
JID:VEHCOM AID:158 /FLA [m5G; v1.255; Prn:25/03/2019; 15:25] P.1 (1-24)

Vehicular Communications ••• (••••) •••–•••

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102
Contents lists available at ScienceDirect

Vehicular Communications

www.elsevier.com/locate/vehcom

Spatial crowdsourcing with mobile agents in vehicular networks

Oscar Urra a,∗, Sergio Ilarri a,b

a Department of Computer Science and Systems Engineering, University of Zaragoza, Zaragoza, Spain
b I3A, University of Zaragoza, Zaragoza, Spain

a r t i c l e i n f o a b s t r a c t

Article history:
Received 5 October 2018
Received in revised form 10 February 2019
Accepted 20 March 2019
Available online xxxx

Keywords:
Vehicular ad hoc networks
Spatial crowdsourcing
Mobile agents
Data management
Environment monitoring

In the last years, the automotive industry has shown interest in the addition of computing and 
communication devices to cars, thanks to technological advances in these fields, in order to meet 
the increasing demand of “connected” applications and services. Although vehicular ad hoc networks 
(VANETs) have not been fully developed yet, they could be used in a near future as a means to provide a 
number of interesting applications and services that need the exchange of data among vehicles and other 
data sources.
In this paper, we propose a spatial crowdsourcing schema for the opportunistic collection of information 
within an interest area in a city or region (e.g., measures about the environment, such as the 
concentration of certain gases in the atmosphere, or information such as the availability of parking 
spaces in an area), using vehicular ad hoc communications. We present a method that exploits mobile 
agent technology to accomplish the distributed collection and querying of data among vehicles in such a 
scenario. Our proposal is supported by an extensive set of realistic simulations that prove the feasibility 
of the approach.

© 2019 Published by Elsevier Inc.
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1. Introduction

The continuous development of information and telecommuni-
cation technologies has brought advances to an increasing number 
of fields in industry. The automotive sector is not an exception 
and today’s cars are more secure, respectful with the environ-
ment, and energy-efficient than never before, thanks to the in-
clusion of a wide range of computer devices and sensors. In this 
context, it is very relevant to provide cars with communication 
abilities so that they can exchange information with other cars 
(vehicle-to-vehicle communications) as well as with the road-side 
infrastructure and with other actors outside the roads (vehicle-to-
infrastructure communications and vehicle-to-pedestrian commu-
nications). To accomplish this, the concept of vehicular network 
(also called vehicular ad hoc network or VANET) [1–3] has been 
proposed, as a set of vehicles driving along the roads of a certain 
geographic area, that can send/receive data to/from their neighbors 
by using short-range wireless communication devices. Vehicular 
networks open up many opportunities for the development of in-
teresting applications, but they also imply a number of significant 
challenges from a data management perspective [4].
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According to [5], luxury cars have more than 100 sensors. If 
conventional cars were equipped with appropriate sensors (e.g., 
temperature, humidity, pollution gases, etc.) to obtain information 
from their surroundings, and given that they are constantly moving 
along wide areas and that the number of vehicles could be rather 
high, the amount of information that can be retrieved and stored 
in this way could be considerable. Additionally, if the owners of 
those vehicles are willing to share those data and a suitable mech-
anism exists to manage and process them properly, then it would 
be possible to generate knowledge that could be used as a basis 
for the creation of other value-added services. Moreover, some ve-
hicles could physically move to a spatial area to measure certain 
environment parameters there or just to bring a specific query 
processing task to that area (i.e., to transport some code for its 
execution in that area). This form of spatial crowdsourcing could be 
used, for example, to obtain driving patterns from the vehicles be-
longing to the VANET, based on the hour of the day or the weather 
conditions, and thus offer to the drivers the most optimal route to 
reach their workplace. Alternatively, as another example, this abil-
ity could be exploited for surveillance or environment monitoring 
(e.g., to measure the pollution or noise level in different areas of 
a city). Moreover, according to a report by ABI Research [6,7], the 
use of crowdsourcing to obtain data by connected, sensor-equipped 
vehicles can be used to improve already-existing applications (e.g., 
parking or traffic-related services), and can also bring new business 
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opportunities. In the same report, the number of cars contributing 
sensor data are estimated to grow to over 60 million by 2023.

In previous work [8], we have proposed the use of mobile 
agents for query processing in vehicular networks. In this paper, 
we present a system that obtains information stored on vehicles 
equipped with sensors while they are moving along the roads of 
a city or region based on the use of spatial crowdsourcing (unlike 
in [8]) to ease the process of locating and retrieving the required 
data. Our underlying research questions can be summarized as fol-
lows: can spatial crowdsourcing using mobile agents provide ben-
efits for data collection in vehicular networks? how can we define 
a suitable and feasible approach? how could we quantify the ben-
efits and costs of such an approach and the impact of different 
parameters, in different scenarios? As far as we know, this is the 
first study that analyzes the potential use of spatial crowdsourcing 
for vehicular networks using mobile agents (with the exception of 
our short paper presented in [9], where we introduce basic initial 
ideas and a very preliminary experimental evaluation with a sin-
gle experiment). Moreover, an extensive experimental evaluation 
included in this paper shows the feasibility and the interest of the 
presented approach.

As an example of use case where the proposed approach can 
be applied, we can consider the case of air quality monitoring us-
ing low-cost air quality sensors aboard vehicles. For example, in 
the context of the European Project TRAFAIR – Understanding Traffic 
Flows to Improve Air quality (http://trafair.eu), one of the activities of 
the project tackles the deployment of an urban sensor network in 
several cities in Italy and Spain. In a scenario where vehicles carry 
air monitoring sensors, then it would be possible to perform flexi-
ble monitoring tasks to track air quality data about any area of the 
cities in a flexible way (rather than considering fixed monitoring 
areas covered by static sensors). In general, the spatial crowdsourc-
ing approach described in this paper can be applied in any scenario 
where we need to monitor the environment by exploiting vehi-
cles’ sensors (e.g., for surveillance purposes [10], to create noise 
maps of the city [11], to obtain information about the availability 
of road-side parking spaces [12], etc.). As an example, SoundC-
ity [13] is an Android application for mobile users, developed by 
Inria, that allows to measure one’s personal exposure to noise pol-
lution; however, it has not been developed for vehicular networks.

The rest of this paper is structured as follows. In Section 2, 
we describe basic background concerning intelligent vehicles, ve-
hicular networks, and mobile agents. In Section 3, we describe a 
system for monitoring and querying data by using a VANET, as 
well as the use of spatial crowdsourcing techniques to improve the 
monitoring process. In Section 4, we perform several experiments 
to evaluate the performance of the proposed spatial crowdsourcing 
approach. In Section 5, we present some related work. Finally, in 
Section 6, we summarize our conclusions and present some lines 
of future work.

2. Technological context

In this section, we describe the background technologies that 
are used in our spatial crowdsourcing approach. Firstly, in Sec-
tion 2.1, we focus on vehicular networks. Secondly, in Section 2.2
we describe the basics of mobile agent technology.

2.1. Vehicular networks

Enhancing existing vehicles with autonomous behavior and in-
telligent features, which has given rise to the concept of intelligent 
vehicles, is a relevant ingredient for the development of the so-
called Intelligent Transportation Systems (ITS) [14,15]. These vehicles 
have the capability to sense the environment and communicate 
among themselves to share data relevant to the driver. A possibility 
Fig. 1. Example of a VANET including a support fixed node and obstacles/buildings. 
(For interpretation of the colors in the figure(s), the reader is referred to the web 
version of this article.)

to communicate these data is the use of cellular communications 
(e.g., 3G/4G), but they depend on a mobile telephony infrastruc-
ture, which does not cover all the areas (for example, inside tun-
nels and in certain shadow areas where the available coverage 
is limited) and have an economic cost that must be paid by the 
user to the mobile phone operator company. Other alternative op-
tions are publicly-available wireless networks deployed in certain 
cities by their local councils, but these are not present in all the 
cities and they usually do not cover all the city area either. Finally, 
we could consider the use of ad hoc communications, as an easy 
and non-expensive way of sharing resources would encourage the 
needed cooperation among users.

A Vehicular Ad Hoc Network (VANET) [2,3,16] is a highly-
mobile network whose nodes are vehicles traveling along roads 
or highways. In a VANET, vehicles can establish connections with 
other nearby vehicles and, in this way, they can exchange different 
types of information. This makes the development of new appli-
cations relevant to drivers (as well as passengers) possible, such 
as applications related to security, monitoring, entertainment, or 
data sharing. The link between those nodes is established directly 
in a peer-to-peer way by using any of the available short-range 
wireless communication technologies (such as Wi-Fi based on the 
802.11b/g/n standard or the more specific 802.11p, WiMAX, Blue-
tooth, Zigbee, etc.); specifically, the current communications stan-
dard for VANETs is WAVE [17,18].

Whereas VANETs open up new opportunities for the devel-
opment of interesting applications, they also require the design 
of appropriate techniques from the perspective of data manage-
ment [4]. Most difficulties are due to the high mobility of vehicles 
and the limited amount of time during which two vehicles may be 
within communication range of each other. Since the vehicles are 
constantly moving (usually at high speeds) and the wireless signal 
can be blocked by buildings and other obstacles, these connections 
may last only for a few seconds and therefore the network topol-
ogy is constantly changing. For example, when a vehicle needs to 
communicate data to a specific target vehicle, a multihop routing 
protocol [19] must be usually used (e.g., see Fig. 1, where vehicle 
B acts an intermediate relay point for the data sent from vehicle 
A to vehicle C ).

2.2. Mobile agents

A mobile agent [20–22] is a software program (composed by 
code and data) that can move from one computer or mobile de-

http://trafair.eu
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Fig. 2. Different elements in a mobile agent architecture.

vice to another by using a network connection. That is, while it 
is running on a certain computer or device it can pause its exe-
cution, transfer itself to another computer or device, and resume 
its execution in the new destination, as long as the transfer pro-
cess ends successfully. For this to be possible, it is necessary that 
all the computers/devices involved (i.e., the origin computer/device 
and the target computer/device where the agent moves) execute a 
light middleware called the mobile agent platform [21] (e.g., Aglets, 
Voyager or SPRINGS/GeoSPRINGS [23,24], to cite some examples), 
which manages the movements of the agents and offers them a 
number of additional services [22] related to security, efficiency, 
communication, etc.

In Fig. 2, an example that summarizes the basics of a mobile-
agent based architecture is shown. There are two computers that 
can communicate by means of a network connection. Computer 1
executes a mobile agent platform with two places or execution 
environments for mobile agents, Place 1 and Place 2. Similarly, in 
Computer 2 there are two other places called Place 3 and Place 4. An 
agent executing in Place 1 (Agent a) establishes a communication 
with another agent (Agent c) that is executing in a different place 
inside the same platform (intra-platform communication), and also 
communicates with Agent d, that is placed in a different computer 
(Computer 2) using the network. Another agent (Agent b) is mo-
bile and decides to change its execution environment, so it moves 
(by means of a network connection) to Place 4, which is hosted 
in a different computer (Computer 2), and then establishes a con-
nection to a local database (which might be not accessible from a 
remote computer) to query data. Similarly, Agent e is also mobile 
and performs a migration to another place inside the same com-
puter (Place 3).

We think that mobile agent technology can provide relevant ad-
vantages for VANETs. Indeed, in a previous work, we have studied 
the potential use of mobile agents for data management in vehicu-
lar networks and analyzed the performance and benefits offered by 
that technology [8]. In these scenarios, the vehicles have comput-
ers capable of executing a mobile agent platform, as well as some 
wireless communication device. In this way, mobile agents can ex-
ecute in such platforms and move from one vehicle to another as 
they travel, in order to process data in the distributed environ-
ment. As an example of application, mobile agents can be used to 
search and filter data that can be captured by different vehicles lo-
cated along the streets of a city, using their sensors. The agents 
can reach spatial areas of interest by moving to them in two dif-
ferent ways, as shown in Fig. 3: through agent transmission, where 
Fig. 3. Mobile agents in a VANET.

the mobile agent uses wireless communications to transfer itself 
from the execution environment located in an origin vehicle to an-
other destination vehicle, and through agent transportation, where 
the mobile agent is physically transported to a different location 
by the vehicle that carries the computing device where the agent 
platform is being executed.

3. Monitoring an interest area by using VANETs and mobile 
agents

One proposed application for VANETs is the monitoring of cer-
tain parameters in an area by the moving cars present in it [25], 
and the possibility of executing queries about information related 
to that area (or any sub-area), that are processed by using the most 
updated data present in the VANET.

In this scenario, a percentage of equipped vehicles are assumed 
to carry a computer or device which collects data about its sur-
roundings, that may be of interest for other drivers or even for 
users outside the roads. As an example of the first case, we could 
mention information about available parking spaces, the prices and 
status of gas stations or mechanical garages, the presence and oc-
cupation of recharging points for electric cars, the traffic density, 
etc. Besides that, it would also be very interesting if the vehicles 
carried different types of sensors to collect environmental informa-
tion in the different places where the vehicle may travel to (e.g., to 
measure the ambient temperature, noise, solar radiation, or pollu-
tion gases such as CO2, NO2, O3, etc.).

In order to make this monitoring process more effective and 
the collected data more representative of the area, it is necessary 
to obtain readings from sensors in different places that, in addition, 
should be distant enough from each other. A simple way of achiev-
ing this is by dividing the interest area in portions or cells with 
the same surface following a grid layout. Then, samples can be 
taken once the involved sensors are located within each of those 
cells, which implies that if the sensors are carried by vehicles, they 
should visit all those places at some time, in order to obtain mea-
sured values from all the cells.

3.1. Basic monitoring approach using mobile agents

Traditional sensing approaches based on the use of station-
ary sensors and/or sensing stations can be expensive, which mo-
tivates the development of alternative or complementary solu-
tions [26–28]. We argue that by using mobile agents in a VANET 



JID:VEHCOM AID:158 /FLA [m5G; v1.255; Prn:25/03/2019; 15:25] P.4 (1-24)

4 O. Urra, S. Ilarri / Vehicular Communications ••• (••••) •••–•••

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81
Table 1
Summary of advantages and disadvantages of several hop strategies described in [8].

Hop strategy Description Advantages Disadvantages

EUC Euclidean distance Simple to compute It does not consider the street layout
The shortest distance is the only factor considered

ANG Frontal angle It considers the vehicle’s heading It does not consider the street layout
The direction of the vehicle is the only factor considered

EP Encounter probability It considers the vehicle’s heading It does not consider the street layout
It tries to estimate the probability that the vehicle will 
reach the target area

MAP Street map distance It considers the street layout It needs a digital map
It is computationally costly

MapTraj Trajectories using maps It considers the vehicle’s trajectories and the street layout It needs a digital map
The planned trajectories must be known

Optimal Optimal route It returns the optimal sequence of hops It is unrealistic (based on information that cannot be available)
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it is possible to flexibly monitor potentially any geographic area 
required (interest area or target area) by using conventional vehi-
cles and without the need to deploy a fixed sensor infrastructure. 
The whole monitoring process would consist of the following four 
steps:

1. Submission of the monitoring task. First, the user defines the pa-
rameters to be monitored within the bounds of a spatial area 
(e.g., the temperature in the city center during the afternoon), 
and immediately a mobile agent starts its execution with the 
defined monitoring parameters.

2. Travel to the interest area. In the second step, the mobile agent 
travels towards the interest area (in the example, the city 
center) by using the vehicles in the VANET to hop from one 
vehicle to another, using a specific hop strategy [8] (see Ta-
ble 1), until it reaches the destination (transportation via wire-
less communications). Every time the mobile agent arrives 
at a vehicle, the next hop may not occur immediately, since 
the number of potential vehicles to hop to might be scarce 
(in the worst case, there might even be no other vehicles in 
the surroundings). In such cases, the mobile agent will stay 
in the same vehicle while waiting for a more suitable one. 
There is also the possibility of moving from one place to an-
other by just staying in the current vehicle (transportation 
via locomotion). This combination of transportation facilities is 
sometimes called carry-and-forward or store-carry-and-forward
in the context of vehicular networks [29].

3. Data collection. Once the mobile agent reaches the interest 
area, it will visit the different cells into which the area was 
partitioned. Upon its arrival to each of them, it will read the 
required sensor data and it will continue its travel to the next 
cell, repeating this process until all (or a preconfigured por-
tion) of them have been visited. In order to reach each spatial 
cell in the grid, the mobile agent will likely need to hop from 
one vehicle to another in the same way as in the previous 
step. Notice that the vehicle where the agent is executing may 
move out of the interest area, and therefore in that case the 
mobile agent will need to find a way to come back to that 
area.

4. Return of the results. Finally, in the last step, the mobile agent 
returns the data collected in the interest area to its originator 
(e.g., a static node or a vehicle); again, ad hoc communications 
can be used to reach the place where the query originator is 
located. This stage of the process is challenging, as the orig-
inator could be a vehicle that may keep moving and thus 
constantly changing its spatial position. Thus, in this case, the 
mobile agent must estimate the position of the originating ve-
hicle at every moment and, in case the estimation is wrong, 
keep re-evaluating and “chasing” the vehicle until it is success-
fully reached. The estimation of the position of the originating 
vehicle can be calculated according to its last known position 
and its intended destination (which will likely be the interest 
area). Such estimation will surely not be an exact position, but 
instead an area where the vehicle is expected to be present. 
The wider the area, the higher the existing uncertainty for 
the mobile agent to find the originator [8]; if needed, addi-
tional strategies could be used, for example, based on the use 
of vehicle-to-infrastructure communications through Road Side 
Units (RSUs) [4] or mailboxes to store the query results at fixed 
locations from which they can be easily retrieved [30].

One advantage of using mobile agents is that, instead of send-
ing only data, they can carry along with them the logics or algo-
rithms needed to acquire and filter out those data. Also, they can 
act as intelligent entities that can decide at every moment how 
to proceed according to the information they receive from their 
surroundings. This feature is especially useful in the scenario we 
are describing, in at least two aspects. Firstly, the mobile agent 
must reach the interest/target area by using the vehicles as inter-
mediate nodes, being necessary to hop from one to another until 
the destination is reached. However, as explained before, one dif-
ficulty of VANETs is that their nodes move constantly, so it is not 
possible to use classic routing tables or compute the route to fol-
low in advance; instead, the next node to be transferred to must 
be constantly evaluated just a few seconds before hopping to it, 
by using the information available to the mobile agent at that 
moment (its position and heading, the remaining distance to the 
target, etc.). Secondly, another advantage of carrying the logic with 
the mobile agent is that the agent can carry the specific algorithm 
needed to acquire and filter out the data involved in the moni-
toring process and thus minimize the amount of data transported 
(only the required data are carried). For example, the data acquisi-
tion task could be different if the monitoring is about the number 
of available parking spaces in a neighborhood than if it is about 
the average level of pollution gases in the area. In this way, in-
stead of using a generic and potentially-heavy algorithm to acquire 
and filter out all the possible types of monitoring parameters, a 
more specialized and small code can be used for each case.

We believe that this is an interesting application for VANETs, 
that makes it possible to extract valuable information by using the 
vehicles as moving sensing platforms and the available sensors in 
a more efficient and dynamic way, if we compare it to the tra-
ditional solution based on static measuring stations deployed at 
fixed locations along fixed and static interest areas. Also, the use 
of mobile agents is adequate since their flexibility and autonomy 
makes them a suitable solution for a fast-changing scenario such as 
a VANET. The mobile agents encapsulate code to intelligently take 
decisions, based on available data about the environment, with the 
goal of overcoming difficulties appearing in a VANET environment, 
such as the limited time available for exchanging data (e.g., if there 
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is not enough time to hop from one vehicle to another, due to the 
movements of the vehicles, the jump will fail and the mobile agent 
will retry or take an alternative decision). To reinforce this idea, we 
performed experiments to evaluate the basic monitoring approach 
described in this section, by using a mobile agent VANET simula-
tor [31], which showed the feasibility of this proposal [8].

3.2. Disadvantages of the basic monitoring approach

The previously-described monitoring process has some draw-
backs. For example, if the traffic density is too low, the mobile 
agent may not find a path to reach the interest area in a reason-
able time, or even it may not reach it at all. Similarly, if a vehicle 
visited by a mobile agent leaves the area, or just parks in an un-
derground parking before the agent hops away, it could get trapped
or lost and the monitoring process would be interrupted.

Two possible strategies to try to limit these drawbacks are the 
setting of a timeout and the use of agent’s clones. With the first 
strategy, once the mobile agent with the required monitoring pa-
rameters is launched, a timeout is set, and if the agent does not 
return any result before the time limit expires, the agent is as-
sumed to be lost and launched again. In the second strategy, the 
mobile agent creates a number of copies of itself to increase the 
probability of successfully reaching the interest area by using dif-
ferent alternative routes [8]. This strategy increases the use of the 
network bandwidth, but maximizing the likelihood of obtaining a 
result can compensate this cost.

A potential crowdsourcing strategy could be that certain drivers 
(e.g., commuters) could make available the route that they will fol-
low, to help the mobile agent to decide if a vehicle is worth to 
hop to or not. For privacy reasons, the complete routes are not 
expected to be provided with all the details. Indeed, this strategy 
does not necessarily require a full disclosure of the travel inten-
tions of the driver. In general, only a minimum amount of infor-
mation is needed, for an agent to know if a certain street is in the 
intended route or not. In exchange of this information, the driver 
can be compensated with virtual money (e.g., discount points for 
gas stations, virtual coins that can be used to pay for other use-
ful information or even be exchanged by real money, etc.). This 
virtual money could be equal to 0 in the case of altruistic drivers 
that share their routes without requiring a profit, or in the case of 
public transportation vehicles that follow well-known and regular 
routes (such as bus or tramway lines).

Another strategy for enhancing the behavior of the monitor-
ing process, which is the focus of this paper, is the use of spatial 
crowdsourcing techniques. For example, in a certain scenario, the 
mobile agent might find it difficult to reach certain areas of a city, 
but the user that starts the monitoring process may be willing to 
pay a certain amount of virtual money for some help from other 
vehicles. So, the mobile agent gets the ability to negotiate, with 
the drivers in the VANET, a way to reach the interest area faster 
or straighter than in the usual way. Recalling the steps followed to 
complete the monitoring process (described in Section 3.1), when 
the mobile agent hops to a vehicle in the second step of the pro-
cess, it would not only look for other vehicles that seem to travel 
towards the interest area, but may also try to negotiate to be 
physically carried there in exchange of a certain amount of virtual 
money.

3.3. Approach based on the use of spatial crowdsourcing

As defined in [32], spatial crowdsourcing implies “location-
specific tasks that require people to physically be at specific lo-
cations to complete them”. With spatial crowdsourcing, a vehicle 
could be willing to physically transport a mobile agent closer to 
Fig. 4. Example of social cost calculation for a single vehicle.

its destination; we call such a vehicle a collaborator or collaborat-
ing vehicle. In this section, we describe our approach. Firstly, in 
Section 3.3.1, we introduce the concept of social cost. Secondly, 
in Section 3.3.2, we present the role played by virtual money in 
the spatial crowdsourcing approach. Thirdly, in Section 3.3.3, we 
present the basic workflow that describes the spatial crowdsourc-
ing approach applied to travel to a target area. Finally, in Sec-
tion 3.3.4, we describe the use of spatial crowdsourcing for data 
collection.

3.3.1. Social cost
Spatial crowdsourcing comes at a cost, as it usually requires 

an effort by the collaborating vehicles. Specifically, we define the 
social cost as the time needed by the collaborating vehicles to de-
viate from their original routes to carry the mobile agent towards 
its destination and, once the agent leaves the vehicle, to recover 
their previous destinations and continue traveling towards there. 
In other words, the social cost is the time that collaborators need 
to invest to help the mobile agent. More specifically, as shown in 
Fig. 4, the social cost is computed as the time needed by the col-
laborator to reach the agent’s destination (A), plus the time needed 
to travel back to the driver’s original destination (B), minus the 
time that it would have taken to directly follow the original route 
(C). If the agent would have not required this help, the collabora-
tor would have not spent extra time traveling, so this cost needs 
to be compensated somehow.

3.3.2. Virtual money
Specifically, to encourage the collaboration from other vehicles, 

we propose an approach where a mobile agent can pay virtual 
money to them in exchange of being transported closer to the 
target area: the agent has a specific budget to process the query 
and tries to use that budget in the best possible way to reach its 
objectives and at the same time minimize the amount of money 
spent. The drivers of the collaborating vehicles could later use the 
virtual money received to pay other vehicles for similar services. 
The negotiation required to establish if a driver is willing to al-
ter his/her current trajectory to follow the agent’s objectives could 
be performed automatically whenever the agent is looking for the 
next vehicle to hop to; in order to accomplish this, the drivers of 
the area would state previously if they would like to participate 
in these exchanges and to what extent they are willing to detour 
from their route to bring the mobile agent closer to its destination. 
As an alternative, the driver could be explicitly asked if he/she is 
willing to follow a specified detour.

Several payment schemes could be considered. In our proto-
type, the amount paid by an agent is directly proportional to the 
time spent by the vehicle carrying the agent and there is no min-
imum fare, as shown in Table 2. The agent is assumed to have 
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Table 2
Payment model: payment from an agent to a collaborator.

Initial budget Final budget

Vehicle where the mobile agent is created (Vorigin) C Vorigin C Vorigin - Cagent

Mobile agent Cagent (≤ C Vorigin ) Cagent - t
Vehicle transporting the agent during t time units C Vcollaborator C Vcollaborator + t
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an allowable budget (provided by the vehicle where the agent is 
created, that is, the monitoring node that wants to retrieve data 
from the interest area) and the agent will pay one unit of virtual 
money per every time unit (i.e., every second) spent in the ve-
hicle acting as a “taxi” (i.e., following the route required by the 
agent). This route will likely be different than the one the vehi-
cle was following originally. However, it might also happen that a 
driver obtains virtual money even if he/she does not really need to 
modify his/her trajectory to transport the agent (because the route 
required by the agent already matches the future trajectory of the 
vehicle) or that he/she gets a considerable amount of money in 
exchange of a slight deviation from the previous trajectory. This 
is unavoidable, as the intended trajectories of the drivers are un-
known to the agent, and so the agent cannot know that it could 
achieve its objectives just by staying in the vehicle, even without 
paying for the vehicle to change its trajectory. Even though the 
basic payment scheme proposed is only based on transportation 
time, other additional costs could be easily added, if needed (e.g., 
the cost of traversing road tolls in case of interurban trajectories).

3.3.3. Basic workflow of the spatial crowdsourcing approach
The basic workflow of the proposed spatial crowdsourcing ap-

proach is shown in Fig. 5, where SC is used as an abbreviation of 
spatial crowdsourcing. The following are the main steps of the pro-
cess:

• In order to save virtual money, the mobile agent will first try 
to reach the interest area by hopping from one vehicle to an-
other without asking vehicles to collaborate by modifying their 
original routes. Only if the speed at which the mobile agent 
approaches its destination (approaching speed) is lower than a 
certain value (1), which we call the minimum speed threshold, 
the agent will look for nearby collaborating vehicles (2) and 
will negotiate with them if they are willing to carry the agent.
More specifically, the approaching speed of a mobile agent (ag) 
to the target area at time instant t is defined as indicated in 
Equation (1), where d(ag, area, t) represents the distance be-
tween the agent (ag) and the target area (area) at time t , and 
d(ag, area, 0) represents the initial distance between the agent 
and the target area; for simplicity of computation, we consider 
the Euclidean distance, but alternative distance metrics could 
also be considered. It should be noted that this approaching 
speed may not be the same as the speed at which the agent is 
traveling. For example, the agent may be in a vehicle moving 
at 50 km/h, but if its trajectory is inside a street located paral-
lel to the target area then the approaching speed would be 0, 
as that trajectory does not bring the agent closer to the target 
area. Similarly, if the mobile agent is traveling in the opposite 
direction to the target area, its approaching speed will have a 
negative value.

ApproachingSpeed(ag, t) =
{

d(ag,area,t)−d(agent,area,0)
t , if t > 0

0, otherwise

(1)

The minimum speed threshold must be either a positive value 
or 0; a value of 0 for the minimum speed threshold means 
Fig. 5. Basic workflow of the SC approach followed by a mobile agent to travel to 
an area.

that the agent will never ask for help to potential collaborating 
vehicles (i.e., no spatial crowdsourcing will be used).

• If the potential collaborator accepts (3), then the mobile agent 
will stay in the vehicle and will not hop off it unless the ap-
proaching speed exceeds again the threshold value.

• If the driver does not agree to deviate from his/her trajec-
tory (4), then the mobile agent will continue trying to reach 
the destination with the usual (non spatial crowdsourcing) ap-
proach, by hopping from one vehicle to another (5), while at 
the same time it keeps looking for a potential collaborator.

• If the mobile agent is already using a collaborator but it finds a 
suitable vehicle nearby, it can jump there (6). However, a mini-
mum stay time in the vehicles can be considered for the follow-
ing reason: for low values of the minimum speed threshold, 
once moving by staying in a collaborator it is easy to reach 
the threshold, and thus the agent may immediately hop to a 
more promising vehicle (i.e., one that approaches the target 
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Table 3
Experimental settings.

Parameter Default value

City maps Madrid, Barcelona, and Zaragoza
Size of the interest area 0.25 km2

Distance to the interest area 2 km
Density of vehicles Medium (100 vehicles/km2)
Speed of the vehicles 50 km/h ± 10% (random variability)
Mobility model Pathway mobility model
Hop strategy MAP (map distance)
Data collection delay 5 s
Data to collect (number of samples) 6 (1 from each cell of a 3 × 2 grid)
Data collection timeout 3 minutes
Total agent size (code, status, and amount of data carried by the agent) 200 KB
Communication range 250 m
Mobile agent’s hop delay 1 s
Minimum approaching speed threshold 5 km/h
Strategy used for data collection with SC SCCA
Buildings block communication signals Yes
Percentage of potential collaborators 50%
Minimum stay time in a collaborating vehicle 0 s
Size of the cold area (low-traffic area around the interest area) 0 m
Percentage of trajectories crossing the cold area 15%
Time limit 20 minutes
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area faster). This may render the behavior of the mobile agent 
somewhat unstable, and in addition it may require a higher 
use of bandwidth, since the agent could be constantly hopping 
to new vehicles. So, in order to limit this effect, a hystere-
sis value for the agent’s stay time (minimum period that the 
mobile agent must stay in a collaborating vehicle before hop-
ping to others) is considered. In this way, the bandwidth used 
and the likelihood of switching continuously between spatial 
crowdsourcing and hopping among vehicles can be reduced. 
The impact of the value of this parameter is evaluated in Sec-
tion 4.4.3.

So, in our proposal, we combine the basic monitoring approach, 
based on hopping from one vehicle to another by exploiting wire-
less communications, with spatial crowdsourcing. It should be 
noted that the switching between these two methods can occur 
several times at any moment during the trip to/from the target 
area. For example, if the agent is traveling too slowly (maybe be-
cause it is in a low-traffic street/area that makes it difficult to find 
other vehicles traveling towards the desired destination), it can use 
a collaborator to leave that street/area faster, and once its speed 
reaches a higher value, use again the method of hopping from one 
vehicle to another until the destination is reached.

It should be noted that we advocate a completely decentralized 
approach, based only on the use of opportunistic ad hoc commu-
nications with nearby vehicles. In this way, there is no need of 
a central entity with an overall view of the network in order to 
take global decisions and control the distribution of crowdsourcing 
tasks. Instead, the mobile agent itself takes its own decisions based 
on local knowledge about its environment and by interacting only 
with vehicles in its surroundings.

3.3.4. Spatial crowdsourcing for data collection
Spatial crowdsourcing could be used not only for traveling to 

the interest area but also for data collection once in the interest 
area. In order to know to which extent the spatial crowdsourc-
ing is useful or not for the data gathering process, we have tested 
two versions of the mobile agent with different behaviors exhib-
ited once the agent reaches the target area:

• In the first version, that we call SCCA (Spatial Crowdsourcing 
Collecting Agent), or SC/SCCA, the mobile agent always uses 
spatial crowdsourcing during the data collection phase (i.e., to 
travel to the target area cells and to return to the area if the 
vehicle leaves it during the data collection).

• In the second version, that we call PHCA (Pure Hopper Collecting 
Agent), or SC/PHCA, the mobile agent never uses the help of 
collaborators during the data collection phase; therefore, the 
agent tries to reach the cells within the target area by only 
hopping from one vehicle to another.

The difference between these two versions only affects phase 3 
of the monitoring approach (see Section 3.1), since in both ver-
sions the mobile agent uses spatial crowdsourcing to travel to the 
area as well as to return the results to the originator vehicle. In 
Section 4.3, we show experimentally that the performance of the 
SCCA approach is better than one where spatial crowdsourcing is 
not used during the data collection phase.

4. Experimental evaluation

In this section, we present the experiments that we have per-
formed to test the feasibility of the proposed monitoring approach 
in VANETs using mobile agents with spatial crowdsourcing abil-
ities. For evaluation, we have used the MAVSIM simulator [31], 
that allows the simulation of both mobile agents and traffic in 
a realistic way by using real road maps extracted from Open-
StreetMap [33]. Among its various functionalities, we can highlight 
the simulation of situations where the wireless signal is blocked 
by obstacles such as buildings, as this is more realistic.

4.1. Experimental setup

The main simulation parameters considered in the experiments 
carried out, with their default values, are shown in Table 3. In Sec-
tion 4.1.1 we describe the main experimental parameters, and in 
Section 4.1.2 the metrics measured and the purpose of the differ-
ent experiments performed.

4.1.1. Main parameters in the simulations
A few parameters included in Table 3 deserve further explana-

tions:

• City maps. We have used map scenarios corresponding to dif-
ferent cities of Spain (Madrid, Barcelona and Zaragoza, as 
shown in Fig. 6), that exhibit different features regarding the 
presence of long straight road segments and short and/or 
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Fig. 6. Key section of the map fragments used for evaluation. The grid square shows the designated interest area, and the small circle is the point where the monitoring 
process is launched.

Table 4
Different metrics of the road graphs in the maps.

Map Length 
(km)

Surface 
(km2)

Road density 
(km / km2)

Avg. edge 
length (m)

Vertices 
(V)

Edges 
(E)

δ

Madrid 162.49 24.95 6.51 3.72 3732 4367 2.34
Barcelona 217.93 14.62 14.91 3.92 5060 5555 2.20
Zaragoza 253.3 18.76 13.50 3.54 6030 7153 2.37
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curved segments, that neither favors nor harms the wireless 
signal propagation. In this way, we assure that our proposed 
approach is generic enough to perform consistently in differ-
ent topologies and that its behavior is not linked to any one in 
particular.
In Table 4, some metrics characterizing the map graphs are 
shown. The average nodal degree (δ) is defined as 2 ∗ |E|/|V |, 
where E is the set of edges/links in the graph and V is the set 
of vertices/nodes, and it is used as a measure of the mesh de-
gree [34]. The length represents the total length of the roads 
in the map, the surface is the area covered by the map (in 
square kilometers), the road density is the ratio of road kilome-
ters per surface unit (in square kilometers), and the average 
edge length is the average length of a road segment in the 
map.

• Density of vehicles. The vehicle density can be defined as the 
number of vehicles present per surface unit [35] and it can be 
measured in terms of vehicles per square kilometer. Another 
similar vehicle density measure unit is the number of vehi-
cles per road length unit [36], that is, vehicles per kilometer 
or per mile; this unit is useful for measuring the traffic flow 
in a mostly-linear road topology (such as a highway), but it is 
not suitable for urban scenarios, where vehicles can commu-
nicate not only with others present in the same street but also 
with vehicles traveling along other nearby parallel or perpen-
dicular streets. Of course, this is not always possible due to 
the presence of obstacles such as buildings but, even in that 
case, opportunities can appear to perform the communication 
in open city areas such as main squares or street junctions. 
For these reasons, we use the vehicles per square kilometer (or 
vehicles/km2) unit, since it is more appropriate for urban sce-
narios like those we are testing.

• Speed of the vehicles. The experiments are performed in an 
urban environment, so the speed of the vehicles is set to 
50 km/h, which is a typical speed limit value in many coun-
tries for driving in a city. We introduce a random variability of 
± 10% to that value, since it is highly unlikely that all the ve-
hicles move exactly at the same speed. These settings are the 
same ones presented in [8].

• Hop strategy. The hop strategy refers to the algorithm used 
by the mobile agent when it travels by hopping among ve-
hicles and it must choose, among several candidate vehicles, 
the one to hop to (instead of just being physically carried by 
a crowdsourcing collaborator). The agent needs to choose the 
vehicle that it estimates that will travel closer to the agent’s 
Fig. 7. The MAP hop strategy.

destination with the highest probability. For the experimen-
tal evaluation, we have chosen by default a strategy that uses 
as a criterium the remaining distance to the destination (map 
distance), computed by adding the lengths of the streets to tra-
verse in the road network. This algorithm is called the MAP 
hop strategy and an example is shown in Fig. 7: The mobile 
agent in vehicle A travels towards its destination in D, and 
it must decide whether it hops to vehicle B or C; both vehi-
cles have a similar straight (i.e., Euclidean) distance to D, but 
if the routes are computed following the streets, the distance 
d1 from B to D is longer than the distance d2 from C to D; 
therefore, the mobile agent will choose the vehicle C, since it 
is the one with the shorter route to the destination. This hop 
strategy has been shown to provide good results [8].

• Mobile agent’s hop delay. This is the time needed by the mobile 
agent to complete a hop from one vehicle to another, which 
implies transferring the agent’s code, status and the data col-
lected by the agent. We assume that in our test scenario the 
wireless technology used is the widespread 802.11g, that op-
erates in ideal conditions at a maximum speed of 54 Mbps. 
However, a large number of factors can reduce the effective 
speed of the data transfer, such as the signal attenuation due 
to the distance and interferences and collisions with other 
devices operating in the area, as well as the processing over-
head due to the packing and unpacking of the mobile agent’s 
code and data (serialization and deserialization before and af-
ter transmission, respectively). Therefore, we do not assume a 
best-case scenario and establish the travel time to one second. 
Field experiments that we have performed with real smart-
phones and tablets confirm that this value is reasonable [8].
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• Data to collect. Without loss of generality, in the experiments 
we assume that the interest area is partitioned based on a 3 ×
2 grid, which makes a total of six cells, which the mobile agent 
will have to visit to recover data from them.

• Data collection delay. When the mobile agent arrives in a spa-
tial cell, it reads the corresponding vehicle’s sensor, processes 
the value read, and stores it (if needed), and this action is as-
sumed to take 5 seconds, which is a pessimistic estimation. 
During this interval, the mobile agent will not hop to any 
other vehicle until the sensor reading, processing, and storage, 
is complete. Therefore, the mobile agent not only spends time 
reaching the interest area and returning from it, but also read-
ing, processing and storing values measured by sensors in the 
different cells.

• Data collection timeout. To avoid a potential situation where the 
data collection task takes too long, a timeout of 180 seconds is 
set. Reaching this timeout will cause the mobile agent to finish 
the task and start the process that intends to return the data 
to the originator vehicle or node where the monitoring pro-
cess started. In this case, it might happen that the amount of 
data collected by the agent is smaller than the desired quan-
tity. Therefore, the amount of collected data is a performance 
metric to consider.

• Time limit. To avoid situations where the monitoring process 
takes too much time to complete (for example, if an agent 
finds an unusually hard-to-solve situation), an overall time 
limit of 20 minutes is set. If this limit is reached, the sim-
ulation is aborted and its results are ignored, but the failure 
is counted and used to measure the reliability of the algo-
rithm under the conditions that were being simulated. Thus, 
the time limit represents the maximum overall time that the 
user is willing to wait to obtain an answer.

In the experiments presented throughout this section, we use 
the default values shown in Table 3, using the three city maps, 
and vary one of the parameters, which will label the X-axis of the 
corresponding experimental figures. Thus, in Section 4.2.1 we vary 
the size of the cold area, in Section 4.2.2 the initial distance to the 
interest area, in Section 4.2.3 and Section 4.4.2 the density of ve-
hicles, in Section 4.3 the minimum approaching speed threshold, 
in Section 4.4.1 the percentage of potential collaborators, and in 
Section 4.4.3 the minimum stay time in a collaborator. With this 
setup, we repeat every simulation 50 times (as in [8]), with dif-
ferent random starting positions for the vehicles, and compute the 
average of the results obtained.

4.1.2. Metrics evaluated and purpose of the experiments
The main metrics considered for evaluation purposes are the 

following:

• Time. An obvious metric to evaluate is the amount of time 
needed by the mobile agent to reach the interest area and/or 
perform the monitoring task.

• Amount of collected data. This metric indicates the number of 
cells in the interest area that the mobile agent visits and reads 
data from. In our settings there are 6 cells in the interest area, 
as we divided the interest area in a 3 × 2 grid, so we count 
the number of such cells that the mobile agent visits within 
the timeout of 3 minutes established for the data gathering 
phase. If this timeout is reached, then the mobile agent stops 
the data collection task and returns to the origin point with 
the data collected until that moment.

• Number of hops (bandwidth use). This metric counts the number 
of times that the mobile agent transfers itself from one vehi-
cle to another one by using the wireless connection (i.e., the 
number of hops performed by the agent), and therefore it can 
be used as a measure of the bandwidth used by the whole 
process.

• Virtual money spent. This metric represents the payments made 
by the mobile agent in exchange of help from the collaborating 
vehicles.

• Social cost. As defined in Section 3.3, the social cost represents 
the extra time invested by collaborating vehicles in helping the 
mobile agent to perform its task, as compared to a situation 
where no help is provided (i.e., all the vehicles follow their 
intended routes).
With the payment scheme considered in this paper (where 
the agent pays in proportion to the stay time, as explained 
in Section 3.3), we expect a quite direct relation between the 
social cost experienced by the collaborating vehicles and the 
virtual money spent by the mobile agent and paid to the col-
laborating vehicles as a compensation. This means that the 
experimental figures measuring both metrics are expected to 
show similar trends. Nevertheless, notice that the relation can-
not be computed as a direct proportion, as the social cost does 
not depend on the time spent by the collaborating vehicle car-
rying the agent but on the extra time needed to reach its 
intended destination despite the route deviation performed to 
help the agent. With other payment schemes (e.g., if the agent 
needs to pay a minimum fare every time it takes a collabo-
rating vehicle), the relation between these two metrics (social 
cost and virtual money spent) can become blurred. Besides, it 
might happen that the collaborating vehicle’s final trajectory 
may actually be very similar to the initially-intended one, as 
explained in Section 3.3: in this case, the virtual money spent 
by the agent may be higher than the social cost actually in-
curred by the collaborating vehicle.

• Reliability. The reliability of the monitoring is defined as the 
percentage of simulations that ended successfully within the 
simulation time limit established. This metric is very impor-
tant as a complement of all the others. The reason is that all 
the previous metrics are computed by considering only the 
results of the successful simulations. Indeed, the metrics for 
unended simulations are not available, as the corresponding 
experiment did not end. It should be noted that the alternative 
of computing partial metrics or default metrics for unended 
simulations would be confusing; for example, considering a 0%
of collected data for an unended simulation is misleading (in 
that case, it is inaccurate to say that the mobile agent collected 
0% of the data; e.g., given just a few more seconds of simu-
lation the simulation might have ended and the agent might 
have returned a good percentage of collected data); as another 
example, the number of hops so far in an unended simulation 
might be low but this might be only due to the fact that the 
simulation has not ended (given enough time for the simula-
tion to end, the number of hops may actually turn out to be 
high).

To evaluate those metrics we performed two sets of experi-
ments, whose purpose and conclusions are summarized in Table 5. 
The first set of experiments, shown in Section 4.2, is devoted to 
comparing the proposed spatial crowdsourcing approach with an 
approach without spatial crowdsourcing to travel to the interest 
area. The second set of experiments, described in Section 4.3, fo-
cus on determining a suitable value for the minimum approach-
ing speed threshold. The third set of experiments, shown in Sec-
tion 4.4, evaluates the impact of several parameters, such as the 
density of vehicles and the number of available collaborators, on 
the monitoring process.
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Table 5
Summary of the experiments performed and their purpose.

Experiment Section Parameter Purpose Conclusions

Experiments Showing the 
Interest of Spatial 
Crowdsourcing to Travel to the 
Interest Area

4.2 Evaluate the potential benefits of 
spatial crowdsourcing (SC) to help a 
mobile agent to reach an interest 
area.

The use of SC can help the mobile agent particularly 
in low-traffic scenarios. Besides, even in scenarios 
with good traffic density, the use of SC does not 
have a negative impact.

Impact of the Size of a 
Low-Traffic Area

4.2.1 Size of the cold area Evaluate the impact of the size of a 
cold area when SC is used or not.

The use of SC is particularly beneficial in terms of 
time and bandwidth for large cold areas.

Comparison Varying the Initial 
Distance to the Interest Area

4.2.2 Initial distance to the 
interest area

Evaluate the impact of the initial 
distance to the interest area when 
SC is used or not.

The use of SC is particularly beneficial for short and 
medium distances to the target area. The bandwidth 
usage obviously increases with the distance to the 
interest area, but the use of SC minimizes it.

Comparison Varying the Density 
of Vehicles

4.2.3 Density of vehicles Evaluate the impact of the vehicle 
density when SC is used or not.

The use of SC is very beneficial when the density of 
vehicles is low.

Experiments for the 
Determination of a Suitable 
Minimum Approaching Speed 
Threshold

4.3 Minimum approaching 
speed threshold

Evaluate the impact of the minimum 
approaching speed threshold, and 
choose the best value.

A value of the approaching speed threshold as low 
as 5 km/h, to determine whether SC should be used 
or not, provides good results. For higher threshold 
values, the performance is also better than when not 
using SC.

Experiments Analyzing the 
Impact of Different Factors on 
the Monitoring Process

4.4 Analyze the impact of different 
parameters on the performance of 
the whole SC monitoring process.

The use of SC can benefit the monitoring process, 
but a number of parameters must be set properly in 
order to maximize the performance.

Impact of the Percentage of 
Potential Collaborating Vehicles

4.4.1 Percentage of potential 
collaborators

Evaluate the impact of the 
percentage of collaborating vehicles.

A low percentage of collaborators (about 10%) is 
enough to benefit from SC.

Impact of the Density of Vehicles 4.4.2 Density of vehicles Evaluate the impact of the density 
of vehicles (both collaborating and 
not collaborating) in the scenario.

Even with a low traffic density (60 vehicles/km2), 
the use of SC provides good results.

Impact of the Minimum Stay 
Time in a Collaborator

4.4.3 Minimum Stay Time in 
Collaborators

Evaluate the impact of the 
minimum time that the mobile 
agent stays in a collaborator.

High staying times do not affect the total time or 
the reliability, but increase both the social and 
economic costs.
96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132
4.2. Experiments showing the interest of spatial crowdsourcing to travel 
to the interest area

In this first set of experiments, we evaluate the potential ben-
efits that spatial crowdsourcing can provide. To show this, we 
compare the proposed spatial crowdsourcing approach with an ap-
proach that does not use spatial crowdsourcing, by measuring the 
performance of the process followed by the mobile agent to reach 
the interest area. Specifically, in Section 4.2.1 we compare how the 
performance of both approaches changes depending on the size of 
an area around the interest area where the density of vehicles may 
be low, in Section 4.2.2 we compare them by varying the distance 
to the interest area, and in Section 4.2.3 we compare them in sce-
narios with different traffic density.

4.2.1. Impact of the size of a low-traffic area
In this first experiment we perform a test in the previously 

described scenarios to see how useful the use of spatial crowd-
sourcing might be to the agent for reaching an area with a small 
amount of vehicles. For this purpose, we consider an area where 
the traffic density is low, called cold area, and we characterize it as 
a prolongation of the interest area that is extended a certain length 
around it (see Fig. 8). Specifically, from all the trajectories of vehi-
cles randomly created by the simulator for this experiment, a 15%
of them cross the cold area, and thus the traffic inside it is lower 
than in the rest of the scenario.

In this cold area, which has a shape similar to a belt around 
the interest area, the density of vehicles is much lower than in the 
rest of the scenario, and therefore the mobile agent will have a 
lower probability of finding a vehicle traveling towards the interest 
area to use it opportunistically to be carried there, or as an inter-
mediate place to hop while looking for another better candidate. 
In this situation, the use of spatial crowdsourcing can benefit the 
monitoring process considerably, since the mobile agent can find 
a collaborator willing to alter its original route in order to carry 
Fig. 8. Example of a cold area around the interest area.

the agent straight to the interest area in exchange of an amount of 
virtual money.

With this setup, we performed a series of simulations where we 
varied the size of the cold area (i.e., the length of the low-traffic 
interest area extension) from 0 meters to 1000 meters. In Fig. 9, 
we can see the total time needed by the mobile agent to com-
plete the travel to the interest area in the three cities. We compare 
the results when spatial crowdsourcing is used (Using SC) with a 
situation where it is never used (Without SC). The larger the cold 
area, the longer it takes for the mobile agent to reach the inter-
est area, as expected. However, when spatial crowdsourcing help 
is used, the times are considerably reduced. Next to the time val-
ues for the case when spatial crowdsourcing is used, we show the 
amount of virtual money spent in the process, with the notation 
“C: amount of virtual money units”; for example, in Fig. 9(c), for 
a size of the cold area of 1000 meters the agent spends 36 virtual 
money units, which allows reducing the total time by about 40%
(from 227.5 seconds to 136.7 seconds). The differences observed 
in the total times for the three cities are due to the fact that the 
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Fig. 9. Traveling to the interest area: comparison of the total time needed by using spatial crowdsourcing (SC) or not, varying the size of the cold area.

Fig. 10. Confidence intervals for Fig. 9(b) – city of Barcelona.
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trajectories of the vehicles and the communications among them 
vary with the different topologies of the streets.

The difference in the total times shown in Fig. 9(b) for cold ar-
eas of size 600 and 700 meters when no spatial crowdsourcing is 
not used may attract the attention of the reader; this is because, in 
that case, the mobile agent finds more difficulties with a size of the 
cold area of 600 meters than with a size of the cold area of 700 
meters, and therefore we observe a drop in the total time when 
the size of the cold area goes from 600 meters to 700 meters. Al-
though this might seem counter-intuitive, as one may expect that 
a larger cold area would imply higher difficulties for the agent, we 
also have to take the topology of the streets into account. Indeed, 
it is not only the size of the cold area that matters but also the 
number and shape of the streets close to the boundaries of the 
cold area. So, by analyzing the results in detail, we have noticed 
that with a size of the cold area of 600 meters, in some simu-
lations the agent tries to keep itself for a considerable amount of 
time in a narrow area close to the cold area until it finds a suitable 
vehicle to go towards the interest area, rather than exploring other 
alternatives, because it takes local decisions that lead to a local 
optimum (exploring other streets in those scenarios would initially 
lead the agent farther from the interest area). These problematic 
situations are avoided when the agent uses spatial crowdsourcing, 
as the agent would detect little progress towards the interest area 
(the approaching speed would be below the minimum approach-
ing speed threshold) and ask the help of potential collaborating 
vehicles.

When spatial crowdsourcing is not used, we also observe a 
higher variability in the total times of different executions, as 
the approach with no spatial crowdsourcing is more sensitive to 
changes in the scenario. For illustration, in Fig. 10(a), we show 
the 95% confidence intervals of the average time values shown in 
Fig. 9(b) for the case without spatial crowdsourcing (the thicker 
circles represent the average values and the extremes the higher 
and lower values defining the interval), along with labels to in-
dicate the standard deviations (St. Dev.) computed from the 50
executions for each value of the size of the cold area. Similarly, 
in Fig. 10(b), we show the confidence intervals and standard de-
viations for the case of using spatial crowdsourcing. Notice the 
different scale in the Y-axis of Fig. 10(a) and Fig. 10(b).

In Fig. 11, the total number of hops is shown. When spatial 
crowdsourcing is used, the number of times that the mobile agent 
hops (and so the bandwidth needed) is smaller: when the agent 
finds a collaborating vehicle, it is directly carried towards the in-
terest area and does not need to use any other vehicle to hop to, 
unless the agent’s approaching speed decreases below the mini-
mum speed threshold and there is some promising neighboring 
vehicle; in this experiment, this is unlikely because the carrying 
vehicle is usually moving through the cold area, which is a low-
traffic zone. On the contrary, when no collaborators are used, the 
mobile agent is constantly looking for a carrier better than the one 
it is currently traveling on. In this case, the current carrier may 
follow unpredictable routes, not only carrying the agent nearer the 
interest area; indeed, it might take a route that travels farther 
from the interest area. The size of the cold area seems to have 
little influence on the number of hops. There are two reasons for 
that. When using spatial crowdsourcing help, once a collaborator 
is found the mobile agent does not usually need to hop to other 
vehicles and stays in the same vehicle moving towards the interest 
area. When no spatial crowdsourcing is used, the number of hops 
varies with the size of the cold area in a more irregular way. This 
is due to the unpredictability of the routes and locations of the ve-
hicles: the mobile agent must constantly evaluate its environment 
to decide the most suitable vehicle.

We also evaluated the social cost of using spatial crowdsourc-
ing. In Fig. 12, we show the social cost (in minutes) in the different 
cities, when the mobile agent uses spatial crowdsourcing (when 
spatial crowdsourcing is not used, there is no social cost). Regard-
ing the size of the cold area, it has little effect in the social cost, 
although a slight increase with its size is observed. This is an ex-
pected consequence, since the larger the cold area is, the longer 
it takes a collaborator to transport the agent to the interest area, 
and the longer he/she must postpone following his/her originally-
intended route.

To summarize the conclusions regarding the influence of the 
size of the cold area, when it is larger the total time needed by 
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Fig. 11. Traveling to the interest area: comparison of the total number of hops needed by using spatial crowdsourcing (SC) or not, varying the size of the cold area.

Fig. 12. Traveling to the interest area: collaborators’ social cost.
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the mobile agent to reach the interest area grows, although it is 
smaller when spatial crowdsourcing is used. The bandwidth usage 
remains similar, but when no spatial crowdsourcing is used it is 
higher and more irregular. Finally, the social cost, which only ap-
plies when using spatial crowdsourcing, is only slightly influenced 
by the size of the cold area.

4.2.2. Comparison varying the initial distance to the interest area
The previous experiment indicates that spatial crowdsourcing 

can be very useful in scenarios with areas where the density of ve-
hicles is not high. Now, we will perform another experiment with 
higher traffic density in the whole scenario, in order to see if the 
proposed approach also behaves well when the number of poten-
tial agent carriers increases.

In this experiment, there is no cold area and there is a 
uniform density of vehicles in the scenario, which is set to 
100 vehicles/km2 (a medium density), as the default values in Ta-
ble 3 indicate. We vary the initial distance from the point where 
the mobile agent starts its execution to the limit of the interest 
area, and we evaluate the potential benefits of spatial crowdsourc-
ing for different values of such a parameter.

In Fig. 13, we can see how the total time to reach the in-
terest area varies with the initial distance. In general, the times 
are slightly higher when no spatial crowdsourcing is used for the 
smaller to medium initial distances, whereas for higher distances 
the differences are near 0 and practically the same. A minor excep-
tion can be found in Fig. 13(c), for the city of Zaragoza, in a couple 
of cases where for some distance values (e.g., 1750 and 2250 me-
ters) the times are slightly higher when spatial crowdsourcing is 
used, but this difference is quite small (about 3 seconds, from a 
total of around 67 seconds and 80 seconds, respectively); this dif-
ference is very small and can be due to a single sub-optimal choice 
made by the agent (e.g., a decision about being transported rather 
than actively jumping to a promising vehicle).

Regarding the number of hops that the mobile agent performs 
to reach the interest area, shown in Fig. 14, the figures for all the 
cities have a similar shape: the number of hops is slightly higher 
when no spatial crowdsourcing is used, and it grows linearly with 
the distance to the interest area.
As a summary, the time needed to reach the interest area grows 
with the distance. For short and medium distances, the spatial 
crowdsourcing option is better, but for longer distances the differ-
ence between both options is smaller. Regarding the total number 
of hops needed, the initial distance has a linear effect and in all 
the cities the crowdsourcing option takes fewer hops than the one 
without spatial crowdsourcing.

4.2.3. Comparison varying the density of vehicles
The density of vehicles is very important for the performance 

of the agent, since it can be difficult to reach the interest area if 
the number of vehicles that can be used as a physical transport 
or as an intermediate relay is low. In this experiment, we want 
to know in which circumstances the use of spatial crowdsourcing 
helps the mobile agent to reach the interest area. In this scenario, 
there is no cold area and in all the zone there is a uniform density 
of vehicles, which varies from 10 vehicles/km2 (a very low density) 
to 175 vehicles/km2 (a high density).

In Fig. 15, we can see how the total time to reach the interest 
area varies with the density of vehicles. In all the cities, the time is 
lower when spatial crowdsourcing is used than when it is not. The 
differences are higher with low vehicle density values, especially 
for the lowest value of 10 vehicles/km2. For density values higher 
than 30 to 45 vehicles/km2 the difference between using spatial 
crowdsourcing or not is practically negligible and in some cases 
(e.g., Fig. 15(c)) the total time might even increase very slightly 
when using spatial crowdsourcing. The reason is that, when the 
traffic density is high and in the absence of a cold area, the mobile 
agent can find suitable vehicles to hop to in order to transport 
itself via wireless communications. When spatial crowdsourcing is 
not used, the mobile agent must go to the interest area by hopping 
from one vehicle to another that seems more promising to reach 
the target sooner, and finding candidates is more difficult when 
the density of vehicles (and therefore, its total amount) is lower.

Fig. 16 shows that, as the vehicular density grows, the number 
of hops that the mobile agent needs to perform to reach the in-
terest area decreases when spatial crowdsourcing is not used. On 
the other hand, when it is used, the number of hops increases with 
the density of traffic until around 45 vehicles/km2, when the num-
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Fig. 13. Traveling to the interest area: comparison of the total time needed by using spatial crowdsourcing (SC) or not, varying the initial distance (no cold area).

Fig. 14. Traveling to the interest area: comparison of the total number of hops needed by using spatial crowdsourcing (SC) or not, varying the initial distance (no cold area).

Fig. 15. Traveling to the interest area: comparison of the total time needed by using spatial crowdsourcing (SC) or not, varying the vehicle density (no cold area).

Fig. 16. Traveling to the interest area: comparison of the total number of hops needed by using spatial crowdsourcing (SC) or not, varying the vehicle density (no cold area).
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ber of hops remains stable with small variations for higher density 
values. In all the cases, the number of hops when spatial crowd-
sourcing is used is smaller than when it is not used, although the 
difference decreases as the vehicular density grows. This is due to 
the fact that, once the mobile agent takes a collaborator, it stays in 
there and does not leave it until the interest area is reached, being 
unnecessary to perform more hops to other vehicles.

Summing up, we conclude that the spatial crowdsourcing ap-
proach is particularly beneficial in terms of time and bandwidth 
usage in scenarios with a low density of vehicles. Moreover, when 
the traffic density is higher, the use of spatial crowdsourcing does 
not harm either the performance. Indeed, based on the minimum 
speed threshold, the mobile agent can choose to hop among the 
vehicles when it considers that paying a collaborator is not needed.

4.3. Experiments for the determination of a suitable minimum 
approaching speed threshold

In the second set of experiments, we focus on the determi-
nation of a suitable value for the minimum approaching speed 
threshold parameter used by a mobile agent to decide when col-
laborators should be used. As explained in Section 3.3, the travel 
to the target area, as well as the return to the origin with the re-
sults, is performed by the mobile agent thanks to a combination 
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of two techniques: initially, the mobile agent starts hopping from 
one vehicle to another one that it considers to be a more promis-
ing carrier to reach the target area and, additionally, the agent 
may also use spatial crowdsourcing to be physically carried nearer 
the target area by a collaborating vehicle. To decide whether us-
ing one technique or the other at any time, a minimum speed 
threshold is set: if the mobile agent approaches the destination 
area with a speed smaller than this threshold value, it will ask for 
help to nearby collaborating vehicles to be carried nearer the des-
tination area faster, until the approaching speed raises again above 
the threshold. Otherwise, the mobile agent will keep hopping from 
one vehicle to another, as described before. It is important to es-
tablish the minimum speed threshold carefully. If it is too high, the 
mobile agent will likely look for collaborators too early, and there-
fore it will spend too much virtual money needlessly. On the other 
hand, if the value is too low, then the agent will ask for help later, 
but then it may be already too far from the interest area and thus 
take too much time to reach the destination.

In Section 3.3.4, we describe two approaches regarding the use 
of spatial crowdsourcing during the data collection phase (SCCA 
and PHCA), which we now compare experimentally for varying val-
ues of the minimum approaching speed threshold (in the range 
from 0 km/h to 50 km/h, which is the usual maximum speed 
within a city). In the rest of this section, the results obtained by us-
ing SCCA are shown in Section 4.3.1, the results obtained by using 
PHCA are shown in Section 4.3.2, and a comparison between the 
two is presented in Section 4.3.3. As the default parameter values 
in Table 3 show, the ratio of collaborating vehicles is set to 50%, 
taken as an intermediate value, and there is no cold area. Besides, 
as we want to see the benefits of using spatial crowdsourcing also 
within the interest area, the probability that the trajectory of a 
given vehicle will travel inside the interest area is 10%, as this 
implies a low-traffic situation where the difference between us-
ing spatial crowdsourcing or not using it during the data collection 
phase can be more relevant.

4.3.1. Monitoring process: results with SCCA
Fig. 17(a) shows the time required for completing the moni-

toring process in the three cities, by using the SCCA variant of 
the mobile agent, as described before. The extreme case when the 
minimum speed threshold equals 0 km/h means that the condi-
tion for using spatial crowdsourcing is never met, and therefore 
the agent must reach the target area only by hopping from one 
vehicle to another (spatial crowdsourcing is not used at all). How-
ever, once the target area is reached, the SCCA mobile agent always
uses spatial crowdsourcing to travel to all the cells, with indepen-
dence of the minimum approaching speed threshold (the agent is 
already within the target area, and so the concept of approach-
ing speed does not apply). As a result, in general, in all the maps, 
the total time required is higher with a value of 0 km/h than with 
other higher values, and the variations for higher minimum speed 
thresholds are quite small.

In Fig. 17(b), we can observe that the number of hops needed 
by the mobile agent to complete the process is much higher for 
the minimum speed threshold value of 0 km/h (when no spa-
tial crowdsourcing is used), and for values higher than 5 km/h 
the number of hops decreases. The reason is that when no spa-
tial crowdsourcing is used the mobile agent needs to constantly 
hop from one vehicle to another until it reaches the interest area.

In Fig. 17(c), the percentage of collected data is shown. The re-
sult for all the minimum speed threshold values tested are 100%
(i.e., all the requested data are collected), but it must be taken into 
account that for the value of 0 km/h (i.e., when no spatial crowd-
sourcing is used) the reliability is below 90%, so the collected data 
percentage shown in Fig. 17(c) refers only to the simulations ended 
within the simulation time limit.
In Fig. 17(d), the amount of virtual money spent by the mobile 
agent is shown. As explained in Section 3.3, in our experiments, 
we assume that the agent pays one unit of virtual money for every 
second it is carried by a collaborating vehicle. When the minimum 
speed threshold value is 0 km/h, the amount paid is very low, 
since the collaborators are only used when the mobile agent col-
lects data when traveling to the target area cells within the interest 
area, but not for reaching the area when returning to it when the 
agent leaves it unintentionally, or for returning to the monitoring 
origin. For higher values of the minimum speed threshold, the vir-
tual money spent increases, being the best overall value around 
5 km/h.

Regarding the social cost, shown in Fig. 17(e), the SCCA agent 
exhibit a similar behavior in the three cities: when the minimum 
speed threshold value is 0 km/h, the cost is very low because spa-
tial crowdsourcing is used only when the mobile agent is inside 
the target area collecting data. For higher speed threshold values, 
the social cost also increases, since the agent makes use of spa-
tial crowdsourcing more frequently. Note that this graphic shows a 
trend very similar to the one of the virtual money spent (though 
not exactly the same), which means that the established mecha-
nism to compensate the collaborators (paying them according to 
their invested time) is quite fair, since the compensation paid is 
related to the social costs incurred by the collaborators.

Finally, Fig. 17(f) shows the number of collaborating vehicles 
that the SCCA agent needs to complete the process. For the mini-
mum speed threshold value of 0 km/h, the number of collaborators 
is very low, because they are only used in the data collection 
phase, but not for traveling to/from the target area. For the next 
minimum speed threshold value (5 km/h), the number of collab-
orators grows to between 11 and 15, but then it decreases as the 
minimum speed threshold value increases, until 6 to 10 collabo-
rators for 50 km/h. This is interesting, as compared to the results 
of the total time, which has a low variability for minimum ap-
proaching speed threshold values in the range of 5 to 50 km/h 
(see Fig. 17(a)). When the minimum approaching speed is set to 
a low value (e.g., 5 km/h), the mobile agent uses more collabora-
tors but for a shorter time. On the other hand, when the minimum 
approaching speed is set to high values (e.g., 45 km/h), fewer col-
laborators are used by the mobile agent, but it travels physically 
aboard them for a longer time. The reason is the following: when 
the agent uses spatial crowdsourcing it will stay in the collabo-
rating vehicle until the approaching speed exceeds the minimum 
speed threshold, and shortly after that moment the agent will 
leave the collaborator if it finds a more promising vehicle, and will 
continue approaching the target area, hopping from one vehicle 
to another by using the established hop strategy. For low values 
of the minimum speed threshold, it will be easier to reach the 
threshold value, and the agent will leave the collaborator sooner 
than for high values. As the minimum approaching speed thresh-
old grows, the mobile agent will travel longer in a collaborator, and 
will approach nearer the target area, so it will also need a smaller 
number of collaborators to reach it.

It should be noted that the performance results of unended 
simulations are not available, and so another parameter tested in 
the experiment is the reliability of the monitoring. In Table 6, we 
can observe that the reliability of the process is between 56%
and 90% when then minimum speed threshold equals 0 km/h 
(i.e., when no spatial crowdsourcing is used). For higher values of 
the minimum speed threshold, the reliability reaches 100% (with 
one single exception for the minimum speed threshold value of 
40 km/h and the city of Zaragoza, with a reliability of 98%), mean-
ing that the simulations end within the time limit. That is, the 
use of spatial crowdsourcing for values above or equal to 5 km/h 
increases the reliability of the whole monitoring process consider-
ably.
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Fig. 17. Monitoring process: results with SCCA.

Table 6
Monitoring process: reliability with SCCA.

minspeed (km/h) 0 5 10 15 20 25 30 35 40 45 50

Madrid (% of ended simulations) 56 100 100 100 100 100 100 100 100 100 100
Barcelona (% of ended simulations) 90 100 100 100 100 100 100 100 100 100 100
Zaragoza (% of ended simulations) 68 100 100 100 100 100 100 100 98 100 100
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4.3.2. Monitoring process: results with PHCA
If we test the same minimum speed threshold values with the 

variant PHCA of the mobile agent, we obtain another set of results, 
that are shown in Fig. 18. This version of the agent never uses spa-
tial crowdsourcing when it is inside the target area, nor when the 
agent leaves it accidentally and must return to resume the moni-
toring task. The mobile agent only hops from car to car by using 
the MAP hop strategy to estimate which car in range will reach 
the target area earlier.

In Fig. 18(a), the total time is shown and the best results are, 
in general, for minimum speed threshold values around 5 km/h, 
whereas for higher values the total time increases very slightly.

The total number of hops is shown in Fig. 18(b), which ex-
hibits a behavior similar to SCCA. For the extreme value of 0 km/h, 
the agent must only hop among the vehicles without using spatial 
crowdsourcing, and therefore the number of hops is much higher. 
For higher values of the minimum speed threshold, the number of 
hops decreases very slightly due to the use of spatial crowdsourc-
ing to reach the target area and return to the origin.
The results of the amount of collected data, shown in Fig. 18(c), 
are noteworthy: all the results are only around 60%, which is much 
lower than with SCCA. The reason is that, once the agent reaches 
the target area, it must visit the cells through only car-to-car hops, 
without using spatial crowdsourcing, which is harder to accom-
plish, as the number of vehicles inside the area is low and their 
trajectories unknown. Due to this, the agent needs more time to 
perform the task and in many cases it reaches the data collection 
timeout of 3 minutes even before it is completed.

In Fig. 18(d), the virtual money spent by the agent is shown. 
For the minimum speed threshold value of 0 km/h, the amount of 
money spent is 0, since the agent never uses spatial crowdsourcing 
inside the target area, and neither to reach or leave it. For higher 
values, the best results are obtained for 5 km/h and the worst re-
sults for values higher than 30 km/h.

Regarding the social cost shown in Fig. 18(e), we can observe 
the same behavior as with the SCCA version and again a very sim-
ilar trend to the one shown in Fig. 18(d) for the virtual money 
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Fig. 18. Monitoring process: results with PHCA.

Table 7
Monitoring process: reliability with PHCA.

minspeed (km/h) 0 5 10 15 20 25 30 35 40 45 50

Madrid (% of ended simulations) 68 98 100 100 100 100 100 100 100 100 100
Barcelona (% of ended simulations) 82 100 100 100 100 100 100 100 100 100 98
Zaragoza (% of ended simulations) 80 98 100 98 100 100 100 100 98 100 100
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spent by the agent, and thus the collaborators are compensated 
according to their actual cost in quite a fair way.

Finally, in Fig. 18(f), the number of collaborators taken by the 
agent is shown. This amount is exactly 0 for the minimum speed 
threshold value of 0 km/h, since spatial crowdsourcing is never 
used for traveling to/from the target area, nor for collecting data 
inside it when it is reached. For minimum speed threshold values 
of 5 km/h and above, the collaborators are used in a similar way 
to the SCCA variant of the agent: as the minimum speed threshold 
grows, the number of collaborators decreases. Since the total time 
remains more or less constant, this means that for low values of 
the minimum speed threshold, a collaborator is usually taken for a 
smaller time than for higher threshold values.

Regarding the reliability of the whole process (shown in Ta-
ble 7) the best results are for minimum speed threshold values 
between 10 km/h and 45 km/h, with reliabilities of 100%. On the 
other hand, the worst results are for the value of 0 km/h, when no 
spatial crowdsourcing is used, but there are also some cases when 
the reliability does not reach 100% and stays in 98%.
4.3.3. Monitoring process: comparison between SCCA and PHCA

Comparing the results of these experiments (regarding the de-
termination of the minimum approaching speed threshold), we can 
conclude that:

• The variant SCCA of the agent takes less time than PHCA to 
complete the monitoring process, due to the advantage of us-
ing spatial crowdsourcing inside the target area (on average, 
around 300 s in the first case and slightly more than 400 s in 
the second).

• Regarding the reliability, both approaches yield similar results, 
being not smaller than 98% for minimum approaching speeds 
of at least 5 km/h.

• Considering the total number of hops, SCCA is better (less than 
100 hops, versus a value between 100 and 200 hops with 
PHCA) since the use of spatial crowdsourcing reduces the ne-
cessity to keep looking for potentially better vehicles to hop to.
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• Regarding the data collection rate, again SCCA outperforms 
PHCA, being the first one around 100% and the second one 
around 60%.

• Concerning the virtual money cost, however, PHCA is better 
than the SCCA (with an average cost of 93 versus 126 units 
of virtual money), due to the fact that the former never uses 
spatial crowdsourcing once the mobile agent reaches the tar-
get area, which saves money.

• For both approaches, the use of spatial crowdsourcing with a 
minimum approaching speed threshold is always better than 
not using it, in terms of time, reliability, bandwidth usage 
and amount of collected data, as the results for the minimum 
speed threshold value of 0 km/h show.

• For both variants, a minimum approaching speed threshold 
around 5 km/h is appropriate, if we take into account all the 
results from these experiments.

Therefore, we can establish that the best algorithm in all terms 
(except in the virtual money cost) is SCCA, and we choose for the 
minimum approaching speed threshold 5 km/h, which is quite a 
low value. This value, as well as the SCCA strategy, are used by 
default in the experiments, as shown in Table 3.

4.4. Experiments analyzing the impact of different factors on the 
monitoring process

In the third set of experiments, we analyze the impact of dif-
ferent parameters on the performance of the whole monitoring 
process, such as the percentage of collaborators (Section 4.4.1), the 
existing traffic density (Section 4.4.2), and the required minimum 
stay time of mobile agents in the vehicles (Section 4.4.3). In these 
experiments, the mobile agent follows the complete monitoring 
process described in Section 3: it first travels to the interest area 
and, once the interest area is reached, it visits every cell into which 
it is divided to read the required data by using the available sen-
sors in its carrying vehicle. When the mobile agent has read all the 
sensors required (or the maximum timeout expires), it returns to 
its origin carrying with it the data collected. As in Section 4.3, the 
probability that the trajectory of a given vehicle will travel inside 
the interest area is 10%, as in this case the use of spatial crowd-
sourcing for the data collection stage (SCCA approach) can be more 
relevant.

4.4.1. Impact of the percentage of potential collaborating vehicles
Fig. 19(a) shows how the total time needed to complete the 

whole monitoring process varies with the ratio of vehicles willing 
to act as collaborators in spatial crowdsourcing tasks. The required 
time is around 500 to 700 seconds for 0% of potential collabora-
tors, that is, when no spatial crowdsourcing can be used and the 
mobile agent can only rely on hopping from one vehicle to another 
to reach the destination and perform the monitoring task inside 
the target area. The time decreases to around 400 seconds when 
the ratio of potential collaborators increases to 10%, and then de-
creases slightly until it reaches around between 300 and 350 sec-
onds for 100% collaborators (i.e., all the vehicles in the scenario 
can act as collaborators). The reason is that once the mobile agent 
finds a suitable collaborator it is not necessary to keep looking 
for another one, and thus having more potential collaborators to 
choose from is useless.

Figs. 19(b), 19(c) and 19(e) show the number of hops per-
formed by the mobile agent, the amount of data collected, and 
the social cost, respectively. In all these figures, we can see the 
same pattern: when spatial crowdsourcing is not used (because 
the ratio of potential collaborators is 0%), then the correspond-
ing metric measured is significantly worse than when it is used. 
The results improve dramatically with only about 10% collabora-
tors. However, when the ratio of potential collaborators is higher 
than this value, the measured parameters do not show further im-
provement (the mobile agent does not significantly benefit from 
a higher number of potential collaborators). The exception to this 
pattern is the virtual money spent, shown in Fig. 19(d), which is 
obviously 0 when no collaborators are used for performing spatial 
crowdsourcing. Similarly to what was observed in previous experi-
ments, as expected, Figs. 19(e) and 19(d) show a similar pattern.

Regarding the number of collaborators used by the agent, 
shown in Fig. 19(f), it is obviously 0 when the ratio of potential 
collaborators is 0%. For higher ratios, the number of effective col-
laborators used by the agent varies more or less randomly, but for 
all the cases its number is within the range of 10 to 21 collabora-
tors. When the mobile agent commutes from spatial crowdsourcing 
to hopping to other vehicles and back again to spatial crowdsourc-
ing, it seems to find a new collaborator easily, as the total time 
for the monitoring (shown in Fig. 19(a)) does not increase signifi-
cantly.

In Table 8, we can see how the reliability is between 68% and 
80% (depending on the city map) when the ratio of potential col-
laborators is 0%. For 10% of potential collaborators, it increases to 
between 96% and 100%, and for higher values the reliability is al-
ways 100%, with the exception of a few cases where it is 98%. 
Therefore, not being able to use spatial crowdsourcing (i.e., 0% of 
potential collaborators) makes the process more unreliable than 
when using it.

As a conclusion for this experiment, we can say that the ben-
efits of using spatial crowdsourcing are remarkable even with a 
ratio of potential collaborators as low as 10%. Therefore, we do not 
need a high number of drivers willing to modify their trajectories 
to benefit from the spatial crowdsourcing approach and increase 
the performance of the process.

4.4.2. Impact of the density of vehicles
In this experiment, we test the influence of the density of vehi-

cles on the performance of the monitoring process. In the previous 
experiments, where the density was set to 100 vehicles/km2 (a 
medium value), the results showed that even with a small number 
of potential collaborators the performance improves dramatically. 
However, we also want to test it in a more challenging scenario 
with low and very low vehicle density, to find out the limits of 
spatial crowdsourcing. The chosen density values and their denom-
ination (low density, medium density, etc.) are inspired by those 
used in proposals such as [37,38], and for this experiment we vary 
them from 10 vehicles/km2 (very low density) to 100 vehicles/km2

(medium density). Based on the results of the experiment pre-
sented in Section 4.4.1, in this experiment the percentage of po-
tential collaborating vehicles is set to 10%.

In Fig. 20(a), the total time to complete the monitoring process 
is shown. As the number of vehicles increases, the time needed 
decreases, with little variance when the density reaches around 
between 70 and 80 vehicles/km2. The reason is that, with a high 
number of vehicles, the mobile agent has less difficulties to find 
a car to be carried nearer the target area, whether it uses spatial 
crowdsourcing or just hops from one vehicle to another.

Regarding the number of hops performed by the mobile agent, 
shown in Fig. 20(b), its number increases with the vehicle density, 
since the agent is constantly looking for a better option to reach its 
destination sooner: if there exist more vehicles, then the number 
of opportunities is also higher and the agent will likely hop to 
another car more frequently.

The amount of data collected within the timeout of 3 minutes, 
shown in Fig. 20(c), increases with the vehicle density, although 
there is little variation and all the values are higher than 90%.
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Fig. 19. Monitoring process: results varying the percentage of potential collaborating vehicles.

Table 8
Monitoring process: reliability varying the percentage of collaborating vehicles.

% of collaborators 0 10 20 30 40 50 60 70 80 90 100

Madrid (% of ended simulations) 68 100 100 100 98 100 100 98 100 98 100
Barcelona (% of ended simulations) 82 100 100 100 100 100 100 100 100 100 100
Zaragoza (% of ended simulations) 80 96 100 98 100 100 100 98 100 100 100
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Figs. 20(d) and 20(e) show the virtual money paid by the 
mobile agent to the collaborators and the social cost, respec-
tively. As in the previous experiments, these figures are closely 
related, showing the relation between the social cost and the vir-
tual money spent by the mobile agent, and both values increase 
slightly with the density of vehicles. With a higher number of ve-
hicles there is also a higher number of potential collaborators, and 
the agent can obtain help more easily, and therefore it could end 
up spending more virtual money. On the other hand, with less ve-
hicles there is a smaller number of potential collaborators, so it is 
more likely that the agent cannot find one of them when needed 
and, consequently, it might spend less virtual money.

Finally, the number of collaborators taken by the mobile agent, 
shown in Fig. 20(f), increases significantly with the density of vehi-
cles, for the same reasons: since the number of potential collabora-
tors is higher, the agent has more opportunities to take advantage 
of them and they are used more frequently.

Table 9 shows the reliability of the monitoring process for the 
different traffic density values. As the vehicle density increases, so 
does the reliability, and starting with 50 vehicles/km2 there is lit-
tle variance. This result is related to the total time required for 
the monitoring, as the sooner the mobile agent completes all the 
phases of the process, the less likely the time limit will be reached.

As a conclusion for this experiment, we can say that, regard-
ing the influence of the vehicle density in spatial crowdsourcing, 
the best results in terms of time, reliability and amount of col-
lected data are obtained for values around 60 vehicles/km2 (a low
density) and higher. For lower densities, the results are worse, but 
not so bad for the spatial crowdsourcing to be considered use-
less under those circumstances: for example, for the extremely low 
density value of 10 vehicles/km2 the amount of collected data is 
higher than 90% and the reliability is near 75% in the worst case, 
which may be enough for monitoring tasks with soft requirements.

4.4.3. Impact of the minimum stay time in a collaborator
In this experiment, we evaluate the impact of the minimum 

stay time required in each collaborating vehicle used. Specifi-
cally, we vary this value from 0 to 50 seconds in increments of 
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Fig. 20. Monitoring process: results varying the density of vehicles.

Table 9
Monitoring process: reliability varying the density of vehicles.

Density (vehicles/km2) 10 20 30 40 50 60 70 80 90 100

Madrid (% of ended simulations) 86 98 98 100 98 100 98 100 98 100
Barcelona (% of ended simulations) 74 86 100 92 96 98 100 100 100 100
Zaragoza (% of ended simulations) 80 82 96 88 98 100 100 100 100 96
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5 seconds, to evaluate its impact. Besides, based on the results 
of the experiment presented in Section 4.4.1, in this experiment 
the percentage of potential collaborating vehicles is set to 10%. In 
Fig. 21(a), we can see how the total time to complete the process 
decreases slightly as the minimum stay time increases. The reason 
is that the likelihood of wasting time decreases when the agent 
stays in a collaborator longer, as the collaborator commits itself to 
bring the agent to its destination. Besides, the number of hops also 
decreases, as shown in Fig. 21(b).

Regarding the amount of collected data, shown in Fig. 21(c), it 
remains more or less constant as the minimum stay time increases, 
and it is always above 96%. The mobile agent takes into account 
the minimum stay time only in the phases of the process where 
it approaches the target area and returns to its origin, but not in 
the data gathering phase, so it has no influence during the data 
collection step.

The invested virtual money and the social cost, shown in 
Figs. 21(d) and 21(e), respectively, exhibit a similar behavior, like 
in the previous experiments, in this case both growing with the 
minimum stay time. The difference between the values observed 
for the lowest minimum stay value (0 seconds) and the highest 
minimum stay value (50 seconds) is about 25%, and the reason is 
that the mobile agent wastes less time in hops to other vehicles 
and stays longer in the collaborating vehicles, so these collabora-
tors receive more compensations in the form of virtual money. This 
fact is confirmed by the number of collaborating vehicles taken by 
the agent, shown in Fig. 21(f). As the minimum stay time grows, 
the number of collaborators decreases strongly. Along with the low 
variability of the total time, this means that the mobile agent takes 
a smaller number of collaborators but stays longer in them.

As shown in Table 10, the reliability parameter is 100% for al-
most all the minimum stay times (with only one exception, with 
96%, for the city of Zaragoza and a minimum stay time of 0 sec-
onds). The reliability is related to the total time of the process (and 
whether it takes longer than the timeout or not), and given the 



JID:VEHCOM AID:158 /FLA [m5G; v1.255; Prn:25/03/2019; 15:25] P.20 (1-24)

20 O. Urra, S. Ilarri / Vehicular Communications ••• (••••) •••–•••

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112
Fig. 21. Monitoring process: results varying the minimum stay time of the mobile agent in collaborators.

Table 10
Reliability varying the minimum stay time of the mobile agent in collaborators.

Minimum stay time (s) 0 5 10 15 20 25 30 35 40 45 50

Madrid (% of ended simulations) 100 100 100 100 100 100 100 100 100 100 100
Barcelona (% of ended simulations) 100 100 100 100 100 100 100 100 100 100 100
Zaragoza (% of ended simulations) 96 100 100 100 100 100 100 100 100 100 100
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small variance of the total time, the minimum stay time has no 
appreciable effect on the reliability.

As a conclusion, the use of a minimum stay time in a collabo-
rator has a certain influence on the number of hops that the agent 
needs to take, decreasing them as the minimum stay time grows. 
However, this reduction has no influence on the reliability or the 
amount of collected data, and increases the social cost of the col-
laborators and the amount of virtual money spent by the agent.

5. Related work

Spatial crowdsourcing is a hot topic nowadays. There exist some 
proposals related to monitoring and sensing in urban areas by us-
ing vehicles and networks but, up to the authors’ knowledge, our 
work is the first proposal that applies the idea of spatial crowd-
sourcing to vehicular networks, with the exception of our previous 
seminal work that was published as a short paper [9]. Moreover, 
as opposed to other works focusing on spatial crowdsourcing in 
general, our proposal is completely distributed and opportunistic, 
as it does not rely on a central entity with global knowledge about 
the potential participants and benefits from the direct interactions 
among nearby vehicles. By opportunistically considering neighbor 
vehicles as potential collaborators, the disadvantages of centralized 
approaches are avoided. In this section, we compare some related 
work and highlight the major differences and enhancements of our 
proposal. We first consider approaches related to spatial crowd-
sourcing in general and then approaches in the specific context of 
vehicles.

5.1. Related work on spatial crowdsourcing and crowdsensing

The topic of mobile crowdsensing (also called collaborative sens-
ing, mobile sensing, or participatory sensing) has attracted significant 
research attention (e.g., see [39–45]).

One common problem of spatial crowdsourcing is known as the 
Maximum Task Assignment (MTA) problem, which focuses on how to 
allocate the available workers (in our context, collaborating vehi-
cles) to spatial tasks, to maximize the global performance. There 
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exist many proposals to tackle this problem (e.g., see [46–51]) 
under different circumstances and with different constraints. How-
ever, most of them need a central server which centralizes all the 
tasks that need to be assigned and which constantly receives the 
updated location of the potential collaborators, in order to allo-
cate them the most appropriate task according to several factors 
(e.g., their position, travel time to the destination, etc.). These so-
lutions have the advantage of optimizing the performance of the 
crowdsourcing process, but they also have some drawbacks, such 
as privacy concerns (the central server needs to know the position 
of all the collaborators) and the need of direct communications 
with the central server, which can have an economic cost (in case 
of using 3G/4G technologies) or may need a previously-existing in-
frastructure (e.g., cellular phone towers or Wi-Fi access points). In 
our approach, we consider a pure ad hoc solution where a mo-
bile agent directly asks for help to the neighbor vehicles. Thus, we 
avoid the disadvantages of the centralized approaches. However, 
the assignments performed in our approach are not necessarily 
globally optimal, as they are based on local decisions taken with-
out having a global vision of the scenario.

In [52], the authors propose a method for recruiting collabo-
rators for crowdsensing tasks, by using semi-Markov models to 
predict the trajectory that the potential collaborators will follow 
and to estimate if recruiting them may be interesting or not ac-
cording to the existing sensing needs. In our approach, there is no 
explicit recruiting process based on the trajectories of the vehicles, 
which we assume that can be unknown (e.g., due to privacy rea-
sons): only vehicles in the neighborhood (within the communica-
tion range) of the vehicle carrying the mobile agent can participate 
in the spatial crowdsourcing, and they may accept or not a poten-
tial collaboration when the agent asks for their help. Nevertheless, 
the proposal in [52] could be used as a complementary technique 
if access to those trajectories is enabled.

In [41], the authors present a sensing engine called MoST (Mo-
bile Sensing Technology), that can be used as a framework for devel-
oping location-aware applications for Android mobile phones. The 
data read by the mobile phone sensors are transferred to a cen-
tral server by using the connection available on the phone (Wi-Fi, 
3G/4G, etc.) and processed in the server. This work is not related 
specifically to VANETs, but it illustrates the interest of sensing and 
crowdsourcing applications.

In [53], the authors tackle the problem of recruiting vehicles 
for public sensing in such a way that the selected vehicles cover 
an area as large as possible at the lowest cost. To achieve this, 
they present a reputation-aware, trajectory-based recruitment (RTR)
framework that handles the recruitment of vehicles for public 
sensing. The framework considers the spatiotemporal availability 
of participants along with their reputation to select vehicles that 
should achieve the desired coverage of an area of interest with 
a cost within the budget limitations. The framework consists of 
a reputation assessment scheme, a pricing model, and a selection 
scheme, that are combined to accomplish the objective of maxi-
mizing the coverage with the minimum cost. The authors propose 
greedy heuristic solutions targeting the selection problem in real-
time. The RTR framework generalizes the basic selection problem 
to handle some practical scenarios, including vehicles that leave 
the area that needs to be monitored, and varying redundancy re-
quirements. An extensive performance evaluation shows that the 
proposed greedy heuristics are able to achieve results close to 
those previously obtained by optimal benchmarks under differ-
ent scenarios, and that the framework succeeds in achieving high 
levels of coverage even when the vehicles do not stick to their an-
nounced trajectories. Another work related to the recruitment of 
collaborators is [54], where the authors propose a model based on 
genetic algorithms that selects the most appropriate group of par-
ticipants using parameters related to the users, the devices, and 
the interest area. In our spatial crowdsourcing approach, a mobile 
agent takes decisions locally based on information regarding the 
neighbor vehicles, and therefore the collaboration takes place op-
portunistically rather than through an explicit recruitment process.

It might also be possible to consider more sophisticated crowd-
sourcing strategies with the goal to minimize the social cost 
while at the same time ensuring a minimum compensation for 
the driver. For example, in the context of ride-sharing for pas-
sengers, [55] provides a method to select a driver to maximize 
the overall shared route percentage (SRP) subject to a minimum re-
quired value of this parameter for each driver (expectation rate 
of the driver). This technique could be applied to locate vehicles 
that, even if they are not at that moment within communication 
range, could pick up the mobile agent and carry it to the intended 
destination. However, applying this method in a vehicular ad hoc 
network, where there is no global view of the environment and 
the vehicles are usually constantly moving, is challenging.

Other works related to crowdsensing, but further from the 
specifics of the spatial crowdsourcing approach described in this 
paper, are [56,57]. In [56], the authors propose GENIUS-C, a frame-
work to support the development of spatial crowdsourcing plat-
forms. It is based on a generic architecture to reduce the gap be-
tween academy and industry, and is meant to decrease the devel-
opment cost and effort and increase the overall quality of spatial 
crowdsourcing platforms. A case study is created using GENIUS-C 
to demonstrate its benefits and how it can be used in the develop-
ment of spatial crowdsourcing platforms. In [57], the authors de-
scribe an algorithm to detect the accuracy of data that come from 
crowdsensing sources such as sensors aboard vehicles (car sen-
sors), sensors built into mobile devices (phone sensors) carried by 
one or more occupants, or both. They demonstrate, through eval-
uation in real environments (using infrastructure that captures car 
and phone sensor readings and uploads them to a cloud database), 
that their detection algorithms can achieve high accuracy for some 
tasks related to the driver’s behavior and the environment (e.g., 
higher than 90% for lane change determination) and that crowd-
sensing plays an indispensable role in improving the detection 
performance (e.g., improving recall by 35% for lane change deter-
mination on curves). These are complementary works to ours, as 
they focus on different issues related to crowdsensing.

Besides, although it does not specifically propose a crowdsens-
ing method, another relevant related work to mention is [58], 
where the authors describe a hierarchical Bayesian non-parametric 
approach for efficient and scalable route prediction, that can har-
ness the wisdom of crowds of route planning agents by aggregat-
ing their sequential routes of possibly-varying lengths and origin-
destination pairs. This approach has the advantages that it does 
not require a Markov assumption and that it generalizes well with 
sparse data, thus resulting in an improved prediction accuracy, as 
the authors demonstrate empirically using real-world data about 
trajectories of taxis.

Finally, regarding the use of incentives to encourage coopera-
tion, OPPay [59] is a payment system for opportunistic data ser-
vices (such as Wi-Fi sharing, content-based file sharing, and oppor-
tunistic networking), which implements a micropayment commu-
nication protocol for mobile devices to perform data transactions 
and make payments using bitcoins. OPPay is intended to operate 
using incremental payments that are resilient to interruptions in 
the communications, and therefore it may be of interest in the 
context of vehicular networks. Another interesting work regarding 
this topic is presented in [60], where the authors propose a re-
warding mechanism for mobile crowdsourcing applications based 
on auctions and biddings of the collected data, that focuses on 
preserving the privacy of the collaborators in order to encourage 
their participation. In our approach, we propose the use of vir-
tual money to pay collaborating vehicles, but the specific details 
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about how those payments can be made is out of the scope of this 
paper. Other economic and incentive models have been proposed 
for mobile P2P networks (e.g., [61,62]) and collaborative sensing in 
general (e.g., [63–66]).

5.2. Related work on monitoring tasks with vehicles

The monitoring of certain parameters (e.g., polluting gases and 
particles, pollen, or solar radiation) has been performed tradition-
ally using fixed sensing stations, that have a number of disad-
vantages, such as their lack of flexibility to perform a monitoring 
task different from the one considered initially (e.g., monitor a dif-
ferent area), and the requirement of a certain infrastructure to 
provide the energy and communication support required, which 
also make them costly to build and maintain. As an alternative, 
vehicles can be used as mobile monitoring platforms, since they 
can be equipped with the necessary sensors and can travel to any 
place (as long as a nearby road exists) to monitor the required 
parameters. The sensors installed can be replaced by others if it 
is required to monitor different parameters. Besides, the sensors 
do not need a dedicated power or communication infrastructure, 
since they can use the power generated by the vehicle’s engine and 
the wireless communication devices of the on-board computer. For 
these reasons, the use of vehicles for performing monitoring tasks 
has attracted the attention of the research community, and the 
term vehicular sensor network has emerged [67,68]. In the follow-
ing, we present some representative works related to this topic, in 
order to illustrate a variety of monitoring tasks that have attracted 
research attention.

In [69], the authors assume the existence of a vehicular net-
work in which the vehicles carry sensors, and they pose the prob-
lem of determining how much information should be received 
from the sensors and where should they be located to achieve 
an optimum monitoring process. If the sensors send information 
very frequently, then their readings would likely be similar, which 
implies that bandwidth would be wasted. On the other hand, if 
the sensors send a little amount of information, then the mea-
surements may be not accurate enough. That work is centered on 
the mathematical aspect of such a method. It is considered that 
sensors send their data to a central server by using cellular con-
nections instead of ad hoc communications. As stated before, and 
also in studies such as [4], this has some disadvantages, such as 
the existence of economic cost for the user.

In [70], the authors use information about the traffic status to 
compute the best route to recharging points for electrical vehicles, 
taking also into account the amount of energy available on board. 
The traffic status is received from the surrounding cars, that send 
information about their position and speed to estimate if the traf-
fic is light or dense. Ad hoc communications and a simple flooding 
model for data dissemination is used. However, the proposal fo-
cuses only on sharing traffic data. In our proposal, instead, the data 
sent by the vehicles can be of any type (not only the speed and po-
sition of vehicles) and the sensed data are carried out by mobile 
agents, which can behave more efficiently than flooding algorithms 
that continuously send all the data to all the neighbors. So, a mo-
bile agent can encapsulate any desired dissemination approach and 
even commute from one approach to another depending on con-
text conditions (e.g., the density of vehicles in the area). With the 
approach presented in this paper, only a limited amount of data is 
sent, every time a mobile agent hops from one vehicle to another, 
instead of sending multiple copies of the data to multiple receivers, 
as it occurs with flooding algorithms. Besides, the proposal in [70]
does not exploit any spatial crowdsourcing approach.

A working prototype is presented in [71] that consists of a 
monitoring VANET where the vehicles are equipped with sensors 
and wireless communication devices that constantly look for Wi-
Fi access points to opportunistically send the collected data to a 
central server. By contrast, in our approach the data are stored 
in the vehicles instead of being all sent to a central server, and 
they are processed distributively by mobile agents searching for 
the most relevant data to perform the monitoring task. The system 
presented in [71] was deployed in a real city and the vehicles par-
ticipating in the VANET belonged to the local authority, instead of 
being open to any citizen, which has both advantages and draw-
backs.

In [72], the authors propose a method for route planning in a 
city by using information collected opportunistically by the mov-
ing vehicles. The system operates in a decentralized way and it 
exploits a technique based on the ant optimization problem, which 
leads to routes that are not strictly optimal (as opposed to classic 
shortest path search algorithms) but good enough to both reach 
the intended destination and distribute the traffic flows along dif-
ferent streets so that they do not become congested. While the 
approach is interesting, its application is limited to the problem of 
route planning and its performance in low-traffic density scenarios 
is not clear.

In [73], a smart parking system for locating available parking 
slots is proposed. In this system, end users are not the only sub-
jects that collaborate by sharing information. Additionally, both the 
parking controllers and the city administrators also participate by 
providing information in a fast and integrated way. However, the 
system operates in a centralized way, and a mobile 3G/4G connec-
tion is required to operate it.

In [74], a probabilistic vehicle routing algorithm is proposed, 
based on a variant of the A* algorithm, to improve the sensing 
coverage of vehicles. The idea is to reduce the optimality of A* 
regarding the computation of shortest paths in exchange for a 
better sensing coverage. As opposed to our proposal, special ve-
hicles (called probe vehicles) are considered to perform the spatial 
crowdsourcing (in particular, taxis) rather than conventional cars. 
Besides, the approach presented in [74] is not based on mobile 
agents and has to be predefined in advance. Finally, it requires a 
centralized entity to compute the paths, as global knowledge of 
the sensing area covered and the trajectories is required.

In [75], the authors present a unified delay analysis framework 
for opportunistic data collection, that integrates the sensing and 
transmission delays, that are usually analyzed separately. A third 
delay metric (that they call data collection delay) is added to the 
analysis that can be performed by the framework, and thus the 
QoS of opportunistic data collection applications can be measured 
more comprehensively. The theoretical analysis of the framework is 
validated by the authors by performing a number of simulations. 
This work is complementary to ours, as it focuses on the analysis 
of performance metrics.

Also related to delay aspects, in [76], the authors tackle the 
problem of the sensor’s reading delay, and they propose a solution 
to mitigate it. Certain types of sensors (for example, some gas sen-
sors) take a relatively long time (about 20 to 50 seconds) to reach 
a stable state and obtain a valid sample measurement. If these sen-
sors are carried by moving vehicles, they may have moved several 
hundred meters in that lapse, thus obtaining data from a place 
which is distant from the intended target. If this effect is not taken 
into account, the measured parameters may be treated incorrectly 
and they could lead to wrong conclusions. To avoid this, the au-
thors propose a method to calibrate the sensor readings by using 
a filter on the raw data provided by the sensors, which also has as 
a benefit the reduction of the time needed to obtain valid sensors 
readings.

Finally, a recent work [77] analyzes crowdsourcing in Intelligent 
Transportation Systems (ITS), but it does not focus on vehicular 
networks nor spatial crowdsourcing. As another example, [78] pro-
poses a privacy-preserving vehicular urban sensing platform; how-
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Table 11
Summary of advantages and disadvantages of several spatial crowdsourcing (SC) strategies.

SC strategy Description Advantages Disadvantages

SC/PHCA Pure hopper collecting agent It needs less collaborators The collecting data task in low-density traffic areas can 
be challenging

SC/SCCA Spatial crowdsourcing collecting agent It can collect more data in low-density traffic areas It needs more collaborators

Without SC It does not use SC It does not need to compensate drivers The whole monitoring process in low-density traffic areas 
can be challenging
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ever, it relies on a cellular network, rather than when using ad hoc 
communications, and focuses on privacy issues and not on the use 
of spatial crowdsourcing.

6. Conclusions and future work

In this paper, we have presented a method that uses mobile 
agents for monitoring data in vehicular networks using spatial 
crowdsourcing. Specifically, in order to enhance the efficiency of 
the mobile agents when they perform their tasks, an agent has the 
possibility of requesting other collaborating users to modify their 
vehicles’ routes to transport the agent to a more convenient place 
(i.e., closer to the target area) when its approaching speed is too 
low. We have performed an extensive set of tests by using a real-
istic simulator of vehicular networks and real road maps, and the 
results obtained show that the use of the proposed spatial crowd-
sourcing technique can increase the performance of the monitoring 
process, allowing the agent to reach the interest area faster, with 
a more efficient use of the wireless communications bandwidth 
and a higher data collection rate than when spatial crowdsourc-
ing is not used. We quantify the results and precisely determine 
the extent of the improvement, its costs, and under which condi-
tions those benefits are obtained. According to the experimental 
results presented, the proposed strategy is suitable even in con-
ditions with a good traffic of vehicles, as it adapts itself to the 
existing conditions in order to make an efficient use of collab-
orators, commuting between using collaborators and hopping as 
needed. Therefore, using the spatial crowdsourcing approach pre-
sented is highly beneficial in low-traffic scenarios and it does not 
affect adversely the time performance of the monitoring process 
in any situation. Nevertheless, the experimental results show that 
several parameters could be adjusted depending on the existing 
constraints and preferred metrics. For example, if in the applica-
tion scenario the agent is needed to spend as little virtual money 
as possible, then the minimum approaching speed threshold and 
the minimum stay time should be set to low values, although the 
amount of data collected and the reliability of the process will 
likely be negatively affected. Table 11 shows a summary with the 
main advantages and disadvantages of the different spatial crowd-
sourcing strategies considered.

As future work, we would like to analyze the use of possi-
ble variants and extensions of our proposed spatial crowdsourcing 
techniques and monitoring strategies and evaluate them in a wide 
variety of scenarios. Besides, it is interesting to study in more de-
tail different payment methods that could be considered and their 
impact, considering desired qualities regarding the reliability, secu-
rity, privacy, fairness and trustfulness of the system. The promising 
results that we have obtained with this approach encourages us to 
continue this research line and explore these and other possibili-
ties.
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