000088271 001__ 88271
000088271 005__ 20200716101429.0
000088271 0247_ $$2doi$$a10.1016/j.cej.2019.03.199
000088271 0248_ $$2sideral$$a111414
000088271 037__ $$aART-2019-111414
000088271 041__ $$aeng
000088271 100__ $$0(orcid)0000-0003-2898-1085$$aDurán, P.
000088271 245__ $$aPure hydrogen from biogas: Intensified methane dry reforming in a two-zone fluidized bed reactor using permselective membranes
000088271 260__ $$c2019
000088271 5060_ $$aAccess copy available to the general public$$fUnrestricted
000088271 5203_ $$aMethane dry reforming of biogas can be a sustainable source of hydrogen but the development of this technology is hindered by limitations such as endothermicity and catalyst deactivation by coke. A two zone fluidized bed reactor coupling permselective Pd/Ag membranes counteracts them and allows to intensify the process obtaining a stable pure hydrogen production. Here we report the effect of operation variables (i.e., temperature, total bed height, nature and partial pressure of regenerative agent, relative height of the regeneration and reaction zones, and use of an activation period) on the yield to hydrogen and stability of the process. Hydrogen over-yields, compared with the conventional fluidized bed reactor, in the range of +200% to +100% were obtained for the entire interval of temperatures 475–575 °C whilst maintaining stable operation by continuous catalyst regeneration. Around 70% of it was pure hydrogen coming from the permeate side of the membranes. The proposed reactor configuration greatly increases both methane conversion and selectivity to hydrogen (expressed as H 2 /CO ratio), not only in relation to our own conventional reactor findings but also regarding other published results.
000088271 536__ $$9info:eu-repo/grantAgreement/ES/MINECO/ENE2013-44350-R
000088271 540__ $$9info:eu-repo/semantics/openAccess$$aby-nc-nd$$uhttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
000088271 590__ $$a10.652$$b2019
000088271 592__ $$a2.315$$b2019
000088271 591__ $$aENGINEERING, ENVIRONMENTAL$$b2 / 53 = 0.038$$c2019$$dQ1$$eT1
000088271 593__ $$aChemical Engineering (miscellaneous)$$c2019$$dQ1
000088271 591__ $$aENGINEERING, CHEMICAL$$b4 / 143 = 0.028$$c2019$$dQ1$$eT1
000088271 593__ $$aIndustrial and Manufacturing Engineering$$c2019$$dQ1
000088271 593__ $$aEnvironmental Chemistry$$c2019$$dQ1
000088271 593__ $$aChemistry (miscellaneous)$$c2019$$dQ1
000088271 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/acceptedVersion
000088271 700__ $$0(orcid)0000-0002-6762-0971$$aSanz-Martínez, A.$$uUniversidad de Zaragoza
000088271 700__ $$0(orcid)0000-0001-9022-2835$$aSoler, J.$$uUniversidad de Zaragoza
000088271 700__ $$0(orcid)0000-0002-2494-102X$$aMenéndez, M.$$uUniversidad de Zaragoza
000088271 700__ $$0(orcid)0000-0003-1940-9597$$aHerguido, J.$$uUniversidad de Zaragoza
000088271 7102_ $$15005$$2555$$aUniversidad de Zaragoza$$bDpto. Ing.Quím.Tecnol.Med.Amb.$$cÁrea Ingeniería Química
000088271 773__ $$g370 (2019), 772-781$$pChem. eng. j.$$tCHEMICAL ENGINEERING JOURNAL$$x1385-8947
000088271 8564_ $$s1335923$$uhttps://zaguan.unizar.es/record/88271/files/texto_completo.pdf$$yPostprint
000088271 8564_ $$s196814$$uhttps://zaguan.unizar.es/record/88271/files/texto_completo.jpg?subformat=icon$$xicon$$yPostprint
000088271 909CO $$ooai:zaguan.unizar.es:88271$$particulos$$pdriver
000088271 951__ $$a2020-07-16-08:47:53
000088271 980__ $$aARTICLE