000088270 001__ 88270
000088270 005__ 20200716101427.0
000088270 0247_ $$2doi$$a10.1016/j.precisioneng.2019.03.005
000088270 0248_ $$2sideral$$a112468
000088270 037__ $$aART-2019-112468
000088270 041__ $$aeng
000088270 100__ $$0(orcid)0000-0002-4157-5666$$aMutilba, Urai
000088270 245__ $$aUncertainty assessment for on-machine tool measurement: An alternative approach to the ISO 15530-3 technical specification
000088270 260__ $$c2019
000088270 5060_ $$aAccess copy available to the general public$$fUnrestricted
000088270 5203_ $$aTouch probes are commonly employed in new machine tools (MTs), and enable machining and measuring processes to occur on the same MT. They offer the potential to measure components, either during or after the machining process, providing traceability of the quality inspection on the MT. Nevertheless, there are several factors that affect measurement accuracy on shop-floor conditions, such as MT geometric errors, temperature variation, probing system, vibrations and dirt. Thus, the traceability of a measurement process on an MT is not guaranteed and measurement results are therefore not sufficiently reliable for self-adapting manufacturing processes. The current state-of-the-art approaches employ a physically calibrated workpiece to realise traceable on-MT measurement according to the ISO 15530-3 technical specification, but it has a significant limitation in that it depends on a physical workpiece to understand the performance of the systematic error contributor (u b ). To this end, the aim of this paper is to propose an alternative methodology for on-MT uncertainty assessment without using a calibrated workpiece. The proposed approach is based on a volumetric error mapping of the MT prior to the measurement process, which provides an understanding of how the systematic error contributor(u b)performs.
000088270 540__ $$9info:eu-repo/semantics/openAccess$$aby-nc-nd$$uhttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
000088270 590__ $$a3.108$$b2019
000088270 592__ $$a1.226$$b2019
000088270 591__ $$aENGINEERING, MANUFACTURING$$b19 / 50 = 0.38$$c2019$$dQ2$$eT2
000088270 593__ $$aEngineering (miscellaneous)$$c2019$$dQ1
000088270 591__ $$aINSTRUMENTS & INSTRUMENTATION$$b16 / 64 = 0.25$$c2019$$dQ1$$eT1
000088270 593__ $$aNanoscience and Nanotechnology$$c2019$$dQ2
000088270 591__ $$aENGINEERING, MULTIDISCIPLINARY$$b24 / 91 = 0.264$$c2019$$dQ2$$eT1
000088270 591__ $$aNANOSCIENCE & NANOTECHNOLOGY$$b54 / 103 = 0.524$$c2019$$dQ3$$eT2
000088270 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/acceptedVersion
000088270 700__ $$aGómez-Acebo, Eneko
000088270 700__ $$aSandá, Alejandro
000088270 700__ $$aVega, Ibon
000088270 700__ $$0(orcid)0000-0001-7152-4117$$aYagüe-Fabra, José A.$$uUniversidad de Zaragoza
000088270 7102_ $$15002$$2515$$aUniversidad de Zaragoza$$bDpto. Ingeniería Diseño Fabri.$$cÁrea Ing. Procesos Fabricación
000088270 773__ $$g57 (2019), 45-53$$pPrecis. eng.$$tPrecision Engineering$$x0141-6359
000088270 8564_ $$s770156$$uhttps://zaguan.unizar.es/record/88270/files/texto_completo.pdf$$yPostprint
000088270 8564_ $$s506606$$uhttps://zaguan.unizar.es/record/88270/files/texto_completo.jpg?subformat=icon$$xicon$$yPostprint
000088270 909CO $$ooai:zaguan.unizar.es:88270$$particulos$$pdriver
000088270 951__ $$a2020-07-16-08:46:20
000088270 980__ $$aARTICLE