000088268 001__ 88268
000088268 005__ 20200716101420.0
000088268 0247_ $$2doi$$a10.1016/j.fluid.2019.03.018
000088268 0248_ $$2sideral$$a111157
000088268 037__ $$aART-2019-111157
000088268 041__ $$aeng
000088268 100__ $$aLapeña, D.
000088268 245__ $$aThermophysical characterization of the deep eutectic solvent choline chloride:ethylene glycol and one of its mixtures with water
000088268 260__ $$c2019
000088268 5060_ $$aAccess copy available to the general public$$fUnrestricted
000088268 5203_ $$aThe deep eutectic solvent ethaline, containing choline chloride as H-bond acceptor and ethylene glycol as H-bond donor and one of its mixture with water are studied in this work. Ethaline is anhydrous, with a 1:2 mol ratio. Hydrated ethaline, choline chloride:ethylene glycol:water, was studied in a 1:1.98:0.95 mol ratio. Several volumetric, acoustic, optical, thermal, surface, and transport properties were measured and calculated. The working temperature ranges from 278.15 to 338.15 K at pressure = 0.1 MPa. The effects of temperature, water inclusion, and the nature of the donor compound are evaluated. With regard to temperature, the system''s behaviour is as expected: a linear relation for the thermodynamic properties and agreement with the Vogel-Fulcher-Tammann equation for the transport properties. The water molecules hardly modify the ethaline structure. The choline chloride – ethylene glycol interactions are weaker than those for choline chloride - glycerol.
000088268 536__ $$9info:eu-repo/grantAgreement/ES/DGA/E31-17R
000088268 540__ $$9info:eu-repo/semantics/openAccess$$aby-nc-nd$$uhttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
000088268 590__ $$a2.838$$b2019
000088268 592__ $$a0.762$$b2019
000088268 591__ $$aENGINEERING, CHEMICAL$$b56 / 143 = 0.392$$c2019$$dQ2$$eT2
000088268 593__ $$aChemical Engineering (miscellaneous)$$c2019$$dQ1
000088268 591__ $$aTHERMODYNAMICS$$b16 / 61 = 0.262$$c2019$$dQ2$$eT1
000088268 593__ $$aPhysics and Astronomy (miscellaneous)$$c2019$$dQ2
000088268 591__ $$aCHEMISTRY, PHYSICAL$$b80 / 158 = 0.506$$c2019$$dQ3$$eT2
000088268 593__ $$aPhysical and Theoretical Chemistry$$c2019$$dQ2
000088268 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/acceptedVersion
000088268 700__ $$aLomba, L.
000088268 700__ $$0(orcid)0000-0003-1810-9488$$aArtal, M.$$uUniversidad de Zaragoza
000088268 700__ $$0(orcid)0000-0003-3632-6822$$aLafuente, C.$$uUniversidad de Zaragoza
000088268 700__ $$0(orcid)0000-0001-8669-2789$$aGiner, B.
000088268 7102_ $$12012$$2755$$aUniversidad de Zaragoza$$bDpto. Química Física$$cÁrea Química Física
000088268 773__ $$g492 (2019), 1-9$$pFluid phase equilib.$$tFLUID PHASE EQUILIBRIA$$x0378-3812
000088268 8564_ $$s245605$$uhttps://zaguan.unizar.es/record/88268/files/texto_completo.pdf$$yPostprint
000088268 8564_ $$s191322$$uhttps://zaguan.unizar.es/record/88268/files/texto_completo.jpg?subformat=icon$$xicon$$yPostprint
000088268 909CO $$ooai:zaguan.unizar.es:88268$$particulos$$pdriver
000088268 951__ $$a2020-07-16-08:40:06
000088268 980__ $$aARTICLE