000088324 001__ 88324
000088324 005__ 20210318091408.0
000088324 0247_ $$2doi$$a10.1016/j.jbiomech.2019.03.034
000088324 0248_ $$2sideral$$a111499
000088324 037__ $$aART-2019-111499
000088324 041__ $$aeng
000088324 100__ $$0(orcid)0000-0002-7985-6412$$aCalvo-Echenique, A.
000088324 245__ $$aNumerical simulations of bone remodelling and formation following nucleotomy
000088324 260__ $$c2019
000088324 5060_ $$aAccess copy available to the general public$$fUnrestricted
000088324 5203_ $$aNucleotomy is the gold standard treatment for disc herniation and has proven ability to restore stability by creating a bony bridge without any additional fixation. However, the evolution of mineral density in the extant and new bone after nucleotomy and fixation techniques has to date not been investigated in detail. The main goal of this study is to determine possible mechanisms that may trigger the bone remodelling and formation processes. With that purpose, a finite element model of the L4–L5 spinal segment was used. Bone mineral density (BMD), new tissue composition, and endplate deflection were determined as indicators of lumbar fusion. A bone-remodelling algorithm and a tissue-healing algorithm, both mechanically driven, were implemented to predict vertebral bone alterations and fusion patterns after nucleotomy, internal fixation, and anterior plate placement. When considering an intact disc height, neither nucleotomy nor internal fixation were able to provide the necessary stability to promote bony fusion. However, when 75% of the disc height was considered, bone fusion was predicted for both techniques. By contrast, an anterior plate allowed bone fusion at all disc heights. A 50% disc-height reduction led to osteophyte formation in all cases. Changes in the intervertebral disc tissue caused BMD alterations in the endplates. From this observations it can be drawn that fusion may be self-induced by controlling the mechanical stabilisation without the need of additional fixation. The amount of tissue to be removed to achieve this stabilisation remains to be determined.
000088324 536__ $$9info:eu-repo/grantAgreement/ES/MINECO/DPI2016-79302-R$$9info:eu-repo/grantAgreement/ES/MEC/FPU13-01070
000088324 540__ $$9info:eu-repo/semantics/openAccess$$aAll rights reserved$$uhttp://www.europeana.eu/rights/rr-f/
000088324 590__ $$a2.32$$b2019
000088324 591__ $$aENGINEERING, BIOMEDICAL$$b48 / 87 = 0.552$$c2019$$dQ3$$eT2
000088324 591__ $$aBIOPHYSICS$$b38 / 71 = 0.535$$c2019$$dQ3$$eT2
000088324 592__ $$a1.011$$b2019
000088324 593__ $$aBiomedical Engineering$$c2019$$dQ1
000088324 593__ $$aBiophysics$$c2019$$dQ1
000088324 593__ $$aOrthopedics and Sports Medicine$$c2019$$dQ1
000088324 593__ $$aRehabilitation$$c2019$$dQ1
000088324 593__ $$aSports Science$$c2019$$dQ2
000088324 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/acceptedVersion
000088324 700__ $$aBashkuev, M.
000088324 700__ $$aReitmaier, S.
000088324 700__ $$0(orcid)0000-0003-0669-777X$$aPérez-del Palomar, A.$$uUniversidad de Zaragoza
000088324 700__ $$aSchmidt, H.
000088324 7102_ $$15004$$2605$$aUniversidad de Zaragoza$$bDpto. Ingeniería Mecánica$$cÁrea Mec.Med.Cont. y Teor.Est.
000088324 773__ $$g88 (2019), 138-147$$pJ. biomech.$$tJournal of Biomechanics$$x0021-9290
000088324 8564_ $$s1302983$$uhttps://zaguan.unizar.es/record/88324/files/texto_completo.pdf$$yPostprint
000088324 8564_ $$s178565$$uhttps://zaguan.unizar.es/record/88324/files/texto_completo.jpg?subformat=icon$$xicon$$yPostprint
000088324 909CO $$ooai:zaguan.unizar.es:88324$$particulos$$pdriver
000088324 951__ $$a2021-03-18-09:10:05
000088324 980__ $$aARTICLE