc. 

4) Además, se medirán las siguientes propiedades físicas de cara a su incorporación 

en los dispositivos fotovoltaicos finales:  
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- Propiedades ópticas. Serán estudiadas por Espectroscopia UV-visible. 

Permitirán obtener los valores de longitud de onda (max) y coeficiente de extinción 

molar () de la banda de transferencia de carga, así como se estimará el valor de la 

energía de transición E0-0 y se calculará el potencial de oxidación del estado 

excitado (Eox
*) 

- Propiedades redox. Serán estudiadas por Voltametría de Pulso Diferencial 

(DPV) con el objetivo de obtener el potencial de oxidación del colorante.  

-  Propiedades fotovoltaicas: Consistirá en la medida de los parámetros 

fotovoltaicos como la eficiencia del colorante (), el voltaje de circuito abierto 

(VOC), la corriente por unidad de área (Jsc), y la curva de IPCE. 

3. Discusión de resultados 

3.1. Cálculos 

Como ya se ha indicado en los objetivos, en el presente trabajo tratamos de mejorar el 

colorante Cx-2-TPA sintetizado en el grupo basado en la plataforma calixareno. 

Para verificar que todos estos colorantes cumplen las especificaciones necesarias para ser 

aplicados en celdas solares, se realizaron cálculos teóricos como apoyo al diseño de los 

productos. 

Los sistemas estudiados fueron los mencionados en el Esquema 2.1.1.  

Debido a la dificultad intrínseca de la modelización de la plataforma calixareno y al 

tiempo computacional que requeriría hacerlo de manera efectiva, se ha optado por 

modelizar los colorantes sustituidos con un grupo acetilo, simplificando la plataforma 

calixareno como el CH3 del acetilo, y que presumiblemente, no debería influir demasiado 

en las propiedades ópticas y electroquímicas. Los resultados obtenidos fueron los 

siguientes (Tabla 3.1). 
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Tabla 3.1.1. Propiedades ópticas y electroquímicas de los colorantes.  
Nivel CPCM_M06-2x/6-311+G(2d,p)//CPCM_M06-2x/6-31(d) 

 

 

 

 

a Valor aproximado a partir de la energía adiabática. b Referido al potencial del electrodo normal de hidrógeno 
(NHE). c El potencial de oxidación del estado excitado se calcula como Eox

*= Eox - E0-0. 

Como se ha comentado en la introducción, los potenciales de oxidación del estado 

fundamental como del excitado tienen que cumplir unos requisitos (Eox
*<-0,5 V; 

Eox>0,4V) para poder ser funcionales como colorantes en celdas de tipo Grätzel. A la 

vista de los resultados obtenidos, todos los colorantes ensayados serían aptos para dicha 

tarea. 

  

Figura 3.1.1 A modo de ejemplo, Orbitales HOMO y LUMO del compuesto AcTPA. 

Además, la introducción de espaciadores más largos (siempre en comparación con el 

colorante Ac-TPA) y el consiguiente aumento de la aromaticidad, lleva consigo un 

desplazamiento de las longitudes de onda de absorción hacia el rojo. Esto es 

especialmente notable para el compuesto que posee el benzotiadiazol (B) directamente 

unido al grupo aceptor, cuyo desplazamiento batocrómico es especialmente alto, mientras 

que la introducción de un anillo bencílico extra conlleva (C) uno menor. Esto se explica 

por el mayor carácter aceptor del anillo benzotiadiazol, que, al estar unido al aceptor, 

extiende la conjugación del LUMO y lo estabiliza notablemente. Sin embargo, la adición 

del anillo aromático, disminuye notablemente esta contribución y por lo tanto desaparece 

la estabilización extra del LUMO y aumenta el gap responsable de la banda de absorción. 

 

Colorante EHOMO 

(eV) 

ELUMO 

(eV) 

λabs 

(nm) 

E0-0  a 

(eV) 

Eox 
b

 

(V) 

E*
ox

 b,c 

(V) 

AcTPA -6.64 -2.14 410 2.52 1.32 -1.21 

AcTPA-A -6.54 -2.28 432 2.46 1.27 -1.19 

AcTPA-B -6.52 -2.67 480 2.20 1.24 -0.96 

AcTPA-C -6.48 -2.32 438 2.42 1.17 -1.24 

HOMO LUMO 
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3.2 Síntesis de los alcoholes (12), (13) y (14) derivados de trifenilamina.  

Llevamos a cabo una síntesis convergente. Por un lado, se preparó el derivado del tiofeno 

funcionalizado (2) a partir de 3-tiofenmetanol (Esquema 3.2.1). Primero se llevó a cabo 

la bromación en la posición 2 del anillo de tiofeno[8], y posteriormente la protección del 

grupo alcohol mediante reacción con cloruro de terc-butildimetilsilano (TBDMSCl) para 

formar el producto (2). 

 

Esquema 3.2.1. Síntesis del compuesto (2). 

Por otro lado, se preparó el ácido borónico derivado de la trifenilamina[9]. Este derivado 

(3) no se pudo purificar completamente debido a su afinidad por la sílice de la columna, 

de modo que se empleó en la siguiente reacción con pequeñas proporciones de producto 

de partida. El compuesto (4) se obtiene mediante una reacción de acoplamiento de Suzuki 

catalizada por Pd[10] entre el compuesto de boro (3) y el bromuro (2). (Esquema 3.2.2). 

 

Esquema 3.2.2. Síntesis del compuesto (4). 

De los fragmentos utilizados como espaciadores, empleados en este trabajo, el 2-

bromotiofen-5-carbaldehído es comercial, el 4-(7-bromobenzo[c][1,2,5]tiadiazol-4-il)-

benzaldehído fue proporcionado por el grupo[11] y el  

7-bromobenzo[c][1,2,5]tiadiazol-4-carbaldehído (8) fue sintetizado a partir de 2,3-

diaminotolueno en una ruta sintética que consta de varias etapas que se detalla a 

continuación[12]  (Esquema 3.2.3).  
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Esquema 3.2.3. Síntesis del compuesto (8). 

Primero se formó el heterociclo (5) por reacción con cloruro de tionilo. La siguiente 

reacción es una sustitución electrófila aromática para incorporar un átomo de bromo, en 

la cual, además de obtener el producto deseado (6) se obtuvo también 4-bromo-7-

bromometilbenzo-[c][1,2,5]tiadiazol, sin embargo, esto no supone problema alguno, ya 

que la ruta sintética puede continuarse con la mezcla de productos. La siguiente etapa es 

una bromación en la posición bencílica que transcurre vía radicales, y en la que se utiliza 

azo-bisisobutironitrilo (AIBN) como iniciador. Por último, el compuesto (7) se hace 

reaccionar con ácido fórmico a reflujo, obteniéndose el aldehído (8). 

La siguiente etapa de la ruta es la litiación; el derivado del tiofeno (4), se litia en posición 

5 y se sustituye con cloruro de tributilestaño para dar el compuesto (STN).[13] A 

continuación, dado que el estannano es inestable, no se aísla y se hace reaccionar con los 

diferentes aldehídos precursores de los espaciadores (A), (B) y (C) mediante una reacción 

de Stille catalizada por Pd(PPh3)4, dando lugar a los compuestos (9), (10) y (11). [14] 

(Esquema 3.2.4).    

 

Esquema 3.2.4. Síntesis de los compuestos (9), (10) y (11). 
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Finalmente, los compuestos (9), (10) y (11) se desprotegieron con una reacción con 

Bu4NF en THF para obtener los aldehídos funcionalizados (12), (13) y (14). (Esquema 

3.2.5). 

 

Esquema 3.2.5. Síntesis de los compuestos (12), (13) y (14). 

3.3 Síntesis de los colorantes derivados del calixareno (18), (19) y (20). 

Utilizamos el derivado diácido carboxílico del p-terc-butilcalix[4]areno (CX) 

proporcionado por el grupo[15] como plataforma de partida, el cual se esterifica mediante 

una reacción de Steglich con los alcoholes derivados de la trifenilamina, (12), (13) y (14), 

obteniéndose así los tres  productos (15), (16) y (17). (Esquema 3.3.1). 

 

Esquema 3.3.1. Síntesis de los calixarenos (15), (16) y (17). 
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Finalmente, se incorporó la parte aceptora a la molécula mediante una condensación de 

tipo Knoevenagel con ácido cianoacético en medio básico. (Esquema 3.3.2).

 

Esquema 3.3.2. Síntesis de los calixarenos (18), (19) y (20). 

Los productos finales obtenidos (18), (19) y (20), presentaron serias dificultades para su 

caracterización completa, debido a que fue imposible realizar estudios de 1H-RMN ya 

que la relajación de los compuestos era anormalmente rápida, la FID tenía una duración 

muy escasa y eso se traducía en señales anchas e inservibles para su correcta asignación 

(Anexos, figuras 7.2.54-55,7.2.60-61 y 7.2.64-65). Una posible explicación para este 

hecho es la existencia de fenómenos electrónicos de interacción intramoleculares entre 

los cromóforos, que puedan dan lugar a estabilización de formas con separación de cargas 

y electrones desapareados y por lo tanto induzcan una rápida caída de la señal. No 

obstante, se han realizado múltiples pruebas con diferentes técnicas para caracterizar estos 

productos, que relatamos a continuación. 

El producto (19) presenta serias incoherencias entre la estructura buscada y los datos 

obtenidos. Su análisis de masas no muestra el pico m/z deseado, mientras que aparece un 

compuesto con una masa unas 160 unidades superior a la esperada. Además, en el análisis 

por IR se ve la existencia de más de una banda en la zona de 2200 cm-1, asignable a más 

de un tipo de enlace CN. Por otra parte, como ya hemos relatado en el apartado de 

cálculos, era previsible que al realizar el estudio de absorción UV-vis, este compuesto 

presentara la mayor longitud de onda de los tres, pero los datos obtenidos contradicen 

totalmente esta predicción. Por todo ello, se llega a la conclusión de que el producto (19) 
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no presenta la estructura buscada, y que probablemente haya sufrido algún tipo de 

sobrerreacción, por lo que se abandona el estudio de las propiedades. 

En cambio, analizando los datos obtenidos para los compuestos (18) y (20), se comprueba 

que sus propiedades sí coinciden con las esperadas, y no aparecen las incoherencias 

relatadas para el compuesto (19), por lo que se procede al estudio de sus propiedades de 

estos dos últimos. 

3.4 Propiedades ópticas lineales. 

Se han realizado estudios de absorción UV-vis para observar, tanto la longitud de onda 

de absorbancia máxima como su coeficiente de extinción molar. 

 

 

 

 

 

 

 

 
Figura 3.4.1. Espectros de absorción UV normalizados en CH2Cl2 

 

En la Figura 3.4.1 se observa cómo en el compuesto (20) se ha desplazado el máximo de 

absorbancia con respecto al Cx-2-TPA, que a su vez coincide con el del compuesto (18), 

aunque este último posee una banda de absorción más ancha. 
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Figura 3.4.2. Espectros de UV en películas después de distintos períodos de adsorción 

de los colorantes a) (18) y b) (20). 
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En el estudio por UV de las películas de los colorantes (18) y (20) (Figura 3.4.2) se 

observa un máximo desplazado hacia el azul para el colorante (18) con respecto al 

espectro en disolución de THF. En general, un desplazamiento hacia el azul se puede 

asociar a la desprotonación del colorante o a la formación de agregados de tipo H 

(empaquetamientos cabeza-cola) de los colorantes sobre la superficie de dióxido de 

titanio. Los espectros UV después de 5 y 24h muestran que no hay agregación, por lo que 

el desplazamiento se debe a la desprotonación. Este fenómeno no se aprecia para el 

colorante (20), donde el máximo de absorción coincide en ambos casos.  

En la Tabla 3.4.1, se aprecia claramente el aumento de coeficiente de absorción molar 

con respecto a la molécula Cx-2-TPA (.[5a]  y también con respecto a otros 

colorantes de trifenilamina publicados[13][16].  

Tabla 3.4.1. Propiedades ópticas lineales 

Compuesto λmax1(nm) a λcorte(nm)b ε(M-1·cm-1)c log ε λmax2(nm) d 

(18) 436 522 50266 4,70 424 
(20) 464 550 45346 4,66 467 

a) λmax1 corresponde a la longitud de onda a la que corresponde la máxima absorción. Se ha tomado de un espectro 

con concentración 2·10-5M en THF. b) El parámetro λcorte se ha calculado como la intersección entre la tangente a la 

curva del máximo y la línea base. c) El coeficiente de absorción molar (ε) se calculó como la pendiente de la 

representación gráfica de la absorbancia a λmax frente a la concentración (Ver anexos, figuras7.58 y 7.69). d) λmax2 

corresponde a la longitud de onda de máxima absorción en el espectro medido en lámina. 

3.5 Propiedades electroquímicas 

Se utilizó una disolución de hexafluorofosfato de tetrabutilamonio 0,1 M en THF como 

sal de fondo, como electrodo de referencia uno de Ag/AgCl y como contraelectrodo uno 

de Pt. El electrodo de trabajo consistió en un electrodo de grafito inmerso en una 

disolución de concentración 2,5·10-4 M en THF del compuesto a analizar. 

El potencial de oxidación de los compuestos (18) y (20) obtenido por voltametría de pulso 

diferencial (DPV) se indica en la Tabla 3.5.1. 

Tabla 3.5.1. Energía de transición E0-0 y potencial Eox
 y Eox

*. 

Compuesto Eox(V) vs NHEa λcorte (nm) E0-0(eV)b Eox
* (V) vs NHEc 

(18) 1,34 522 2,38 -1,04 
(20) 1,33 550 2,25 -0,92 

a) El primer potencial de oxidación es el resultado de la medida de DPV. b) La energía de transición se estima por el 

cruce de la tangente de la curva de absorción UV y la línea base. c) El potencial de oxidación del estado excitado se 

calcula como Eox
*= Eox - E0-0.  

Por lo tanto, y a la vista de los resultados obtenidos, podemos afirmar que los colorantes 

(18) y (20) cumplen las especificaciones electrónicas comentadas en la introducción, y 
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por lo tanto son susceptibles de ser utilizados como sensibilizadores en celdas de tipo 

Graetzel. (Figura 3.5.1). 

 

Figura 3.5.1. Diagrama de energías de los colorantes (18) y (20). 

 
3.6. Propiedades fotovoltaicas. 

Los dispositivos para las medidas de las propiedades fotovoltaicas se prepararon 

sumergiendo los electrodos de TiO2, de aproximadamente un espesor de 4 micras, en 

disoluciones 10-4M de los colorantes a dos períodos de tiempo diferentes (5 y 24h). En la 

Figura 3.6.1 se muestran las curvas J/V. 

 

 

 

 

 

 

 

 

 

 Figura 3.6.1. Curva J/V de las celdas. 
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De ella se extraen varios parámetros importantes:  

- El voltaje de circuito abierto (VOC) es el potencial máximo que puede generar 

una celda y corresponde al corte con el eje de abscisas.  

- La corriente por unidad de área (Jsc) es el valor de intensidad de corriente 

obtenida cuando la celda es cortocircuitada y se relaciona con la interacción del 

colorante con el TiO2 y con el coeficiente de absorción. Su valor se extrae del 

corte con el eje de ordenadas. 

-El factor de llenado (ff) está relacionado fundamentalmente con parámetros 

asociados a la construcción de la celda.  

-La eficiencia (η) es la relación entre la potencia máxima de salida y la energía 

solar incidente y está relacionada con todos los parámetros anteriores. Su fórmula 

es � =  
����

��
=

���·���·��

��
. 

Todos estos parámetros aparecen en la Tabla 3.6.1. 

Tabla 3.6.1 Propiedades fotovoltaicas 

Compuesto Voc  

(mV) 
Jsc 

(mA/cm2) 
ff 

(%) 
η 

 (%) 

Cx-2-TPA 5h 746 8,96 56,8 3,80 
(18) 5h 691 8,89 65,4 4,01 
(18) 24h 678 9,31 62,9 3,98 
(20) 5h 706 10,01 68,9 4,87 
(20) 24h 676 10,54 65,8 4,69 

 

Además, también medimos las curvas de IPCE, que nos dan información sobre la 

capacidad de transformación de fotones en energía eléctrica de la celda a cada longitud 

de onda, de lo cual podemos inferir su rango útil de trabajo. 
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Figura 3.6.2. Curva IPCE de las celdas. 

A la luz de los datos obtenidos, obtenemos las siguientes conclusiones: 

- En ambos casos se consigue una eficiencia superior a la obtenida para el 

colorante Cx-2-TPA. 

- Los datos para 5h y 24h son similares en cuanto a eficiencia, lo que indica que 

el electrodo puede estar saturado y quizá el empleo de electrodos más gruesos 

conlleve un aumento de eficiencia. 

- Las curvas IPCE muestra que los dos colorantes sintetizados tienen un rango 

mayor de trabajo que el Cx-2-TPA, en especial el (20), que llega hasta 650nm 

siendo activo. 

4. Experimental 

El procedimiento experimental de los productos (1) a (11) se relata en anexos (7.1.2). Los 

productos (1)  a (8)  se encuentran ya descritos en la literatura y los productos (9)  a (20)  

se sintetizarón por primera vez en este Trabajo de Fin de Máster. 

5'-(4-(difenilamino)fenil)-4'-(hidroximetil)-[2,2'-bitiofen]-5-carbaldehído (12) 
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Sobre una disolución de 300mg (0,51mmol) del compuesto (9) en 15 mL de THF a 0⁰C 

y bajo atmósfera de argón se adicionan lentamente 1,02 mL (1,02 mmol) de fluoruro de 

tetrabutil amonio (TBAF) (1M en THF) y se deja reaccionar con agitación durante 2 

horas. Transcurrido este tiempo se detiene la reacción mediante la adición de 50 mL de 

disolución saturada de NH4Cl. Se extrae la fase acuosa con acetato de etilo varias veces 

hasta que pierde el color naranja-amarillo. La fase orgánica resultante se seca con MgSO4 

anhidro y se evapora el disolvente a presión reducida. El producto se purifica mediante 

cromatografía en columna de silicagel empleando como eluyente hexano/AcOEt (6:4). 

Se obtienen 195 mg de un sólido amarillo. (Rdto: 82%). 

Peso molecular (g/mol): 467,60. P. Fusión (⁰C): 174-176. 1H-RMN (300 MHz, CD2Cl2) 

δ (ppm): 4,71 (s, 2H), 7,09-7,15 (m, 8H), 7,30-7,36 (m, 5H), 7,40-7,43 (m, 2H), 7,50 (s, 

1H), 7,73 (d, J=7,7 Hz, 1H), 9,88 (s, 1H). 13C{1H} APT (75 MHz, CD2Cl2) δ (ppm): 58,7, 

122,5, 123,6, 124,0, 125,0, 126,1, 128,5, 129,4, 129,6, 133,5, 137,5, 141,6, 146,7, 147,2, 

148,2, 182,4. IR (KBr, cm)-1: 3429 (O-H), 1630 (C=O), 1583 (C=C) HRMS (ESI)+: 

Calculado para C28H21O2N2NaS2 468,1086, encontrada 468,1061 [M+H]+. 

7-(5-(4-(difenilamino)fenil)-4-(hidroximetil)tiofen-2-il)benzo[c][1,2,5]tiadiazol-4-

carbaldehído (13) 

 

Sobre una disolución de 300mg (0,47mmol) de (10) en 15 mL de THF a 0⁰C y bajo 

atmósfera de argón se adicionan lentamente 0,94 mL (0,94 mmol) de fluoruro de tetrabutil 

amonio (TBAF) (1M en THF) y se deja reaccionar con agitación durante 2 horas. 

Transcurrido este tiempo se detiene la reacción mediante la adición de 50 mL de 

disolución saturada de NH4Cl. Se extrae la fase acuosa con acetato de etilo varias veces 

hasta que pierde el color naranja-amarillo. La fase orgánica resultante se seca con MgSO4 

anhidro y se evapora el disolvente a presión reducida. El producto se purifica mediante 

cromatografía en columna de silicagel empleando como eluyente hexano/AcOEt (6:4). 

Se obtienen 173 mg de un sólido morado. (Rdto: 71%). 
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Peso molecular (g/mol): 519,64. P. Fusión (⁰C): 203-205. IR (KBr, cm)-1: 3454 (O-H), 

1688 (C=O), 1670 (C=N), 1595 (C=C). 1H-RMN (300 MHz, CD2Cl2) δ (ppm): 4,82 (s, 

2H), 7,12-7,20 (m, 8H), 7,32-7,38 (m, 4H), 7,50-7,53 (m, 2H), 8,05 (d, J=7,6 Hz, 1H), 

8,25 (d, J=7,6 Hz, 1H), 8,43 (s, 1H), 10,75 (s, 1H). 13C{1H}APT (75 MHz, CD2Cl2) δ 

(ppm): 58,9, 122,7, 123,5, 124,9, 126,8, 127,1, 129,4, 129,7, 130,7, 135,8, 142,9, 147,3, 

153,7, 188,3. HRMS (ESI)+: Calculado para  C30H21O2N3NaS2 542,0967, encontrada 

542,0964 [M+Na]+. 

4-(7-(5-(4-(difenilamino)fenil)-4-(hidroximetil)tiofen-2-il)benzo[c][1,2,5]tiadiazol-4-

il)benzaldehído (14) 

 

Sobre una disolución de 325mg (0,46mmol) del compuesto (11) en 15 mL de THF a 0⁰C 

y bajo atmósfera de argón se adicionan lentamente 0,96 mL (0,96 mmol) de fluoruro de 

tetrabutil amonio (TBAF) (1M en THF) y se deja reaccionar con agitación durante 2 

horas. Transcurrido este tiempo se detiene la reacción mediante la adición de 50 mL de 

disolución saturada de NH4Cl. Se extrae la fase acuosa con acetato de etilo varias veces 

hasta que pierde el color naranja-amarillo. La fase orgánica resultante se seca con MgSO4 

anhidro y se evapora el disolvente a presión reducida. El producto se purifica mediante 

cromatografía en columna de silicagel empleando como eluyente hexano/AcOEt (6:4). 

Se obtienen 158 mg de un sólido rojo. (Rdto: 58%). 

Peso molecular (g/mol): 595,73. IR (KBr, cm)-1: 3448 (O-H), 1670 (C=O), 1583 (C=C). 

1H-RMN (300 MHz, CD2Cl2) δ (ppm): 4,79 (s, 2H), 7,09-7,20 (m, 8H), 7,32-7,37 (m, 

4H), 7,49-7,52 (m, 2H), 7,83 (d, J=7,8 Hz, 1H), 7,97 (d, J=7,8 Hz, 1H), 8,02-8,06 (m, 

2H), 8,17-8,20 (m, 2H), 8,28 (s, 1H), 10,11 (s, 1H). 13C{1H}APT (75 MHz, CD2Cl2) δ 

(ppm): 58,9, 122,7, 123,5, 124,9, 126,8, 127,1, 128,9, 129,4, 129,7, 130,7, 130,8, 135,8, 

136,6, 137,7, 142,9, 143,0, 147,3, 148,0, 153,7, 191,7.  HRMS  (ESI)+: Calculado para  

C36H25O2N3NaS2 618,1280, encontrada 618,1296 [M+Na]+. 
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Derivado diéster del compuesto (12) (15) 

 

Sobre una disolución de 110 mg (0,13 mmol) del derivado diácido carboxílico del terc-

butil calix[4]areno (CX) en CH2Cl2 anhidro, a 0⁰C y bajo atmósfera inerte se añaden 130 

mg (0,25 mmol) del alcohol (12) . A continuación, se añaden 53,6 mg (0,27 mmol) de 

EDC y 5 mg (0,042 mmol) de dimetilaminopiperidina (DMAP). Al día siguiente se 

añaden 53,6 mg (0,27 mmol) de EDC y 5 mg (0,042 mmol) de DMAP. A los dos días se 

añaden otros 27 mg (0,14 mmol) de EDC y 3 mg (0,025 mmol) de DMAP.  Se detiene la 

reacción a los 3 días, se lava la fase orgánica con agua y se purifica por columna de sílice 

utilizando hexano/acetato de etilo (8/2). Se obtienen 130 mg de un sólido amarillo (Rdto. 

55%). 

 Peso molecular (g/mol) 1832,48. P. Fusión (°C) 109-111. IR (KBr, cm-1): 1740 (C=O), 

1664 (C=O)  1H-RMN (400 MHz, CD2Cl2) δ (ppm): 0,97 (t, J=7,6 Hz, 6H), 1,09 (s, 18H), 

1,11 (s, 18H), 1,77-1,87 (m, 4H), 1,96-2,08 (m, 8H), 2,49 (t, J=7,6 Hz, 4H), 3,10 (d, 

J=12,4 Hz, 4H), 3,78 (t, J= 7,6 Hz, 4H), 3,87 (t, J=7,4 Hz, 4H), 4,38 (d, J=12,4 Hz, 4H), 

5,11 (s, 4H), 6,80 (s, 4H), 6,81 (s, 4H), 7,07-7,16 (m, 16H), 7,26 (d, J=4,0Hz, 2H), 7,28-

7,37 (m, 12H), 7,43 (s, 2H), 7,68 (d, J=4,0Hz, 2H), 7,81 (s, 2H), 9,85 (s, 2H). 13C-RMN 

(75 MHz, CD2Cl2) δ (ppm): 10,1, 21,6, 23,4, 29,7, 30,9, 31,2, 33,7, 34,2, 59,7, 74,6, 76,9, 

122,3, 123,7, 124,1, 124,9, 125,1, 125,4, 128,8, 132,8, 133,7, 137,3, 141,7, 144,2, 146,4, 

147,2, 148,4, 153,5, 153,7, 172,9, 182,3. EM (MALDI+) m/z: Calculada para 

[C116H122N2O10S4]: 1830,8, encontrada: 1831,4 [M]+. 
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Derivado diéster del compuesto (13) (16) 

 

Sobre una disolución de 133 mg (0,14 mmol) del derivado diácido carboxílico del terc-

butil calix[4]areno (CX) en CH2Cl2 anhidro, a 0⁰C y bajo atmósfera inerte se añaden 142 

mg (0,28 mmol) del alcohol (13). A continuación, se añaden 62,6 mg (0,32 mmol) de 

EDC y 5 mg (0,042 mmol) de dimetilaminopiperidina (DMAP). Al día siguiente se 

añaden 32 mg (16 mmol) de EDC y 3 mg (0,025 mmol) de DMAP. A los dos días se 

añaden otros 32 mg (16 mmol) de EDC y 3 mg (0,025 mmol) de DMAP.  Se detiene la 

reacción a los 3 días, se lava la fase orgánica con agua y se purifica por columna de sílice 

utilizando hexano/acetato de etilo (8/2). Se obtienen 162 mg de un sólido rojo (Rdto. 

61%). 

 Peso molecular (g/mol) 1936,55. P. Fusión (°C): 128-130. IR (KBr, cm-1): 1741 (C=O), 

1687 (C=O). 1H-RMN (300 MHz, CD2Cl2) δ (ppm): 0,92-0,96 (m, 6H), 1,07 (m, 18H), 

1,13 (m, 18H), 1,81-1,85 (m, 4H), 1,93-2,01 (m, 4H), 2,07-2,12 (m, 4H), 2,53 (t, J=7,6 

Hz, 4H), 3,10 (d, J=12,4 Hz, 4H), 3,74 (t, J= 7,6 Hz, 4H), 3,90 (t, J=7,2 Hz, 4H), 4,37 (d, 

J=12,4 Hz, 4H), 5,19 (m, 4H), 6,76 (m, 4H), 6,84 (m, 4H), 7,09-7,18 (m, 16H), 7,30-7,35 

(m, 8H), 7,44-7,41 (m, 4H), 7,90-7,92 (m, 2H), 8,12-8,15 (m, 2H), 8,29 (s, 2H), 10,67 (s, 

2H). 13C-RMN (100 MHz, CD2Cl2) δ (ppm): 10,6, 22,1, 23,8, 30,1, 31,3, 31,6, 31,6, 34,1, 

60,4, 75,1, 77,4, 122,7, 123,9, 124,1, 125,3, 125,4, 125,4, 125,5, 125,8, 125,2, 129,8, 

132,3, 132,6, 133,3, 133,4, 134,0, 144,6, 144,8, 147,5, 152,5, 153,9, 154,0, 154,2, 173,4, 

188,5.  EM (MALDI+) m/z: Calculada para [C120H123N6O10S4]: 1935,8, encontrada: 

1936,1. [M+H]+. 
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Derivado diéster del compuesto (14) (17) 

 

Sobre una disolución de 121 mg (0,13 mmol) (CX) en CH2Cl2 anhidro, a 0⁰C y bajo 

atmósfera inerte se añaden 150 mg (0,26 mmol) del alcohol (14). A continuación, se 

añaden 53,6 mg (0,27 mmol) de EDC y 5 mg (0,042 mmol) de (DMAP). Al día siguiente 

se añaden 53,6 mg (0,27 mmol) de EDC y 5 mg (0,042 mmol) de DMAP. A los 3 días se 

añaden otros 53,6 mg (0,27 mmol) de EDC y 5 mg (0,042 mmol) de DMAP.  Se detiene 

la reacción a los 5 días, se lava la fase orgánica con agua y se purifica por columna de 

sílice utilizando hexano/acetato de etilo (8/2). Se obtienen 150 mg de un sólido rojo 

(Rdto. 55%). 

 Peso molecular (g/mol): 2088,7. P. Fusión (°C):  124-126. IR (KBr, cm-1): 1741 (C=O), 

1694 (C=O). 1H-RMN: (300 MHz, CD2Cl2) δ (ppm): 0,95 (t, J=7,3 Hz, 6H), 1,06 (s, 

18H), 1,13 (s, 18H), 1,78-1,86 (m, 4H), 1,93-2,01 (m, 4H), 2,04-2,12 (m, 4H), 2,53 (t, 

J=7,6 Hz, 4H), 3,10 (d, J=12,4 Hz, 4H), 3,74 (t, J= 7,6 Hz, 4H), 3,91 (t, J=7,2 Hz, 4H), 

4,37 (d, J=12,4 Hz, 4H), 5,19 (s, 4H), 6,75 (s, 4H), 6,85 (s, 4H), 7,07-7,17 (m, 16H), 7,29-

7,34 (m, 8H), 7,40-7,44 (m, 4H), 7,75 (d, J= 7,5Hz, 2H),  7,88 (d, J= 7,5Hz, 2H), 7,99-

8,02 (m, 4H), 8,13-8-16 (m, 4H), 8,18 (s, 2H), 10,09 (s, 2H). 13C-RMN (100 MHz, 

CD2Cl2) δ (ppm): 10,6, 15,5, 22,1, 23,8, 30,2, 31,3, 31,6, 31,6, 34,1, 34,1, 34,7, 60,5, 

66,0, 75,1, 77,4, 122,9, 124,0, 125,2, 125,3, 125,4, 125,5, 126,6, 127,2, 129,2, 130,1, 

132,8, 134,5, 136,2, 137,7, 143,3, 144,6, 147,7, 148,6, 152,8, 153,9, 154,0, 154,1, 173,5, 

192,0. EM (MALDI+) m/z: Calculada para [C132H130N6O10S4]: 2086,9, encontrada: 

2086,7. [M]+.  
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Colorante derivado del espaciador (A) (18) 

 

A una disolución de 110 mg (0,060 mmol) del calixareno (13) en 10 mL de CHCl3 en 

atmósfera inerte, se le añaden 15 mg de ácido cianoacético (0,180 mmol) y 0,79 mL de 

piperidina (0,78 mmol) y se calienta a reflujo. Al día siguiente se añaden 15 mg de ácido 

cianoacético (0,180 mmol) y 0,78 mL de piperidina (0,156 mmol). Al segundo día se 

añaden 13mg de ácido cianoacético (0,156 mmol) y 0,016 mL de piperidina (0,156 

mmol). A los cinco días se detiene la reacción, se acidifica con HCl 0,1 M, se extrae con 

CH2Cl2, se seca con sulfato de magnesio anhidro, se filtra, se evapora a presión reducida, 

y se lava con CH2Cl2/metanol frío. Se obtienen 45 mg de un sólido naranja (Rdto: 38%). 

Peso molecular (g/mol): 1966,6. P. Fusión (⁰C) 173-175. IR (KBr, cm-1): 3438 (O-H), 

2222(C≡N), 1732 (C=O), 1584 (C=C). EM (MALDI+) m/z: Calculada para 

[C122H124N4O12S4Na] 1987,8,8, encontrada 1987,7. [M+Na]+. 1H-RMN: (300 MHz, 

CD2Cl2, ver anexos, figuras 7.2.54 y 7.2.55). 
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Colorante derivado del espaciador (C) (20) 

 

- 

A una disolución de 150 mg (0,072 mmol) del calixareno (13) en 10 mL de CHCl3 en 

atmósfera inerte, se le añaden 18 mg de ácido cianoacético (0,210 mmol) y 0,094 mL de 

piperidina (0,95 mmol) y se calienta a reflujo. Al día siguiente se añaden 18 mg de ácido 

cianoacético (0,210 mmol) y 0,094 mL de piperidina (0,95 mmol). Al segundo día se 

añaden 9 mg de ácido cianoacético (0,105 mmol) y 0,047 mL de piperidina (0,47 mmol). 

A los cinco días se detiene la reacción, se acidifica con HCl 0,1 M, se extrae con CH2Cl2, 

se seca con sulfato de magnesio anhidro, se filtra, se evapora a presión reducida, y se lava 

con CH2Cl2/metanol frío. Se obtienen 95 mg de un sólido rojo (Rdto: 59%). 

Peso molecular (g/mol): 2222,8. P. Fusión (⁰C) 195-197. IR (KBr, cm-1) 3432 (O-H), 

2213 (C≡N), 1733 (C=O), 1594 (C=C), EM (MALDI+) m/z: Calculada para 

[C138H132N8O12S4Na]: 2243,8, encontrada: 2243,9. [M+Na]+. 1H-RMN: (300 MHz, 

CD2Cl2, ver anexos, figuras 7.2.60 y 7.2.61). 
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5. Conclusiones 

De todo lo anterior, podemos extraer las siguientes conclusiones: 

 

-  Se han sintetizado dos nuevos colorantes (18) y (20) derivados de la 

trifenilamina unidos a la plataforma calixareno, y se han medido sus 

propiedades ópticas, electrónicas y fotovoltaicas. 

-  El estudio de sus propiedades ópticas y electrónicas confirman que se 

tratan de colorantes aptos para celdas de tipo Grätzel. Además se ha 

conseguido mejorar notablemente el coeficiente de absorción molar en 

comparación con los colorantes sueltos publicados, así como con respecto 

al colorante Cx-2-TPA. 

-  Se han medido las propiedades fotovoltaicas y se han comparado con los 

datos para el colorante Cx-2-TPA, y se ha comprobado que la eficiencia 

tanto de (18) como de (20) es superior, llegando a alcanzar en el caso del 

(20) un 4,87%, lo que supone una mejora del valor en un 28% con respecto 

al colorante Cx-2-TPA. 

- Los valores de colorante adsorbido a 5h y 24h son similares, lo cual indica 

que el colorante satura el electrodo con facilidad y abre la puerta a una 

mejora de la eficiencia de los dispositivos empleando electrodos de TiO2 

más gruesos. 

- Las curvas IPCE muestran que los colorantes obtenidos (18) y (20) tienen 

un mayor rango de trabajo que el colorante Cx-2-TPA, lo cual es 

especialmente notable en el caso del compuesto (20), que es bastante 

activo hasta 650nm. 

  



25 
 

6. Bibliografía 

[1] “Renewables information (2016 edition)” www.iea.org 

[2] Chem. Eng. News, 2016, 94, 18, 30. 

[3] O’Regan, B., Grätzel, M., Nature, 1991, 353, 737. 

[4] Hung, W.-I., Liao, Y.-Y., Lee, T.-H., Ting, Y.-C., Ni, J.-S., Kao, W.-S., Yen, Y.-S. 
ChemComm., 2015. 51, 2152. 

[5] [a]Castillo-Valles, M., Andres-Castan, J. M., Garin, J., Orduna, J., Villacampa, B., 
Franco, S., Blesa, M. J., RSC Adv, 2015, 5, 90667. [b] Colom,E., Andrés-Castán,J.-
M., Franco,S., Garín,J., Montoya,J.-F., Orduna,J., Villacampa,B., Blesa,M.J., Dyes 
and Pigments, 2017, 136, 505. 

[6] Liang, M., Chen, J., Chem.Soc.Rev., 2013, 42, 3453. 

[7] Haid, S., Marszalek, M., Mishra, A., Wielopolski, M., Teuscher, J., Moser, J., 
Humphry-Baker, R., Zakeeruddin, S. M., Grätzel, M., Bäuerle, P., Adv.Func. Mater., 
2012, 22, 1291. 

[8] Blouin, M., Han, Y., Burch, J., Farand, J., Mellon, C., Gaudreault, M., Wrona, M., 
Lévesque, J. F. O., Denis, D., Mathieu, M. C., Stocco, R., Vigneault, E., Therien, A., 
Clarck, P., Rowland, S., Xu, D., O’Neill, G., Ducharme, Y., Friesen, R., J. Med. 
Chem., 2010, 53, 2227. 

[9] Cai, S., Hu, X., Han, J., Zhang, Z., Li, X., Wang, C., Su, J., Tetrahedron, 2013, 69, 
1970. 

[10] Li, S., Yang, X., Cheng, M., Zhao, J., Wang, Y., Sun, L., Tetrahedron Lett,. 2012, 
53, 3425. 

 [11] Duerto Jordán, I., Colorantes derivados de N,N-dialquilanilina con aplicaciones en 
celdas solares, Trabajo de fin de grado, 2016. 

[12] [a] Agneeswari, R., Tamilavan, V., Song, M., Hyun, M. H., J. Mater. Chem. C, 2014, 
2, 8515. [b] Holliday, S., Ashraf, R.S., Nielsen C.B., Kirkus, M., Röhr, J.A., Tan, C-
H., Collado-Fregoso, E., Knall, A-C., Durrant, J.R., Nelson, J., McCulloch, I., J. Am. 
Chem. Soc., 2015, 137, 898. 

[13] Joly, D., Pellejà, L., Narbey, S., Oswald, F., Chiron, J., Clofford, J.N., Palomares, 
E., Demadrille, R., Scientific Reports, 2014, 4, 4033. 

[14] Leliege, A., Le Regent, C. H., Allain, M., Blanchard, P., Roncali, J., Chem. 
Commun., 2012, 48, 8907.  

[15] [a] Rudzevich, Y., Synthesis and characterization of tetraurea derivatives of 
calix[4]arenes, 2005, Tesis Doctoral. [b]Guo, F., He, J., Qu, S., Li, J., Zhang, Q., 
Wu, W., & Hua, J., 2013, RSC Advances, 3, 15900–15908. [c] Bitter, I., Grün, A., 
Téth, G., Balázs, B., Horváth, G., Töke, L., Tethraedron, 1998, 54, 3857. 

[16] Fuse, S,; Sugiyama, S., Maitani, M. M., Wada, Y., Ogomi, Y., Hayase, S., Katoh, 
R., Kaiho, T., Takahashi, T., Chem-Eur. J., 2014, 20, 10685. 


	Portada y hoja directores
	Memoria

