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Abbreviations
A2780 cisplatin sensitive ovarian cancer cell line

A2780cisR cisplatin resistant ovarian cancer cell line

A549 lung adenocarcinoma cells

Ar aryl

BALC/c albino, laboratory-bred strain of the house mouse

Bipy 2, 20-bipyridine
BODIPY 4,4-difluoro-bora-3a,4a-diaza-s-indacene

BT474 human breast carcinoma cells
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C20orf97 chromosome 20 open reading frame 97

Caco-2/TC7 colon cancer cells

CCRF-CEM acute human lymphoblastic leukemia cells

CH1 human ovarian carcinoma cells

c-Myc avian myelocytomatosis virus oncogene cellular homolog

COD 1,5-cyclooctadiene

Cyt cytosine

DAPTA 3,7-diacetyl-1,3,7-triaza-5-phosphabicyclo[3.3.1]nonane

DCFH-DA dichlorofluorescein diacetate

DNA deoxyribonucleic acid

DPBF 1,3-diphenylisobenzofuran

EC50 concentration of a drug that gives half-maximal response

ERK1 extracellular signal-regulated kinase 1

ERK2 extracellular signal-regulated kinase 2

Et ethyl

Et2bzimpy 2, 6-bis(N-ethylbenzimidazole-20-yl)pyridine
Fc ferrocene

FITC fluorescein isothiocyanate

GLUT-1 glucose transporter type 1

GR glutathione reductase

HaCaT immortalized human skin keratinocytes cells

HBL-100 human breast epithelial cells

HCT116 colorectal carcinoma cells

HCT-116-luc human colon cancer cell line luciferase labeled

HEK (HEK293) human embryonic kidney cells

HeLa human cervix cancer cells

Hep3B human hepatocellular carcinoma

HepG2 human liver cancer cells

HL60 promyelocytic leukemia cells

HOMO highest occupied molecular orbital

HPL1D immortalized human lung epithelial cells

HT29 colon carcinoma cells

IAP inhibitor of apoptosis protein

IC50 concentration of an inhibitor where the response (or binding) is reduced

by half

IGROV1 human ovarian carcinomas cells

KB epidermal carcinoma cells

LOVO colon adenocarcinoma cells

LUMO lowest unoccupied molecular orbital

MAPK mitogen activated protein kinases

MCF7 breast adenocarcinoma cells

MDA-MB-231 human breast cancer cells

Me methyl

NCI-H460 human lung carcinoma cells

NCI-H522 lung cancer cells

NF-κB nuclear factor kappa-light-chain-enhancer of activated B cells
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NHC N-heterocyclic carbene

NIR near-infrared

NSCLC non-small cell lung cancer

PARP poly-ADP(adenosine diphosphate)-Ribose Polymerase

pBR322 plasmid

PC3 prostate adenocarcinoma cells

PCNA proliferating cell nuclear antigen

PDT photodynamic therapy

PEA15 phospho-enriched protein in astrocytes 15 kDa

PEG polyethylene glicol

Ph phenyl

PI propidium iodide

PSs photosensitizers

PTA 1,3,5-triaza-7-phosphaadamantane

RC124 human kidney cells

RIP-1 receptor interacting protein 1

ROS reactive oxygen species

SAR structure-activity relationship

SF-268 human brain carcinoma cells

SKHep-1 human hepatoma cell line

SKOV3 human ovarian carcinoma cells

STK15 centrosome-associated serine/threonine oncogenic kinase

SW480 human ovarian carcinoma cells

Terpy 2,20:60,20 0-terpyridine
TNF tumor necrosis factor

TPPTS triphenylphosphane trisulfonated

TrxR thioredoxin reductase

1. Introduction

The study of transition-metal alkynyl complexes has been a very active

area of research for many years, not only from the organometallic point of

view but also for their use in luminescence, catalysis or material science.1,2

For example, oligomeric or polymeric alkynyl species have particularly prom-

ising electronic and structural properties, which include nonlinear optical

effects,3,4 luminescence,5 electronic communication as molecular wires,2

and liquid crystallinity.6 These properties and relevance of the alkynyl ligands

in supramolecular chemistry are based on three special characteristics: their

linear structure, their high stability, and their π-electron conjugation.

The C^C bond also constitutes a focal point for different reactivity

studies (Fig. 1). The first one is the formation of cluster compounds in which

the alkynyl ligand bridges multiple metal centers,7 providing the final species
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with interesting luminescent properties.8,9 Alkyne derivatives can undergo

several transformations into other interesting species such as vinylidene,

allenylidene, or cummulenylidene, for which several examples with differ-

ent metal centers have been reported.10,11 Additionally, in many organic

transformations the alkyne precursors undergo addition or cyclization reac-

tions in the present of a metal catalyst for which interesting MdC interme-

diates have been proposed.12

Alkynyl ligands can be regarded as isoelectronic with C^N, C^O, and

N2, and can also be comparable to a pseudohalide because of the similar

behavior in complex formation and precipitation reactions. Thus, the chem-

istry of alkynyl transition-metal complexes can be regarded as classical coor-

dination chemistry, albeit being also part of organometallic chemistry.13

Alkynyl ligands can be interpreted as being good σ- and π-donors and poor

π acceptors. This has been corroborated by Extended H€uckel band calcula-

tions and photoelectron spectroscopic measurements, which showed that the

band gap between the HOMO metal d orbitals and the LUMO π* alkynyl

orbitals is too large (ca. 15 eV) for π-accepting behavior, unless strong

π-acceptor substituents in conjugation with the alkynyl unit are present.14

However, in spite of the huge amount of possibilities for alkynyl ligands

in the synthesis of metal complexes and potential applications, it was not

until recently that metal complexes were studied for their biological prop-

erties; specifically for gold and platinum compounds. The medicinal chem-

istry of metallic complexes actually started with the discovery of the high

activity of cis-diaminodicloroplatinum(II) (cisplatin) toward several types

of cancers. Subsequent platinum drugs were approved as chemotherapeutic

agents15 but because of the several drawbacks that the platinum drugs pres-

ented, such as undesired side effects, drug resistance and the narrow effec-

tivity scope toward different tumors, research into other metal complexes as

potential metallodrugs was impulsed.16,17 Gold compounds are among the

most studied metal-based drug for this purpose, and many derivatives have

been reported with antitumor properties.18,19

Stability of the gold derivatives in the biological media is an important

feature for the development of gold-based drugs. For that reason complexes
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Fig. 1 Some binding modes of the alkynyl ligand.
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bearing strong ligand-metal bonds that allowabetter stability against dissociation

in the biological media have been studied. Some examples of these ligands

(Fig. 2) are thiolates,20,21 dithiocarbamates,22,23 thioureas,24 phosphanes,25

phospholes,26 N-heterocyclic carbenes,27 ylides28 or cyclometallated ligands,29

for which many metal complexes have been reported in the last decades with

excellent biological activity.

It is noteworthy that, despite the great stability shown by the metal-

carbon bonds in the alkyne ligands for gold and platinum, it was not until

recently that these complexes were studied for anticancer properties.

Additionally, their high stability to dissociation could exhibit a different

mechanism that those shown by gold or platinum species. In these sense

whereas platinum derivatives have the DNA as the main biological target,

gold presents different pathways for the cytotoxicity, and relevant gold–
protein interactions, mainly those bearing cysteine and/or selenocysteine

moieties, could be the potential biological targets responsible for the

cytotoxic effects of gold compounds.30,31

This review covers the chemistry of gold and platinum complexes bear-

ing alkynyl ligands that present antitumor activity. The type of complexes

which exhibit antiproliferative properties, together with the different studies

performed to elucidate the mechanism of action will be commented.

2. Gold alkynyl derivatives

As has been commented above, organometallic gold complexes,

including N-heterocyclic carbene and cyclometallated species with antip-

roliferative activity have been deeply studied, but in contrast organometallic

Fig. 2 Gold-based complexes with different ligands that exhibit cytotoxic activity.
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complexes with alkynyl ligands are much less represented. Most of the

synthesized complexes are alkynyl or propargyl species bearing different

substituents, and with phosphanes as ancillary ligands. Such complexes tend

to exhibit remarkable stability due to the high bond dissociation energies

around the gold center. Alkynyl ligands are strong σ- and π-donors and
recent studies combining photoelectron spectroscopy and theoretical calcu-

lations found the gold-carbon bond in alkynyl gold complexes to be one of

the strongest gold-ligand bonds known.32 The high stability of these com-

plexes under physiological conditions might overcome one of the main

issues in the development of new metallodrugs: their tendency to decom-

pose before reaching the target due to reaction with biologically occurring

reducing agents such as thiols.

2.1 Alkynyl complexes with triphenylphosphane
as ancillary ligand

The first two examples of alkynyl derivatives with antitumor activity were

described almost simultaneously in 2009. Thus, the two diethynylfluorene

gold(I) complexes with triphenylphosphane (1 and 2) depicted in Fig. 3 have

been studied for their antitumor activity against three human carcinoma cell

lines (Hep3B human hepatocellular carcinoma, SKHep-1 hepatoma and

MDA-MB-231 human breast cancer cells).33 The presence of carbonyl

group in the diethynylfluorene moiety seems to be essential for the antip-

roliferative activity, since no cytotoxicity was observed in the case of com-

plex 1 but better cytotoxicity than that found in cisplatin was exerted by

complex 2. In fact, the latter complex was able to induce intracellular reac-

tive oxygen species (ROS) on Hep3B human hepatocellular carcinoma cells

and reduce the mean tumor volume in treated mice with limited toxicology

effects, as no necrotic features were found in the livers and kidneys examined

after mice autopsy. Phosphane gold(I) propargyl ethers such as 7-chloro-(4-

propargyloxy)quinoline (molecule derived from chloroquine, the most

effective drug for malaria treatment), 1-propargyloxynaphthalene and

2-propargyloxybenzophenone (complexes 3–5, Fig. 3) were found to be

active against ovarian and colon cancer cell lines (chemosensitive ovarian

cancer CH1 and SKOV3, with intrinsic resistance to cisplatin and colon can-

cer cell line SW480).34 Similar IC50 values were shown in both complexes

and consequently none structure-activity relationship can be inferred.

Mononuclear alkynyl triphenylphosphane gold(I) derivatives (6–11,
Fig. 3) with different alkyne ligands have shown strong antiproliferative

activity with IC50 values between 0.8 and 12 μM against MCF7 breast
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adenocarcinoma and HT29 colon carcinoma cells.35 Faster uptake of com-

plexes with smaller alkynyl molecules could be concluded from cellular

uptake studies by measuring the gold content inside HT29 cells by high res-

olution continuum source atomic absorption spectroscopy. These deriva-

tives exhibited strong inhibition of the selenoenzyme thioredoxin

reductase TrxR, besides low inhibition of the related enzyme glutathione

reductase (GR), thus establishing high selectivity to TrxR compared to

GR. These compounds have displayed significant anti-angiogenic effects

in zebrafish embryos in addition to a decrease of tumor cell impedance

Fig. 3 Alkynyl triphenylphosphane gold(I) derivatives.
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and extracellular acidification, which points to mitochondria as a major tar-

get organelle, similarly to other gold metallodrugs.36–41 Complex 6 was

selected for further studies42 that included tumor selectivity and mechanistic

approaches related to protein kinases. Thus, microscopic live cell imaging

revealed morphological changes in RC124 kidney cells during the first

6 h of exposure to complex 6 consistent with the presence of interactions

of the gold compound with components of the cell surface or extracellular

matrix. Incubation of 6with HT29 colon cancer cells led to a significant and

persistent activation of the mitogen activated kinases (MAPK) ERK1 and

ERK2, both involved in growth factor signaling and consequently respon-

sible to regulation of biological functions such as cell growth, differentiation

and survival.

Coordination of the triphenylphosphane gold moiety to propargylic

amine ligands (complexes 12–14, Fig. 3) led to a family of derivatives,43

in which the presence of different substituents on the nitrogen atom mod-

ulates their overall cytotoxic properties. Therefore, the most effective in

inhibiting cell growth in HT29 human colorectal carcinoma, IGROV1

human ovarian carcinoma andHL60 promyelocytic leukemia cell line, were

both complexes 13a and 13d with para-substituted benzene sulfonamide

unit. However, they also showed significant cytotoxicity against non-

malignant human epithelial intestine cell line I407. Complex 13a caused cell

cycle arrest in S phase for HT29 and IGROV1 cells and in the G0/G1 phase

for HL60 with a well detectable fraction of DNA present as a sub-G1 peak,

suggesting DNA fragmentation. These effects have been associated with an

interaction with DNA, supported by the calculation of a dissociation con-

stant of the complex with salmon sperm DNA in the sub-micromolar range.

Conversely to that observed in the rest of the derivatives 12–14, complex

13a did not show any inhibitory effect on the thioredoxin reductase activity.

2.2 Alkynyl complexes with different phosphanes
as ancillary ligands

In order to study the structure-activity relationship in this type of complexes,

a systematic design of an extensive family of gold compounds has been

described.44 Accordingly, the implication of electronic and steric factors

in the antiproliferative activity and the inhibition of the thioredoxin reduc-

tase activity have been evaluated. Thus, the presence of different electron-

donating moieties in para position of phenylacetylene and the use of a series

of phosphanes with different degree of electron-donating properties, mod-

ifying the R group, lead to the preparation of a large number of phosphane
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alkynyl gold(I) derivatives (complexes 15–25a–e, Fig. 4). It was observed
that, in general, compounds with strong electron-donating moieties,

which result in the delocalization of the metal active center, displayed

high inhibition efficacy of TrxR activity, being complex 22c, with

4-methoxyphenylalkyne and thienyldiphenylphosphane as ligands, the most

efficient, with EC50 (half maximal effective enzyme inhibition concentra-

tion) value of 2.8 nM. Moreover, complex 22c was able to inhibit TrxR

through irreversible inactivation of redox-active selenylsulfide motif and

with remarkable specificity, as derived from the low inhibition efficacy of

Fig. 4 Alkynyl derivatives with different phosphane molecules.
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the related enzyme glutathione (GR). The same complexes were able to

reduce TrxR activity and showed high efficiency in the inhibition of cell

proliferation of MCF7 breast adenocarcinoma and HT29 human colorectal

carcinoma. Complex 22c displayed again the highest efficacy, with the low-

est IC50 values (0.03 μM inMCF7 cells and 0.10 μM in HT29 cells) in addi-

tion to other cell lines such as epidermal carcinoma cells (KB), breast cancer

cells (MDA and MB-231), human lung cancer cells (A549) and human

cervical cancer cells (HeLa). Furthermore, 22c displayed much higher cyto-

toxicity to tumor cells than normal cells (human embryonic kidney cells and

immortal hepatic cells) and the ability to reduce tumor volume in in vivo

studies by using MCF7 cells xenografted BALC/c nude mice model.

With the aim to extend the structure-activity relationship to a family of

compounds derived from 4-ethynylanisole, the complexes with different

phosphanes including the water soluble molecules PTA (1,3,5-triaza-7-pho-

sphaadamantane) and DAPTA (3,7-diacetyl-1,3,7-triaza-5-phosphabicyclo

[3.3.1]nonane) (complex 6 and complexes 26–30, Fig. 4) have been

described and screened for their biological properties.42 Complex 26 with

triethylphosphane turned out to be the most active against HT29 colon

carcinoma and MDA-MB-231 breast adenocarcinoma, with the lowest

IC50 values in both cell lines. However the observed values were in a rather

narrow range (1–5 μM) and no conclusions concerning structure-activity

relationship could be established. All the complexes were efficient inhibitors

of thioredoxin reductase with IC50 values in the nanomolar range, with a

linear correlation between the anticancer activity and the inhibition of this

enzyme.

Water soluble alkynyl derivatives with the phosphanes PTA andDAPTA

have been characterized as cytotoxic compounds against the cisplatin

sensitive (A2780) and cisplatin-resistant (A2780cisR) human ovarian cancer

cells (31–34, Fig. 4).45 The IC50 values for complexes 31a and 34b were

similar in both cell lines and of the same order to those found in auranofin,

which suggest these compounds can overcome the resistance to cisplatin

supporting the hypothesis of a different mechanism of action of the gold

derivatives. In fact, no interaction with DNA was detected after their

incubation with the plasmid pBR322 DNA at 37 °C. Thanks to their

luminescent properties, their cellular uptake has been determined by using

epifluorescence microscopy, showing their effective and fast cell internali-

zation. An in-depth analysis to determine the mechanism of action of some

of these alkynyl phosphane derivatives has revealed the significance of the

alkyne structure. Thus, the PTA counterpart 34a to the previously reported
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34b as a cytotoxic complex to ovarian cancer cell lines, has demonstrated to

display strong antiproliferative activity against colon cancer cells46 Caco-2/

TC7, which seemed to be selective to normal enterocytes (Caco-2/TC7

spontaneously differentiate in culture in enterocyte-like cells).47 This

cytotoxicity is due to the inhibition of the enzyme TrxR, which produces

an increase in ROS levels leading to apoptosis induction by dissipation of

mitochondrial membrane potential, release of cytochrome c and indirectly

by altering the balance between pro-apoptotic and anti-apoptotic proteins.

Although the related PTA derivative 35, with 2-ethynylpyridine as alkyne

ligand, displayed a similar IC50 value to that of complex 34a on colorectal

adenocarcinoma Caco-2/TC7 cell line, the introduction of an additional

N atom in the alkyne skeleton lead to different behavior against these

cancerous cells. The main difference came from the abnormal ROS produc-

tion, accompanied of a scarce inhibition of TrxR activity, which triggered

TNF-induced necroptosis dependent of RIP-1 activation and NF-κB
signaling.48 In addition, viability studies of Caco-2 spheroids (3D cell

culture) in the presence of increasing concentration of complex 35 caused

cell death in a tumor-like environment, suggesting the prevalence of anti-

proliferative properties into a living organism.

Lower effects against tumor cell growth (HT29 colon carcinoma and

MDA-MB-231 breast cancer cells) were observed in complexes 36a–b,49

or even no cytotoxicity in the case of 36c50 (with triphenylphosphane

trisulfonated, TPPTS). These three compounds are structurally related to

35, where the position of the nitrogen atom has been changed. However

they displayed different behavior toward cancer cells which reinforces the

relevance of small changes in the complex structure.

A series of S-propargylthiopyridine and thiopyrimidine with gold

complexes bearing the phosphanes PTA and DAPTA (37–40a–b, Fig. 4)
have been reported51,52 as better cytotoxic derivatives than cisplatin against

human colon cancer cell lines Caco-2/PD7 (from early passage) and

Caco-2/TC7 (from late passage). No significant influence of the substituents

of the alkyne moiety has been observed. However, a considerable difference

in the antiproliferative activity was found depending on the phosphane,

being more active complexes with the PTA ligand. Accordingly with these

findings, higher cellular uptake was measured by ICP-MS analysis for the

PTA derivatives, probably due to a worse permeability of the DAPTA

ligand in comparison with PTA. Moderate values of the binding constant

were obtained for the interaction of these compounds with bovine serum

albumin (BSA) and a balanced relationship between lipophilicity and
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hydrophilicity could be inferred from the corresponding partition coeffi-

cient values between water and n-octanol. These results may imply an easy

transport through multiple mixed water-lipid layers with a subsequent

release to the target. Moreover, administration of complex 37a to athymic

nude mice xenografted with human HCT-116-luc cancer cells lead to

an increase in the mean survival time and life expectancy and moderate

inhibition tumor growth without acute toxicity.52

2.3 Polynuclear gold alkynyl derivatives
Heterodinuclear and trinuclear gold(I) and copper(I) alkynyl complexes

(41a–b and 42a–b, Fig. 5)51 derived from 37a–b have remarkably improved

their cytotoxicity compared to their precursors, with the best IC50 value of

0.2 nM for the PTA compound 41a. This is not surprising because other

bimetallic derivatives had shown an improvement in their antitumor activity

in comparison with their mononuclear precursors, including Ti-M

(M¼Au, Ru, Pd, Pt), Au–Ru or Pt–Au combinations.53–58 However com-

plexes 41a–b comprised the first examples of bimetallic Au–Cu species, also
including alkynyl ligands. The interaction of both metals with different

Fig. 5 Polynuclear alkynyl gold(I) complexes.
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biological targets seems to be the reason of the improved antiproliferative

effect found in the reported polynuclear compounds.

Bildstein, Ott and coworkers59 have recently reported two

cobalteceniumethynyl gold(I) derivatives (43 and 44, Fig. 5) but only the

monoalkynyl gold complex 43 displayed antitumor effect in HT29 colon

carcinoma and MDA-MB231 breast cancer cell lines, probably because of

its effectivity in inhibiting TrxR activity. However, no selectivity was

observed for the best complex, as its activity in non tumor cell line (RC-

124 human kidney) was similar to that measured in the cancerous cells.

Unexpectedly, the dialkynyl derivative 43was inactive against the cancerous

cells and showed minor effects against the non tumor RC124 cells.

A family of dinuclear diphosphane gold(I) derivatives with 4-

ethynylpyridine60 (45a–d, Fig. 5) has been described as highly cytotoxic

complexes against MCF7 breast cancer and HT29 colon carcinoma cells.

Only complexes with bis(diphenylphosphino)methane (dppm) and 1,4-bis

(diphenylphosphino)butane (dppb) were described as active TrxR inhibi-

tors. The counterpart diphosphanes with cyclohexyl groups led to com-

plexes 45a–b with low solubility in the biological media, which seems

to be in accordance with the missing activity against the enzyme TrxR.

Combination of 1,2-bis(diphenylphosphino)etane (dppe) with a propargyl

amine afforded the dinuclear complex 46 as an effective inhibitor of TrxR.43

High selectivity was found in this case since it showed inactivity against non-

malignant epithelial intestinal cell line I407 and high cytotoxicity toward

HL60 leukemia cell line, although lack of toxicity was found toward

HT29 colon carcinoma cells and IGROV1 human ovarian carcinoma.

2.4 Alkynyl gold derivatives with fluorophore ligands
Fluorescence microscopy cell imaging has been shown as an excellent

tool for visualization of drug cellular uptake and its biodistribution

inside the cell, being possible to distinguish its localization in nucleus or

other organelles within the cytoplasm. This information is relevant for

the elucidation of structure-activity relationship. With this idea several

luminescent alkynyl gold(I) derivatives have been designed with chromo-

phore ligands by Pope and coworkers.61 Thus, the use of mono- and

dipropargylated dihydroxyanthraquinones afforded mono- and dinuclear

alkynyl complexes 47–49 (Fig. 6) that resulted highly cytotoxic against

MCF7 breast adenocarcinoma (IC50�5 μM), although less effective toward

A549 lung adenocarcinoma, PC3 prostate adenocarcinoma and LOVO
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colon adenocarcinoma. These results are in accordance with the fact that

MCF7 cancer cells have higher mitochondrial mass than many other

immortal cell lines and the mitochondria are believed to be the intracellular

target for most of the gold complexes. Better uptake of the gold complexes

was observed in MCF7 cells in comparison to the free ligands using cellular

Fig. 6 Alkynyl gold derivatives with fluorophore moieties.

14 Elena Cerrada et al.

ARTICLE IN PRESS



imaging. The metallic derivatives were accumulated in a significant concen-

tration across the entire cytoplasm including the organelles.

Coumarine derivatives were also used as chromophore ligands for deliv-

ering fluorescent cytotoxic species. In particular, a functionalized coumarine

with a propynyloxy group at 4- or 7-position or two propynyloxy groups in

the 6,7-positions, have afforded mono- and dinuclear gold(I) luminescent

derivatives (50–53, Fig. 6)49,50 with the water soluble phosphanes PTA,

DAPTA and TPPTS and the corresponding bis-alkynyl complexes (54 and

55, Fig. 6).49 The anionic compounds 54 and 55 displayed strong cytotoxicity

against HT29 colon carcinoma and MDA-MB-231 breast cancer cells, with

IC50 values ranging from 1.8 to 4.08 μM. This high activity has been attrib-

uted to the cation tetraphenylphosphonium, since the free coumarins were

not cytotoxic and the salt PPh4Cl displayed high antitumor activity. The

neutral phosphane complexes 50–53 exhibited from low to moderate cyto-

toxicities that in the case of 51c and 53a–b were justified by the aggregation

effects detected in aqueous solution that hampered their bioavailability. High

inhibition of the enzyme thioredoxin reductase has been exerted by all the

complexes, being more accentuated for the neutral derivatives.

A series of triphenylphosphane gold(I) derivatives with alkyne ligands

derived from chromone (complexes 56a–b, Fig. 6)62 and flavone (com-

plexes 57–58, Fig. 6)62,63 molecules have been described and biologically

examined. Both chromones and flavones are plant metabolites of recog-

nized medicinal importance and some examples of their metallic deriva-

tives have been shown anticancer and antibacterial activity in addition

to be employed as luminescent probes in bioimaging.64 The corresponding

alkynyl chromone gold(I) 56a–b and the alkynyl flavone gold 57 deriva-

tives exhibited similar antiproliferative effects than that of auronafin against

HepG2 hepatocellular carcinoma, MCF-7 estrogen-responsive breast can-

cer cells, MDA-MB-231 estrogen-unresponsive breast cancer cells and

CCRF-CEM hematological T-lymphoblast-like cancer cells via TrxR inhi-

bition, caspase-9 and caspase-3 activations, cell cycle disturbance and DNA

damaging activity. Flavonoids complexes 55a and 55b improved the cyto-

toxic effects on PC-3 human prostate cancer cells in comparison to the

flavones and the propargyl ether flavone precursors. However, onlymoderate

IC50 values were obtained and similar to those found with the precursor

[AuCl(PPh3)].
63

Functionalization of 1,8-naphthalimide chromophores in 4-position and

posterior coordination to the AuPPh3 moiety via a terminal propargyl donor

provided a family of luminescent gold(I) derivatives (59a–g, Fig. 6).65
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The evaluation of their antiproliferative effects on several cancerous cells

(MCF7 breast adenocarcinoma, A549 lung adenocarcinoma, PC3 prostate

adenocarcinoma, LOVO colon adenocarcinoma) and HEK (human embry-

onic kidney) cell line established that all derivatives were more toxic to HEK

cells than to the cancer cell lines. However, the most active ones against can-

cer cells were complexes displaying the glycol appended substituent amine

59b and 59c (IC50 values ranging from 5.1 to 51.9 μM). Uptake studies into

HEK cells and the protistan fish parasite Spironucleus vortens by confocal

fluorescence microscopy showed propensity for the localization of the

most liphophilic derivatives in mitochondria (in HEK cells) and in hydro-

genosomes in Spironucleus vortens.

Heterometallic AudRe complexes have been described as excellent part-

ners in cell imaging and cancer therapy.66 Thus, the luminescent rhenium

derivative fac-[Re(bipy)(CO)3L]
+ with L alkynyl-imidazole or alkynyl-

pyridine afforded dinuclear complexes 60a–c (Fig. 6) after coordination of

the AuPPh3 unit to the alkyne. Higher cytotoxicity was exerted by the

heterometallic derivatives toward A549 lung carcinoma cells, in comparison

with the mononuclear rhenium precursors (IC50 values >10 times lower).

Confocal fluorescent images revealed a concentration dependent localization

pattern, since incubation of cancer cells with the complexes at concentration

below their IC50 values showed a similar pattern to that of monometallic

species, concordant with cytoplasm localization. However, higher loading

concentration up to 150 μM prompted higher complex internalization than

the monometallic analogs leading to accumulation in a specific organelle in

the nucleus.

2.5 Alkynyl carbene gold derivatives
Although N-heterocyclic carbene derivatives have been widely studied as

anticancer agents,40,67–70 only one example of mixed NHC-alkynyl com-

plex (61, Fig. 7) with antiproliferative activity has been described so far.71

Complex 61 displayed similar activity than cisplatin toward the two different

cancer cell lines HCT116 colorectal carcinoma (p53 wild-type and p53 null

variant), MCF7 breast adenocarcinoma and A375 malignant melanoma.

The lack of selectivity observed for both HCT116 cell lines points to a

mechanism independent of p53 activity. Complex 61 evidenced low toxic-

ity in an ex vivo model in healthy rat tissue using the PCKS technology.

Thus, a TC50 (toxic concentration) value greater than 50 μMwas measured

for the mixed carbene-alkynyl derivative after its incubation with kidney
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slices, conversely to the observed for cisplatin and auranofin. Moreover,

non-significant morphological changes relative to controls were detected

in the treated organs.

3. Platinum alkynyl derivatives

Cisplatin is the main metal-based drug used in cancer therapy.72 Its

effectiveness has been proven in a great variety of tumors including ovarian,

testicular, head and neck, breast, prostate and lung cancer, which boosted the

development of a second generation of platinum drugs.73 However, the vast

amount of work was devoted to the development of analogous species that

mimic the coordination nature of the cisplatin, leaving organometallic com-

plexes relegated to a second position.74 Alternatively, organometallic platinum

complexes and in particular alkynyl derivatives have lately demonstrated their

capacity as anticancer agents, with excellent IC50 values and in some cases

exceeding that of cisplatin.

3.1 Glycosylated alkynyl platinum complexes
with terpyridine ligands

Glycosylated alkynyl platinum derivatives bearing terpyridine ligands were the

first examples reported in the literature where the antitumoral activity of an

akynyl platinum complex was tested. Che and coworkers pioneered

this investigation in 2005 with the development of a series of terpyridine plat-

inum complexes containing either glycosylated alkynyl (complexes 62–64),
glycosylated arylalkynyl (complexes 65–68) or arylalkynyl (69) as ancillary
ligands (see Fig. 8).75 These systems were appealing due to different factors,

(a) they would be able to act as metallointercalators for biomolecules,

(b) the strength of the PtdC bond would avoid hydrolysis problems seen

for [Pt(terpy)Cl]+ and, (c) the solvent media dependence of the photo-

luminescence properties of [Pt(terpy)(C^CdAr)]+ and related compounds

Fig. 7 Mixed NHC-alkynyl derivative.
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could be used for signaling studies of biological interest. Additionally, they

suggested that introduction of a glucopyranoside group would promote water

solubility as well as specificity toward glycosylated biomolecules. Thus, after

analyzing thebehavior of these complexes by electrophoresis andUV spectros-

copy, it could be concluded that both families, the glycosylated alkynyl and the

arylalkynyl derivatives bind to DNA. However, only the arylalkynyl deriva-

tives 65–67 were emissive in aqueous solution indicating that the presence

of the aryl moiety was crucial for reaching the emissive behavior. All of them

showed high antiproliferative activity against five human carcinoma cell lines

(HeLa (cervix), HepG2 (liver), SF-268 (brain), NCI-H460 (lung), MCF-7

(breast)), being those of the glycosylated arylalkynyl derivatives (65–68) the
most toxic species (IC50¼0.06–0.2 μM), around 100 times more cytotoxic

than the cisplatin in the same conditions. This study also revealed the impor-

tance of avoiding acetylated imine moieties, as complexes 62 and 63were the

less active complexes within the five cell lines, with IC50 values ranging from

15 to 28 μM.Additionally, the glycosylated arylalkynyl system seems to govern

the cell death pathway, which was mainly due to an apoptotic process. It was

found that 67 significantly regulated several genes such as C20orf97, PEA15,

STK15 and PCNA with roles in cell proliferation and apoptosis, whereas the

68 (lacking of glycosylate pyranosyl) as well as the parent complex [Pt(terpy)

Cl]+ did not show any regulation.

3.2 Alkynyl platinum complexes with COD ligands
Alkynyl platinum complexes containing 1,5-cyclooctadiene (COD) ligand

instead of terpyridine backbone were investigated as antitumoral agents by

Fig. 8 Terpyridine platinum complexes containing glycosylated acetylide ligands.
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A. Klein and coworkers in 2010.76 Some years earlier it was demonstrated that

complexes following the general formula [Pt(COD)(Me)(Nuc)]NO3 (Nuc:

guanosine, cytosine or adenosine nucleosides) retained its preferential binding

to guanosine, as themajority of platinum complexes. Additionally, similar spe-

cies such as [Pt(COD)(Me)(Cl)] and [Pt(COD)(Me)(Cyt)](SbF6) exhibited

also high toxicity in colon HT-29 and breast MCF-7 carcinoma cells.77

Therefore, they intended to elucidate whether the introduction of various

electron rich coligands to the platinum COD core could improve the cyto-

toxic potential. Hence, a series of neutral platinum complexes [Pt(COD)(Me)

(C^CdR)] (Fig. 9), with R¼4-fluorophenyl (70), 4-tolyl (71),

4-nitrophenyl (72) or phenyl (73), were synthesized and their cytotoxic activ-

ity analyzed in two different cell lines, colon carcinoma HT-29 and MCF-7

breast adenocarcinoma cells.76 The IC50 values found ranged from 0.2 to

10 μM, being 71 the most cytotoxic species. However, no specific antip-

roliferative trend was observed. Several years later, a second attempt was made

using the same type of COD-Pt core. This time, mono- and dialkynyl

platinum-COD derivatives, complexes 74–89, were synthesized and their

antiproliferative activity analyzed (Fig. 9), which led to some interesting con-

clusions regarding the structure-activity relationship (SAR).78 In general, the

dialkynyl platinum complexes were more cytotoxic than the corresponding

methyl substituted ones. The IC50 values were below 0.6 μM in every case.

It seemed clear that quicker decomposition of the Pt-alkynyl bond, provides

better antiproliferative activity. Moreover, the perpendicular orientation of

the C^C-aryl group to the Pt coordination plane might be also affecting

the cytotoxic character. Furthermore, the different methyl substitution on

the aromatic ring (orto (82), meta (83), para (84)) barely affected the antip-

roliferative behavior. Alternatively, differences were found in the case of

the nitro group, being the orto substituted (85) the less active species. Finally

these complexes showed inhibition of the enzyme thioredoxin reductase

(TrxR), which in addition to DNA, could be also a potential biological target.

Fig. 9 Alkynyl platinum complexes containing COD.
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3.3 Alkynyl platinum complexes with planar
polyaromatic ligands

Cyclometalated platinum alkynyl complexes containing tridentate C^N^N
ligands (Fig. 10), were investigated by Chen, Huo and coworkers.79 Organ-

ometallic platinum species containing either tridentate C^N^NorN^C^N
coordinating ligands have been far less investigated, possibly because the

focus has been always on cisplatin analogs as previously commented.80

However, these types of scaffolds when incorporated to platinum metal

were found to afford anticancer activity by inhibiting the expression of sur-

vivin (a novel inhibitor of apoptosis protein, IAP), activating poly(ADP-

ribose)polymerase (PARP) and inducing apoptosis.81 Moreover, in general

they have rich photophysical properties that allows the use of fluorescence

techniques, for assessing their biodistribution.82 Consequently, they are

potential candidates for novel trackable anticancer agents. Examination of

different C^N^N-ortometallated platinum complexes containing alkynyl

(90 and 91) or chloride (90a and 91a) units as ancillary ligands revealed that

the presence of the labile chloride was critical.79 None of the alkynyl deriv-

atives (90 and 91) showed significant cytotoxicity in lung cancer NCI-H522

Fig. 10 Tridentate C^N^N, Terpy and Et2bzimpy alkynyl platinum(II) complexes.
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cells (IC50>162 μM for both of them). It can be then hypothesized that for

this type of species, dissociation of PtdCl bond may be indispensable for

cytotoxicity.

Additionally, platinum(II) complexes containingplanar polyaromatic ligands

have shown to be selective G-quadruplex binders.83,84 G-quadruplexes are

involved in the regulation of telomerase activity, a ribonucleoprotein that is

activated in 80–90% of human tumors and can serve as specific tumor-selective

targets for chemotherapy.85 Therefore developing good G-quadruplex stabi-

lizers may show antitumor effects against a wide range of cancer cells. The judi-

cious choice of auxiliary ligands as well as increasing the π surface on the

complexes leads to an increase inbinding affinity and selectivity forGquadruplex

over duplex DNA.86 Gao and coworkers have explored such possibility with

alkynylplatinum derivatives containing either 4-(4-methylphenyl)-2,20:60,200-
terpyridine (terpy) (92–94, Fig. 10)87,88 or 2, 6-bis(N-ethylbenzimidazole-20-
yl)pyridine (Et2bzimpy), (95–97, Fig. 10) as the polydentate ligand.89 The

σ-alkynyl ancillary ligands chosen were either pargyline, peralkylated ammo-

nium derivatives or erlotinib, which is a first-line treatment in patients with

non-small cell lung cancer (NSCLC). Analysis of the cytotoxic activity in

lung adenocarcinomaA549 cells revealed that terpy derivativesweremore cyto-

toxic (IC50 ca. 1 μM) than the Et2bzimpy analogous (IC50 ca. 8 μM).Regarding

the alkynyl ligand, the quaternary ammonium alkynyl complex 94 had the best

behavior within the family of terpy derivatives (IC50(94)¼0.42�0.1 μM),

whereas the erlotinib derivative, complex 97 was the most cytotoxic within

the Et2bzimpy scaffold (IC50(97)¼6.69 μM). It is worth noting that complexes

92–94 were also tested in leukemia (K562) and gastric carcinoma (SGC7901)

cells delivering very promising IC50 values (IC50¼3.28–8.79 μM). However,

their selectivity toward tumor cells was low as the cytotoxicity value for

HEK293 cells (non-cancerous cells) was also elevated. Additionally, studies

performed by UV–vis absorption spectroscopy, circular dichroism and molec-

ular docking studies showed that complexes 92–94 associate with telomeric

and c-myc G-quadruplexes via groove binding–electrostatic interactions.

Further analysis under crowded conditions (in presence of 40 wt% PEG 200)

revealed that complex 94 is the only one that retained high affinity an

selectivity toward c-myc oncogene.83 Alternatively, complexes 95–97 also

displayed high affinities for G-quadruplex, being those containing a phenyl

acetylene moiety (complexes 96 and 97), the ones that induce a higher degree

of c-myc G-quadruplex stabilization. These data stress the importance of

the structure of the alkynyl ligand within the interaction of Pt(II) and

G-quadruplexes.
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3.4 Dinuclear alkynyl platinum complexes
Dinuclear alkynyl platinum complexes were also investigated as anticancer

agents to widen the spectrum of platinum based drugs. Das and coworkers

reported the first pyrazine based dialkynyl platinum derivatives that have

been tested as anticancer agents.90 Thus, a pyrazine ring was used as a bridge

ligand between two platinum phosphane alkynyl unis at C2 and C6 posi-

tions. Then, each platinum center was covalently linked to an aromatic

or heteroaromatic alkynyl derivative and two triethylphosphane ligands,

affording robust complexes (98–102, see Fig. 11). Analysis of their antip-

roliferative activity against lung cancer A549 cells revealed that only com-

plex 101, bearing a pendant pyridine, had a similar IC50 value to that of

cisplatin (IC50¼3–5 μM). The other diplatinated species showed IC50

values ranging from 10 to 30 μM. Contrary to cisplatin that is able to

undergo hydrolysis in saline water to afford the reactive intermediate aqua

complex, cis-[PtCl(NH3)2(H2O)]+, with subsequent interaction with the

purine/pyrimidine bases of DNA, complexes 98–102 are robust in those

conditions. Hence, the cytotoxic behavior of these species would be asso-

ciated to a mechanism different of cisplatin, opening the door to additional

biological targets.

3.5 Alkynyl platinum complexes as photosensitizers (PSs)
Alternatively, alkynyl platinum derivatives can be also considered as poten-

tial photosensitizers (PSs) for photodynamic therapy (PDT). In 2014,

Kondaiah and Chakravarty examined for the first time such possibility using

a terpyridine Pt(II) derivative functionalized with a ferrocenyl group to

reduce the undesired toxicity in absence of light.91 It was expected that

the ferrocenyl group would reduce the overall planarity limiting its interca-

lating DNA ability as well as increasing its lipophilicity leading to a higher

biocompatibility. In fact, complex 103 with a propargyl carbazole as

the ancillary ligand showed a very promising behavior as photosensitizer

(Fig. 12). Immortalized human skin keratinocytes (HaCaT cells) and

Fig. 11 Polynuclear platinum alkynyl complexes.
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MCF-7 were treated with 103 in presence and absence of light. In both cell

lines the cytotoxicity of the probe increased up to eight times upon irradi-

ation (IC50(dark)�85 μM vs IC50(light)�10 μM). The presence of the

alkynyl ligand did not seen decisive for the light-induced toxicity as chloride

analogous (103a) showed similar IC50 values (IC50(dark)�70 μM vs

IC50(light)�12 μM). In contrast, the photo-activity was mainly attributed

to the ferrocene moiety, which could generate reactive ferrocenenium ion

that effectively activated molecular oxygen.92 Analogous Pt(II) complex lac-

king of the ferrocenyl moiety, complex 103b, did not present a good via-

bility as PS. In particular, complex 103 in presence of light showed a

moderate increment of the sub-G1/G0 population suggesting cell death

leading to fragmented DNA. Annexin V-FITC/PI assay indicated that early

apoptosis was the cell death mechanism mode. This result was further cor-

roborated by electrophoresis performing DNA ladder formation assay. As

expected, external binding to calf thymus DNA was observed instead of

intercalation, driven by the presence of the ferrocenyl moiety. In view of

the promising results with ferrocenylterpyridine platinum alkynyl deriva-

tives, further complexes (104–106, Fig. 12) have been reported for targeted

photo-induced cytotoxicity.93 In this occasion a biotinylated alkynyl was

used as ancillary ligand in order to target specifically cancer cells. Bio-

tinylated derivatives are known to display cancer cell-specific uptake.94,95

In addition, phenylterpyridine analogous were also described, 107–109,

Fig. 12 Photoactive platinum(II) complexes.
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to understand the role of a metal-bound Fc-terpy ligand over Ph-terpy as

photoiniciator. The antiproliferative activity assay in breast carcinoma cells

BT474 and human normal breast epithelial cells HBL-100 revealed that the

biotinylated photoactive Fc-Terpy complexes 104–106 showed consider-

ably higher phoinduced cytotoxicity (IC50(dark)>50 μM vs IC50(light)�
12 μM) with a selective uptake by cancer cells, whereas the free ligand

Fc-terpy was inactive in all cases. In contrast, pH-terpy species (107–109)
displayed similar IC50 values in presence and absence of light

(IC50(BT474)�15 μM and IC50(HBL-100)�27 μM), which revealed

the importance of the ferrocenyl moitety to minimize the undesired toxicity

in absence of light. Additional examination of ROS production by dic-

hlorofluorescein diacetate (DCFH-DA) assay showed that Fc-Terpy deriv-

atives generated ROS within the cells only upon photoexposure to light of

400–700 nm, whereas Ph-Terpy showed ROS generation both in dark and

light conditions. Moreover, annexin V-FICT/PI assay indicated that cell

death was due to an early apoptosis mechanism in all cases and the cell cycle

profiling assay revealed that complexes 104–106 performed a substantial

sub-G1 arrest only upon irradiation. These results contrasted with that

obtained for the species lacking of Fc groups (107–109) as none of them

showed a significant difference between dark and photoexposure condi-

tions, making them inappropriate for photodynamic therapy. Further

DNA binding and cleavage studies emphasized the lack of DNA intercala-

tion for 104–106 which was observed in the case of complexes 107–109
driving by the absence of the Fc unit. Alternatively, complexes 104–106
were found to release the biotinylated ligands in red light (647 nm), which

is believed to photoiniciate a covalent DNA binding by the active platinum

species. Therefore, it could be concluded that the high toxicity attributed to

the Fc-terpy species could be derived from a synergistic cytotoxic effect, the

photorelease of active platinum species and the generation of ROS.

3.6 Dual alkynyl platinum-based photosensitizers
and photoimaging agents

In recent years, Pt(II)-based photosensitizers (PSs) for photodynamic ther-

apy with photoimaging properties have been reported to get insight of the

drug biodistribution in vivo and reveal their possible therapeutic mecha-

nisms. Within this context, near-infrared (NIR) PSs are of particular impor-

tance as this wavelength range is known as the therapeutic window

(700–850 nm), i.e., the light possesses a deeper tissue penetration and it

can reach effectively bigger and inner tumors. Chakravarty and coworkers
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have envisaged a terpyridine alkynyl Pt derivative in which they have incor-

porated a BODIPY derivative (4,4-Difluoro-5,7-dimethyl-4-bora-3a,4a-

diaza-s-indacene) for combining both, the photosensitizing and bioimaging

properties. Additionally, a glucose moiety was introduced in order to

explore the possibility of rendering greater selectivity toward cancer cells,

see compound 110 in Fig. 13.96 BODIPY is well-known for its versatile

photosensitizing and photophysical97 properties and it has been previously

reported to be localized in the mitochondria of cancer cells.98 Additionally,

the use of an appending glucose to look for specific targeting is a common

strategy to confer selectivity as many tumors have the glucose transporter

GLUT-1 overexpressed.99 In the present case, the photoinduced anticancer

activity of 110 and its analogous complex lacking of the appended glucose

moiety, complex 111, as well as the parent complex lacking also of

BODIPY, complex 112, was investigated against HeLa, MCF-7 and

A549 cells in dark and under red light (λ¼600–720 nm). The experiment

showed the crucial role of the BODIPY moiety as complex 112 displayed

IC50 values over 100 μM for the three cell lines in dark and upon radiation.

In contrast, complexes 110 and 111 showed high photocytotoxic activity

with IC50 values ranging from 2.3 to 6.0 μM and from 13.3 to 24.7 μM
under irradiation respectively, and over 91.4 μM in every case in dark con-

ditions. Titration experiments with 1,3-diphenylisobenzofuran (DPBF)

indicated that 110 and 111 generated singlet oxygen (1O2) in red light with

a singlet oxygen quantum yield (ΦΔ) value of ca. 0.6, indicating their pho-
tosensitizing ability. In addition, mass spectroscopy and 1H NMR revealed

that the alkynyl-BODIPY ligand was also released upon red light irradiation.

The fact that complex 110 accomplished better results as PSs agent than 111

suggested its superior capacity to permeate the cells, possibly due to the pres-

ence of the appendant glucose which facilitates its internalization as well as

Fig. 13 Mono- and polynuclear alkynyl platinum complexes.
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enhance the drug aqueous solubility. To further probe this statement, cel-

lular uptake and selectivity studies were performed by flow cytometry using

normal HPL1D and cancer cells (A549). This experiment probed that com-

plex 110 accumulated preferentially in cancer cell than in normal cells and

that its cell permeability was higher than that of 111, emphasizing the role of

the appendant glucose. Finally, fluorescence microscopy demonstrated their

preferential accumulation in the mitochondria over the nucleus, which is a

great input in the development of photodynamic therapy agents.100

4. Conclusions

In conclusion, it is clear that metal alkynyl complexes have many

opportunities to offer in the development of new metal-based chemother-

apeutic agents, especially for gold and platinum derivatives, whose com-

plexes present a great stability due to the MdC^CR bonds. This is a

key feature in drug synthesis because prevents dissociation of the metal spe-

cies in biological media before reaching the target with the consequence

deactivation and toxicity. Many examples of gold derivatives with alkynyl

ligands have been reported, and in most of the cases with the general formula

[Au(C^CR)PR0
3], and the structure-activity studies have been centered in

changing the substituents in the alkynyl or in the phosphane ligand. In gen-

eral, all the compounds exhibited an excellent cytotoxic activity in different

cancer cell lines but did not show big differences among them to conclude

any structure-activity relationship. Probably, more differences have been

found in the main biological target. Thioredoxin reductase has been rev-

ealed as the main target, for which complexes with strong donating substit-

uents displayed high inhibition efficacy. A cooperative effect was observed

in polynuclear or heteronuclear complexes leading to an increase in the bio-

logical activity compared to their mononuclear precursors was found. Many

gold derivatives with a propargyl-substituted fluorophores have been

described and because of their interesting photophysical properties,

biodistribution studies were performed in order to obtain information about

the cellular uptake and potential biological targets. Alkynyl platinum

complexes with antitumor properties have been described, and they include

different ligand scaffolds such as COD, tridententate N-based or cyclo-

metallated ligands. These compounds, although in general less active than

cisplatin, do not easy dissociate the ligands and, consequently, their cyto-

toxic effect can be associated to a different mechanism to that of cisplatin,

opening the door to additional biological targets. Furthermore, these
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compounds are promising candidates to be used as photosensitizers in

photodynamic therapy with easily tuneable photophysical properties.

Substitution with vectors for specific targeting are encouraging factors for

further development of better and more effective agents in photodynamic

therapy and cell imaging.
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